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Theory of solid-state contributions to the x-ray elastic scattering amplitude

A. L. Ankudinov and J. J. Rehr
Deptartment of Physics, University of Washington, Seattle, Washington 98195-1560

~Received 1 February 2000!

We present a real space Green’s function theory of solid-state contributions and polarization dependence of
the x-ray elastic scattering amplitude. In this approach the calculation separates naturally into contributions
from the central~embedded! absorbing atom and multiple-scattering contributions from the environment. Both
real and imaginary parts of the anomalous x-ray scattering amplitude are calculated simultaneously in the
complex energy plane, without the necessity of a Kramers-Kronig transform. This approach also takes into
account final-state effects, including core-hole lifetime, the finite temperature Fermi distribution and Debye-
Waller factors, as well as experimental resolution. The approach is implemented in a generalization of theab
initio, self-consistent code,FEFF8.10, which permits applications to a number of x-ray spectroscopies for gen-
eral, not necessarily periodic systems. The solid-state effect on the fine structure in the anomalous scattering
amplitude near an absorption edge is illustrated for Cu metal. Calculations are also presented of the x-ray
anomalous cross scattering amplitudeFps for Cd metal, and x-ray natural circular dichroism in LiIO3, which
are both due entirely to solid-state effects.
m
ra
et
ca
an

ov
to
d
n

tu
h

0–
e
a
a

l r
lo

s
th
e

on

ti
ic

a

e
nt

ud

nts.
-
of
sly,

eal

in-
ap-
ex

of
-

eat-
as
ntal
of

c-
ities
d-
hape
-
ate
s
ss

se
eri-

be

s

I. INTRODUCTION

Knowledge of x-ray scattering amplitudes in matter is i
portant for many applications, e.g., for the analysis of x-
diffraction data, anomalous x-ray scattering experiments,
Remarkably, most of the available calculations of such s
tering amplitudes, e.g., the widely used tables of Cromer
Liberman1 and other more recent approaches,2 are based on
purely atomic models. However, for photon energies ab
an absorption edge, solid-state effects lead to an oscilla
fine structure in the anomalous x-ray scattering amplitu
f 81 i f 9, due to the photoelectron scattering by the enviro
ment of the central atom. This structure3 is directly analo-
gous to the phenomenon of x-ray absorption fine struc
~XAFS!, and hence can be calculated with similar tec
niques. Thus the amplitude of the solid-state effect onf 8 is
typically about 0.5 or more electron units, i.e., about 1
20%, and cannot be neglected. For studies of multielem
compounds, such as biological materials, these effects
especially important, as it could be difficult to avoid the ne
edge region in scattering experiments. Moreover, severa
lated experimental techniques, such as diffraction anoma
fine structure~DAFS! and x-ray reflectivity fine structure,4,5

are based on the analysis of the oscillatory structure. A
x-ray absorption, this signal contains information about
geometry of neighboring scatterers, but can be more sit
surface specific. For example, by using DAFS, Crosset al.
were able to separate the local environments of two n
equivalent Cu sites in high-temperature superconductors.3 To
analyze this fine structure for structural studies it is essen
to know both real and imaginary parts of the elast
scattering amplitude, including solid-state effects.

One way to calculate the solid-state effect in x-ray sc
tering is to use a differential Kramers-Kronig~DKK !
transform3 for the real part of the x-ray scattering amplitud
starting from calculations of the x-ray absorption coefficie
which is proportional to the imaginary partf 9. Unfortunately
the DKK method requiresa priori knowledge of the very
high-energy behavior of the anomalous scattering amplit
PRB 620163-1829/2000/62~4!/2437~9!/$15.00
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f 8, which requires separate calculations or measureme
The method is also expected to have difficulty for low
symmetry crystals, where the real and imaginary parts
scattering amplitudes cannot be diagonalized simultaneou
and when quadrupole transitions play an important role.

To avoid these difficulties here, we make use of a r
space Green’s function~RSGF! formalism6 to develop a
theory that is applicable for any symmetry and that also
cludes multipole transitions and cross terms. In this
proach, both real and imaginary parts of the full compl
x-ray scattering amplitudef 5 f T1 f 81 i f 9 are calculated si-
multaneously by real-space multiple-scattering~MS! calcula-
tions in the complex energy plane, without the necessity
the DKK transform, wheref T is the Thomson scattering am
plitude. The complex plane approach permits a proper tr
ment of the finite temperature Fermi distribution as well
final-state effects such as core-hole lifetime and experime
resolution. The theory is implemented in a generalization
the self-consistent x-ray spectroscopy code6 FEFF8 ~version
8.10!, which is applicable to a number of x-ray spe
troscopies. This generalization also extends the capabil
of FEFF8 for absorption spectra, permitting higher excite
state energies and an improved treatment of the edge s
and atomic background7 due to a proper subtraction of con
tributions from occupied states. We illustrate the solid-st
effects with FEFF8.10 calculations of the x-ray anomalou
scattering amplitudef 8, the x-ray anomalous scattering cro
term ~XACS! Fps , and x-ray natural circular dichroism
~XNCD! due to dipole-quadrupole scattering. All of the
calculations are found to be in good agreement with exp
mental data.

