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Distribution function of the local density of states of a one-channel weakly disordered ring
in an external magnetic field

H. Feldmann, E. P. Nakhmedov,* and R. Oppermann
Institut für Theoretische Physik, Universita¨t Würzburg, 97074 Wu¨rzburg, Federal Republic of Germany

~Received 21 January 2000!

A real space diagrammatic method, which is an extension of the Berezinskii technique to problems with
periodic boundary condition, is formulated to study the density of states~DOS! r(e,f) and its moments for a
one-channel weakly disordered ring threaded by an external magnetic fluxf. The exact result obtained for the
average value of the DOS shows thatr(e,f) oscillates with a period of the flux quantumf05hc/e. However,
all higher moments of the DOS oscillate with the halved periodf0/2. The exact expression for the DOS is
valid for both weak localization (L@ l , whereL is the ring’s circumference andl is the mean free path! and
ballistic (L< l ) regimes. In the weak localization regime the distribution function of the DOS is calculated,
which turns out to be of logarithmic normal form.
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I. INTRODUCTION

Interference effects in low-dimensional disordered co
ductors still attract attention from both experimental and t
oretical physicists, although all main features and a lot
new effects have already been discovered during the las
years. The prediction of the oscillation in the kinetic coef
cients in multiply connected disordered normal metals in
external magnetic field1 and its experimental observation2 in
a Mg cylinder was a very excellent examination of we
localization phenomena, since the coherence of the elec
wave function during the circulation of a closed contour
required to observe an oscillation. The period of oscillat
of the magnetoresistance predicted and observed first
equal to half of the magnetic flux quantumf05hc/e. Fur-
ther improvements of the experiments on rings with la
diameters and small widths gave rise to the observation
magnetoresistance oscillation with the periodf0 ~Ref. 3!;
furthermore in the experiment of Chandrasekharet al.4 both
periods were observed.5,6 Such a complex magnetic field de
pendence of the magnetoresistance seems to be related
statistical properties of the sample.

Another development in theory was the prediction o
persistent current in a one-channel disordered isolated lo7

Due to the analogy between the loop and one-dimensio
~1D! lattice with a period equal to the circumference of t
loop, a circulating current in rings was suggested, which
periodic function of the enclosed flux with a period off0.
Studies of the effects on the persistent current at finite
small temperature and weak inelastic scattering show
both weak inelastic and elastic scattering do not des
it.8–11 In experiments, the persistent current was a
observed.12–15A magnetization measurement was perform
in Ref. 12 onN5107 disconnected copper loops atT,1.5 K
where the electron phase coherence lengthLw exceeds the
loop’s circumferenceL52.2 mm, and it shows evidence fo
a flux-periodic persistent current with halved period and
31023evF /L amplitude per ring, which is remarkabl
higher than the theoretically expected value for the persis
current per ring,A( l /LN)(evF /L).10,16,17 Measurements o
PRB 620163-1829/2000/62~4!/2401~15!/$15.00
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the persistent current on single loops~with at least a few
channels! in the diffusive13 (L58 mm andl 570 nm, where
l is the elastic mean free path! and ballistic14 (L58.5 mm
andl 511 mm) regimes reveal the periodf0. The amplitude
of the harmonic withf0/2 was measured to be smaller by
factor of 2–3 than that of thef0 harmonic in Ref. 13.

Effects of impurities in most of the theoretical investig
tions were taken into account by the transfer matrix meth
according to the Landauer expression and by generalizat
of this method ton-channel systems.18–20,11 Although the
Landauer formula gives full-flux periodicity for all physica
parameters, averaging over ensembles of rings9,16,17,21–24or
the calculation of the dynamical current instead of the th
modynamical potential25–28was suggested as an explanati
of the observed halved periodicity. In the process of aver
ing over different impurity realizations in the ensemble, t
number of particles in each ring is proposed to be const
i.e., the persistent current is assumed to be determined by
thermodynamic potential instead of the grand canon
potential.22–24 Although there has been much work done
the Aharonov-Bohm effect, the existing theories of no
interacting electrons still can explain neither the high va
of the experimentally observed persistent currents12–15nor its
diamagnetic sign.15 This can be partially connected with th
complexity of the experiments, particularly with difficultie
of the separation of phase effects in the rings with relativ
large width~larger than the mean free path12,15! from orbital
ones.

On the other hand, correlation effects may be a reason
the discrepancy between theory and experiment.29–38 Unfor-
tunately, there is still no agreement on the effects of C
lomb interaction on the amplitude of the persistent curre
Studies based on spinless electrons in the
continuum29,31,32 and lattice models33–35 gave controversial
results, so the amplitude of the persistent current was sh
to be increased up to its disorder-free value according to
former model, but a Mott-Hubbard metal-insulator transiti
in the latter model was found to reduce the amplitude, o
least a possible increase of the amplitude was neglig
small. There was also the suggestion that correlation
2401 ©2000 The American Physical Society
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2402 PRB 62H. FELDMANN, E. P. NAKHMEDOV, AND R. OPPERMANN
change the fundamental period with the magnetic flux a
create fractional periodicity in a 1D ring.38 Impurities and
correlation acting together are again subject of controve
Thus, considering weak localization corrections in first ord
in the electron-electron interaction to the grand canon
potential,30 a persistent current with a period off0/2 and an
amplitude of;evFl /L2, corresponding to the experiment,12

was obtained, while Monte Carlo simulation on a 1D Lu
tinger liquid39 resulted in a persistent current with periodf0
and with an amplitude decreased through interaction.
summing the existing results it can be said that neither
noninteracting electron model nor models of correlated e
trons yet gave satisfactory answers to the questions put
ward by the experiments. These concern the period~under
what condition both periods or only the halved period a
observed!, the amplitude of the persistent current, and
diamagnetic sign~for the correlated electron model the di
magnetic sign requires an attractive interaction between
electrons!.

To prevent the interference of the orbital effects in t
presence of an external magnetic field with the phase effe

the width of the ring should be chosen as narrow as poss
i.e., a one-channel ring with random impurities seems to
an ideal tool to study the Aharonov-Bohm effect. Howev
interference effects in 1D disordered systems as a resu
the coherent backscattering processes are strong40 irrespec-
tive of the degree of randomness. The diffusion approxim
tion, which was used in previous studies, is not acceptabl
1D systems even for the case of weak disorder.

Approaching the problem thoroughly, we use in this pa
a weakly disordered noninteracting electron model and c
struct for it a new exactly solvable diagrammatic metho
which is an extension of Berezinskii’s method41,42 to the
problem with periodic boundary conditions. Within th
model, we sum all impurity scattering diagrams in the fram
work of the Born approximation.

In Sec. II, we describe the method. We calculate the d
sity of electronic states~DOS! in Sec. III. Indeed an averag
value is not enough to describe the observable paramete
low-dimensional mesoscopic systems. It is well known t
the physical parameters of a mesoscopic system with siL
satisfying the conditionl ,L!Lw fluctuate from sample to
sample, i.e., self-averaging is violated.43–45 At T50 all suf-
ficiently large systems become mesoscopic. In this case,
moments give a considerable contribution,46–52which results
in strong differences between average value and typical
of the observable parameter, i.e., the average value lose
significance to characterize the experimental observation
Sec. IV the diagrammatical method is applied to find thekth
moments of the DOS,̂rk(e,f)&. The obtained equations fo
^rk(e,f)& show that, in contrast to the average value of
DOS, all higher moments oscillate with the halved perio
f0/2. Although the structure of the equations is complicat
the latter can be solved for the weak localization regi
when the conditionl !L is satisfied. This procedure is give
in Sec. V.

