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Distribution function of the local density of states of a one-channel weakly disordered ring
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A real space diagrammatic method, which is an extension of the Berezinskii technique to problems with
periodic boundary condition, is formulated to study the density of st&X€S) p(e,¢) and its moments for a
one-channel weakly disordered ring threaded by an external magnetié fllixe exact result obtained for the
average value of the DOS shows thdk, ¢) oscillates with a period of the flux quantugip=hc/e. However,
all higher moments of the DOS oscillate with the halved perg2. The exact expression for the DOS is
valid for both weak localizationl(>1, whereL is the ring’s circumference ardis the mean free pathand
ballistic (L=<I) regimes. In the weak localization regime the distribution function of the DOS is calculated,
which turns out to be of logarithmic normal form.

I. INTRODUCTION the persistent current on single loopsith at least a few
channelsin the diffusivé® (L=8 wm andl =70 nm, where
Interference effects in low-dimensional disordered cond is the elastic mean free patand ballisti¢* (L=8.5 um
ductors still attract attention from both experimental and theandl =11 um) regimes reveal the periagl,. The amplitude
oretical physicists, although all main features and a lot ofof the harmonic with¢,/2 was measured to be smaller by a
new effects have already been discovered during the last 2@ctor of 2—3 than that of thes, harmonic in Ref. 13.
years. The prediction of the oscillation in the kinetic coeffi-  Effects of impurities in most of the theoretical investiga-
cients in multiply connected disordered normal metals in artions were taken into account by the transfer matrix method
external magnetic fiefdand its experimental observatfoim according to the Landauer expression and by generalizations
a Mg cylinder was a very excellent examination of weakof this method ton-channel system¥-2%1 Although the
localization phenomena, since the coherence of the electrarandauer formula gives full-flux periodicity for all physical
wave function during the circulation of a closed contour isparameters, averaging over ensembles of Fitys > ~>‘or
required to observe an oscillation. The period of oscillationthe calculation of the dynamical current instead of the ther-
of the magnetoresistance predicted and observed first wasodynamical potentid-28was suggested as an explanation
equal to half of the magnetic flux quantu#iy=hc/e. Fur-  of the observed halved periodicity. In the process of averag-
ther improvements of the experiments on rings with largeing over different impurity realizations in the ensemble, the
diameters and small widths gave rise to the observation of aumber of particles in each ring is proposed to be constant,
magnetoresistance oscillation with the perigg (Ref. 3; i.e., the persistent current is assumed to be determined by the
furthermore in the experiment of Chandrasekégal both  thermodynamic potential instead of the grand canonical
periods were observed. Such a complex magnetic field de- potential?2-2* Although there has been much work done on
pendence of the magnetoresistance seems to be related to the Aharonov-Bohm effect, the existing theories of non-
statistical properties of the sample. interacting electrons still can explain neither the high value
Another development in theory was the prediction of aof the experimentally observed persistent curréntsnor its
persistent current in a one-channel disordered isolated7loopdiamagnetic sigh® This can be partially connected with the
Due to the analogy between the loop and one-dimensionglomplexity of the experiments, particularly with difficulties
(1D) lattice with a period equal to the circumference of theof the separation of phase effects in the rings with relatively
loop, a circulating current in rings was suggested, which is 3arge width(larger than the mean free p&thd from orbital
periodic function of the enclosed flux with a period @§. ones.
Studies of the effects on the persistent current at finite but On the other hand, correlation effects may be a reason for
small temperature and weak inelastic scattering show thahe discrepancy between theory and experirﬁ%‘r?ﬁ Unfor-
both weak inelastic and elastic scattering do not destroyunately, there is still no agreement on the effects of Cou-
it.>™ In experiments, the persistent current was alsdomb interaction on the amplitude of the persistent current.
observed? > A magnetization measurement was performedstudies based on spinless electrons in the 1D
in Ref. 12 onN=10’ disconnected copper loops Bt 1.5 K continuun?®3132and lattice modefé—2® gave controversial
where the electron phase coherence lerigthexceeds the results, so the amplitude of the persistent current was shown
loop’s circumferencé. =2.2 um, and it shows evidence for to be increased up to its disorder-free value according to the
a flux-periodic persistent current with halved period and 3former model, but a Mott-Hubbard metal-insulator transition
%10 %eve/L amplitude per ring, which is remarkably in the latter model was found to reduce the amplitude, or at
higher than the theoretically expected value for the persistengast a possible increase of the amplitude was negligibly
current per ring,J(I/LN)(evg/L).19%1" Measurements of small. There was also the suggestion that correlation can
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change the fundamental period with the magnetic flux and Il. DESCRIPTION OF THE METHOD
create fractional periodicity in a 1D rin§.Impurities and . . . .
correlation acting together are again subject of controversy, We consider here a one-channel disordered ring with

Thus, considering weak localization corrections in first orderJength L=2ar, threaded by a magnetic fluk through the

in the electron-electron interaction to the grand canonicaPP€M"Y: The Hamiltonian of the system can be writien as

potential®® a persistent current with a period @f/2 and an

amplitude of~evgl/L2, corresponding to the experimélt, I A
was obtained, while Monte Carlo simulation on a 1D Lut- H= 2m* 12 '@4'%
tinger liquic®® resulted in a persistent current with perigg

and with an amplitude decreased through interaction. Reyhereg,=hc/e is the fundamental period of a flux quantum
summing the existing results it can be said that neither thg g m* is the effective mass of an electron. The potential
noninteracting electron model nor models of correlated eIecVim of randomly distributed impurities is considered to be
trons yet gave satisfactory answers to the questions put fofyeak, so that scattering processes can be studied in the
ward by the experiments. These concern the pefioier  framework of the Born approximation. Below, we use the
what condition both periods or only the halved period aregpatial variablex=r ¢ instead of the angle.

observed the amplitude of the persistent current, and its * oyr aim in this section is to construct a diagrammatical
diamagnetic sigrifor the correlated electron model the dia- method for the calculation of the average values of the DOS,
magnetic sign requires an attractive interaction between the, ¢ 4:1)), and of its momentgp"(e, #:L)). The bracket
electrons. (---) denotes the average over the impurity configurations.