II. THEORY

The x-ray elastic-scattering amplitude can naturally
separated into Rayleigh scattering~which includes both
Thomson and anomalous x-ray scattering contribution!,
nuclear Thomson (f NT5r 0Z2m/Mat) and Delbru¨ck
2437 ©2000 The American Physical Society
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scattering,2,8 whereZ is the atomic number,r 05e2/mc2 is
the classical radius of the electron,m the electron mass, an
Mat the atomic mass~unless otherwise specified, we u
atomic unitse5m5\51 throughout this paper!. The last
two contributions are important forg rays, but in the x-ray
regime ~photon energy less than 60 keV!, which is of pri-
mary interest in this paper, they can be neglected. Th
starting from the relativistic quantum electrodynamics e
pression for the Rayleigh scattering amplitude in traditio
electron units~i.e. in units of the classical electron radiu
‘‘ 2r 0’’ !

f ~v,kW8,ê8,kW ,ê !

mc2
5(

F

all
^I u~ ê8•aW !†e2 ikW8•rWuF&^Fu ê•aW eikW•rWuI &

EI2EF1\v1 iGF

1
^I u~ ê•aW !†e2 ikW•rWuF&^Fu ê8•aW eikW8•rWuI &

EI2EF2\v2 iGF
,

~1!

where I and F are the many-body initial and final states
the system. The forward-scattering amplitude~FSA! f ab(v)
for kW5kW8 is particularly interesting due to its connectio
with the dielectric tensor9,10 eab(v),

eab~v!5dab14pxab~v!,

xab~v!5
2r 0

vk2 (
i

f ab~v!, ~2!

wherek5v/c is the photon wave vector,v is volume of the
unit cell in a crystalline material or the volume per molecu
in gases and liquids, and the sum goes over the atoms in
unit cell or the molecule, respectively. This connecti
shows that knowledge of the microscopic quantity~FSA! is
sufficient to obtain the index of refraction, Kerr effect, a
other macroscopic response functions. Within the indep
dent electron approximation one obtains, after performin
summation over negative-energy states1,8

f ~v,kW8,ê8,kW ,ê !5~ ê8* • ê !@g~Q!1 f ss~QW !#

1 (
p,p8561

~e2p8
8 !* @ f p8p

A
1 f̄ p8,p

A
#e2p ,

~3!

g~Q!5(
j
E r 2drr j

at~r !
sin~Qr !

Qr

mc2

Ej2V~r !
,

f ss~QW !5E d3rdr~rW !e2 iQW •rW,

f p8p
A

~v,kW8,kW !

mc2
5(

j

occ

(
f

unocc ^ i uap8
† e2 ikW8•rWu f &^ f uapeikW•rWu i &
Ej2Ef1\v1 iG j

,

f̄ p8p
A

~v,kW8,kW !5@ f 2p8,2p
A

~2v,2kW8,2kW !#* .

The above expressions are written in circular polarizat
notation ~cf. Messiah,11 pp. 1034–1036!, which simplifies
the angular momentum algebra in the calculations. The n
ral Cartesian frames of reference are different for initial a
s,
-
l

f

he

n-
a

n

u-
d

final multipole matrix elements. It is convenient to chooseẑ

along kW , ẑ8 along kW8 and the samey axis alongkW3kW8 for
both frames. This choice for they axis leads to simpler ex
pressions for the rotation matrices that connect the ang
momentum states in the two frames. In this case the in
and final photons have well-defined projections of angu
momentum or helicity; thus in Eq.~3! p or p8561 only. In
optics, photons with positive~negative! helicity are defined
as left ~right! circularly polarized.

The first term in brackets in Eq.~3! corresponds to Thom
son scattering f T(QW )5g(Q)1 f ss(QW ) in nonrelativistic
theory, i.e., x-ray scattering by electric charges. The mo
fied form factor g(Q) is spherically averaged and is ex
pressed as a sum over eigenstatesj, wherer j

at(r ) is the con-
tribution to the total atomic charge densityrat(r ) from
orbital j with energyEj and potentialV(r ). This form was
found to represent the sum over negative-energy eigens
quite accurately in comparison with precise scattering ma
calculations.8 For small momentum transfer and neutral a
oms, this term can be approximated to good accuracy fo
Z by g(Q)5 f 0(Q)2(Z/82.5)2.37, where

f 0~Q!5E r 2drrat~r !sin~Qr !/Qr

is the usual atomic form factor. The original estimate
Cromer-Liberman,1 g(Q)5 f 0(Q)1(5/3)Etot /mc2, was
found to be less accurate.2

The quantityf ss(QW ) is the solid-state contribution to th
form factor that arises from the difference between the to
electron density including solid-state corrections, and
pure atomic electron densitydr5r2rat, whereQW 5kW82kW
is the momentum transfer. Actually this term is zero for t
FSA due to charge neutrality, and also becomes small
large Q, where the contribution from valence electrons
comes small. Thus this term is typically small for Brag
peaks and FSA.