The zeroth~not depending onf) and the first~oscillating
with f0/2) harmonic of^rk(e,f)& are studied explicitly in
this section. Both are shown to increase withk as exp(k2),
which gives rise to a logarithmic normal distribution. In Se
VI we conclude our results and discuss possibilities to ext
our approach to related problems.
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II. DESCRIPTION OF THE METHOD

We consider here a one-channel disordered ring w
length L52pr , threaded by a magnetic fluxf through the
opening. The Hamiltonian of the system can be written a

H5
\2

2m* r 2 S i
]

]w
1

f

f0
D 2

1Vimp~w!, ~1!

wheref05hc/e is the fundamental period of a flux quantu
and m* is the effective mass of an electron. The potent
Vimp of randomly distributed impurities is considered to
weak, so that scattering processes can be studied in
framework of the Born approximation. Below, we use t
spatial variablex5rw instead of the anglew.

Our aim in this section is to construct a diagrammati
method for the calculation of the average values of the DO
^r(e,f;L)&, and of its momentŝrn(e,f;L)&. The bracket
^•••& denotes the average over the impurity configuratio
Expressing the DOS by means of retarded (GR) and ad-
vanced (GA) Green’s functions~GF! as

r~e,f;x!52
1

p
Im GR~e,f;x,x!

5
1

2p i
@GA~e,f;x,x!2GR~e,f;x,x!#, ~2!

the kth moment ofr(e,f;x) can be given by

^rk~e,f;x!&5
1

~2p i !k (
l 50

k S k

l D ~21! l

3^GR
l ~e,f;x,x!GA

k2 l~e,f;x,x!&. ~3!

The Berezinskii diagram technique41,42 is applied to cal-
culate the average value of a single GF and higher-or
correlators^GR

l GA
k2 l&. In contrast to strictly 1D disordered

wires, quantum corrections to the DOS of a ring turn out to
exist even for the weakly disordered limit due to periodici

As for infinite systems, we consider as starting poin
free particle with wave functioncp(x)}exp(ipx), where the
momentum can assume arbitrary values, leading to a c
tinuous spectrumep5(\2/2m* )(p2f/f0r )2. The ‘‘bare’’
GF GR,A

0 can be calculated easily:

GR,A
0 ~e,f;x,x8!

5E dp

2p

eip(x2x8)

e2ep6 ih

57
i

v~e!\

3ei2p(f/f0)(x2x8)/L6 ip(e)ux2x8u2[h/v(e)] ux2x8u,

~4!

whereL is the circumference of the ring and the parameteh
is introduced phenomenologically to model inelastic p
cesses, which result in a blurring of the energy levels.v(e)
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PRB 62 2403DISTRIBUTION FUNCTION OF THE LOCAL DENSITY . . .
5A2e/m* and\p(e)5A2m* e are the velocity and the mo
mentum of an electron with energye, respectively. Notice
that Zeeman splitting has not been taken into account h
For an electron with spins56 1

2 , it would throughout the
paper lead to a shift of the energy ase→e2sgmBB ~where
g is the gyromagnetic ratio of the electron andmB is the Bohr
magneton!.

This bare GF, however, is not yet the real GF for
electron in a ring without impurities, since it does not refle
the finite size of the system and the periodic boundary c
ditions. These are taken into account by allowing the p
ticles to make arbitrary revolutions around the ring, whi
leads to the expected quantization effect. According to
prescription, the GF for a clean ringG̃R,A

0 is

G̃R,A
0 ~e,f;x,x8!5GR,A

0 ~e,f;x,x8!1GR,A
0 ~e,f;x,x81L !

1GR,A
0 ~e,f;x,x82L !

1GR,A
0 ~e,f;x,x812L !1•••. ~5!

One may verify this approach by calculating the DOS o
clean ring in a magnetic fieldr0(e,f) from Eqs.~2!, ~4!, and
~5!:

r0~e,f!5r012r0(
n51

`

cos@p~e!Ln#cosS 2p
f

f0
nD

3e2[h/v(e)]Ln, ~6!

wherer051/@p\v(e)# is the DOS for a pure and infinite 1D
system. Ash→0, Eq. ~6! displays the discrete behavior fo
the DOS of a clean ring.

In the diagrammatical technique, the retarded~advanced!
GF of an electron moving in the field of randomly distribut
impurities is represented by an ordinary~double! continuous
line in real space, which goes from pointx to x8 after mul-
tiple scattering on a given impurity configuration, realized
the potentialsV(xi) with impurities placed at the points$xi%.

FIG. 1. Contributing internal vertices. Vertices a8, b8, and c8
have the same form as a, b, and c, but double lines instead of s
ones. The following factors correspond to the vertices: a8:
;(21/2l 221/2l 1); b,b8: ;21/l 1; c,c8: ;21/l 2; d: ;(11/l 1);
e: ;(11/l 2)exp@4hx/v(e)#; f: ;(11/l 2)exp@24hx/v(e)#.

FIG. 2. The external vertices. One incoming vertex and o
outgoing vertex are attached to each continuous fermion line c
acterizing one Green’s function.
re.

t
-

r-

is

For the DOS and its moments it suffices to considerx5x8.
Since the ‘‘bare’’ GF’s@Eq. ~4!# between two successiv
scatterings have factorable structure, the coordinate de
dence can be transferred from the lines to the vertices.
eraging over the random Gaussian potential leads to a pa
of the impurity vertices. Their strength is measured by
inverse forward~backward! scattering length,

1

l 1~e!
5

2

\2v2~e!
E

0

`

U~x!dx,

1

l 2~e!
5

2

\2v2~e!
E

0

`

U~x!dx cos@p~e!x#. ~7!

For the Born approximation to be applicable, the correla
U(x2x8)5^V(x)V(x8)& should have a width much smalle
than the mean distance between impurities 1/c, and 1/c
! l 6. In the extreme case of a white noise potentialU(x
2x8)5cU0

2(n52`
` d(x2x81nL), the two scattering lengths

become equal,l 25 l 152l . Given in Fig. 1 are the essentia
vertices selected according to the conditionpFl @1, with pF
and l being the Fermi momentum and the mean free pa
respectively. Although the ‘‘bare’’ GF’s depend on the d
rection due to the magnetic field, the internal vertices in F
1 do not differ from those of Berezinskii. All dependence
the magnetic field is transferred from the lines to the exter
vertices, which are shown in Fig. 2.

As an example, a simple diagram contributing
^GR(e,f;x,x)& is drawn in Fig. 3~a!. For convenience, we
cut the diagram at pointx and straighten the lines, whic
results in Fig. 3~b!. Each diagram for a single GF is the
characterized bym pairs of lines returning tox and n
through-going lines. Since the bulk of each diagram~i.e.,
after the removal of the external vertices! does not depend on
the direction,n is the sum of right-goingn1 and left-going
n2 lines. For correlatorŝGR

l (e,f;x,x)GA
k2 l(e,f;x,x)&, we

have to distinguish the numberm of returning lines on the
left-hand side~lhs! and the numberm8 of returning lines on
the rhs, and in addition we must introducem̄, m̄8, andn̄ for
the advanced GF. An example for this case is shown in F
3~c!.

