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Strong-coupling approach for strongly correlated electron systems
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A perturbation theory scheme in terms of electron hopping, which is based on the Wick theorem for
Hubbard operators, is developed. Diagrammatic series contain single-site vertices connected by hopping lines
and it is shown that for each vertex the problem splits into the subspaces with ‘‘vacuum states’’ determined by
the diagonal Hubbard operators and only excitations around these vacuum states are allowed. The rules to
construct diagrams are proposed. In the limit of infinite spatial dimensions the total auxiliary single-site
problem exactly splits into subspaces that allows to build an analytical thermodynamically consistent approach
for a Hubbard model. Some analytical results are given for the simple approximations when the two-pole
~alloy-analogy solution! and four-pole~Hartree-Fock approximation! structure for Green’s function is obtained.
Two poles describe contribution from the Fermi-liquid component, which is dominant for small electron and
hole concentrations~‘‘overdoped case’’ of high-Tc’s!, whereas other two describe contribution from the non-
Fermi liquid and are dominant close to half-filling~‘‘underdoped case’’!.
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I. INTRODUCTION

Many unconventional properties@e.g., metal-insulator
transition, electronic~anti!ferromagnetism# of the narrow-
band systems~transition metals and their compounds, som
organic systems, high-Tc superconductors, etc.! can be ex-
plained only by the proper treatment of the strong local el
tron correlations. The simplest models allowing for the el
tron correlations are a single-band Hubbard model with
site repulsionU and hopping energyt and its strong-coupling
limit ( U@t): t-J model. Recent studies of the Hubbard-ty
models connected mainly with the theory of high-Tc super-
conductivity and performed in the weak- (U<4t) and
strong- (U@t) coupling limits, elucidate some importan
features of these models.1 But still a lot of problems remains
especially for theU@t case where there are no rigoro
approaches.

Such approaches can be built using systematic pertu
tion expansion in terms of the electron hopping2 using dia-
grammatic technique for Hubbard operators.3,4 One of them
was proposed for the Hubbard (U5` limit ! and t-J
models.5,6 The lack of such approach is connected with t
concept of a ‘‘hierarchy’’ system for Hubbard operato
when the form of the diagrammatic series and final res
strongly depend on the system of the pairing priority
Hubbard operators. On the other hand it is difficult to gen
alize it on the case of the arbitraryU.

In the last decade the essential achievements in the th
of the strongly correlated electron systems are conne
with the development of the dynamical mean-field theo
~DMFT! proposed by Metzner and Vollhardt7 for the Hub-
bard model~see also Ref. 8 and references therein!. DMFT is
a nonperturbative scheme that allows to project the Hubb
model on the single impurity Anderson model and is exac
the limit of infinite space dimensions (d5`). There are no
restrictions on theU value within this theory and it turns ou
to be useful for intermediate coupling (U;t) for which it
ensures the correct description of the metal-insulator ph
transition and determines the region of the Fermi-liquid
havior of the electron subsystem. Moreover, some clas
the binary-alloy-type models~e.g., the Falicov-Kimball
PRB 620163-1829/2000/62~4!/2358~14!/$15.00
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model! can be studied almost analytically within DMFT9

But in the case of the Hubbard model, the treatment of
effective single impurity Anderson model is very comp
cated and mainly computer simulations@exact diagonaliza-
tion of the finite-sized systems or quantum Monte Ca
~QMC!# are used, which calls for the development of t
analytical approaches.

The first analytical approximation proposed for the Hu
bard model was a simple Hubbard-I approximation10 ~see
Ref. 11 for its possible improvement! which is correct in the
atomic (t50) and band (U50) limits but is inconsistent in
the intermediate cases and cannot describe metal-insu
transition. Hubbard’s alloy-analogy solution12 ~so-called
Hubbard-III approximation! incorporates into the theory a
electron scattering on the charge and spin fluctuations
allows us to give qualitative description of the changes of
density-of-state at the metal-insulator transition poi
Hubbard-I and Hubbard-III approximations introduces tw
types of particles~electrons moving between empty sites a
electrons moving between sites occupied by electrons of
posite spin! with the different energies that differ byU and
form two Hubbard bands. Related schemes of the so-ca
two-pole approximations,13,14 which are justified by thet/U
!1 perturbation theory expansions,15 are also considered
However, in the recent QMC studies16,17 it is clearly distin-
guished four bands in the spectral functions rather than
two bands predicted by the two-pole approximations. Su
four-band structure is reproduced by the strong-coupling
pansion for the Hubbard model17 in the one-dimensiona
case. Within other approaches let us mention non-cros
approximation,18,19 Edwards-Hertz approach,20,21 iterative
perturbation theory,22,23 alloy-analogy based approaches,24,25

and linked cluster expansions,26,27 which are reliable in cer-
tain limits and the construction of the thermodynamica
consistent theory still remains open.28