The second term in Eq.~3! is the anomalous scatterin
factor f A, which is due to the excitation of virtual electron
hole pairs, and is the central quantity of interest in this pap
The calculation off A reduces to calculations off pp8

A and

f̄ p8p
A , in Eq. ~3!, whereG j is the core-hole lifetime for core

statej. This factor has a cusp singularity at every absorpt
edge. Above the edge, XAFS-like solid-state effects mo
late the calculated scattering amplitude typically by about
or more electron units or about 10–20%. Nonisotropic so
state contributions also lead to several effects absen
purely atomic calculations, such as XNCD and the scatter
of initial in-plane polarization photons into final normal-to
plane polarization photons, i.e., XACS. The last termf̄ A

gives a very smooth contribution, since it has poles at la
~for x-rays! negative frequenciesv5Ej2Ef . Below we de-
velop a general framework for calculations off A, applicable
for positive and negativev. Thus f̄ A can be determined from
f A as shown in Eq.~3!.

The Thomson term in Eq.~3! has a simple polarization
dependence

F ê8* • ê5( ~ep8
8 !* r p8p

1
~2u!epG ,
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where u is the Bragg scattering angle andr p8p
l (2u) is the

rotation matrix.11 This expression simplifies for linear initia
and final polarizations. To this end, one defines a polar
tion vector sW 5 k̂3 k̂8 normal to the scattering plane, an
vectorspW 5ŝ3 k̂ and pW 85ŝ3 k̂8. Then one can obtain a
complete description of polarization dependence in term

a 232 matrix Fab defined for each value ofv, k̂, and k̂8,
which is sufficient to obtain the amplitude for any expe
mental arrangement of initial and final polarizations inclu
ing phase shifts introduced by polarizers, quarter-wa
plates, etc, i.e.,

f ~v,k̂8,ê8,k̂,ê !5S es8

ep8 D †S Fss Fsp

Fps FppD S es

epD . ~4!

Note that the Thomson term cannot contribute to the cr
term, sinceê8* • ê50. For spherically symmetric scattere
the second term~anomalous scattering! also gives zero for
the cross term~see discussion of Ho¨nl theory below!. How-
ever, the cross terms may become nonzero due to solid-
effects. The connection between rectilinear and circular
larizations can be obtained from the transformation11,12

S e1

e2D 5
1

A2
S 2 i 21

2 i 11D S es

epD . ~5!

This gives the matrix elements ofF as

Fss5~F111F121F211F22!/2,

Fsp52 i ~F112F121F212F22!/2,

Fps5 i ~F111F122F212F22!/2,

Fpp5~F112F122F211F22!/2, ~6!

Fp8p5 f T~QW !r p8p
1

~2u!1 f p8p
A

1 f̄ p8p
A .

Within the RSGF method one calculates the retard
(2) and advanced (1) Green’s functionG6 in position
space using MS theory,6 whereG6 has the spectral represe
tation,

G6~rW,rW8,E!52(
i

all f i* ~rW !f i~rW8!

Ei2E6 ih
. ~7!

Below we needG1 in the lower half of the complexE plane
and G2 in the upper half-plane. By exploiting their analy
icity in the corresponding half-planes, one gets one from
other using the relationshipG1(E* )5G2(E)†, which can
be obtained from Eq.~7!.

In order to evaluate the anomalous scattering amplitud
is convenient to calculate certain energy dependent Gre
function matrix elementsĜp8p

6 (E) defined as

Ĝp8p
6

~E!5^ j uap8
† e2 ikW8•rW8G6~rW8,rW,E!apeikW•rWu j &. ~8!

To introduce the finite temperature Fermi functionf T and
core-hole lifetimeG effects, we proceed as follows. Firs
-

of

-
e

s

ate
-

e

it
’s

one can replace the sum over unoccupied states by the
gral of the spectral density function

A~rW8,rW,E!5~G12G2!/~2p i !5(
j

all

f j* ~rW8!f j~rW !d~E2Ej !

over the Fermi distribution. Second, the complex x-ray sc
tering amplitudef p8p

A is separated into a sum over contrib
tions from individual absorption edgesj:

f A5(
j

f j
A ,

where for a givenj,

f p8,p
A

~v!5(
j
E

2`

`

dE

3
12 f T~E2m!

Ej2E1v1 iG j

Ĝp8,p
1

~E!2Ĝp8,p
2

~E!

2p i
. ~9!

This is a general expression and can be implemented in
electronic structure method. However in order to obtainf A

accurately to within a few percent, the integration range c
go as high as 70 000 eV.1 This high limit for the energy
integration puts a severe limitation on applicable electro
structure methods. Remarkably, the real-space multi
scattering theory is still applicable, especially since at h
energies the fine structure becomes negligible and he
only the first term in the MS series@see Eq.~10! below#, i.e.,
the central embedded atomic contribution, needs to be ca
lated.

Within MS theory and spherical muffin-tin potential
G6(E) is separable in terms of regularRk and irregularHk
solutions of the Dirac equation at energyE above the muffin-
tin zero level~or interstitial potential! in an angular momen-
tum K5(k,mj ) basis:

G2~rW,rW8,E!5Gat1Gsc, ~10!