In contrast to Berezinskii’s technique for an infinite 1
system, the external vertices depend on the direction. A
the diagrams carry a factor exp@2pi(f/f0)(n

11n̄ 12n2

gle

e
r-

FIG. 3. A simple diagram contributing to the single GF^GR& ~a!
resembling the motion of the electron around the ring and~b! after
cutting at pointx. The numbers characterizing this diagram arem
51 andn51. ~c! shows a contribution tôGRGA&. Here,m52,

m851, n50, m̄51, m̄850, andn̄51.
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2n̄ 2)# from the through-going lines. The number of pairs
the two sides of the cutting line, which we denote bym and
m8 for the retarded GF and bym̄ and m̄8 for the advanced
GF, may in general differ by61 ~i.e., m2m8521,0,1 and
m̄2m̄8521,0,1) as in Sec. IV. However, fo
^GR(e,f;x,x8)& in the regime of weak disorder as in Se
III, we have alwaysm5m8.

III. THE DENSITY OF STATES

The diagrams for the DOS do not exhibit the full com
plexity presented in the previous section, since they con
only retarded GF’s. Consequently, we can omit vertices d
and f of Fig. 1 and setm5m8. Following Berezinskii’s
method,41 we denote the sum of all diagrams withm pairs of
returning lines andn5n11n2 through-going lines by
Q0(m,n;x2x85L), wheren1 (n2) is the number of right-
~left-!going lines that cross the whole diagram. Such a d
gram is shown in Figs. 3~a! and 3~b!. Since the magnetic
field dependence has been extracted fromQ0, it only de-
pends on the total number of through-going lines. The c
dition m5m8 restricts the possibilities to attach the extern
vertices to the cases~a! and~c! of Fig. 4. The average valu
of the retarded GF can be expressed in terms of the ke
Q0 as

^G1~e,f;x,x!&52
i

v~e! (
m50

`

(
n150

`

(
n250

` F S m1n1

m D
3S m211n2

m21 D 1S m1n2

m D S m211n1

m21 D
2dm,0dn1,0dn2,0GexpH ip~e!L~n11n2!

2
hL

v~e!
~n11n2!22p i

f

f0
~n12n2!J

3Q0~m,n11n2;L !. ~8!

The two products of binomials in the square brackets of
~8! characterize the different possibilities to insert then1

right-going and then2 left-going lines betweenm pairs and
correspond to the cases~a! and~c! of Fig. 4, respectively. For
m5n15n250, these two possibilities are degenerated i
a pointlike diagram. To avoid double counting in this ca

FIG. 4. The different possibilities to attach external vertic
Cases~b! and~d! contain oscillating factors exp@62ip(e)x#, which is
connected to the fact that the numbers of line pairs on the left-
right-hand side differ by61. Cases~a! and ~c! havem5m8 and
hence do not contain such factors.
in
e,

-

-
l

el

.

o
,

the third term in the square brackets has been added.
combinatorial factor, corresponding, e.g., to the configu
tion in Fig. 4~a!, can be obtained as follows:n1 lines can be
distributed atm11 positions, before each of the loops on t
lhs and after the last loop, whereas then2 left-going lines
can be inserted atm positions before each of the loops on th
rhs. Denoting the number of lines at a given position w
ni

6 , we have the restrictionsn15n1
11n2

11•••1nm11
1 and

n25n1
21n2

21•••1nm
2 .

Summing over all these possibilities gives

(
$ni

1%

dn1,n
1
11n

2
11•••1n

m11
1 (

$ni
2%

dn2,n
1
21n

2
21•••1n

m
2

5S m1n1

m D S m211n2

m21 D . ~9!

The expression for the DOS can be obtained by combin
Eqs.~2! and ~8!:

r~e,f!5r0 (
m50

`

(
n50

`

(
k50

n F2S m1k

m D S m1n2k21

m21 D
2dm,0dn,0Gcos@p~e!Ln#

3expS 2
h

v~e!
LnD cosS 2p

f

f0
~2k2n! D

3Q0~m,n;L !. ~10!

To find Q0(m,n;x2x8), we shift x infinitesimally and
examine the different impurity vertices that pass through
point x. The result is a differential equation forQ0,

d

dx
Q0~m,n;x!52F ~2m1n!2

2l 1
1

n

2l 2
1

m~m1n!

l 2 G
3Q0~m,n;x!2

1

l 2
m2Q0~m21,n12;x!,

~11!

where the vertices a, b, and c in Fig. 1 contribute. For ver
a the number of possibilities to be included is 2m1n, for
vertex b it is1

2 (2m1n)(2m1n21), and to include vertex c
there arem(m1n21) ways that do not changem andn and
m2 possibilities that decreasem by 1 pair and increasen by
2. The process of construction of this equation is illustra
in Fig. 5.

The kernelQ0 satisfies the boundary condition

.

d

FIG. 5. How to include the internal vertices toQ0. Shown on the
rhs is the inclusion of vertex b of Fig. 1 and the inclusion of vert
c without and with changing ofm andn.
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Q0~m,n;x2x85L50!5dm,0 , ~12!

which expresses the absence of scattering for a ring w
infinitesimal small circumference. Equation~11! for
Q0(m,n;x) can be solved exactly as shown in Appendix

Q0~m,n;L !5expH 2
L

2l 1
~2m1n!2

2
L

l 2
m~m1n!2

L

2l 2
nJ

3(
j 50

m

~21! j S m

j D m! ~ j 1n22!!

~m1 j 1n21!!

3~2 j 1n21!expH L

l 2
j ~ j 1n21!J .

~13!

Equations~10! and ~13! give a complete description of th
DOS for a one-channel ring in an external magnetic fie
They are exact in the regime of weak disorder, when
conditionpFl 6@1 or eFt@1 is satisfied (pF andeF are the
Fermi momentum and Fermi energy, respectively!. Further-
more, since the circumferenceL of the ring may vary within
a large range (L< l 6 to l 6!L,`), the results cover both
the weak localization and the ballistic regimes. For the we
localization regime, whenL@max(l1,l2) the amplitude of
Q0(m,n;L) decreases rapidly withm andn due to the expo-
nential prefactor. Keeping harmonics up ton52 in Eq. ~10!
and using Eq.~A6!, we obtain the leading behavior fo
r(e,f):

r~e,f!5r0F12
2L

l 2
expS 2

2L

l 1
2

L

l 2D G
12r0 expS 2

L

2l 1
2

L

2l 2D
3Fcos@p~e!L#cosS 2p

f

f0
De2hL/v(e)

1e23L/2l 12L/2l 2
cos@2p~e!L#cosS 4p

f

f0
D

3e2[2h/v(e)]LG . ~14!

We see that the main quantum correction to the aver
value of the DOS oscillates with a period off0. The ampli-
tude of this contribution decreases exponentially with
impurity strength or with increasingL, so thatr5r0 for
L→`.

The ballistic regime is realized forL<min(l1,l2). Keep-
ing terms up to first order inm, the DOS can be approxi
mated in this limit by
th

.
e

k

e

e

r~e,f!5r0~e,f!