To prevent the interference of the orbital effects in theExpressing the DOS by means of retardedk) and ad-
presence of an external magnetic field with the phase effectg,-qq G,) Green's functionsGF) as

2
+ Vimp( @), ()

the width of the ring should be chosen as narrow as possible, 1

i.e.,_ a one-channel ring with random impurities seems to be p(€,d;x)=— — ImGg(€,b;X,X)

an ideal tool to study the Aharonov-Bohm effect. However, ™

interference effects in 1D disordered systems as a result of 1

t_he coherent backscattering processes are é_‘t%rlgspec-_ = T[GA(E,¢;X,X)—GR(6,¢;X,X)], 2)

tive of the degree of randomness. The diffusion approxima- l

tion, which was used in previous studies, is not acceptable i

1D systems even for the case of weak disorder.
Approaching the problem thoroughly, we use in this paper

ﬂwe kth moment ofp (€, ¢;x) can be given by

a weakly disordered noninteracting electron model and con- ‘ _ 1 K[k |

struct for it a new exactly solvable diagrammatic method, (p“(e, ;%)) = ngo WA

which is an extension of Berezinskii's met{dd? to the 4

problem with periodic boundary conditions. Within this X (GR(e,¢;%,x)GK (€, :x,%). (3
model, we sum all impurity scattering diagrams in the frame-

work of the Born approximation. The Berezinskii diagram technigtté”? is applied to cal-

_In Sec. Il, we describe the method. We calculate the dengyjate the average value of a single GF and higher-order
sity of electronic state@OY9) in Sec. lll. Indeed an average correlators(G'RG'Z\"y In contrast to strictly 1D disordered

value is not enough to describe the observable parameters i ¢ quantum corrections to the DOS of a ring turn out to
Iow-dlmgnsmnal mesoscopic systems. It is well knqwn Fha'iexist even for the weakly disordered limit due to periodicity.
the_physwal param_e.ters of & mesoscopic system withlsize As for infinite systems, we consider as starting point a
satlsf3|/|ng the cgnd|t|on§L<'<L¢. f:“%%%gifng sarnplefto free particle with wave function,(x)=exp(px), where the
sample, i.e., self-averaging is violated. At T=0 all suf- 5 nentum can assume arbitrary values, leading to a con-

ficiently large systems become mesoscopic. In this case, hiqth —(F 2/ 2 o "
? : . T inuous spectrume,= (75/2m*)(p— ¢/ por)=. The “bare
moments give a considerable contributf§n°?which results GE G%A can be calculated easily:

in strong differences between average value and typical one
of the observable parameter, i.e., the average value loses its 0 oy !
. L . . K GRA(E,¢,X1X )
significance to characterize the experimental observation. In :
Sec. IV the diagrammatical method is applied to find kiie dp elP(x=x')
moments of the DOSp*(¢, ¢)). The obtained equations for = f —
{p*(e,¢)) show that, in contrast to the average value of the
DOS, all higher moments oscillate with the halved period, i

2m e—€p*in

¢ol2. Although the structure of the equations is complicated, = Iv(e)ﬁ
the latter can be solved for the weak localization regime
when the condition<L is satisfied. This procedure is given X @i 27(#190) (x=x)IL=ip(e)x=X'| = [nlv(e)]x—x'|
in Sec. V.

The zeroth(not depending omb) and the first(oscillating (4)
with ¢o/2) harmonic o(p“(e. ¢)) are studied explicitlg in \whereL is the circumference of the ring and the parameter
this section. Both are shown to increase witlas expk), s introduced phenomenologically to model inelastic pro-

which gives rise to a logarithmic normal distribution. In Sec. cesses, which result in a blurring of the energy levels)
VI we conclude our results and discuss possibilities to extend

our approach to related problems.
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FIG. 1. Contributing internal vertices. Vertice$, &', and ¢

have the same form as a, b, and c, but double lines instead of singl_

ones. The following factors correspond to the vertices!:a,a
~(—U2A" =127, b: ~—1UN*" e ~—U 7 di ~(+2N7);
e: ~(+ U )exddnxlv(e)]; f: ~(+ 117 )exd —4nxv(e)].

=\2e/m* and%p(e)=y2m* € are the velocity and the mo-
mentum of an electron with energy; respectively. Notice
that Zeeman splitting has not been taken into account her
For an electron with spis== 3, it would throughout the
paper lead to a shift of the energy as>e—sgugB (where
g is the gyromagnetic ratio of the electron amd is the Bohr
magneton

This bare GF, however, is not yet the real GF for an
electron in a ring without impurities, since it does not reflect
the finite size of the system and the periodic boundary con
ditions. These are taken into account by allowing the par
ticles to make arbitrary revolutions around the ring, which

leads to the expected quantization effect. According to this

prescription, the GF for a clean rirfé%,A is

GRA(E, XX ) =GR a(€,8;%,X" )+ G (€, 0%,X" +L)
+GR A€, %X —L)

+GRAlE, XX +2L)+ - - -

©)

One may verify this approach by calculating the DOS of a

clean ring in a magnetic fieldy( €, ¢) from Eqgs.(2), (4), and

(5):
(6)

wherepo=1/[ 7whuv(€)] is the DOS for a pure and infinite 1D
system. Asp—0, Eq.(6) displays the discrete behavior for
the DOS of a clean ring.

In the diagrammatical technique, the retardadvanceg
GF of an electron moving in the field of randomly distribute
impurities is represented by an ordingdouble continuous
line in real space, which goes from poixto x’ after mul-
tiple scattering on a given impurity configuration, realized by
the potentiald/(x;) with impurities placed at the poin{s;}.
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FIG. 2. The external vertices. One incoming vertex and one
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FIG. 3. A simple diagram contributing to the single GER) (a)
resembling the motion of the electron around the ring dndafter
cutting at pointx. The numbers characterizing this diagram are
=1 andn=1. (c) shows a contribution t§GzG,). Here,m=2,

m'=1,n=0,m=1, m=0, andn=1.

For the DOS and its moments it suffices to consixlerx’.
Since the “bare” GF's[Eq. (4)] between two successive
scatterings have factorable structure, the coordinate depen-
dence can be transferred from the lines to the vertices. Av-
eraging over the random Gaussian potential leads to a pairing

of the impurity vertices. Their strength is measured by the

inverse forwardbackward scattering length,

Ry MULCCL
"(e) h202(e)do N

= [Uoaxcogpten. @
I(e) h22(e))o pLepl:

For the Born approximation to be applicable, the correlator
U(x—x")=(V(x)V(x")) should have a width much smaller
than the mean distance between impuritieg, ldnd 1£
<|*. In the extreme case of a white noise potentiglx
—x")=cU2z___8(x—x'+nL), the two scattering lengths
become equal,” =1"=2I. Given in Fig. 1 are the essential
vertices selected according to the conditmi> 1, with pg
and| being the Fermi momentum and the mean free path,
respectively. Although the “bare” GF's depend on the di-
rection due to the magnetic field, the internal vertices in Fig.
1 do not differ from those of Berezinskii. All dependence on
the magnetic field is transferred from the lines to the external
vertices, which are shown in Fig. 2.

