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Theory of solid-state contributions to the x-ray elastic scattering amplitude
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We present a real space Green'’s function theory of solid-state contributions and polarization dependence of
the x-ray elastic scattering amplitude. In this approach the calculation separates naturally into contributions
from the centralembeddeflabsorbing atom and multiple-scattering contributions from the environment. Both
real and imaginary parts of the anomalous x-ray scattering amplitude are calculated simultaneously in the
complex energy plane, without the necessity of a Kramers-Kronig transform. This approach also takes into
account final-state effects, including core-hole lifetime, the finite temperature Fermi distribution and Debye-
Waller factors, as well as experimental resolution. The approach is implemented in a generalizatioabof the
initio, self-consistent codesgFrs.10 which permits applications to a number of x-ray spectroscopies for gen-
eral, not necessarily periodic systems. The solid-state effect on the fine structure in the anomalous scattering
amplitude near an absorption edge is illustrated for Cu metal. Calculations are also presented of the x-ray
anomalous cross scattering amplituele, for Cd metal, and x-ray natural circular dichroism in LiiQvhich
are both due entirely to solid-state effects.

[. INTRODUCTION f’, which requires separate calculations or measurements.
The method is also expected to have difficulty for low-
Knowledge of x-ray scattering amplitudes in matter is im-symmetry crystals, where the real and imaginary parts of
portant for many applications, e.g., for the analysis of x-rayscattering amplitudes cannot be diagonalized simultaneously,
diffraction data, anomalous x-ray scattering experiments, etand when quadrupole transitions play an important role.
Remarkably, most of the available calculations of such scat- To avoid these difficulties here, we make use of a real
tering amplitudes, e.g., the widely used tables of Cromer andpace Green’s functioiRSGH formalisnf to develop a
Libermart and other more recent approacRese based on theory that is applicable for any symmetry and that also in-
purely atomic models. However, for photon energies aboveludes multipole transitions and cross terms. In this ap-
an absorption edge, solid-state effects lead to an oscillatorgroach, both real and imaginary parts of the full complex
fine structure in the anomalous x-ray scattering amplitude-ray scattering amplitudé=f"+f’'+if” are calculated si-
f’+if”, due to the photoelectron scattering by the environmultaneously by real-space multiple-scatteriMg) calcula-
ment of the central atom. This structarie directly analo- tions in the Comp|ex energy p|ane, without the necessity of
gous to the phenomenon of x-ray absorption fine structurghe DKK transform, wherd' is the Thomson scattering am-
(XAFS), and hence can be calculated with similar tech-pjitude. The complex plane approach permits a proper treat-
niques. Thus the amplitude of the solid-state effecf oms  ment of the finite temperature Fermi distribution as well as
typically about 0.5 or more electron units, i.e., about 10—final-state effects such as core-hole lifetime and experimental
20%, and cannot be neglected. For studies of multielemenesolution. The theory is implemented in a generalization of
compounds, such as biological materials, these effects affie self-consistent x-ray spectroscopy coeerrs (version
especially important, as it could be difficult to avoid the nearg 10, which is applicable to a number of x-ray spec-
edge region in scattering experiments. Moreover, several reroscopies. This generalization also extends the capabilities
lated experimental techniques, such as diffraction anomalousf rerrs for absorption spectra, permitting higher excited-
fine structurDAFS) and x-ray reflectivity fine structufe?  state energies and an improved treatment of the edge shape
are based on the anaIySiS of the oscillatory structure. As ||&nd atomic backgrouﬁdjue to a proper subtraction of con-
x-ray absorption, this signal contains information about theributions from occupied states. We illustrate the solid-state
geometry of neighboring scatterers, but can be more site Qiffects with FEFFs.10 calculations of the x-ray anomalous
surface specific. For example, by using DAFS, Cresal.  scattering amplitudé’, the x-ray anomalous scattering cross
were able to separate the local environments of two nongerm (XACS) F.,, and x-ray natural circular dichroism
equivalent Cu sites in high-temperature superconduéfes. (xNCD) due to dipole-quadrupole scattering. All of these

analyze this fine structure for structural studies it is essentiada|culations are found to be in good agreement with experi-
to know both real and imaginary parts of the elastic-mental data.

scattering amplitude, including solid-state effects.