The aim of this paper is to develop for Hubbard-ty
models a rigorous perturbation theory scheme in terms
electron hopping that is based on the Wick theorem for H
bard operators3,4 and is valid for arbitrary value ofU (U
,`) and does not depend on the ‘‘hierarchy’’ system forX
operators. In the limit of infinite spatial dimensions, the
2358 ©2000 The American Physical Society
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analytical schemes allow us to build a self-consist
Kadanoff-Baym type theory29 for the Hubbard model and
some analytical results are given for simple approximatio
The Falicov-Kimball model is also considered as an exa
soluble limit of Hubbard model.

II. PERTURBATION THEORY IN TERMS OF ELECTRON
HOPPING

We consider the lattice electronic system that can be
scribed by the following statistical operator:

r̂5e2bĤ0ŝ~b!, ~2.1!

ŝ~b!5T expH 2E
0

b

dtE
0

b

dt8

3(
i j s

t i j
s~t2t8!ais

† ~t!aj s~t8!J ,

where

Ĥ05(
i

Ĥ i ~2.2!

is a sum of the single-site contributions and for the Hubb
model we must put

Hi5Uni↑ni↓2m~ni↑1ni↓!2h~ni↑2ni↓!,

t i j
s~t2t8!5t i j d~t2t8!. ~2.3!

In addition for the Falicov-Kimball model we must also p

t i j
s~t2t8!5H t i j d~t2t8! for s 5↑

0 for s 5↓ . ~2.4!

It is supposed that we know eigenvalues and eigenst
of the zero-order Hamiltonian~2.2!,

Hi u i ,p&5lpu i ,p& ~2.5!

and one can introduce Hubbard operators

X̂i
pq5u i ,p&^ i ,qu ~2.6!

in terms of which zero-order Hamiltonian is diagonal

H05(
i

(
p

lpX̂i
pp . ~2.7!

For the Hubbard model we have four statesu i ,p&
5u i ,ni↑ ,ni↓&: u i ,0&5u i ,0,0& ~empty site!, u i ,2&5u i ,1,1&
~double occupied site!, u i ,↑&5u i ,1,0&, and u i ,↓&5u i ,0,1&
~sites with spin-up and spin-down electrons! with energies

l050, l25U22m, l↓5h2m, l↑52h2m.
~2.8!

The connection between the electron operators and the H
bard operators is the following:

nis5Xi
221Xi

ss ; ais5Xi
0s1sXi

s̄2 . ~2.9!
t

s.
y

e-

d

es

b-

Our aim is to calculate the grand canonical potential fu
tional

V52
1

b
ln Spr̂5V02

1

b
ln^ŝ~b!&0 ,

V052
1

b
ln Spe2bH0, ~2.10!

single-electron Green functions

Gi j s~t2t8!5^Tais
† ~t!aj s~t8!&5

dV

dt i j
s~t2t8!

~2.11!

and mean values

ns5
1

N (
i

^nis&52
1

N

dV

dms
,

n5n↑1n↓ ; m5n↑2n↓ , ~2.12!

wherems5m1sh is a chemical potential for the electron
with spin s. Here,^ . . . &5(1/Z)Sp( . . .r̂), Z5Spr̂, or in
interacting representation

^ . . . &5
1

^ŝ~b!&0

^ . . . ŝ~b!&05^ . . . ŝ~b!&0c ,

~2.13!

where^ . . . &05(1/Z0)Sp( . . .e2bH0); Z05Spe2bH0.
We expand the scattering matrixŝ(b) in Eq. ~2.1! into

the series in terms of electron hopping and for^s(b)&0 we
obtain a series of terms that are products of the hopp
integrals and averages of the electron creation and anni
tion operators or, using Eq.~2.9!, Hubbard operators that wil
be calculated with the use of the corresponding Wick’s th
rem.