As an example, a simple diagram contributing to
(Ggr(e,;%,x)) is drawn in Fig. 8a). For convenience, we
cut the diagram at poink and straighten the lines, which
results in Fig. 8). Each diagram for a single GF is then
characterized bym pairs of lines returning tox and n
through-going lines. Since the bulk of each diagrérms.,
after the removal of the external vertige®es not depend on
the direction,n is the sum of right-goingn™ and left-going
n~ lines. For correlator¢Gh(e, ¢;x,X)GK (€, d;x,x)), we
have to distinguish the numben of returning lines on the
left-hand sideg(lhs) and the numbem’ of returning lines on
the rhs, and in addition we must introduece m’, andn for
the advanced GF. An example for this case is shown in Fig.
3(c).

In contrast to Berezinskii's technique for an infinite 1D

outgoing vertex are attached to each continuous fermion line chassystem, the external vertices depend on the direction. Also,

acterizing one Green'’s function.

the diagrams carry a factor ori(¢/do)(n"+n"—n"
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I [l I [l I
E—&*" .D : .‘D : —a‘—" FIG. 5. How to include the internal vertices@y. Shown on the

a b o d rhs is the inclusion of vertex b of Fig. 1 and the inclusion of vertex

¢ without and with changing aih andn.
FIG. 4. The different possibilities to attach external vertices.

Casegb) and(d) contain oscillating factors ekp 2ip(e)x], whichis  the third term in the square brackets has been added. The
connected to the fact that the numbers of line pairs on the left- anéombinatoria| factor, Corresponding' e.g., to the Configura-
right-hand side differ by=1. Caseda) and(c) havem=m" and  tjon in Fig. 4a), can be obtained as follows:" lines can be
hence do not contain such factors. distributed am+ 1 positions, before each of the loops on the
Ihs and after the last loop, whereas the left-going lines
—n )] from the through-going lines. The number of pairs oncan be inserted an positions before each of the loops on the
the two sides of the cutting line, which we denoternyand  rhs. Denoting the number of lines at a given position with
m’ for the retarded GF and by andm’ for the advanced n.", we have the restrictions™=n; +n, +---+n._, and

GF, may in general differ by-1 (i.e., m—m’=-1,01and n =n;+n,+---+n,
m-m'=-10,1) as in Sec. IV. However, for  Summing over all these possibilities gives
(Ggr(€,¢;x,x")) in the regime of weak disorder as in Sec.
[ll, we have alwayam=m’'.
W v way 2 5n+,nl+n2+ +12 On- Ny N+
{n'} ini }
IIl. THE DENSITY OF STATES
m+n*\/m—1+n"
The diagrams for the DOS do not exhibit the full com- = _1 9
plexity presented in the previous section, since they contain m m

only retarded GF's. Consequently, we can omit vertices d, eThe expression for the DOS can be obtained by combining
and f of Fig. 1 and sem=m’. Following Berezinskii's Egs.(2) and(8):

method* we denote the sum of all diagrams withpairs of

returning lines andn=n*"+n" through-going lines by coS 2 m+k\/m+n—k—1
Qo(m,n;x—x"=L), wheren™ (n~) is the number of right- p(e,d)=po Z Z Z m m—1
(left-)going lines that cross the whole diagram. Such a dia- I
gram is shown in Figs. (8 and 3b). Since the magnetic
field dependence has been extracted frQg) it only de- — Om,09n,0/CO$ P(€)LN]
pends on the total number of through-going lines. The con-
dition m=m’ restricts the possibilities to attach the external
vertices to the casds) and(c) of Fig. 4. The average value Xex;{ © Ln) 5( ) (2k n))
of the retarded GF can be expressed in terms of the kernel
Qo as X Qp(m,n;L). (10
. T m+n To find Qo(m,n;x—x"), we shift x infinitesimally and
(G7(e,9:%,x))=— v(e) 2—0 Z Z m examine the different impurity vertices that pass through the
M=% n7=0n"=0 point x. The result is a differential equation @,
m—1+n m+n- (m—1+n+ ,
X + (2m+n) n  m(m+n)
m-1 m m-1 ax Qo(MMX) == = ==+ o=+ ———
— Sm.0Sn+ 0%~ 0 expl’ip(e)L(n++n‘) 1
X Qo(m,Nn;x) — FmZQO(m—l,n+2;x),
Lo ¢
U(e)(n +n7) 27r|¢0(n n) (11)
X Qg(m,n*+n":L). (8)  Where the vertices a, b, and c in Fig. 1 contribute. For vertex

a the number of possibilities to be included im2 n, for
The two products of binomials in the square brackets of Eqvertex b it is3(2m+n)(2m+n—1), and to include vertex c
(8) characterize the different possibilities to insert the  there aren(m+n—1) ways that do not changa andn and
right-going and then™ left-going lines betweem pairs and m? possibilities that decrease by 1 pair and increase by
correspond to the casé and(c) of Fig. 4, respectively. For 2. The process of construction of this equation is illustrated
m=n*=n"=0, these two possibilities are degenerated intoin Fig. 5.
a pointlike diagram. To avoid double counting in this case, The kernelQ, satisfies the boundary condition
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Qo(m,n;x—x"=L=0)= 60, (12

which expresses the absence of scattering for a ring with

infinitesimal small circumference. Equatiofll) for
Qo(m,n;x) can be solved exactly as shown in Appendix A:

L
Qo(m,n:L)=exp| - 2|—+(2mwL n)2

L L
—Fm(m+n)—Tn

m!(j+n—2)!
(m+j+n-1)!

x> (—1)1'(rT|
=0 j

><(2j+n—1)exp{|£j(j+n—1)].
(13

Equations(10) and (13) give a complete description of the

DOS for a one-channel ring in an external magnetic field.
They are exact in the regime of weak disorder, when the

conditionpgl =>1 or egr>1 is satisfied pr andeg are the
Fermi momentum and Fermi energy, respectiveRurther-
more, since the circumferenteof the ring may vary within
a large rangel(<|~ to | *<L <), the results cover both

the weak localization and the ballistic regimes. For the weak

localization regime, wheh.>max(*,”) the amplitude of
Qo(m,n;L) decreases rapidly witm andn due to the expo-
nential prefactor. Keeping harmonics uprte-2 in Eq. (10)
and using Eq.(A6), we obtain the leading behavior for

p(e d):
1- —ex
(. [
+2poexp( )

cogp(e) L]cos{ zwi) g~ Liv(e)
bo

2L L

p(e,é)=po

L L

217217

X

&
A o

e 32T L2 cos{2p(e)L]cos<

xe—[z’f’v@“} (14)

We see that the main quantum correction to the averageith Gaussian distribution,

value of the DOS oscillates with a period @f. The ampli-

DISTRIBUTION FUNCTION OF THE LOCAL DENSIT ...