One way to calculate the solid-state effect in x-ray scat-
tering is to use a differential Kramers-KronigDKK) Il. THEORY
transfornd for the real part of the x-ray scattering amplitude, '
starting from calculations of the x-ray absorption coefficient, The x-ray elastic-scattering amplitude can naturally be
which is proportional to the imaginary pdrt. Unfortunately  separated into Rayleigh scatterifgvhich includes both
the DKK method requires priori knowledge of the very Thomson and anomalous x-ray scattering contribujions
high-energy behavior of the anomalous scattering amplitudauclear Thomson f("=r,Z?’m/M,) and Delbrigk
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H 8 : H _ : . . . . . ~
scattering;® whereZ is the atomic numbemo=e’/mc is final multipole matrix elements. It is convenient to choase
the classical radius of the electran,the electron mass, and along |2, 5 along K’ and the samg axis anngEXIZ’ for

My the atomic nlas{unless otEerwls:._ specmedr,] wle US€ hoth frames. This choice for theaxis leads to simpler ex-
atomic “’?'ts‘?—m—ﬁ—_l throughout this pap_)erT e last pressions for the rotation matrices that connect the angular
two contributions are important foy rays, but in the X-ray  momentum states in the two frames. In this case the initial

regime (photon energy less than 60 kKeWwhich is of pri-  ang final photons have well-defined projections of angular
mary interest in this paper, they can be neglected. Thusf'nomentum or helicity; thus in Eq3) p or p’ = =1 only. In

starting from the relativistic quantum electrodynamics ex-qhtics photons with positivénegative helicity are defined
pression for the Rayleigh scattering amplitude in traditional

I A its of the classical el di as left(right) circularly polarized.
?ecrtrgr; units(i.e. in units of the classical electron radius — tpe first term in brackets in Eq3) corresponds to Thom-
— 1o

son scattering f T(Q)=g(Q) + Q) in nonrelativistic
AR all S 2Ntk T o2k theory, i.e., x-ray scattering by electric charges. The modi-
M=Z (it~ a)'e |F><F.|€ ae™l) fied form factorg(Q) is spherically averaged and is ex-
mc F Ei—Er+tho+ile pressed as a sum over eigenstejuevmerepf‘t(r) is the con-
A ey iRk R tribution to the total atomic charge densipf'(r) from
+ (l(e-a)'e |F><F|E. rael ) orbital j with energyE; and potentiaV(r). This form was
Ei—Er—fiw—ile ' found to represent the sum over negative-energy eigenstates
(1) quite accurately in comparison with precise scattering matrix
o . calculation€ For small momentum transfer and neutral at-
where | and F are the many-body initial and final states Opms, this term can be approximated to good accuracy for all
the system. The forward-scattering amplitUé&A) f.5(@) 7 py g(Q)=1f,(Q)— (2/82.5F%", where
for k=K’ is particularly interesting due to its connection
with the dielectric tensdr® e, 4(w),

fo(Q):J r2drp®(r)sin(Qr)/Qr

is the usual atomic form factor. The original estimate by
—1, Cromer-Libermart, g(Q)=fo(Q)+ (5/3)E;,;/Mmc, was
Xapl®)= mz fop(®), (2)  found to be less accurate.

' The quantityfs(Q) is the solid-state contribution to the
wherek= w/c is the photon wave vectoy, is volume of the  form factor that arises from the difference between the total
unit cell in a crystalline material or the volume per moleculeelectron density including solid-state corrections, and the
in gases and liquids, and the sum goes over the atoms in ﬂ}ﬁwe atomic electron densit§p=p— p whereQ=Kk' —k
unit cell or the molecule, respectively. This connectionjs the momentum transfer. Actually this term is zero for the
shows that knowledge of the microscopic quant®BA) is  Fsa due to charge neutrality, and also becomes small for
sufficient to obtain the index of refraction, Kerr effect, and |5.ge Q, where the contribution from valence electrons be-
other macroscopic response functlon§. Within the mde_zpenéomes small. Thus this term is typically small for Bragg
dent electron approximation one obtains, after performing Peaks and FSA.
summation over negative-energy states The second term in Eq3) is the anomalous scattering

LA A ~A LA - factor fA, which is due to the excitation of virtual electron-
r _ 23 S !
flo k' €'k e)=(e"-)[g(Q)+ Q)] hole pairs, and is the central quantity of interest in this paper.
The calculation off” reduces to calculations o‘fﬁp, and

’ *xr£A A
+p,p%il (Efp’) [fp’p+fp’,p]E*P’ ?S,p, in Eq. (3), wherel'; is the core-hole lifetime for core
statej. This factor has a cusp singularity at every absorption
3 edge. Above the edge, XAFS-like solid-state effects modu-
sinQr)  ma late the calculated scattering amplitude typically by about 0.5
, or more electron units or about 10—20%. Nonisotropic solid-
Qr  Ej—V(r) state contributions also lead to several effects absent in
purely atomic calculations, such as XNCD and the scattering
fss(Q*):f d3r 5P(F)efi(3-r1 of initial in-plane polarization photons into final normil—to—
plane polarization photons, i.e., XACS. The last tefth

Eaﬁ(w) = (5aﬁ+ 477)(&[3( w)v

g<Q>=; f r2drpf(r)

gives a very smooth contribution, since it has poles at large

£ (@K' K) _%C “§C°<i|a;ref'k"r“xf|ape'k'r|i> (for x-rays negative frequencies=E;—E;. Below we de-
ma Bl Ei—Ei+ho+il| ' velop a general framework for (Ellculationsfé’f, applicable
for positive and negative. Thusf” can be determined from
?’S,p(w,ﬁl K)= [fép,‘_p( —w,—K',—K)]*. fA as shown in Eq(3).