2r0

L

l 1 (
n50

N1

n2 cos@p~e!Ln#cosS 2p
f

f0
nD

2r0

L

l 2 (
n50

N2

n cos@p~e!Ln#cosS 2p
f

f0
nD

22r0

L

l 2 (
n50

N2

(
k50

n

~k11!cos@p~e!Ln#

3cosS 2p
f

f0
~2k2n! D , ~15!

whereN1'@A2l 1/L# andN2'@2l 2/L#, and the DOS of a
clean ringr0(e,f) is given by Eq.~6!. In the ballistic re-
gime, L is of the same order of magnitude asl 6, henceN6

may be rather small integers. Therefore the oscillation w
the full flux quantumf0 dominates in the ballistic regime.

In the absence of backward scattering (l 25`),
Q0(m,n;L) is greatly simplified:

Q0~m,n;L !5expH 2
L

2l 1
n2J dm,0 . ~16!

Substituting Eq.~16! in ~10! and using

lim
m→0

S m1n2k21

m21 D 5dn,k ,

we can express the DOS as

r~e,f!

5r01
r0

2
A l 1

2pLE2`

`

dz e( l 1/2L)z2

3H 1

exp$2 ip~e!L2 i2pf/f01 iz1@h/v~e!#L%21

1
1

exp$2 ip~e!L1 i2pf/f01 iz1@h/v~e!#L%21
1c.c.J .

~17!

From Eq. ~17! one sees that forward scattering coheren
shifts all energy levels. The value of this shifting is rando
with Gaussian distribution, with a typical value o
(\/t1)Al 1/L, wheret1 is the relaxation time due to for
ward scattering. The level repulsion48 in 1D disordered sys-
tems therefore is only due to backward scattering. The wi
of this level broadening of the averaged system is mu
smaller than Dingle broadening for the weak localization
gime, whereas the two mechanisms can have compar
effects in the ballistic regime.
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IV. HIGHER MOMENTS OF THE DOS AND
DISTRIBUTION FUNCTIONS

Exact calculations show that the average value of
DOS oscillates with a period of the flux quantumf0. To
understand the reason for the experimentally observed o
lation of the persistent current in a sufficiently large ri
@L@ l ~Refs. 12 and 15!# with the halved period, we calculat
here higher moments of the distribution of the DOS. Acco
ing to Eq. ~3!, we have to determine the correlato
^GR

l GA
k2 l& for thekth moment. In contrast to the Berezinsk

technique for strictly 1D systems, the correlators here
characterized by only one blockQ. An example is shown in
Fig. 3~c!. Each diagram contributing tôGR

l GA
k2 l& consists of

l retarded andk2 l advanced lines. For thei th retarded~ad-
vanced! GF, we count the number of left loopsmi(m̄i), of
right loopsmi8(m̄i8), and of left- and right-going traversin
e

il-

-

re

lines ni5ni
11ni

2 (n̄i5n̄ 1
i1n̄ 2

i). ~Notice that the indexi
of ni here denotes the number of the GF, whereas it was u
for the position within one GF in the previous section.! For
the different fermion lines, we now can attach the exter
vertices in four different ways, as shown in Fig. 4. Th
allowsmi2mi8521,0,1 (m̄i2m̄i8521,0,1) for the each re-
tarded~advanced! GF. It turns out that the blockQ depends
only on the total numbersm5m11m21•••1ml , m̄5m̄1

1m̄21•••1m̄k2 l and similarlym8,m̄8,n,n̄.51 It is clear from
these considerations that the difference betweenm andm8 is
always restricted by2 l<m2m8< l . This is automatically
taken into account by the mixing coefficient51

w l(m,m8;n1,n2). This coefficient is the generalization o
the term in square brackets of Eq.~8!. It counts the different
possibilities to attach external vertices~see Fig. 4! and to
distribute the through-going lines between the loops. Us
Eq. ~9!, we can write it as
w l~m,m8;n1,n2!5(
$mi %

dm,m11m21•••1ml (
$mi8%

dm8,m
181m

281•••1m
l8 (
$ni

1%

dn1,n
1
11n

2
11•••1n

l
1 (

$ni
2%

dn2,n
1
21n

2
21•••1n

l
2

3)
i 51

l H e2ip(e)x22hx/v(e)dmi ,m
i811S mi211ni

1

mi21
D S mi211ni

2

mi21
D 1e22ip(e)x12hx/v(e)

3dmi ,m
i821S mi1ni

1

mi
D S mi1ni

2

mi
D 1dmi ,m

i8F S mi1ni
1

mi
D S mi211ni

2

mi21
D 1S mi211ni

1

mi21
D S mi1ni

2

mi
D

2dmi ,0
dn

i
1,0dn

i
2,0G J . ~18!

Separating the exponential factors in Eq.~18!, we can writew l as

w l~m,m8;n1,n2!5e22ix(m82m)[ p(e)1 ih/v(e)] w̃ l~m,m8;n1,n2! ~19!

with

w̃ l~m,m8;n1,n2!5(
$mi %

dm,m11m21•••1ml (
$mi8%

dm8,m
181m

281•••1m
l8 (
$ni

1%

dn1,n
1
11n

2
11•••1n

l
1 (

$ni
2%

dn2,n
1
21n

2
21•••1n

l
2

3)
i 51

l H dmi ,m
i811S mi211ni

1

mi21
D S mi211ni

2

mi21
D 1dmi ,m

i821S mi1ni
1

mi
D S mi1ni

2

mi
D

1dmi ,m
i8F S mi1ni

1

mi
D S mi211ni

2

mi21
D 1S mi211ni

1

mi21
D S mi1ni

2

mi
D 2dmi ,0

dn
i
1,0dn

i
2,0G J . ~20!

The mixing factor for the advanced GF is obtained from complex conjugation ofwk2 l .
Now we can express Eq.~3! in terms ofQ and the mixing factors

^rk~e,f;L,x!&5S r0

2 D k

(
l 50

k

(
m50

`

(
m̄50

`

(
m850

`

(
m̄850

`

(
n150

`

(
n250

`

(
n150

`

(
n2̄50

` S k

l D
3e2 i2p(f/f0)(n12n21n̄12n2)eip(e)L(n11n22n12n2)e2[hL/v(e)](n11n21n11n2)

3e22ip(e)x(m82m2m̄81m̄)e[2hx/v(e)](m82m1m̄82m̄)

3w̃ l~m,m8;n1,n2!w̃k2 l~m̄,m̄8;n1,n2!QS m, m8, n11n2

m̄, m̄8, n11n2UL D . ~21!
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Here, the first three exponential factors come from the external vertices and from the revolutions around the ring. The
exponential factors were separated from the mixing coefficients@Eq. ~19!#. Below, we shall see that the last exponential fac
is canceled by a contribution fromQ.