Gat52A8E(
K

xKRk~r ,!Hk~r .!xK
† ,

Gsc52A8E (
K,K8

xKRk~r !ei (dk1dk8)GK,K8
sc Rk8~r 8!xK8

† ,

GK,K8
sc

5 i l 2 l 8^JuLS&GLS,L8S8
sc ^L8S8uJ8&,

wherexK is the Dirac spinor, and the last equation is a tra
formation from relativisticK to nonrelativisticLS basis us-
ing Clebsh-Gordon coefficients. HereGsc is calculated using
the dimensionless Rehr-Albers definitions and s
conventions13 in a LS basis; this needs to be mentioned
avoid minus sign problems, since different authors define
terms differently. Similarly the expression forG1 can be
obtained from (G2)†. With the above representation, w
never have to keepG as a function of two space variable
and it is more efficient to store just the regular and irregu
solutions. For the central atom part it suffices to carry o
calculations for real energies. Then the irregular solut
does not enter any of the results, since it cancels in the c
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bination G12G2. Using the multipole expansion for th
interaction with the electromagnetic field,12 we obtain

Gp8p
2

~E!5(
K,m

all

~2 ! j 2 j 81 l 2811R
k8

l 28 l 2~2p8! l 21 l 2811

3S j 8 l 2 i

2mj8 p8 mi8D GK8,K9r m
j9 ,mj

j

3~2u!~2p! l 11 l 1811S j l 1 i

2mj p mi D r
2m

i8 ,2mi

i

3~2u!Rk

l 18 l 1 , ~11!

Gpp8
1

~E* !5@Gpp8
2

~E!#†5Gp8p
2

~E!* , ~12!

where j 95 j . A detailed expression for the multipole matr

elementsRk
l 8 l is given in the Appendix. Equation~12! shows

that we don’t need separate subroutines to calculateG1,
since we only needG1 in the lower-half of the complex
energy plane andG2 in the upper-half plane. For the sca
tering contribution, calculations are carried out in the co
plex E plane. In contrast to the behavior of the central at
contribution, the scattering part is not smoothly varying
real energies. Indeed for finite molecules it should haved
function singularities at the position of every molecu
bound state as well as XAFS-like fine structure in the c
tinuum. The difficulty of handling such rapidly varyin
structure can be overcome by introducing a finite imagin
part. Therefore we treat separately the embedded atom
solid-state contribution to the elastic-scattering amplitude

Using the expression for the direct product of two rotati
matrices given by Messiah’s Eq.~C. 69!,11 one can perform
the summation over angular momenta projectionsmi and
mj , and obtain

Gp8p
2

~E!5(
K,m

all

~2 ! j 2 j 81m1 l 28R
k8

l 28 l 2

3~2p8! l 21 l 2811S j 8 l 2 i

2mj8 p8 mi8D
3GK8,K9S j l 1 i

2mj9 m mi8D r m,p
l 1

3~2u!Rk

l 18 l 1~2p! l 11 l 1811. ~13!

The central atom contribution can be further simplified, sin
it is proportional todK,K8 . More generally the Green’s func
tion is diagonal with respect toK for the cases of spherica
symmetry or a polycrystalline average in nonmagnetic ma
rials. Thus the polycrystalline average in nonmagnetic s
tems can be achieved within the RSGF method by the
placement:

GL,L8→
dL,L8
2l 11

TrmGL,L , ~14!
-

r

-

y
nd

e

-
s-
e-

i.e., by performing trace over the projection of angular m
mentum for each angular momentum componentL5( l ,m)
separately. The sum overm andms leads to a Green’s func
tion diagonal also in theK basis GK,K85G0dK,K8 . After
summation overmi8 , mj8 , andmj9 :

Gp8p
2

~ k̂,k̂8,E!

5(
k l 8 l

~2 ! l 811~Rk
l 8 l !2~pp8! l 1 l 811r p8p

l
~2u!

G0

2l 11

5(
k l

~2 ! l@~Rk
El!22~Rk

Ml !2pp8#r p8p
l

~2u!
G0

2l 11
.

~15!

Notice that all cross terms, e.g., dipole-quadrupole, can
out in this case. Also, all angular dependence is containe
the rotation matrixr p8p

l (2u) and is energy independent. Su
stituting the explicit expression for the rotation matrix11 and
using Eq.~14! we recover the very compact Ho¨nl theory for
the angular polarization dependence of the elastic-scatte
amplitude.14

Fsp5Fps50, ~16!

Fss5 f T~QW !1 f E1
A 1@ f E2

A 1 f M1
A #cos~2u!,

Fpp5@ f T~QW !1 f E1
A #cos~2u!1 f E2

A cos~4u!1 f M1
A ,

where f El are the electric dipole and quadrupole contrib
tions to the elastic forward-scattering amplitude. Note t
that the magnetic dipole contribution (f M1) has a different
angular dependence than the electric dipole (f E1), which is a
consequence of additional polarization dependence du
the multiplier pp8 for the Ml terms. In the case when
fraction q of the incoming radiation has in-plane polariz
tion, the scattered intensity isI 5quFppu21(12q)uFssu2.
The quadrupole and magnetic dipole contributions have
ferent angular dependencies than the electric dipole co
bution; however, this might be difficult to single out expe
mentally, sincef T(QW ) is also angular dependent, and th
energy dependence will be dominated by that of the elec
dipole contribution.