. _ o o The Thomson term in Eq3) has a simple polarization
The above expressions are written in circular polarizatiorjependence

notation (cf. Messiah'! pp. 1034—1036 which simplifies
the angular momentum algebra in the calculations. The natu- “ e A _E el o
ral Cartesian frames of reference are different for initial and €" =2 (&) 1y p(20)€p),
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where 6 is the Bragg scattering angle amb,p(zg) is the one can replace the sum over unoccupied states by the inte-
rotation matrix'* This expression simplifies for linear initial 9ral of the spectral density function

and final polarizations. To this end, one defines a polariza- all

tion vechr€r=IA<><k rlormAaI to the scattering plane,_ and A(r’,r,E)=(G*—G*)/(27ri):Z GF (1) (1) S(E—E))
vectors m=o Xk and 7' =oXk’. Then one can obtain a )

complete description of polarization dependence in terms oyer the Fermi distribution. Second, the complex x-ray scat-
a 2x2 matrixF ., defined for each value ab, k, and k', tering amplitudef 7, ' is separated into a sum over contribu-
which is sufficient to obtain the amplitude for any experi- tions from individual absorption edggs

mental arrangement of initial and final polarizations includ-

ing phase shifts introduced by polarizers, quarter-wave A A

plates, etc, i.e., f :; fi

€ T T €

€.\ For Fou\/ € where for a giverj,
4

flok e ko= | | E )
fﬁ,'p(w)zij: LodE

Note that the Thomson term cannot contribute to the cross

term, sincee'* - e=0. For spherically symmetric scatterers 1—fr(E—p) G; p(E)—ég, o(E)
the second ternfanomalous scatteringalso gives zero for E_Etowtil : o] :

the cross terngsee discussion of H theory below. How- J !

ever, the cross terms may become nonzero due to solid-staiéis is a general expression and can be implemented in any
effects. The connection between rectilinear and circular poelectronic structure method. However in order to obtiftn

. (9

larizations can be obtained from the transformdttda accurately to within a few percent, the integration range can
_ go as high as 70000 eV This high limit for the energy
€4 1 (! -1\ /e integration puts a severe limitation on applicable electronic
e |= E i +1]le, |- (5)  structure methods. Remarkably, the real-space multiple-
scattering theory is still applicable, especially since at high
- : energies the fine structure becomes negligible and hence
This gives the matrix elements &fas only the first term in the MS serigsee Eq(10) below], i.e.,
F,,=(F, +F, +F_,+F__)/2 the central embedded atomic contribution, needs to be calcu-
77 S S lated.
F,.=—i(F,,—F, +F_.—F_)/2 Within MS theory and spherical muffin-tin potentials,
o G~ (E) is separable in terms of regul&, and irregulaH
F . =i(F,,+F, —F_,—F__)/2 solutions of the Dirac equation at energyabove the muffin-
i ' tin zero level(or interstitial potentiglin an angular momen-
F..=(F.,—F, —F_,+F__)/2, (6) tumK=(x,m;) basis:
T A LA G (r.r',E)=G*+G*, (10
Fop=f1(Q)ry ,(20)+f 7 +f0, ..
Within the RSGF method one cal_culatgs_ the r(_et_arded G¥=— BEY, xkRu(r-)H (r-)xk,
(—) and advanced ) Green’s functionG~ in position K
space using MS theofwhereG™ has the spectral represen-
tation, i ) /
G=—\BE X, xkRu(1)e/ " %)G R (rxp
D (i) e
Gi(F,F”E):—Z # (7) sc -1’ sc rerl 1y
i i _|7] GK,K/_I <\]|LS>GLS,LIS/<L S |J >,

Below we needs™ in the lower half of the compleE plane  wherey is the Dirac spinor, and the last equation is a trans-
and G~ in the upper half-plane. By exploiting their analyt- formation from relativisticK to nonrelativisticLS basis us-
icity in the corresponding half-planes, one gets one from théng Clebsh-Gordon coefficients. He@ ¢ is calculated using
other using the relationshiG*(E*)=G(E)", which can the dimensionless Rehr-Albers definitions and sign
be obtained from Eq(7). convention$® in a LS basis; this needs to be mentioned to
In order to evaluate the anomalous scattering amplitude iavoid minus sign problems, since different authors define the
is convenient to calculate certain energy dependent Greenterms differently. Similarly the expression f@* can be
function matrix elementé;,p(E) defined as obtained from G ). With the above representation, we
never have to keef® as a function of two space variables,
(3’? p(E)=<j|a;,e‘i'2/‘F'Gi(F’,F,E)apei'z'F|j>. (8  anditis more efficient to store just the regular and irregular
solutions. For the central atom part it suffices to carry out
To introduce the finite temperature Fermi functibp and  calculations for real energies. Then the irregular solution
core-hole lifetimel” effects, we proceed as follows. First, does not enter any of the results, since it cancels in the com-
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bination G —G~. Using the multipole expansion for the i.e., by performing trace over the projection of angular mo-
interaction with the electromagnetic fieltiyve obtain mentum for each angular momentum componest(l,m)
separately. The sum overandmg leads to a Green'’s func-