Equation for the central block Q

As noted above, the central block

QS m, m8, n

m̄, m̄8, n̄
UxD

is defined as the sum of all diagrams withm andm̄ pairs of returning lines on the left side,m8 andm̄8 pairs on the right side,
andn and n̄ through-going lines, coming from retarded and advanced GF’s, respectively. An equation determiningQ can be
constructed according to Berezinskii’s idea by attaching all possible vertices, given in Fig. 1, to the existing block
avoiding the formation of unconnected electron loops. Careful analysis of all these possibilities gives the equation

d

dx
QS m m8 n

m̄ m̄8 n̄
UxD 52F 1

2l 1
~2m1n22m̄2n̄!21

1

l 2
m~m1n!1

1

l 2
m̄~m̄1n̄!1

1

2l 2
~n1n̄!GQS m m8 n

m̄ m̄8 n̄
UxD

2
1

l 2
mm8QS m21 m821 n12

m̄ m̄8 n̄
UxD 2

1

l 2
m̄ m̄8QS m m8 n

m̄21 m̄821 n̄12
UxD

1
1

l 2
mm̄e4hx/v(e)QS m21 m8 n

m̄21 m̄8 n̄
UxD 1

1

l 2
~m1n!~m̄1n̄!e24hx/v(e)QS m11 m8 n

m̄11 m̄8 n̄
UxD

1
1

l 2
m8~m̄1n̄!e24h/xv(e)QS m m821 n12

m̄11 m̄8 n̄
UxD 1

1

l 2
~m1n!m̄8e24hx/v(e)

3QS m11 m8 n

m̄ m̄821 n̄12
UxD 1

1

l 2
m8m̄8e24hx/v(e)QS m m821 n12

m̄ m̄821 n̄12
UxD . ~22!

FIG. 6. Different possibilities to attach verti
ces to the blockQ, as the left side is shifted. The
first plot shows the inclusion of vertex c of Fig.
with decreasingm andm8 by 1 and increasingn
by 2. The other four blocks show the differen
possibilities to include vertex f and correspond
the last four terms in Eq.~22!.
n

n
q

i

he
ght-

ne
he

-

of
y-
The blockQ is subjected to a similar boundary conditio
asQ0 in the previous section,

QS m m8 n

m̄ m̄8 n̄
Ux50D 5dm,0dm8,0dm̄,0dm̄8,0 , ~23!

which states that for an infinitesimal ring there can be
scattering. The first coefficient on the right hand side of E
~22! contains contributions from the vertices a,a8, b,b8, c,c8,
and d in Fig. 1. Vertices a, b, and d can be attached
(2m1n), 1

2 (2m1n)(2m1n21), and (2m1n)(2m̄1n̄)
ways, respectively, the coefficients for a8 and b8 are the same
as for a and b, with the replacement$m,n%→$m̄,n̄%. For
vertex c we have again to distinguish two possibilities as
Sec. III. We havem(m1n21) ways to attach it without
changingm, m8, andn; andmm8 different ways with chang-
o
.

in

n

ing $m,m8n%→$m21,m821,n12%. The latter kind of in-
sertion of the vertex c in Fig. 1 and its counterpart for t
advanced GF give the second and the third term on the ri
hand side of Eq.~22!. The inclusion of vertex e reducesm

andm̄ by 1. The insertion of vertex f, however, can be do
in four different ways that are shown schematically in t
last four blocks of Fig. 6.

Trying to solve Eq.~22!, one may begin by substituting

Q̃5Q/(m8! m̄8!)Q and then introduce new variablesM

52m1n, and M̄52m̄1n̄, M 852m81n, and M̄ 852m̄8

1n̄. As a consequence,M 8 and M̄ 8 appear as fixed param

eters in the differential equation forQ̃. But still then, Q̃

depends on the five variablesM, n, M̄ , n̄, andx. Under these
circumstances, looking for the general analytic solution
Eq. ~22!, one meets with enormous difficulties. Before stud
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ing an asymptotic approximation of the problem, we ma
some simplifications of Eqs.~21! and ~22!. The exponential
factors in Eq.~22! can be removed by the following subst
tution:

QS m m8 n

m̄ m̄8 n̄
UxD 5expH 2hx

v~e!
~m1m̄2m82m̄8!J

3Q̄S m m8 n

m̄ m̄8 n̄
UxD . ~24!

The equation forQ̄ has the same structure as Eq.~22!, only
the exponential factors are dropped and the first term on
rhs of Eq. ~22! acquires another contribution2@2h/

v(e)#(m1m̄2m82m̄8) to the prefactor ofQ.
From the structure of the internal vertices in Fig. 1 o

sees that the condition

~m82m!2~m̄82m̄!50 ~25!

is satisfied for arbitrary cross sections.~The same condition
also applies to the strictly 1D problem; see Ref. 51.! A cor-
responding symmetry of Eq.~22! confirms this condition.

In the regime of weak disorder,pFl @1, Eq. ~21! for the
kth moment of the DOS contains terms that strongly oscill
with the particle energy (n11n2Þn11n2) apart from
smooth ones (n11n25n11n2). To neglect the strongly
oscillating terms, we choose only those terms in Eq.~21! that
satisfy the condition

n11n25n11n2. ~26!

Equation~21! now is simplified to

^rk~e,f;L !&

5S r0

2 D k

(
m50

`

(
m̄50

`

(
m850

`

(
n50

`

ei4p(f/f0)n2[2hL/v(e)]n

3Q̄S m m8 n

m̄ m̄2m1m8 nUxD
3Fk~m,m̄,m8,m̄2m1m8,n,n!, ~27!

where

Fk~m,m̄,m8,m̄8,n,n̄!

5(
l 50

k

(
n150

n

(
n150

n̄ S k

l D
3e2 i4p(f/f0)(n11n1)

3w̃ l~m,m8;n1,n2n1!

3w̃k2 l~m̄,m̄8;n1,n̄2n1!. ~28!

Expressions~27! and ~28! show that the dominating con
tribution to ^rk& does not strongly oscillate with the energ
Unlike the averaged DOS, the first harmonic of all mome
e

e

e

s

oscillates with the halved magnetic fluxf0/2. In the follow-
ing section, we solve Eqs.~20!–~28! for large rings, withL
@max$l1,l2%.

V. DISTRIBUTION FUNCTIONS FOR THE WEAK
LOCALIZATION LIMIT

The equation forQ̄ is simplified considerably in the limit
of large rings,L@max$l1,l2%. For this case, we can assum
that the electrons are quasilocalized and that the wave fu
tion overlaps around the ring are small, similar to a tig
binding model. Diagrammatically, this means that the el
tron loops emerging from the lhs and the rhs of the diagr
almost never reach each other, since they have a chara
istic size ofj!L. ~The localization length for an infinite 1D
system is41,42 j1D;4l 2.!

As a consequence, we can for large rings neglect th
inclusions of the vertices c, c8, e, and f that directly connec
the loops on the rhs with those on the lhs. Correspondin
this is the neglect of the terms 2, 3, and 6–10 on the rhs
Eq. ~22!. Now, Q̄ can be factored as

Q̄S m m8 n

m̄ m̄2m1m8 nUxD
5Q* ~m,m̄,n;x!Q* ~m8,m̄2m1m8,n;x!,

~29!

where the factors are defined through

dQ* ~m,m̄,n;x!

dx
52F 2h

v~e!
~m1m̄!1

2

l 1
~m2m̄!2

1
1

l 2
m~m1n!1

1

l 2
m̄~m̄1n̄!1

1

l 2
nG

3Q* ~m,m̄,n;x!1
1

l 2
mm̄

3Q* ~m21,m̄21,n;x!1
1

l 2
~m1n!

3~m̄1n̄!Q* ~m11,m̄11,n;x!. ~30!