2405

p(€,¢)=po(€,P)
N+
—poL > nzcos{p(e)Ln]co<2w£n
I* =0 bo

|

Zﬂin

.
—POL_ > ncos{p(a)Ln]cos(
|~ n=0 o

N-

> > (k+1)cogp(e)Ln]
n=0 k=0

L n
_2Po|__
27—

xcod 27 5

whereN*~[ 2l /L] andN~~[2l~/L], and the DOS of a
clean ringpo(€,¢) is given by Eq.(6). In the ballistic re-
gime, L is of the same order of magnitude las henceN™*
may be rather small integers. Therefore the oscillation with
the full flux quantum¢, dominates in the ballistic regime.

In the absence of backward scattering™ € x),
Qo(m,n;L) is greatly simplified:

(ZK—H)), (15

L
Qo(m,n;L)=exp{ - 2|—+n2] Sm,0- (16)
Substituting Eq(16) in (10) and using
~[m+n—-k-1
rLILno m—1 = onke
we can express the DOS as
p(€ )
_ Po I fx 1+ /2L) 22
=pot 3\ ) d2¢
1
| exp—ip(e)L—i2mdldotiz+[7lv(e)]LI—1
+ ! +
exp—ip(e)L+i2ndldotiz+[7lv(e)]Li—1 ="
(17

From Eq.(17) one sees that forward scattering coherently
shifts all energy levels. The value of this shifting is random
with a typical value of
(Al77)JITIL, where ™ is the relaxation time due to for-

tude of this contribution decreases exponentially with theward scattering. The level repulsirin 1D disordered sys-

impurity strength or with increasing, so thatp=p, for
L—oo,

The ballistic regime is realized fdr<min(l*,|”). Keep-
ing terms up to first order im, the DOS can be approxi-
mated in this limit by

tems therefore is only due to backward scattering. The width
of this level broadening of the averaged system is much
smaller than Dingle broadening for the weak localization re-
gime, whereas the two mechanisms can have comparable
effects in the ballistic regime.
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V. HlGH;zT'\é%TJE:\(I)TNSFCL)lez\j;::ENDSOS AND linesnj=n"+n;" (nj=n"*;+n ;). (Notice that the index

of n; here denotes the number of the GF, whereas it was used
. for the position within one GF in the previous sectjoRor
Exact _calculatl_ons shov_v that the average value of the,a gifferent fermion lines, we now can attach the external
DOS oscillates with a period of the flux quantufiy. To  yertices in four different ways, as shown in Fig. 4. This
understand the reason for the experimentally observed osctji —

) ; ) . >~ allowsm,—m/=—1,0,1 (m—m/ =—1,0,1) for the each re-
lation of the persistent current in a sufficiently large ”ngtarded(advar;ce)jGF It turns olut that the bloc depends
[L>] (Refs. 12 and 18 with the halved period, we calculate ) — —
here higher moments of the distribution of the DOS. Accord-™Y ©n the _total numbersn= mlimZi's'l' tm, m=m
ing to Eq. (3), we have to determine the correlators +Mz+ -+ M and similarlym’,m’,n,n.>"Itis clear fr,o.m
(GLGX™") for thekth moment. In contrast to the Berezinskii (Nese considerations that the difference betweemdm' is
technique for strictly 1D systems, the correlators here ar?lways restricted by-1<m—m’<I. This is automat_lc%lilqy
characterized by only one blo€® An example is shown in aken into account by the mixing coefiicient

. . N . ) m,m’;n",n"). This coefficient is the generalization of
Fig. 3(c). Each diagram contributing GGk ') consists of gimm;n°, :
| retarded ank—1| advanced lines. For thh retardedad- the term in square brackets of E®). It counts the different

— possibilities to attach external verticésee Fig. 4 and to
vanced GF, we count the number of left loops;(m;), of  gjstribute the through-going lines between the loops. Using

right loops mi’(ﬁ’), and of left- and right-going traversing Eg. (9), we can write it as

<p,(m,m’;n+,n’):2 5m,m1+m2+...+m|2 5m/,m’+m’+-~+m’z 5n+,n++n*+---+n*2 On=nT+ng 4+ tn”
! i 1tm; '{n?} 1+ I{”i_} 1M |

| — + — -
x[] {e?rox-2miv@s m—1nt| mi=1+n + o 2ip(e)x+ 27X/ e)
=1 mm;+ mi_l mi_l
mi+n;"\ [ mi+n; mi+n"\ [ m—1+n, mi—1+n"\ [m+n;
X Om m/ -1 + Om,
P m; m; (A m; m—1 m—1 m;
- 5mi,05ni+,05ni,OH- (18
Separating the exponential factors in Ef§8), we can writeg, as
gDl(mJ.n/;nJr1nf):e*ZiX(m’7m)[p(e)+i1;/11(6)]Zé|(m1rn/;r]Jr’ﬂf) (19)
with
<~p|(m,m’;n+,n_)=2 5m,ml+m2+---+m|2 5m’,mi+mé+---+ml’2 5n+,nl++n;+-~+n|+2 5n‘,n1*+n2*+---+n|*
{mi} {m’} n"y {n}
ll[ m—1+n"\(m—1+n mi+n"\ [m+n;
X 1) ' + 6, '
m1 MmN mi—a m—1 MM m, m;
mi+n"\ [m—1+n; mi—1+n"\ [ m+n
+6m m — Om. 00n* 00n- . 20
m; ,m; mi mi—l mi—l : m;,0 n; ,0 n; ,0 ( )

The mixing factor for the advanced GF is obtained from complex conjugatias, of.
Now we can express E@3) in terms ofQ and the mixing factors

(p"(e,d;Lx))=

k k % © © 0 0
P
70) 222 2 2 2
=0 m=0 m=0 m'=0 m'=0 n*=

222

X e-i2n(dldg)(n* —n~+n"—n")gip(Ln® +n"—n*—n")g=[9Llv(I(n" +n"+nF+n")
w @~ 2ip(ex(m’ —m~ E’+E)e[2 nxlv(€)](m’ —m+m’ —m)
m m, nt+n~

XE|(m,m’;n+,n)<~pk|(ﬁ,ﬁ’;n_+,n_)Q(— - T, =
m m’, n"+n

L) . (21)
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H H H : FIG. 6. Different possibilities to attach verti-
T o - ces to the blockQ, as the left side is shifted. The

2 & s — o
2 3 3 § P first plot shows the inclusion of vertex ¢ of Fig. 1
i + _5— """" + 2 i+ 2 + 2 + with decreasingn andm’ by 1 and increasing
- E 2 2 by 2. The other four blocks show the different

. possibilities to include vertex f and correspond to
the last four terms in Eq22).