_ B U 1l sl 41 tion diagonal also in the&K basis Gy ' =Ggdk . After
Gp,p(E)—};n (=) TRTIRE A (—p') e summation ovem/ , m/, andm’:

all

!

J l, i
X —mj' p’ mf

. G, (k.k',E)
GK,,K”r:‘n” m. p p
j

G

'Rl INETEEE 0

P Kle() MR P T 0(20) 5
x

X(zg)(_p)|1+|1+l( _

j P Mt -m —m; _ A\ pEN2_ (pMI20 o7, Go
x(20)R1", (1D (195
G (EX)=[G_(E)]'=G_, (E)*, (12) Notice that all cross terms, e.g., dipole-quadrupole, cancel
PP PP PP out in this case. Also, all angular dependence is contained in
wherej”=j. A detailed expression for the multipole matrix the rotation matrix'p,p(ze) and is energy independent. Sub-

eIementsR'K'I is given in the Appendix. Equatiofi2) shows stituting the explicit expression for the rotation mattiand

that we don’t need separate subroutines to calculite  using Eq.(14) we recover the very compact Hotheory for

since we only needs* in the lower-half of the complex the angular polarization dependence of the elastic-scattering

energy plane an&~ in the upper-half plane. For the scat- amplitude’*

tering contribution, calculations are carried out in the com-

plex E plane. In contrast to the behavior of the central atom For=F =0, (16)

contribution, the scattering part is not smoothly varying for

real energies. Indeed for finite molecules it should have

function singularities at the position of every molecular

bound state as well as XAFS-like fine structure in the con-

tinuum. The difficulty of handling such rapidly varying FMZ[fT(QHf/el]coggg”fézcos“g”fﬁm,

structure can be overcome by introducing a finite imaginary

part. Therefore we treat separately the embedded atom aRghere f, are the electric dipole and quadrupole contribu-

solid-state contribution to the elastic-scattering amplitude. tions to the elastic forward-scattering amplitude. Note too
Using the expression for the direct product of two rotationthat the magnetic dipole contributiorf,{;) has a different

matrices given by Messiah's E(C. 69,'* one can perform  angular dependence than the electric dipdlg ), which is a

the summation over angular momenta projectionsand  consequence of additional polarization dependence due to

m; , and obtain the multiplier pp’ for the MI terms. In the case when a

fraction g of the incoming radiation has in-plane polariza-

tion, the scattered intensity is=q|F .|+ (1—q)|F .|

The quadrupole and magnetic dipole contributions have dif-

ferent angular dependencies than the electric dipole contri-

, R PR bution; however, this might be difficult to single out experi-
X(—p")l2tlatl -m p’ m mentally, sincefT(Q) is also angular dependent, and the
energy dependence will be dominated by that of the electric
dipole contribution.

Foo=fT(Q)+ 1 8, +[f £+ f fi1]c0g26),

all

= (E)=3 (—)i-i'menRlale
G,/ ,(E) K2m< ) °R?,

oo

I

X GK’ Kl — m” m T
! M mp IIl. COMPLEX ENERGY PLANE CALCULATION OF Gs°¢
Il N+l 41 Equation(9) above is formally similar to a Kramers Kro-
X(20)R T (—p)rra. (13 nig transform of the absorption coefficient, however we now

The central atom contribution can be further simplified, sincemodify it, using the analyticity ofG(E) in the complexE
it is proportional tod . . More generally the Green’s func- plane. As noted above, it is sufficient to carry out the ma-
tion is diagonal with respect ti for the cases of spherical hipulations forG™ in the upper halE plane. We will assume
symmetry or a polycrystalline average in nonmagnetic matethat the temperature is smaller than the core-hole lifetime
rials. Thus the polycrystalline average in nonmagnetic sysbroadening (ZrkgT<T';), which is usually a good assump-
tems can be achieved within the RSGF method by the retion sincel'/kg usually exceeds 2000 K.e., about 0.2 eY/
placement: We also treat separately the contributions from the advanced
and retarded Green’s functionkr',p,zf;pﬁrf;p, for each
oL (14) edgej. Using periodicity off; in imaginaryE, we shift the