Apart from this simplification, the limitL@max(l1,l2) im-
plies m,m̄,m8@n.

Note that Eq.~30! can also be obtained from Eqs.~22!

and ~24! by neglectingm8 and m̄8. The nonentanglemen
mentioned above has a second consequence: The rema
contributions changem andm̄ simultaneously by61 ~due to
vertices e and f of Fig. 1!, or conserve bothm andm̄, as in
Berezinskii’s approach to strictly 1D systems.41 Therefore
we can adoptm5m̄, which further simplifies Eq.~30!:
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l 2
dQ* ~m,n;x!

dx

52@4ht2m1n12m~m1n!#Q* ~m,n;x!

1m2Q* ~m21,n;x!1~m1n!2Q* ~m11,n;x!.

~31!

Here,t2 is the inelastic scattering time with respect to bac
ward scattering. The boundary condition for Eq.~31! is

Q* ~m,n;x50!5dm,0 . ~32!

The combined mixing functionFk given in Eq.~28! is sim-
plified for largem, m̄, andm8 in Appendix B. Substituting
Eqs.~B6! and~29! into ~27!, we get a comparatively simpl
expression for̂ rk&:

^rk~e,f;L !&5S r0

2 D k

(
m50

`

(
m850

`

(
n50

`

(
l 50

k FcosS 2p
f

f0
D G2n

3e2[2hL/v(e)]nS k

l D S 2l

m2m8
D S 2k22l

m2m8
D

3
22nmk12n22

G~ l !G~k2 l !
Q* ~m,n;L !Q* ~m8,n;L !.

~33!

As we emphasized, the diagrammatical structure of the bl
Q* demands its dependence on one parameterm instead of
two (m and m̄). Hereby the sum overm̄ is removed. The
summations overl andm8 can be done as described in A
pendix B. Using Eqs.~B7! and ~B8!, we get

^rk~e,f;L !&5r0
k212k~k21!

k~2k21!

G2~2k!

G5~k!

3 (
n50

`

(
m50

`
22ne2[2hL/v(e)]nmk12n22

G2~n11!

3FcosS 2p
f

f0
D G2n

Q* 2~m,n;L !
-

k

5^rk~e,f;L !&n501^rk~e,f;L !&n51

3cos2S 2pf

f0
D1•••. ~34!

Equation~31! for Q* (m,n;x) was solved approximately in
Ref. 52 for arbitraryn. Here we shall study this equation fo
the zeroth and first harmonics (n50 andn51) in detail.

A. Zeroth harmonic contribution to the DOS moments

The zeroth harmonic of̂rk(e,f;L)& in Eq. ~34! contains
Q* (m,n50;L). By performing a Laplace transform of Eq
~31!, written forn50, with respect tox and using the bound
ary condition~32!, we get

~l1s1m!Q0* ~m;l!2dm,0

5m2@Q0* ~m11;l!1Q0* ~m21;l!22Q0* ~m;l!#.

~35!

Here,s154ht2 andl is the parameter of the Laplace tran
form. This is an equation for the right-hand side in the B
rezinskii technique with an open boundary condition and
was solved in Refs. 53 and 51. Here, we give only the re
for Q0* (s1 ,m;x):

Q0* ~s1 ,m;x!52~ms1!1/2K1„2~ms1!1/2
…

1
2~ms1!1/2

2p i E
2`

`

dl
s1

2(11 il)/2

i 2l

G3S 12 il

2 D
G2~2 il!

3e2(l211)(x/4l 2)K2 il„2~ms1!1/2
…. ~36!

After substitution of this solution intôrk(e,f;L)&n50 in
Eq. ~34!, the summation overm can be transformed into a
integration, which is done easier. Some mathematics res
in the following form of^rk(e,f;L)&n50:
^rk~e,f;L !&n505S r0

2 D k 2~k21!G~2k!

k~2k21!G5~k!
s1

12kH k

k21
G4~k!1

2

As1

e2L/4E
2`

` dl

2p i

e2(L/4l 2)(l2 ig)22(L/4l 2)g2

i 2l

3

G3S 12 il

2 D
G2~2 il!

UGS 2k111 il

2 DGS 2k211 il

2 D U2

1
2

s1
E

2`

` dz8

2p i
e2(L/2l 2)z82

uG~k2 iz8!u2

3E
2`

` dz

2p i

e2(L/2l 2)(z2 ig)22(L/2l 2)g22L/2l 2

~z1z82 i !~z2z82 i !

G3S 12 iz2 iz8

2 DG3S 12 iz1 iz8

2 D
G2~2 iz2 iz8!G2~2 iz1 iz8!

uG~k2 iz!u2J , ~37!
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whereg5( l 2/L)ln(1/s1).0. The second term in the curl
brackets of Eq.~37! has a saddle point atl05 ig and simple
poles at the upper half plane:l15 i , l25 i (2k21),i (2k
11), . . . . Theintegral overz in the third term in the curly
brackets contains again the saddle point atz05 ig and poles
at z156z81 i , z25 ik,i (k11), . . . . For g,1, the main
contribution to both integrals is given by the saddle poin
As a result we get

^rk~e,f;L !&n505r0
k~2s1!12k

G~2k21!

G~k!
. ~38!

Such a result has been obtained for the infinite 1D disorde
system.51 Transforming the semi-invariants in Eq.~38! to
moments and using the inverse Mellin transformation

W~r!5
1

2p i Ea2 i`

a1 i` dk

rk11
^rk&, ~39!
is

or
.

d

the following inverse Gaussian distribution function is o
tained:

Wn50~r!5S 2ht2r0

pr3 D 1/2

expS 22
~r2r0!2

rr0
ht2D .

~40!

For 2ht2@1, the most probable or typical value ofr is
equal tor0, whereas for 2ht2!1 it shifts to lower values
and becomes equal tor typ5(4ht2/3)r0.

When g assumes intermediate values, i.e., 1,g,k, the
essential contribution tô rk&n50 comes from the saddle
points of the third term in the curly brackets of Eq.~37! and
the contributions from the poles of this term cancel the ot
term, resulting in
s

f
sing
in
^rk~e,f;L !&n505
r0

kG~2k21!

2k21G~k21!G~k11!

s1
2kl 2e2(L/2l 2)(11g2)

pL~12g!2

G6S 11g

2 D
G4~g!

G~k1g!G~k2g!. ~41!

This expression shows that high moments of the DOS for intermediate values ofg increase withk; however, the increase i
not so rapid, as Eq.~41! has an additional factor 1/k! compared to Eq.~38!.

For g satisfying the conditiong,k, the leading contribution is given by the polez25 ik and

^rk~e,f;L !&n505S r0

2 D kA l 2

2pL

4

k~k21!~2k21!

G2~2k!