Here, the first three exponential factors come from the external vertices and from the revolutions around the ring. The last two
exponential factors were separated from the mixing coefficigds(19)]. Below, we shall see that the last exponential factor
is canceled by a contribution froQ.

Equation for the central block Q

m, m’, n
Q- — ox
m, m’, n
is defined as the sum of all diagrams withandm pairs of returning lines on the left sidey’ andm’ pairs on the right side,

andn and?through—going lines, coming from retarded and advanced GF’s, respectively. An equation detefnaainge
constructed according to Berezinskii's idea by attaching all possible vertices, given in Fig. 1, to the existing block, while
avoiding the formation of unconnected electron loops. Careful analysis of all these possibilities gives the equation

sl m el .
i i L i e ®lm o w
g

m+1 m n
— — X
m+1 m' n

As noted above, the central block

_ 1 1 1 —
(2m+n—2m—n)2+|—_m(m+ n)+ I—_m(m+ n)+2|—_(n+ n)

—I—_mm’Q

1 m—-1 m' n
+_mrm47]X/v(E)Q o o X
|~ m—1 m" n

X

1 (m—l m-1 n+2

1 m m’ n
—l—_m m'Q

m’ m—-1 m—-1 n+2

1 -
+ I—_(m+ n)(m+n)e *47/v(0Q

m m-1 n+2 1

+ imr(a_kﬁ)efmﬂxv(e)Q
|-

_ _ — x|+ —=(m+n)ym e 4mv(e
m+1 m’ n |~
m+1 m’ n 1 m-1 n+2
xQ| — — — x|+ —m'me 4| — _ — Ix]. (22)
m m-1 n+2 - m m-1 n+2

The blockQ is subjected to a similar boundary condition ing {m,m’'n}—{m—1m’—1n+2}. The latter kind of in-
as Qg in the previous section, sertion of the vertex c in Fig. 1 and its counterpart for the
advanced GF give the second and the third term on the right-
hand side of Eq(22). The inclusion of vertex e reduces

andm by 1. The insertion of vertex f, however, can be done
in four different ways that are shown schematically in the
which states that for an infinitesimal ring there can be ndast four blocks of Fig. 6.

scattering. The first coefficient on the right hand side of Eq.  Trying to solve Eq.(22), one may begin by substituting
(22) contains contributions from the verticesa,#,b, c,c/, . s . :

and d in Fig. 1. Vertices a, b, and d can be attached irg_ng/(m 'md')MB_er me?vl :n_tr;)dlfce nerVMEtlikgdg
(2m+n), 3(2m+n)(2m+n-1), and (2n+n)(2m+n) =2m+n, and M= m+n,, :,m +n, an o m
ways, respectively, the coefficients frand B are the same ~*N- AS a consequencé/’ andM" appear as fixed param-
as for a and b, with the replacemefih,n}—{m,n}. For  eters in the differential equation fdp. But still then, Q
vertex ¢ we have again to distinguish two possibilities as independs on the five variabl®& n, M, n, andx. Under these
Sec. Ill. We havem(m+n—1) ways to attach it without circumstances, looking for the general analytic solution of
changingm, m’, andn; andmnY different ways with chang- Eq.(22), one meets with enormous difficulties. Before study-

m m n
Q= - X=0| =0 o0m 00modm 0, (23
m m n
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ing an asymptotic approximation of the problem, we makeoscillates with the halved magnetic flyg/2. In the follow-
some simplifications of Eqg21) and(22). The exponential ing section, we solve Eq$20)—(28) for large rings, withL
factors in Eq.(22) can be removed by the following substi- >max{|*,|}.

tution:
m m n 27X _ _
Q= = X~ _U(E)(m+m_m —-m’) V. DISTRIBUTION FUNCTIONS FOR THE WEAK
LOCALIZATION LIMIT
XQ| — — X |. (24) The equation foQ is simplified considerably in the limit
m m n of large rings,L>max|*,|7}. For this case, we can assume

. — that the electrons are quasilocalized and that the wave func-
The equation foQ has the same structure as EB2), only  ion overlaps around the ring are small, similar to a tight-

the exponential factors are dropped and thg fir'st term on thSinding model. Diagrammatically, this means that the elec-
rhs of Eq. (22) acquires another contribution-[27/  on 10ops emerging from the Ihs and the rhs of the diagram

v(€)J(m+m-m’'—m’) to the prefactor oR. almost never reach each other, since they have a character-
From the structure of the internal vertices in Fig. 1 oneijstic size of¢<L. (The localization length for an infinite 1D
sees that the condition system 8442 £,0~417 )
_ As a consequence, we can for large rings neglect those
(m'=m)—(m’'—=m)=0 (25 inclusions of the vertices ¢, ce, and f that directly connect

the loops on the rhs with those on the Ihs. Corresponding to
this is the neglect of the terms 2, 3, and 6—10 on the rhs of

Eq. (22). Now, acan be factored as

:

=Q*(m,m,n;x)Q* (M’,m—m+m’,n;x),

is satisfied for arbitrary cross sectiori$he same condition
also applies to the strictly 1D problem; see Ref.)%4 cor-
responding symmetry of E¢22) confirms this condition.

In the regime of weak disordepgl>1, Eq.(21) for the
kth moment of the DOS contains terms that strongly oscillate (

/

m m n

with the particle energy (" +n~#n"+n") apart from
smooth onesr{"+n =n*+n"). To neglect the strongly
oscillating terms, we choose only those terms in 4) that
satisfy the condition

m m—-m+m’ n

_ (29)
nt+n - =n"+n". (26)
Equation(21) now is simplified to where the factors are defined through
k .
p (e, ¢;L) —
< ) dQ* (m,m,n;x) 27 - 2 —,
Ko x @ == (m+m)+—(m-m)
Po . dx v(e) |+
I E E 2 E e|4w(¢/¢0)n—[27]L/v(E)]n
2] m=0 o mi=o n=0 1 1 — 1
, +—m(m+n)+-—m(m+n)+ —n
_[m m n |~ |~ |~
XQ(— — x)
m m-m+m’ n 1
S X Q* (M, m,n;X)+ —mm
X @ (m,m,m’,m—m+m’,n,n), (27 Q" (m,m,n:x) |-
where — 1
- XQ*(m—1m—1,n;x)+—(m+n)
@ (m,m,m’,m’,n,n) !
Konon X (M+n)Q*(m+1m+1n;x). (30
L Apart from this simplification, the limiL>max(",l”) im-
@ H4m(dldg)(n* +17) pliesm,m,m’>n.
5 Note that Eq.(30) can also be obtained from EgR2)
X @ (mm’;n*,n—n") and (24) by neglectingm’ and m’. The nonentanglement
~ —— —— — mentioned above has a second consequence: The remaining
X @g—i(m,m’;n",n—n"). (28)

contributions changm andm simultaneously byt 1 (due to

Expressiong27) and (28) show that the dominating con- Vertices e and f of Fig.)L or conserve botim andm, as in
tribution to{p*) does not strongly oscillate with the energy. Berezinskii's approach to strictly 1D systefitsTherefore
Unlike the averaged DOS, the first harmonic of all momentswve can adoptn=m, which further simplifies Eq(30):
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49 (mnix) =(p"(e:¢iL))n=0+ (P (€:6iL))n-1
dx
=—[4n7 m+n+2m(m+n)]Q*(m,n;x) ><c032< 77¢) (34)
¢o

+m2Q* (m—1,n;x) + (M+n)2Q* (m+1,n;x).