III. COMPLEX ENERGY PLANE CALCULATION OF Gsc

Equation~9! above is formally similar to a Kramers Kro
nig transform of the absorption coefficient, however we n
modify it, using the analyticity ofĜ(E) in the complexE
plane. As noted above, it is sufficient to carry out the m
nipulations forG2 in the upper halfE plane. We will assume
that the temperature is smaller than the core-hole lifeti
broadening (2pkBT,G i), which is usually a good assump
tion sinceG/kB usually exceeds 2000 K~i.e., about 0.2 eV!.
We also treat separately the contributions from the advan
and retarded Green’s functions:f pp85 f pp8

1
1 f pp8

2 for each
edgej. Using periodicity off T in imaginaryE, we shift the
integration into the complexE plane by 2p ikT, yielding
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f pp8
2

~v!5
21

2p i(j
E

2`12v1

`12v1
dE

Ĝpp8
2

~E!@12 f T~E2m!#

Ej2E1v1 iG j

1kT
Ĝ~m1w1!

Ej2m2w11v1 iG j
, ~17!

where the last term corresponds to the contribution from
first Matsubara pole located atE5m1w1 andw15 ipkT.

On the real axis the integrand can have sharp singular
due to band structure or bound states. Here, due to the a
tion of a finite imaginary part, the integrand is a mu
smoother function. Hence one can safely approximate
integral by the first term of the Sommerfeld expansion a
eliminate the Fermi-Dirac distribution. In the following w
focus attention on the contribution from a given edgej and
suppress the subscriptsp,p8 and superscript~2!.

f j~v!5E
m1 i2pkT

`1 i2pkT

dE
Ĝ~E!

Ej2E1v1 iG j

1FkT
Ĝ~m1w1!

Ej2m2w11v1 iG j

1
iw1

2

12p

d

dE
S Ĝ~E!

Ej2E1v1 iG j
D G . ~18!

The terms in square brackets correspond to a Somme
correction of orderkT and contributions from the Matsubar
pole~s!, both of which are comparable in order of magnitud
In the expressions below, they will be denoted asd f j (T), but
they can generally be neglected. If the validity of Somm
feld expansion is in doubt, due to the smallness ofkT, the
contour may be shifted several times, i.e., byni2pkT, yield-
ing contributions fromn Matsubara poles and a much mo
smoothly varying integrand that can be safely treated w
the Sommerfeld expansion.15 Finally, we change the integra
tion contour to the imaginary axis by closing the contour
infinite radius, yielding

f j~v!5u~v2Ej1m!Ĝ~v2Ej1 iG j !1d f j~T!

2
1

2p i Em12w1

m1 i`

dE
Ĝ~E!

Ej2E1v1 iG j
. ~19!

Notice that the first term, which comes from the core-h
pole, contains all the fine structure above the Fermi le
Although not indicated explicitly, it is straightforward to in
clude correlated Debye-Waller factors and structural disor
in Ĝ, as in theFEFF8code.6 Theu function zero-temperature
Fermi prefactor might suggest thatf i has a jump at Ferm
level. However, this jump is exactly canceled by an oppo
jump from the integral when the core-hole pole crosses
imaginary integration contour. Thus all features inf j are
actually broadened by the core-hole lifetime plus a contri
tion from the imaginary part of the final-state self-ener
which vanishes at the edge. Note that without the core-h
lifetime and thermal broadening,f 8 would have a logarith-
mic singularity at the Fermi energy. We remark that t
above expression could be modified to avoid the appa
jumps at Fermi level by adding and subtracting in the n
e

es
di-

e
d

ld

.

-

h

t

e
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er

e
e

-

le

nt
-

merator of the integrand a term proportional toG(m1 iG)
times a single-pole function, which is equal to one forE
5m1 iG, and which has a pole in the lower half-plane, b
this would not change the result.

IV. APPLICATIONS

The relativistic approach outlined above is quite gene
and is also applicable for calculations of elastic scatter
even in magnetic materials. Indeed, it would be interesting
apply the method to studies of the DAFS of Bragg peaks
magnetic materials. However for simplicity in the prese
paper, we demonstrate the approach for less complic
cases, e.g., DAFS, XNCD, and XACS. All calculations we
carried out for the special case of forward scatteringQW

50), but the generalization to arbitraryQW is straightforward
and can be done using Ho¨nl theory in many cases. Tradition
ally the Rayleigh scattering amplitude is separated af
5 f 0(Q)1 f 8(E)1 i f 9(E), i.e., using the atomic form facto
and with the transfer of the relativistic correction in th
Thomson term@g~Q!# into the anomalous scattering amp
tude: f 85 f A1 f̄ A2(Z/82.5)2.37. In our view it is more natu-
ral to add this correction to the Thomson term@g(Q) is the
modified form factor#, but for comparison with other calcu
lations and experiment we follow the above convention
f 8.

The theory described above has been implemented
computer codeFEFF8.10, which is a generalization of theab
initio, self-consistentFEFF8 code6 and uses the same pote
tials, phase shifts, and other fundamental ingredients. We
the general expression in Eq.~11! to calculateGpp8

2 in the
complex energy plane, withGK,K8 given by Eq.~10! and
multipole matrix elements given in the appendix. We p
form separate calculations for the central atom part and
the scattering part as outlined above. The embedded a
calculations are similar to those of Cromer-Liberman, but
carried out for the central atom embedded in a solid rat
than a free atom, and also include the core-hole lifetim
Thus the embedded atom potential is weakly sensitive to
environment and can exhibit some solid-state effects
atomic XAFS.7 We calculate absorption coefficients up
very high energies and use Eq.~17! to get the embedded
atom contribution tof 8. The scattering contribution decay
rapidly at high energies and thus needs to be calculated
tively close to the edge~the EXAFS region extends at mos
2000 eV!. The solid-state contribution to the anomalous sc
tering amplitude~real and imaginary parts! is obtained using
Eq. ~19!, i.e., using the values ofĜ on imaginary axis.