G7~k!
G6S k11

2 De(L/2l 2)(k221). ~42!

The last expression is valid for arbitrary small values of the dissipation parameter (h→0 or g→`) with h!
(1/4t2)exp(2kL/l2). Equation~42! shows that the zeroth harmonic of thekth moment of the DOS grows withk as exp(k2).
Such rapid increasing of high moments of^rk&n50 has been firstly obtained by Wegner46 and it is a characteristic feature o
the logarithmic normal distribution of̂rk&n50. The distribution function for the zeroth harmonic term can be obtained u
Eq. ~39!. For large values of the DOS, satisfying the conditionr.(r0/2)exp(L/l2), the dominating saddle point yields aga
a logarithmic normal distribution:

Wn50~r!5
8l 2

pr0L

GS 2l 2

L
ln

2r

r0
22DGS 2l 2

L
ln

2r

r0
DG6S 1

2
1

l 2

2L
ln

2r

r0
D

GS l 2

L
ln

2r

r0
11DG6S l 2

L
ln

2r

r0
D expF2

l 2

2L S ln
2r

r0
1

L

l 2D 2G . ~43!
es

h-

n,
For small values ofr, when r,(r0/2)exp(L/l2), the main
contribution comes from the pole at the origin and the d
tribution function decreases in a powerlike form:

Wn50~r!5
2r0

r2
A l 2

2pL
. ~44!

Thus the distribution function for the zeroth harmonic
f-independent component has asymmetric form.

B. Amplitude of the first harmonic contribution
to the DOS moments

By a Laplace transform with respect tox, Eq. ~31! with
n51 is converted to
-
~l1s1m!Q1* ~m;l!2dm,0

5~m11!2@Q1* ~m11;l!2Q1* ~m;l!#

1m2@Q1* ~m21;l!2Q1* ~m;l!#. ~45!

The d symbol on the left-hand side of this equation com
from the boundary condition~32!. Equation~45! corresponds
to the equation for the central part in the Berezinskii tec
nique for strictly 1D systems with open boundary.53 For m
@1, this equation is transformed into a differential equatio

m2
d2Q1* ~m;l!

dm2
12m

dQ1* ~m;l!

dm
2~l1s1m!Q1* ~m;l!50.

~46!
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A change of the function to (1/z)F(z,l)5Q1* (m;l), where
z254ms1, reduces Eq.~46! to the Bessel equation

d2F

dz2
1

1

z

dF

dz
2S 11

114l

z2 D F50. ~47!

ThereforeQ1* (m;l) can be expressed as

Q1* ~m;l!5C
1

2 ~ms1!1/2 K112q„2~ms1!1/2
…, ~48!

whereq52 1
2 1Al1 1

4 .
Equation~48! contains an unknown parameterC due to

the neglect of the Kronecker symbol in Eq.~45!.
On the other hand Eq.~45! has been solved by
Melnikov,53 who obtained the asymptotic solution o
Q1* (m;l) for 1!m!s1

21 as

Q1* ~m;l!5
G3~q11!

G~2q12!
m2q21. ~49!

The comparison or Eq.~48! with the asymptotic form~49!
allows us to determineC:

C54s1
q11 G3~q11!

G~2q12!G~2q11!
. ~50!

Taking the inverse Laplace transform, one obtains
Q1* (m;x)
y

Q1* ~m;x!5E
2`

` dl

2p
e2(1/4)(l211)(x/ l 2)s1

(12 il)/2~ms1!21/2K2 il„2~ms1!1/2
…

G3S 12 il

2 D
G2~2 il!

. ~51!

To get an expression for the first harmonic,^rk(e,L)&n51, we substitute the solution~51! into Eq.~34!, and sum overm, which
can be done after the transformation of the sum into an integral overk5ms1:

^rk~e,L !&n515S r0

2 D k~k21!G~2k!

kG5~k!
s1

2ke2L/2l 2E
2`

` dl

2p
s1

2 il/2e2(L/4l 2)l2
G3S 12 il

2 D
G2~2 il!

3E
2`

` dl8

2p
s1

2 il8/2e2(L/4l 2)l82
G3S 12 il8

2 D
G2~2 il8!

UGS k1
il1 il821

2 DGS k1
il2 il821

2 D U2

. ~52!

For convenience, we substitute below the variablesl andl8 by z andz8 according tol5z1z8 andl85z2z8.
The values of the integrals in Eq.~52! are determined by saddle points and poles. Forg5( l 2/L)ln(1/s1),k2 1

2 , the
contribution from the saddle point dominates:

^rk~e,L !&n515S r0

2 D k~k21!l 2G2~2k!s1
2k

kpLG5~k!
e2(L/2l 2)(11g2)

G2S 2k21

2 DG6S 11g

2 DGS 2k2112g

2 DGS 2k2122g

2 D
G4~g!

. ~53!

For g.k2 1
2 the main contribution is given by the pole atz5 i (k2 1

2 ) and one gets

^rk~e,L !&n515S r0

2 D k 2~k21!G~2k!G~2k21!G6S 2k11

4 D
kG5~k!G2S 2k21

2 D A l 2

2pLs1
e(L/8l 2)(2k21)22L/2l 2

. ~54!

In contrast to the expression of^rk(e,L)&n50 for small dissipation,h→0 @see Eq.~42!#, the expression for̂rk(e,L)&n51

increases strongly withs154t2h→0. It is illustrative to rewrite the prefactor of Eq.~54! as @2p(L/ l 2)s1#21/2

5(8p2h/D)21/2 in terms of the level distanceD51/r0L and the dissipation energyh, the latter blurring the quantized energ
levels. By decreasingh, the energy levels are sharpened and the distribution function becomes ad function.

Substituting Eq.~54! into ~39!, one receives a normal logarithmic distribution forr.(r0/2)exp(2L/l2):
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Wn51~r!5
l 2

pL
A 2

s1rr0

GS 11
2l 2

L
ln

2r

r0
DGS 2l 2

L
ln

2r

r0
DG6S 1

2
1

l 2

2L
ln

2r

r0
D

GS 3

2
1

l 2

L
ln

2r

r0
DGS l 2

L
ln

2r

r0
2

1

2DG3S l 2

L
ln

2r

r0
1

1

2DG2S l 2

L
ln

2r

r0
D expF2

l 2

2L S ln
2r

r0
1

L

l 2D 2G .

~55!
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The logarithmic normal distribution function for the first ha
monic is valid for a large range ofr. Comparing Eq.~55!
with Eq. ~43! for winding number zero, it can be seen th
Eq. ~55! contains in addition a prefactorAr0 /ht2r
5(ph l 2r)21, which increases with decreasing temperatu
Thus the first harmonic increases with decreasing temp
ture faster in amplitude than the zeroth harmonic.

VI. CONCLUSION

The distribution function for the local DOS in a one
channel ring threaded by a magnetic flux through the op
ing was studied in this paper. For this purpose, we c
structed a diagrammatic method as an extension of
Berezinskii technique41 to the problem with periodic bound
ary conditions and in the presence of an external magn
field. The equations obtained@Eqs.~10!–~12! and ~21!–~23!
for the DOS and itskth moments, respectively# are exact in
the framework of the weak disorder limitkFl @1. Equations
~11! and~12! are solved exactly, which gives the oscillatio
of r with the full flux for both weak localization and ballisti
regimes.