CLur—= g mCLLy integration into the comple& plane by 27ikT, yielding
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q wt20,  GL (E)[1—fr(E—p)] merator of the integrand a term proportional G§u+il")
f;p,(w):_.E f PP _ times a single-pole function, which is equal to one tor
2w T ) —wi20 Eji—E+ow+il =u+iT, and which has a pole in the lower half-plane, but
Glutwy) this would not change the result.
+KT A (17)

IV. APPLICATIONS

where the last term corresponds to the contribution from the L ) . ,
first Matsubara pole located Bt= w+w, andw,=imkT. The relativistic approach outlined above is quite general

On the real axis the integrand can have sharp singularitie@nd 1S also applicable for calculations of elastic scattering
due to band structure or bound states. Here. due to the add§YEN in magnetic materials. Indeed, it would be interesting to
tion of a finite imaginary part, the integrand is a much@PPly the method to studies of the DAFS of Bragg peaks in
smoother function. Hence one can safely approximate thg'agnetic materials. However for simplicity in the present
integral by the first term of the Sommerfeld expansion and®@Per, we demonstrate the approach for less complicated
eliminate the Fermi-Dirac distribution. In the following we €aS€S, €.9., DAFS, XNCD, and XACS. All calculations were

focus attention on the contribution from a given edgend  carried out for the special case of forward scatteriy (

suppress the subscriptsp’ and superscript—). =0), but the generalization to arbitra@is straightforward
A and can be done using Hitheory in many cases. Tradition-
o +i2mkT G(E) ally the Rayleigh scattering amplitude is separatedfas
fi(w)= JMHMT dEm =fo(Q) +f'(E)+if"(E), i.e., using the atomic form factor
and with the transfer of the relativistic correction in the
é(lﬁ_wl) Thomson terng(Q)] into the anomalous scattering ampli-
+ kTEj_,lL_W]_"‘w"‘iFj tude: f’ = fA+fA—(Z2/82.5)%%". In our view it is more natu-

ral to add this correction to the Thomson tefg(Q) is the
modified form factol, but for comparison with other calcu-
. (18 lations and experiment we follow the above convention for
fr.
The terms in square brackets correspond to a Sommerfeld The theory described above has been implemented in a
correction of ordek T and contributions from the Matsubara computer codeEFF8.19 which is a generalization of thab
poleg(s), both of which are comparable in order of magnitude.initio, self-consistenterrs codé and uses the same poten-
In the expressions below, they will be denotedsagT), but tials, phase shifts, and other fundamental ingredients. We use
they can generally be neglected. If the validity of Sommer-the general expression in E@L1) to calculateG;p, in the
feld expansion is in doubt, due to the smallnesk®f the  complex energy plane, witlBy . given by Eq.(10) and
contour may be shifted several times, i.e., /02 7kT, yield-  multipole matrix elements given in the appendix. We per-
ing contributions fromn Matsubara poles and a much more form separate calculations for the central atom part and for
smoothly varying integrand that can be safely treated withthe scattering part as outlined above. The embedded atom
the Sommerfeld expansidn Finally, we change the integra- calculations are similar to those of Cromer-Liberman, but are
tion contour to the imaginary axis by closing the contour atcarried out for the central atom embedded in a solid rather

G(E)
Ej—E+w+iFj

iw? d
+__
127 dE

infinite radius, yielding than a free atom, and also include the core-hole lifetime.
. Thus the embedded atom potential is weakly sensitive to the
fi(0)=0(0—Ej+un)G(w—E;+iTj) + 5f;(T) environment_and can exhibit some solid-state effects like
. atomic xArs.” We calculate absorption coefficients up to
1 (utie G(E) very high energies and use E@.7) to get the embedded
- —_—. (19 oo / ; P
2mi ) uiow, Ej—E+o+il] atom contribution tof". The scattering contribution decays

rapidly at high energies and thus needs to be calculated rela-
Notice that the first term, which comes from the core-holetively close to the edgé&he EXAFS region extends at most
pole, contains all the fine structure above the Fermi level2000 e\). The solid-state contribution to the anomalous scat-
Although not indicated explicitly, it is straightforward to in- tering amplitude(real and imaginary partss obtained using
clude correlated Debye-Waller factors and structural disordegq. (19), i.e., using the values d& on imaginary axis.