The calculations off 8 and f 9 with FEFF8.10are compared
with recent results from atomic theory in Table I, for ene
gies far from the edges where solid-state effects are ne
gible. Indeed our results come only from the embedded a
contributions. Table I also illustrates the good agreement
tween all of these atomic calculations and experiment.
remark that to get this agreement, quadrupole terms had t
included. Otherwise the calculated absorption coefficien
high energies is too small. The Cromer-Liberman and Kis
et al. results are comparable, since a relativistic Dirac-Fo
Slater code was used in both cases, while our calculat
were performed with the relativistic Dirac-Fock code. W
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have included in the Cromer-Liberman results reported h
a correction that gives an improved contribution fro
negative-energy states.2

A. Anomalous scattering amplitudef 8 for Cu

The scattering contribution is greatly simplified for no
magnetic, polycrystalline samples or for materials with cu
symmetry. The angular dependence in this case is given
Hönl theory, Eq.~16!, where anomalous scattering needs
be calculated explicitly only for the forward-scattering am
plitude. However the solid-state effect on diagonal ter
Fss andFpp is not negligible near an edge. We calculat
f 8 using only the dipole approximation for the scattering p
and up to quadrupole contributions for the embedded a
part. Calculations for the CuK edge anomalous scatterin
amplitude f 8 using FEFF8.10are compared to experiment i
Fig. 1. The experimental curve forf 8 has been derived from
the energy dependence of the Bragg peak intensity using
iterative DKK approach.3 One clearly sees that solid-sta
effects are quite important near the edge. The agreement
experiment is remarkable and shows that quantitative ag
ment for the scattering amplitude, even in the region wh
solid-state effects are non-negligible, is possible. Althou

TABLE I. Comparison off 8 and f 9 for noble gases betwee
various calculations and theory. The experimental and Cro
Liberman ~CL! results are taken from Ref. 1. The CLf 8 results
were corrected to obtain a betterf 0

2 ~see text!; the Kisselet al.
results were obtained using their program, which is available on
WWW ~Ref. 2!.

Atom Expt. Present CL Kissel

Ne f 8 20.01 0.027 0.026 0.026
Ar f 8 0.10 0.181 0.175 0.176
Kr f 8 20.81 2.540 2.545 2.533

Ne f 9 0.017~4! 0.016 0.02 0.017
Ar f 9 0.202~5! 0.201 0.201 0.203
Kr f 9 2.78~7! 2.70 2.71 2.71
re

c
by

s

t
m

he

ith
e-
e
h

fcc Cu metal is one of the simplest structures, it has la
solid-state effects and hence serves well as a test case
more complicated systems the inclusion of nonspher
parts of the potential and possibly many-body correctio
may also be necessary.

To show the importance of subtracting the contributi
from states below Fermi level, we also performed calcu
tions where such subtractions were neglected~short dashes in
Fig. 1!. This result shows a strong deviation from the expe
mental curve at the edge, and the difference only beco
negligible about 100 eV above the edge.

B. Cross termsF sp and F ps

In the near-edge region where solid-state effects are
portant, quadrupole transitions are usually small compare
the dipole terms. Thus one may use the above polycrysta
expression for the central atom contribution and the dip
approximation for the scattering part of the Green functio
Therefore all angular dependence will be of the fo
e i f i , j

sce j8 . For nonmagnetic materials, real polarizations c
be chosen. For crystals with symmetry axes of more th
three-dimensional 3D order,f sc will be diagonal when thez
axis is along the symmetry axis. For uniaxial crystalsf z

sc

Þ f x
sc5 f y

sc , we havee i f i , j
sce j85 f x

sce ie i81( f z
sc2 f x

sc)ezez8 and

Fss5 f T~QW !1 f x
sc1~ f z

sc2 f x
sc!~sz!

2, ~20!

Fsp5~ f z
sc2 f x

sc!szpz ,

Fps5~ f z
sc2 f x

sc!szpz8 ,

Fpp5@ f T~QW !1 f x
sc#cos~2u!1pzpz8~ f z

sc2 f x
sc!.

Note that due to solid-state effects, the cross term does
cancel out, unless thez axis is normal to either initial or fina
polarizations. Thus the cross terms are sensitive only
solid-state effects. As an example we present calculations
the hcp Cd metal. In Fig. 2 we show the calculatedu( f z

sc

2fx
sc)u2 versus both calculated and experimental18 absorption

coefficients for in-plane (x,y) polarization. Clearly our x-ray

er

e

e

FIG. 1. Calculated~dashes! and experimental

~Ref. 3! ~solid! anomalous scattering amplitud
( f 8) near the Cu K edge. Calculation with~long
dashes! and without~short dashes! subtraction of
states below Fermi level.
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FIG. 2. Calculated~dashes! and experimental
~Ref. 18! ~solid! Cd L3 edge absorption~XAS!
for polarization parallel to Cd hcp plane sho
good agreement. The XACSuFpsu2 is nonzero
due to solid-state effect. Calculations witho
subtraction of states below the Fermi level a
shown by dots.
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absorption calculations are in good agreement with exp
ment. Notice that for each peak in the cross term scatte
there are roughly two peaks in absorption.