(31 Equation(31) for Q* (m,n;x) was solved approximately in
Here, 7 is the inelastic scattering time with respect to back-R€f- 52 for arbitraryn. Here we shall study this equation for

ward scattering. The boundary condition for Egl) is the zeroth and first harmonica€0 andn=1) in detail.
Q*(M,n;x=0)= 6. (32
The combined mixing functiod, given in Eq.(28) is sim- A. Zeroth harmonic contribution to the DOS moments

plified for largem, m, andm’ in Appendix B. Substituting The zeroth harmonic o(fpk(f #;L)) in Eq. (34) contains
Egs.(B6) and(29) into (27), we get a comparatively simple Q* (m,n=0;L). By performing a Laplace transform of Eq.
expression fOKPk> (31), written forn=0, with respect tox and using the bound-
ary condition(32), we get

Kk *® o ) k 2n
(esn=[2] S S 3 S leod ont ]
m=0 /=g N=0 =0 0 (7\+Slm)Q3(m;)\)— 5m,0
x @~ [27t/v(eln < @ 2k=2l =m? Qg (m+1;M)+ Q5 (m=1;1)—2Qg (m;\)].
[Jim=-m"/\m-m’
(39
22nmk+2n72
XF(I)F(k—I) Q*(mm;L)Q*(m’,n;L). Here,s;=47n7" andA\ is the parameter of the Laplace trans-

form. This is an equation for the right-hand side in the Be-
(33 rezinskii technique with an open boundary condition and it

. . . Ived in Refs. nd 51. Here, we give only the resul
As we emphasized, the diagrammatical structure of the bIocFé?st*o(se?n_x)_e s-53and 5 ere, we give only the result
Q* demands its dependence on one paranmatarstead of ARG

two (m and E). Hereby the sum ovem is removed. The . o y
summations ovef andm’ can be done as described in Ap- Q5 (S1,m;x) =2(ms)*?K(2(ms;)*?)
pendix B. Using Egs(B7) and (B8), we get

1-iA
21 K(k—1) T'2(2k) 2(ms)Y2 (= s (1+iN)/2 >
P =ps k(2k—1) T5(k) 2m ). i-N T2(—in)
22ng=[27L/v(&)Inpk+2n-2 ><e*(>\2+1)(x/4l’)Kii)\(z(msl)l/z)_ (36)

n=0 m=0 r3(n+1)

After substitution of this solution intdp*(e,¢;L))—o in

Eqg. (34), the summation ovem can be transformed into an

CO{Z’ZTE)} Q*2(m,n;L) integration, which is done easier. Some mathematics results
$o in the following form of (p*(e, #;L))n-0:

o (k— 1T ( 2k K 2 » dh e—(L/4|*)o\—iy)z—(uzu*)y2
(p*(€, ;L)) n 0—( ) (DI )sik 4(k)+ cLal — .
k(2k—1)T5(k) \/— o 27i i—A
(1—i)\>
3 —— . 2
2 r 2k+1+iN| _[2k—1+iN L2 f dz e~ (2221 (k—iz")|?
FZ(—l)\) 2 2 Sq —m27TI

o[ 1-iz—iz"| f1l-iz+iz’
f“ dz e~ W2 )@ in2-a)y2-a- T >
—2m - (zhZ2=i)(z-Z' i) TA(-iz-izZ)PA(—iztiz)

IT(k=iz)]*[, (37)
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where y=(1"/L)In(1/s;)>0. The second term in the curly the following inverse Gaussian distribution function is ob-
brackets of Eq(37) has a saddle point aty=1i7y and simple tained:
poles at the upper half plane;;=i, A,=i(2k—1),i(2k

+1),.... Theintegral overz in the third term in the curly
brackets contains again the saddle pointg@atiy and poles (2777%) 12 (p—po)?
at zi;==*7'+i, z,=ik,i(k+1),.... For y<1, the main Wy_o(p)= 3 ex;{—Z—m-).
contribution to both integrals is given by the saddle points. P PPo
As a result we get (40
K . k 1-kL(2k=1) - ; ;
(p“(e, ;L)) n=0=po(251) Tk (39 For 2»p7~>1, the most probable or typical value pfis

equal topg, whereas for 27~ <1 it shifts to lower values
Such a result has been obtained for the infinite 1D disorderednd becomes equal jgy,= (477 /3)po.

systenr? Transfo_rming t_he semi-invgriants in ECB_8) to When y assumes intermediate values, i.es <k, the
moments and using the inverse Mellin transformation essential contribution tqpX),_, comes from the saddle
1 = dk points of the third term in the curly brackets of E§7) and
a+tio . . .
th ntributions from th [ f this term cancel the other
W(p) (P, (39) e contributions from the poles of this term cancel the othe

21 Ja-ie pkt1 term, resulting in

1+vy

KT (2k—1) s M -e (LAWHA) r
I (k— )T (k+1)  ml(1— )2 ()

This expression shows that high moments of the DOS for intermediate valuemofease withk; however, the increase is
not so rapid, as Eq41) has an additional factor Y compared to Eq(38).
For y satisfying the conditiony<<k, the leading contribution is given by the page=ik and

po)k [1- 4 I'2(2k) .
2 2wL k(k—1)(2k—1) r'7(k)
The last expression is valid for arbitrary small values of the dissipation parameterO( or y—o) with 7<
(1/47")exp(—kL/I 7). Equation(42) shows that the zeroth harmonic of théh moment of the DOS grows witk as expk?).
Such rapid increasing of high moments(tpf)nzo has been firstly obtained by Wegf®and it is a characteristic feature of
the logarithmic normal distribution gfp®),—,. The distribution function for the zeroth harmonic term can be obtained using

Eq. (39). For large values of the DOS, satisfying the conditipon (po/2)explL/l™), the dominating saddle point yields again
a logarithmic normal distribution:

(p"(e,¢L))n=0= I'(k+y)(k=7). (41)

k+1

5 e(uzr)(kz—l)_ (42)