in G, as in thererrscode® The @ function zero-temperature The calculations of ' andf” with FEFF8.10are compared
Fermi prefactor might suggest th&t has a jump at Fermi  with recent results from atomic theory in Table I, for ener-
level. However, this jump is exactly canceled by an oppositagies far from the edges where solid-state effects are negli-
jump from the integral when the core-hole pole crosses thgible. Indeed our results come only from the embedded atom
imaginary integration contour. Thus all featuresfinare  contributions. Table I also illustrates the good agreement be-
actually broadened by the core-hole lifetime plus a contributween all of these atomic calculations and experiment. We
tion from the imaginary part of the final-state self-energyremark that to get this agreement, quadrupole terms had to be
which vanishes at the edge. Note that without the core-holencluded. Otherwise the calculated absorption coefficient at
lifetime and thermal broadening, would have a logarith- high energies is too small. The Cromer-Liberman and Kissel
mic singularity at the Fermi energy. We remark that theet al. results are comparable, since a relativistic Dirac-Fock-
above expression could be modified to avoid the apparerlater code was used in both cases, while our calculations
jumps at Fermi level by adding and subtracting in the nu-were performed with the relativistic Dirac-Fock code. We
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TABLE I. Comparison off’ and f” for noble gases between fcc Cu metal is one of the simplest structures, it has large
various calculations and theory. The experimental and Cromesolid-state effects and hence serves well as a test case. For
Liberman (CL) results are taken from Ref. 1. The QL results  more complicated systems the inclusion of nonspherical
were corrected to obtain a bettés? (see texk the Kisselet al. parts of the potential and possibly many-body corrections
results were obtained using their program, which is available on th?nay also be necessary.

WWW (Ref. 2. To show the importance of subtracting the contribution
from states below Fermi level, we also performed calcula-

Atom Expt. Present - Kissel - {ions where such subtractions were negle¢stmrt dashes in

Ne f’ —0.01 0.027 0.026 0.026 Fig. 1). This result shows a strong deviation from the experi-
Ar f' 0.10 0.181 0.175 0176 Mmental curve at the edge, and the difference only becomes
Kr f' —081 — 540 _ 545 _ 533 negligible about 100 eV above the edge.

Ne f” 0.0174) 0.016 0.02 0.017 B. Cross termsF ., and F .,

Ar f” 0.2025) 0.201 0.201 0.203 . . .

Kr §” 2.787) 270 571 271 In the near-edge region where solid-state effects are im-

portant, quadrupole transitions are usually small compared to
the dipole terms. Thus one may use the above polycrystalline
Sxpression for the central atom contribution and the dipole
approximation for the scattering part of the Green function.
Therefore all angular dependence will be of the form
eifisjej’. For nonmagnetic materials, real polarizations can
be chosen. For crystals with symmetry axes of more than
A. Anomalous scattering amplitudef’ for Cu three-dimensional 3D ordef$° will be diagonal when the

The scattering contribution is greatly simplified for non- aXiiciS ?!Ong the symmetry gzds.,For Sliniaidal ctystajé
magnetic, polycrystalline samples or for materials with cubic# f5x=f}°, we havee;fiSe/ =1 e/ + (f3°— 3% €,€; and
symmetry. The angular dependence in this case is given by

have included in the Cromer-Liberman results reported her
a correction that gives an improved contribution from
negative-energy statés.

Honl theory, Eq.(16), where anomalous scattering needs to Foo=f1(Q)+ 3™+ (£33 (0)?, (20)
be calculated explicitly only for the forward-scattering am-

plitude. However the solid-state effect on diagonal terms Fon=(f3=190,m;,

F,, andF .. is not negligible near an edge. We calculated

f’ using only the dipole approximation for the scattering part Fn.o=(f3=190,m,,

and up to quadrupole contributions for the embedded atom

part. Calculations for the CK edge anomalous scattering Fwﬂ:[fT(Q)Jrfiqcos(gg)Jrszé(fgc_ff)_

amplitudef’ using FEFF8.10are compared to experiment in

Fig. 1. The experimental curve fét has been derived from Note that due to solid-state effects, the cross term does not
the energy dependence of the Bragg peak intensity using tHeancel out, unless theaxis is normal to either initial or final
iterative DKK approach. One clearly sees that solid-state Polarizations. Thus the cross terms are sensitive only to
effects are quite important near the edge. The agreement wifPlid-state effects. As an example we present calculations for
experiment is remarkable and shows that quantitative agreéhe hcp Cd metal. In Fig. 2 we show the calculatétf*
ment for the scattering amplitude, even in the region where-f}9|? versus both calculated and experimelitabsorption
solid-state effects are non-negligible, is possible. Althougttoefficients for in-planex,y) polarization. Clearly our x-ray

FIG. 1. Calculateddashesand experimental
(Ref. 3 (solid) anomalous scattering amplitude
(f") near the Cu K edge. Calculation wittong
dashesand without(short dashessubtraction of
states below Fermi level.