We also show~Fig. 2 dots! results of calculations carrie
out without subtracting the contribution from the states
low the Fermi level, i.e., at about 3541 eV. The big pe
~dots! just below Fermi level corresponds to the band ofd
states, which are completely occupied for Cd. Thus one
pects an even stronger effect on the spectra near the F
level in cases when thed states are partially occupied~e.g.,
for transition metals!. However, we do not present such ca
culations here, as such materials are often magnetic and
plan to address the generalization to spin dependent sys
in future work. Previous MS calculations9,16 did not address
the problem of subtracting the contribution from the sta
below Fermi level. For example, one obtains a similar res
for the forbidden Bragg scattering in LaMnO3.16 The impor-
tance of such subtractions for the cross term is small
LaMnO3 since the Fermi level is within a band gap. How
ever this subtraction is essential for the diagonal terms,
which there is a large sensitivity of the cusp intensity to
i-
g

-
k

x-
mi

we
ms

s
lt

r

r
e

position of Fermi level~Fig. 1!. As indicated above, a bigge
effect of subtraction on the cross term can be expected
magnetic metals and cannot be totally neglected even for

C. X-ray natural circular dichroism

The effect of XNCD observed in nonmagnetic materia
can originate from the cross dipole-quadrupole (E1-E2)
transitions or even in dipole approximation due to nonline
wave propagation.17 Our general expression forG(E) sim-
plifies for forward scattering (u50), since the rotation ma
trices then become unit matrices. Only gyrotropic XNCD
possible in the LiIO3 crystal, and for the propagation alon
the symmetry axis one has from the optical theorem,

sXNCD5s12s25Im
4p

vc
~ f 11

A 2 f 22
A !. ~21!

The XNCD at the IL3 edge is shown in Fig. 3. Our calcu
lations generally agree both with experiment and with pre
ous results for the overall peak positions and intensit
d

FIG. 3. Calculated XAS~upper! and XNCD
~lower! for iodine L3 edge in LiIO3 with Debye-
Waller factors~solid! and without~dashes!. The
XNCD signal is multiplied by 100. XNCD van-
ishes for spherically symmetric potentials an
thus is due entirely to solid-state effects.
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However some details of our results are somewhat diffe
since, in contrast to previous calculations,16 our code is rela-
tivistic and self-consistent and also includes the damping
fects of Debye-Waller factors. Moreover, we do not ag
with the conclusion16 that convergence can be achieved w
a 40 atom cluster. Clearly Fig. 3 shows noticeable chan
for a 101 atom cluster, especially for XNCD. However, w
find that increasing the size beyond 101 atoms, e.g., to
atoms gives little further change. Also note that our calcu
tions correctly reproduce the negative XNCD peak at
same position as the first absorption peak—about 1 eV ab
the edge, which was not reproduced correctly previously.
also show in Fig. 3 the effect of Debye-Waller factors, whi
shows that thermal disorder is a primary source of the ov
estimated amplitude in earlier calculations.

For all calculations it is surprising that agreement w
experiment is better for XNCD than for absorption.19 The
source of the discrepancies may be due to the limitation
muffin-tin potential used in all of the calculations and pos
bly to multielectron excitations, as suggested by Natoli.
our view, the nonspherical part of the potential may stron
affect x-ray appearance new-edge structure~XANES! calcu-
lations and its role for XANES and XNCD needs to be a
dressed quantitatively in future work.

V. CONCLUSIONS

We have developed a general theoretical approach for
culations of the x-ray elastic scattering amplitude, includ
solid-state effects within the RSGF formalism. In this a
proach, calculations off 8 and f 9 are carried out simulta
neously in the complexE plane, without the necessity of th
DKK transformation. The theory is implemented in a gen
alization of theab initio x-ray spectroscopy codeFEFF8.10

which is applicable to arbitrary materials. This generalizat
extends the capabilities ofFEFF8 to treat a number of x-ray
spectroscopies and also extends the domain of validity
very-high energies. In our approach, calculations are car
out separately for the atomiclike and solid-state parts, si
their corresponding contributions to the Green’s funct
have different behaviors for large complex energies. T
solid-state effect is particularly significant for Bragg-pe
intensities for energies near the absorption edge~DAFS!.
Purely solid-state effects can be observed by measuring
XACS term Fsp or XNCD. Calculations of these effect
with the same RSGF method inFEFF8.10show good agree
ment with experiment. Near the absorption edge we find
it is important to account for finite core-hole lifetime and
subtract the contribution from occupied states. For nonm
netic materials this seems to be most important for the d
onal termsFss andFpp . Far from the edge, in the extende
fine-structure region, the contribution from states below
edge can be neglected. This implies that calculations
DAFS can be simplified, in that the terms arising from t
subtraction of occupied states, i.e., from the integral over
imaginary axis in Eq.~19! can be neglected. This integral
essential to obtain an accurate treatment of the cusp, bu
behavior is smooth both above and below the Fermi leve
similar RSGF formalism is applicable to other spe
troscopies, such as reflectivity fine structure, or nonreson
x-ray emission spectra~XES!, and we plan to address thes
topics in future work.
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APPENDIX

Below we summarize the details of the calculation
multipole matrix elements used in this work. Following th
review and notation of Grant,12 we consider the fully relativ-
istic expression for matrix elements of multipole transition

^nkmuapeikW•rWun8k8m8&. ~A1!