<pk(e,¢);L)>n=0=

217 2p 217 2p\ (1 17 2p
8|~ F(TInE—Z)F<TIn%>F <§+Zln% = 2p L 2
Wn=0(p): P L - 2p - 2p ex —Z In p—+F . (43)
° F(—ln—+1)r6<—|n —) °
L po L po
|
For small values ofp, when p<(po/2)expl/lI™), the main (N +5.M)Q¥ (M;\) = S o
contribution comes from the pole at the origin and the dis- '
tribution function decreases in a powerlike form: =(m+1)’[QF (M+1;))— QI (M;\)]
200 [ 17 +m?[QF (m—1;1)— QT (m;\)]. (45)
Wh-o(p)= ? 2L @44 Thes symbol on the left-hand side of this equation comes

o _ _ from the boundary conditio(82). Equation(45) corresponds
Thus the distribution function for the zeroth harmonic orto the equation for the central part in the Berezinskii tech-
¢-independent component has asymmetric form. nique for strictly 1D systems with open boundafyFor m

>1, this equation is transformed into a differential equation,
B. Amplitude of the first harmonic contribution

to the DOS moments 5 d2Q% (m;\) dQi (m;\)

m
By a Laplace transform with respect % Eq. (31) with dn? dm
n=1 is converted to (46)

— (A +s;m)Q} (M;\)=0.
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A change of the function to (£J®(z,\) = Q7 (m;\), where On the other hand Eq(45 has been solved by
z2=4ms,, reduces Eq(46) to the Bessel equation Melnikov,>®> who obtained the asymptotic solution of

Q¥ (m;\) for 1<m<s; ' as

®=0. (47) e TI¥qg+1)
Ql(m,)\)ZW

zdz 2

d?®  1dd ( 144\
—+
dZ2 1z dz

z m-a-1, (49)

* .
ThereforeQy (m;) can be expressed as The comparison or Eq48) with the asymptotic forn{49)
allows us to determin€:

1
Ql(m.)\):CWK1+2q(2(msﬂ.)1/2)! (48) F3(q+1)

whereq=—3+\\+ 3. I'(2q+2)I'(29+1)°

Equation(48) contains an unknown paramet€rdue to  Taking the inverse Laplace transform, one obtains
the neglect of the Kronecker symbol in E¢5). Q7 (m;x)

C=4s]"t (50)

(1—i)\)

1"'3

dn 2 R B

> e (LAY (N“+1)(x/1 )Sg_l I)\)/Z(msl) 1/2K—i>\(2(m51)1/2) (51)

21T r2(—in)

Qtmx)- [

To get an expression for the first harmorig¥(e,L)),—, we substitute the solutiafs1) into Eq.(34), and sum ovem, which
can be done after the transformation of the sum into an integral ox¥ens;:

FS(l—iA)
ke . 5
<pk(€,|_)>n=1:(@) (k 1)F(2k)slke_"/2'J d_)‘siixlze—(L/4|*)A2 2
2 KI3(k) — 27T 2(—iN)
1—-iN’
F3< 2 ) iIN+iIN —1 iN—iN'—1)]2
= d\’ N 2 i I —iN—
SR e iINTR2a— (L)
Xf_wzwsl e T ‘F(k+ > )r(k+ 5 ) (52)

For convenience, we substitute below the variabhleend\’ by zandz’ according ton=z+2z' and\'=z—-2'.
The values of the integrals in E452) are determined by saddle points and poles. Fer(l ~/L)In(1/s;)<k—3, the
contribution from the saddle point dominates:

2k—1\ (149 [2k—1+2y| [2k—1—2y
2 6
K(k—1)| -T2 —k F( )F I‘( )F(
(k—1)I"T'2(2k)s; (L2 ) 2 2 2 2 59

kL T5(k) T4(y)

(pk(e,L)>n=1=(%)

For y>k— % the main contribution is given by the pole &ti(k—3) and one gets

e(L/8 ) (2k=1)2 L2~ (54)

) k2(k—1)F(2k)F(2k—1)F6<2k:1>\/ =
<pk<e,L>>n_1=(§)

27TLS]_

2k—1
kF5(k)F2(T)

In contrast to the expression ¢p¥(e,L)),—o for small dissipationy—0 [see Eq.(42)], the expression fofp“(e,L))n—1
increases strongly withs;=47" 5—0. It is illustrative to rewrite the prefactor of Eq54) as [2m(L/l7)s,] Y2

for

=(8m?7/A) Y2 in terms of the level distanck= 1/p,L and the dissipation energy, the latter blurring the quantized energy

levels. By decreasingy, the energy levels are sharpened and the distribution function becodmésnation.
Substituting Eq(54) into (39), one receives a normal logarithmic distribution for (po/2)exp(L/17):
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o P I el P

1~ 2 L Mool VT Mool 12720 5 = 2p L\?

Wh-1(p)= — exg —=—| In—+—] |[.
n= wL Vsippg (3 17 2p = 2p 1 1= 2p 1 Fz(l_ Zp) 2L Po |-

DT T sl 1 IS P sl B S
F(2+Llnpo)F(Llnpo 2>F<Llnp0+2

The logarithmic normal distribution function for the first har- talline systems is very sensitive to the filling factor. There

monic is valid for a large range qf. Comparing Eq(55)  exists disorder induced enhancement of the DOS for com-

with Eg. (43) for winding number zero, it can be seen that mensurable values of the electron wavelengtand the lat-

Eq. (55 contains in addition a prefactor/py/n7 p  tice constanta, when the electronic energy satisfies the

= (a9l p) %, which increases with decreasing temperaturecondition p(e)=km/na, k==*1,*2,...,£n and n

Thus the first harmonic increases with decreasing tempera= 2,3, . . ., and theffect is pronounced for half filling which

ture faster in amplitude than the zeroth harmonic. corresponds tm=2. The singularity in the DOS of 1D dis-
ordered crystalline systems near the middle of the band is
known as a Dyson singular$which was studied for many

V1. CONCLUSION 1D electronic model3>~%° Notice that the Berezinskii

method has also been applied to study the conductivity and

The distribution function for the local DOS in a one- the localization lengff*? apart from the Dyson singularity
channel ring threaded by a magnetic flux through the openin the middle of the band of a 1D infinite lattice with both
ing was studied in this paper. For this purpose, we conweak and strong disord&t®* Our preliminary study shows
structed a diagrammatic method as an extension of ththat the real space diagrammatic method presented in this
Berezinskii techniqu® to the problem with periodic bound- paper is applicable to study the Dyson singularity in the DOS
ary conditions and in the presence of an external magnetiof a ring for a half-filled energy band. This leads to a remark-
field. The equations obtaind&qs.(10)—(12) and(21)—(23)  able high amplitude of the persistent current as it is observed
for the DOS and it«th moments, respectivelyare exact in  in the experiments, provided that the Peierls transition is sup-
the framework of the weak disorder linkgl>1. Equations pressed by impurities and by weak transvers tunneling be-
(11) and(12) are solved exactly, which gives the oscillation tween the channels.
of p with the full flux for both weak localization and ballistic
regimes.