8960 8980 9000 9020 9040 9060 9080 9100
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2 osk .
@ - FIG. 2. Calculateddashesand experimental
>< (Ref. 18 (solid) Cd L3 edge absorptioriXAS)
: for polarization parallel to Cd hcp plane show

5 0T ¢ good agreement. The XACE |2 is nonzero
5 due to solid-state effect. Calculations without
g : subtraction of states below the Fermi level are
g 04F shown by dots.
]
<C
x :

o2k

3540 3560 3580 3600 3620 3640

absorption calculations are in good agreement with experiposition of Fermi levelFig. 1). As indicated above, a bigger
ment. Notice that for each peak in the cross term scatteringffect of subtraction on the cross term can be expected for

there are roughly two peaks in absorption. magnetic metals and cannot be totally neglected even for Cd.
We also show(Fig. 2 dotg results of calculations carried
out without subtracting the contribution from the states be- C. X-ray natural circular dichroism

low the Fermi level, i.e., at about 3541 eV. The big peak _ ) )
(dot just below Fermi level corresponds to the band df 4 ~ The effect of XNCD observed in nonmagnetic materials
states, which are completely occupied for Cd. Thus one ex¢@n originate from the cross dipole-quadrupoel1(E2)
pects an even stronger effect on the spectra near the Ferfignsitions or even in dipole approximation due to nonlinear
level in cases when the states are partially occupigd.g., Wave propagation’ Our general expression fds(E) sim-

for transition metals However, we do not present such cal- Plifies for forward scattering=0), since the rotation ma-
culations here, as such materials are often magnetic and weces then become unit matrices. Only gyrotropic XNCD is
plan to address the generalization to spin dependent systerfgssible in the LilQ crystal, and for the propagation along
in future work. Previous MS calculatioh¥ did not address the symmetry axis one has from the optical theorem,

the problem of subtracting the contribution from the states
below Fermi level. For example, one obtains a similar result
for the forbidden Bragg scattering in LaMg@® The impor-
tance of such subtractions for the cross term is small for
LaMnGO; since the Fermi level is within a band gap. How- The XNCD at the IL; edge is shown in Fig. 3. Our calcu-
ever this subtraction is essential for the diagonal terms, folations generally agree both with experiment and with previ-
which there is a large sensitivity of the cusp intensity to theous results for the overall peak positions and intensities.

oA A
UXNCD:0+_U—=|mw—C(f++—f__). (21)

2 T T T T T

15 pm 2
s
% 1Pk o menesH
S FIG. 3. Calculated XASuppe) and XNCD
(lower) for iodine L5 edge in LilO3 with Debye-
05 k Walller factors(solid) and without(dashes The
XNCD signal is multiplied by 100. XNCD van-
a ishes for spherically symmetric potentials and
% 0 v./—\ —— thus is due entirely to solid-state effects.
(=]

0 20 40 €0 80 100
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However some details of our results are somewhat different ACKNOWLEDGMENTS
since, in contrast to previous calculatiofigur code is rela- .
tivistic and self-consistent and also includes the damping ef: We are grateful to C. Brouder, J. O. Cross, L. Kissel, M.

fects of Debye-Waller factors. Moreover, we do not agreeNeWV|IIe, R. Pratt, and R. Vedrinskii for useful comments

. : : . d to D. Chandesris for experimental Cd data. This work
with the conclusiotf that convergence can be achieved with an )
a 40 atom cluster. Clearly Fig. 3 shows noticeable chang was supported in part by US DOE Grant No. DE-FGO3-

e
for a 101 atom cluster, especially for XNCD. However, we §7ER45623.

find that increasing the size beyond 101 atoms, e.g., to 149
atoms gives little further change. Also note that our calcula- APPENDIX

tions correctly reproduce the negative XNCD peak at the pejow we summarize the details of the calculation of
same position as the first absorption peak—about 1 €V abovig|tinole matrix elements used in this work. Following the
the edge, which was not reproduced correctly previously. Weeyjiew and notation of Grat we consider the fully relativ-

also show in Fig. 3 the effect of Debye-Waller factors, whichig;ic expression for matrix elements of multipole transitions:
shows that thermal disorder is a primary source of the over-

estimated amplitude in_earlier cal_cglations. _ (nKm|apei'Z‘F|n’K’m’>. (A1)
For all calculations it is surprising that agreement with
experiment is better for XNCD than for absorptithThe  The quantum numbet=1 for j=I—1/2, andx=—1—1 for

source of the discrepancies may be due to the limitations of=1+1/2. Expressions for the matrix elements can be ob-
muffin-tin potential used in all of the calculations and possi-tained using irreducible tensor algeBtd? using the decom-
bly to multielectron excitations, as suggested by Natoli. Inposition ofe’® " in terms of the irreducible tensoﬁé)"). The
g?f(re(\:/tle;-vr’at:/]Zgggzirpahnecr:acﬁlee;-lg d(g::rﬁgz;rgﬁégag;éﬁngvaector operatow is a tensor of order 1. The product of two
lations and its role for XANES and XNCD needs 1o be ad_tensors can be decomposed in terms of the irreducible

1,20
dressed quantitatively in future work. tensors,
V. CONCLUSIONS o 11 0 XD )
ap€ :lz > ay ('] 0 (—p)",
We have developed a general theoretical approach for cal- =li=1-1 Xp
culations of the x-ray elastic scattering amplitude, including (A2)

solid-state effects within the RSGF formalism. In this ap-ywheren=|"+1+1, and the quantity
proach, calculations of’ and f” are carried out simulta-

neously in the complek plane, without the necessity of the )