In contrast to the DOS problem, the equation f
^rk(e,f;L)& is rather complicated and we succeeded
solve it for the weak localization limit whenL@ l 6. In this
limit, the leading contributions to arbitrary moments of t
DOS oscillate with the halved periodf0/2. The distribution
functions for zeroth~insensitive to the magnetic field! and
first ~with a period off0/2) harmonics are calculated an
logarithmic normal distributions@Eqs.~43! and~55!# are ob-
tained for them, indicating large contributions from high m
ments of the DOS. For the zeroth harmonic, this norm
logarithmic shape appears for the tail of the distribution,
for the first harmonic it covers the large range ofr
.(r0/2)exp(2L/l2), i.e., the high moments give essent
contributions not only on the tail but also in the vicinity o
the average value of the DOS. The distribution function
the first harmonic increases with decreasing the width of
energy levels or the dissipation parameterh @see Eq.~55!#,
which was introduced phenomenologically in the theory@Eq.
~4!#. For h→0, the distribution functionWn51(r) becomes
a d function due to the quantization of the energy levels
the rings. The results for the DOS show that the amplitu
of all harmonics ofr(e,f) are exponentially small in the
weak localization regime@Eq. ~14!#, while the amplitudes of
the higher moments in this regime@Eqs.~38!, ~41!, ~42!, and
~54!# are relatively large. Although we could not calcula
higher moments of the DOS in the ballistic regime, the a
plitude of the average value of the DOS is large and seem
be consistent with experimental data.14

It is also well known that the DOS of 1D disordered cry
t

.
a-

n-
-
e

tic

r
o

-
l
t

r
e

s

-
to

talline systems is very sensitive to the filling factor. The
exists disorder induced enhancement of the DOS for co
mensurable values of the electron wavelengthl and the lat-
tice constanta, when the electronic energye satisfies the
condition p(e)5kp/na, k561,62, . . . ,6n and n
52,3, . . . , and theeffect is pronounced for half filling which
corresponds ton52. The singularity in the DOS of 1D dis
ordered crystalline systems near the middle of the ban
known as a Dyson singularity54 which was studied for many
1D electronic models.55–60 Notice that the Berezinski
method has also been applied to study the conductivity
the localization length60,42 apart from the Dyson singularity
in the middle of the band of a 1D infinite lattice with bot
weak and strong disorder.60,61 Our preliminary study shows
that the real space diagrammatic method presented in
paper is applicable to study the Dyson singularity in the D
of a ring for a half-filled energy band. This leads to a rema
able high amplitude of the persistent current as it is obser
in the experiments, provided that the Peierls transition is s
pressed by impurities and by weak transvers tunneling
tween the channels.
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APPENDIX A: SOLUTION FOR Q0„m,n;x…

The first term on the right hand side of Eq.~11! can be
removed through the transformation

Q0~m,n;x!5expH 2
x

2l 1
~2m1n!22

x

2l 2
n

2
x

l 2
m~m1n!J Q0* ~m,n;x!, ~A1!

which gives for Eqs.~11! and ~12! the simpler form

l 2
dQ0* ~m,n;x!

dx
52m2 expH xn

l 2 J Q0* ~m21,n12;x!

with

Q0* ~m,n;x50!5dm,0 . ~A2!

Laplace transformation fromx to l yields

lQ0̄~m,n;l!2dm,052
1

l 2
m2Q0̄S m21,n12;x2

n

l 2D .

~A3!

Equation~A3! can be solved by iteration:
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Q0̄~m,n;l!5S 21

l 2 D m

~m! !2)
j 50

m
1

l2~1/l 2! j ~ j 1n21!
5

~m! !2

l

GS z111
n21

2 DGS n21

2
112zD

GS n21

2
1m111zDGS n21

2
1m112zD , ~A4!

wherez25l l 21(n21)2/4. The inverse Laplace transform gives forQ0*

Q0* ~m,n;x!5~m! !2(
j 50

m

expH x

l 2
j ~ j 1n21!J ~21! j

j ! ~m2 j !!

~ j 1n22!!

~m1 j 1n21!!
~2 j 1n21!, ~A5!

which, in connection with Eq.~A1!, gives the final result, Eq.~13!, wherex is replaced by the full circumferenceL. The
compliance of Eq.~A5! with the boundary condition is easily checked. Also, form50, Q0* (0,n;x)51, and forn50 we get
from the inverse Laplace transform of Eq.~A4! or from taking the limit of Eq.~A5!,

Q0* ~m,0;x!5S 12m2m
x

l 2D 1(
j 52

m

expH x

l 2
j ~ j 1n21!J S m

j D ~21! j
m! ~ j 1n22!!

~m1 j 1n21!!
~2 j 1n21!. ~A6!

APPENDIX B: CALCULATION OF THE MIXING COEFFICIENT

Using the relations

dm,k5 R
uzu,1

dz

2p i
zk2m21, S m

k D 5 R
uzu,1

dz

2p i

1

zk11~12z!m2k11
, ~B1!

we can transform Eq.~20! for w̃ l(m,m8;n1,n2n1) to

w̃ l~m,m;n1,n2n1!5 R dz1

2p i

1

z1
m11 R dz2

2p i

1

z2
m811 R dz3

2p i

1

z3
n111 R dz4

2p i

1

z4
n2n111 H ~11z1!~11z2!2z3z4

~12z3!~12z4!2z1z2
J l

. ~B2!

Substitutingz5z1z2, the dominant contribution form@1 comes from the pole atz5(12z3)(12z4). Integrating over this
new variable gives

w̃ l~m,m8;n1,n2n1!5
~m1 l 21!!

~ l 21!!m! R dz2

2p i

1

z2
m82m1 l 11 R dz3

2p i

1

z3
n111 R dz4

2p i

1

z4
n2n111

3
@„z21~12z3!~12z4!…~11z2!2z2z3z4# l

~12z3!m1 l~12z4!m1 l
. ~B3!

The remaining integrals are done in a similar way, resulting in

w̃ l~m,m8;n1,n2n1!5
~2l !! ~m1 l 1n121!! ~m1 l 1n2n121!!

~m82m1 l !! ~m2m81 l !! ~m1 l 21!!n1! ~n2n1!! ~ l 21!!m!
. ~B4!

Now we can collect alln1- andn1-dependent terms in Eq.~21! and sum overn1 andn1, introducing the mixing function
Fk from Eq. ~28!. For largem, we can use Stirlings formula

lim
m→`

~m1a!!

~m1b!!
mb2a51 ~B5!

to obtain

Fk~m,m̄,m8,m̄8,n,n̄!5(
l 50

k
~11e24ip ~f/f0)!n1n̄

~ l 21!! ~k2 l 21!!n! n̄!
S k

l D S 2l

m2m81 l D S 2k22l

m̄2m̄81 l
D . ~B6!

Taking into accountQ* (m,m̄,n;x)5Q* (m,n;x)dm,m̄ , this gives Eq.~33!. For m,m8@1, the summations overl andm8
can be done. Following Ref. 51, we denoteDm5m2m8, with Dm!m for largem. The significant contributions to Eq.~33!
come fromQ* (m2Dm,n;x)'Q* (m,n;x). Hence we can rewrite Eq.~33! as
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^rk~e,f;L !&5S r0

2 D k

(
m50

`

(
n50

` FcosS 2p
f

f0
D G2n

e2[2hL/v(e)]n
22nmk12n22k!

~n! !2
Q* 2~m,n;x!(

l 50

k S k

l D (
Dm52k

k S 2l

l 1DmD
3S 2k22l

k2 l 1DmD 1

~ l 21!! ~k2 l 21!!
. ~B7!

The last two sums result in

2~k21!

k~2k21!

G2~2k!

G5~k!
~B8!

which is used in the final result for thekth moment of the DOS, Eq.~34!.
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