In contrast to the DOS problem, the equation for
(p*(e, ;L)) is rather complicated and we succeeded to The authors thank M. Kiselev for discussion. This work
solve it for the weak localization limit wheb>1~. In this  was supported by the SFB410.
limit, the leading contributions to arbitrary moments of the
DOS oscillate with the halved periodl,/2. The distribution APPENDIX A: SOLUTION FOR Qg(m,n;x)
functions for zeroth(insensitive to the magnetic fieldand
first (with a period of ¢¢/2) harmonics are calculated and
logarithmic normal distributiongEgs.(43) and(55)] are ob-
tained for them, indicating large contributions from high mo- X X
ments of the DOS. For the zeroth harmonic, this normal Qo(m,n;x)zexp{ - —(2m+ n)?— —n
logarithmic shape appears for the tail of the distribution, but
for the first harmonic it covers the large range pf
>(pol2)expL/7), i.e., the high moments give essential —im(m+n) QX (m,n:x) (A1)
contributions not only on the tail but also in the vicinity of |~ AR
the average value of the DOS. The distribution function for
the first harmonic increases with decreasing the width of thd

ACKNOWLEDGMENTS

The first term on the right hand side of Ed.1) can be
removed through the transformation

hich gives for Eqs(11) and (12) the simpler form

energy levels or the dissipation parametefsee Eq.(55)], dQ* (m,n;x) XN
which was introduced phenomenologically in the thedty. |- 0 " 2 exp| _} Q(m—1n+2;x)
(4)]. For —0, the distribution functionW,_4(p) becomes dx I~

a ¢ function due to the quantization of the energy levels in, i,

the rings. The results for the DOS show that the amplitudes

of all harmonics ofp(e,®) are exponentially small in the Q5 (m,n;x=0)= 5. (A2)

weak localization regimgEq. (14)], while the amplitudes of

the higher moments in this reginiEgs.(38), (41), (42), and

(54)] are relatively large. Although we could not calculate 1 n

higher moments of the DOS in the ballistic regime, the am- AQqy(m,n;\)— &y 0= — —mzﬁofm—l,mrz;x— —) .

plitude of the average value of the DOS is large and seems to | |

be consistent with experimental dafa. (A3)
It is also well known that the DOS of 1D disordered crys- Equation(A3) can be solved by iteration:

Laplace transformation from to \ yields
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r +1+—n_1)r(—n_1+1 )
—1\" m 1 (m!)2 z 2 2 T F
Qo(m,nﬂ\)=<—_> (mH2[] — = — = , (Ad)
' FoN—(UD)j(i+n-1) A I‘(—n21+m+l+z F(nz—1+m+1—z)
wherez?=\l"+(n—1)%/4. The inverse Laplace transform gives ©@f
o o X (-1 (+n-20
Qo(m,n,x)—(m!)zjzo exp{l—_1(1+n—1)]j!(m_”! (m+j+n_1)!(2j+n—1), (A5)

which, in connection with Eq(Al), gives the final result, Eq13), wherex is replaced by the full circumferende The
compliance of Eq(A5) with the boundary condition is easily checked. Also, fio=0, Qg (0,n;x) =1, and forn=0 we get
from the inverse Laplace transform of E&4) or from taking the limit of Eq.(A5),

m .
Q5 (m,0;x)= 1—m—mi +2 ex ij(j+n—1) (m)(—l)jM(ZjJrn—l) (A6)
o =)= j (m+j+n—1)! '
APPENDIX B: CALCULATION OF THE MIXING COEFFICIENT
Using the relations
5 % dz ., m\ 3€ dz 1 (B1
mk™ zj<1 27 z ' k] Jig<1 2mi L (1—z)m kL )

we can transform Eq20) for ¢;(m,m’;n",n—n") to

(1+21)(1+25) — 2324
(1-23)(1-24)— 212,

dz; 1 dz 1 dz 1 d 1
1 ) jg 3 3€ Z B2)

-~ cnt +

<p|(m,m,n ,Nn—n ): 2— . 7 — 5 P T
i om+1 2 ;m' +1 24 ,nT+1 2 ,n—nT+1
v Zl T 22 an 23 ar 24

Substitutingz=z,z,, the dominant contribution fom>1 comes from the pole a&=(1-2z3)(1—2z,). Integrating over this
new variable gives

eo(mm’;:nt.n—n")

_(m+|—1)! % dz, 1 % dz; 1 fﬁ dz, 1
N (I_l)lml 2_’7Tizzm’7m+|+l 2_77izg++1 2_7ﬂ227n++1
(Zo+ (1= 23)(1—24))(1+ 2) — 2,232,]

><[
(1_23)m+l(1_z4)m+l

(B3)

The remaining integrals are done in a similar way, resulting in

- 2ni(m+l+n =!I (m+l1+n—n*—=1)!
o (mm’;nT ,n—n")= : (B4)
(M —=m+D!I(m-=m'+DHI(m+I=D)In" I (n—n"H1{1-1)Im!

Now we can collect alh™* - andn_+—dependent terms in ER1) and sum oven™ andn”, introducing the mixing function
d, from Eq.(28). For largem, we can use Stirlings formula

_(m+a)t
lim mmb =1 (85)

m— o

to obtain

2k—2I

K (1+e—4iw(¢/¢o))n+ﬁ k 2
®k(m1m1m,1m’1n1n)22 . li
=0 (I-1)!(k=I=2)!ntnt {1/ \m=m"+]

— . B6
m—m’ -+ (B9

Taking into accounQ*(m,ﬁn;x)=Q*(m,n;x) Om,m, this gives Eq(33). Form,m’>1, the summations ovérandm’
can be done. Following Ref. 51, we dendten=m—m’, with Am<m for largem. The significant contributions to E¢33)
come fromQ* (m—Am,n;x)~Q*(m,n;x). Hence we can rewrite E433) as
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k © = 2n 2nqk+2n—2 k
Po 1) B 2°"m k! (k) 2l
k gy | Fo R 2ollv(lns T ~%2 .
€,PL))y= cos 2w e m,n;Xx
<p( ¢ )> (2) m§=:0 nZO 5( ¢O) (n!)2 Q™( )IZO | /am=—k \|+Am
2k—2I 1
X . B7
k—1+Am) (1= D)l (k—1—1)! (B7)
The last two sums result in
2(k—1) T'?(2k)
(B8)
k(2k—=1) 15(k)
which is used in the final result for tHeh moment of the DOS, Eq34).
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