DKK transformation. The theory is implemented in a gener- a;,(r)=(—)""*[1]Y4' _1)j|'(kf)(2|’+1),
alization of theab initio x-ray spectroscopy COdeeFF8.10 (A3)
which is applicable to arbitrary materials. This generalization

extends the capabilities ¢EFFsto treat a number of x-ray depends only om and not on angular or spin coordinates.
spectroscopies and also extends the domain of validity t@onversely the irreducible tens)&g"l)” is independent of
very-high energies. In our approach, calculations are carriegnd acts on the angular and spin coordinates only. Here the
out separately for the atomiclike and solid-state parts, SinC§syal notation of atomic physics is usdd,l, ...]=(2k

their corresponding contributions to the Green's functioni 1y(2/+1).... Thus this operator connects two upper
have different behaviors for large complex energies. Thgomponents of the initial-state Dirac spinor only with the
solid-state effect is particularly significant for Bragg-peakyq |ower components of final-state spin@nd vice versa

intensities for energies near the absorption edgaFs). Grant's resuf2 Eq. (6.30 can be rewritten in a form resem-
Purely solid-state effects can be observed by measuring thﬂing the Wigner-Eckart theorem:

XACS term F_. or XNCD. Calculations of these effects

with the same RSGF method #EFF8.10show good agree- 0 UGS

ment with experiment. Near the absorption edge we find that (nKmIam(r)( ) P ) In’k’'m’)
it is important to account for finite core-hole lifetime and to XD 0

subtract the contribution from occupied states. For nonmag-
netic materials this seems to be most important for the diag-
onal termsF, andF .. Far from the edge, in the extended
fine-structure region, the contribution from states below the )
edge can be neglected. This implies that calculations ofvhere the reduced matrix elemem';g,'(, is
DAFS can be simplified, in that the terms arising from the

subtraction of occupied states, i.e., from the integral over the_,/, o vl
imaginary axis in Eq(19) can be neglected. This integral is RK,«:% (nxBlay(r)n'«"=B)C, . (B)
essential to obtain an accurate treatment of the cusp, but its

e

=(-p)i"

LK (A4)
-m p m kK1

behavior is smooth both above and below the Fermi level. A , vl "

similar RSGF formalism is applicable to other spec- =i | dra(kn[P.Q«C,(1)+QPC,.(~1)]
troscopies, such as reflectivity fine structure, or nonresonant

x-ray emission spectréXES), and we plan to address these :f dr R'/',( ). (A5)
topics in future work. KK



PRB 62 THEORY OF SOLID-STATE CONTRIBUTIONS TO TH. .. 2445

Hereg=*1 corresponds to the uppdower) component of  orders of magnitude smaller than tBd-E2 contribution at
Dirac spinor, and the | L5 edge in LilQ,. Also this factor leads to a different
angular dependence of the scattering amplitude for spheri-

AT cally symmetric or polycrystalline systems.
vl B - 1o 11 An additional complication arises for calculations @
Cor(B) =B NN TV~ 1) 5 5 1 in the complex energy plane, which are necessary if one
o, wants to avoid singular points at the real energies of the
) ! bound states, wher@® diverges. One can use complex en-
Y 1 ergy integration as discussed in the text@it°; however for
X )5( N,j—=ag the central atom part, the irregular solution needs to be cal-
0 0 0 2 culated in order to exploit the analyticity in the upper half-
1 plane. Thus the expression for the embedded atom contribu-
X d )\’,j’+§a’ﬂ , (A6)  tionis
where thea=1 for negativex anda= — 1 for positivex. In r'p p(2t9)

the above expression we correct the minus sign problem in G;,p(k,k’,E)=E| ()" *(pp")"HL !,
Grant's paper for the arguments inside the Kronegksym- “
bols.

It is convenient to define electric and magnetic multipole H' =2fwdr R (r)fmdr’H'/' (r') (A8)
matrix elements aR:, =R '+R} and RM =R! . S R o
Thus the smooth atomic cross section is given as a sum of
multipole electric and magnetic contributions whereH'K'IL,(r’) is defined as the regular counterpart in Eq.

(A5). Thus one has to calculate the above double integral
A7) instead of squaring the matrix element. This has also been
implemented in our code to calculate nonresonant x-ray
emission spectrdaXES), since in this case, calculations on
The factor (=p)" in Eq. (23) is always unity for electric the real axis is not a good choice for the RSGF method.
multipole transition, but alternates in sign for magnetic mul-These results will be published elsewhere, since XES does
tipole transitions. This factor is essential to calculate thenot have a direct relationship to the elastic-scattering ampli-
E1-M1 contribution to XNCD, which we found to be two tude addressed in the present paper.

21+1

El Ml
87TCk |RKK/|2+|RKK'|2

Ta(w)= —— 2
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