The quantum numberk5 l for j 5 l 21/2, andk52 l 21 for
j 5 l 11/2. Expressions for the matrix elements can be
tained using irreducible tensor algebra,11,20using the decom-

position ofeikW•rW in terms of the irreducible tensorsC0
( l 8) . The

vector operatoraW is a tensor of order 1. The product of tw
tensors can be decomposed in terms of the irreduc
tensors,11,20

ap eikW rW5(
l 51

`

(
l 85 l 21

l 11

al 8 lS 0 Xp
[( l 81)l ]

Xp
[( l 81)l ] 0

D ~2p!n,

~A2!

wheren5 l 81 l 11, and the quantity

al 8 l~r !5~2 ! l 11@ l #1/2i l 8S l 1 l

0 1 21D j l 8~kr !~2l 811!,

~A3!

depends only onr and not on angular or spin coordinate

Conversely the irreducible tensorXp
[( l 81)l ] is independent ofr

and acts on the angular and spin coordinates only. Here
usual notation of atomic physics is used:@k,l , . . . #5(2k
11)(2l 11) . . . . Thus this operator connects two upp
components of the initial-state Dirac spinor only with th
two lower components of final-state spinor~and vice versa!.
Grant’s result12 Eq. ~6.30! can be rewritten in a form resem
bling the Wigner-Eckart theorem:

^nkmual 8 l~r !S 0 Xp
[( l 81)l ]

Xp
[( l 81)l ] 0

D un8k8m8&

5~21! j 2mS j l j 8

2m p m8
DRkk8

l 8 l , ~A4!

where the reduced matrix elementRkk8
l 8 l is

Rkk8
l 8 l

5(
b

^nkbual 8 l~r !un8k82b&Ckk8
l 8 l

~b!

5 i E dr al 8 l~kr !@PkQk8Ckk8
l 8 l

~1!1QkPk8Ckk8
l 8 l

~21!#

5E dr Rkk8
l 8 l

~r !. ~A5!
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Hereb561 corresponds to the upper~lower! component of
Dirac spinor, and

Ckk8
l 8 l

~b!5A6@ j ,l , j 8,l,l8#1/2~21!lH l l 8 l8

1

2

1

2
1

j j 8 l

J
3S l l 8 l8

0 0 0 D dS l, j 2
1

2
ab D

3dS l8, j 81
1

2
a8b D , ~A6!

where thea51 for negativek anda521 for positivek. In
the above expression we correct the minus sign problem
Grant’s paper for the arguments inside the Kroneckerd sym-
bols.

It is convenient to define electric and magnetic multipo
matrix elements asRkk8

El
5Rkk8

l 21l
1Rkk8

l 11l and Rkk8
Ml

5Rkk8
l l .

Thus the smooth atomic cross section is given as a sum
multipole electric and magnetic contributions

sat~v!5
8pck

v (
k8 l

uRkk8
El u21uRkk8

Ml u2

2l 11
. ~A7!

The factor (2p)n in Eq. ~23! is always unity for electric
multipole transition, but alternates in sign for magnetic m
tipole transitions. This factor is essential to calculate
E1-M1 contribution to XNCD, which we found to be tw
ys
n

in
. B

.

y

v.
in

of

-
e

orders of magnitude smaller than theE1-E2 contribution at
the I L3 edge in LiIO3. Also this factor leads to a differen
angular dependence of the scattering amplitude for sph
cally symmetric or polycrystalline systems.

An additional complication arises for calculations ofGat

in the complex energy plane, which are necessary if o
wants to avoid singular points at the real energies of
bound states, whereGat diverges. One can use complex e
ergy integration as discussed in the text forGsc; however for
the central atom part, the irregular solution needs to be
culated in order to exploit the analyticity in the upper ha
plane. Thus the expression for the embedded atom contr
tion is

Gp8p
2

~ k̂,k̂8,E!5(
k l

~2 ! l 811~pp8!nHkk8
l 8 l

r p8p
l

~2u!

2l 11

Hkk8
l 8 l

52E
0

`

dr Rkk8
l 8 l

~r !E
r

`

dr8Hkk8
l 8 l

~r 8!, ~A8!

whereHkk8
l 8 l (r 8) is defined as the regular counterpart in E

~A5!. Thus one has to calculate the above double integ
instead of squaring the matrix element. This has also b
implemented in our code to calculate nonresonant x-
emission spectra~XES!, since in this case, calculations o
the real axis is not a good choice for the RSGF meth
These results will be published elsewhere, since XES d
not have a direct relationship to the elastic-scattering am
tude addressed in the present paper.
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