Wick’s theorem for Hubbard operators was formulated
Ref. 3 ~see also Ref. 4 and references therein!. For the Hub-
bard model we can define four diagonal Hubbard opera
Xpp (p50,2,↓,↑) which are of bosonic type, four annihila
tion X0↓, X0↑, X↑2, X↓2 and four conjugated creation ferm
onic operators, and two annihilationX↓↑, X02 and two con-
jugated creation bosonic operators. The algebra ofX̂
operators is defined by the multiplication rule

Xi
rsXi

pq5dspXi
rq , ~2.14!

the conserving condition

(
p

Xi
pp51, ~2.15!

and the commutation relations

@Xi
rs ,Xj

pq#65d i j ~dspXi
rq6d rqXi

ps!, ~2.16!

where one must use anticommutator when both operators
of the fermionic type and commutator in all other cases.
commutator or anticommutator of two Hubbard operators
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not ac number but a new Hubbard operator. Then the av
age of aT products ofX operators can be evaluated by t
consecutive pairing, while taking into account standard p
mutation rules for bosonic and fermionic operators, of
off-diagonal Hubbard operatorsXpq according to the rule
~Wick’s theorem!

~2.17!
until we get the product of the diagonal Hubbard operat
only. Here we introduce the zero-order Green’s function

gpq~t2t1!5
1

b (
n

gpq~vn!eivn(t2t1)

5e(t2t1)lpqH 6n6~lpq! t.t1

6n6~lpq!21 t,t1 ,

~2.18!

where lpq5lp2lq and n6(l)5
1

ebl61
, and its Fourier

transform is equal

gpq~vn!5
1

ivn2lpq
. ~2.19!
-
si
an

ts
ub
r-

r-
ll

s

In particular, for the Hubbard model one can introduce
following pairings:

~2.20!

where

f s~vn![gs0~vn!2g2s̄~vn!52Ugs0~vn!g2s̄~vn!.
~2.21!

Applying such pairing procedure to the expansion

^ŝ(b)&0 we get the following diagrammatic representatio
~2.22!
g-
pin
-
r
p-

to
e
n
of
ting

or
where arrows denote the zero-order Green’s functions~2.19!,
wavy lines denote hopping integrals andh, . . . stay for
some complicated ‘‘n vertices,’’ which for such type pertur
bation expansion are an irreducible many-particle single-
Green’s functions calculated with single-site Hamiltoni
~2.7!. Each vertex~Green’s function! is multiplied by a di-
agonal Hubbard operator denoted by a circle and one ge
expression with averages of the products of diagonal H
bard operators.

For the Falicov-Kimball model, expression~2.22! reduces
and contains only single loop contributions

~2.23!
where

5
P̂i

6

ivn1m* 7
U

2

; P̂i
15n̂i↓ ; P̂2512n̂i↓ ,m* 5m2~U/2!
te

an
-

and by introducing pseudospin variablesSi
z5 1

2 ( P̂i
12 P̂i

2)
one can transform the Falicov-Kimball model into an Isin
type model with the effective multisite retarded pseudos
interactions. Expression~2.23! can be obtained from the sta
tistical operator~2.1! by performing partial averaging ove
fermionic variables, which gives an effective statistical o
erator for pseudospins~ions!.

So, after applying Wick’s theorem our problem splits in
two problems:~i! calculation of the irreducible many-particl
Green’s functions~vertices! in order to construct expressio
~2.22! and ~ii ! calculation of the averages of the products
diagonal Hubbard operators and summing up the resul
series.

III. IRREDUCIBLE MANY-PARTICLE GREEN’S
FUNCTIONS

For the Hubbard model by applying the Wick theorem f
X operators one gets for two-vertex

~3.1!
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for four-vertex

L̂ iss
(4) ~vn ,vn1m ,vn81m ,vn8![0 ~3.2!
o
ra
in
-
rin
a

ith
. In

der
and so on. Expressions~3.1! and~3.2! and for the vertices of
higher order possess one significant feature. They dec
pose into four terms with different diagonal Hubbard ope
tors Xpp, which project our single-site problem on certa
‘‘vacuum’’ states~subspaces!, and zero-order Green’s func
tions, which describe all possible excitations and scatte
processes around these ‘‘vacuum’’ states: i.e., creation
annihilation of single electrons and of the doublon~pair of
electrons with opposite spins! for subspacesp50 and p
52 and creation and annihilation of single electrons w
appropriate spin orientation and of the magnon~spin flip! for
subspacesp5↑ andp5↓.

In compact form expressions~3.1! and ~3.2! can be writ-
ten as

~3.3!

and

~3.4!

where

gs(p)~vn!5H gs0~vn! for p50,s

g2s̄~vn! for p5s̄,2.
~3.5!
m-
-

g
nd

Here

Ũss̄(p)~vn ,v l uvm!5H U6U2g20~vn1 l 1m! for p50,2

U6U2gss̄~vn2 l ! for p5s ,s̄,

Ũss̄(p)~vn ,v l uvm!5Ũ s̄s(p)~v l ,vnuvm! ~3.6!

is a renormalized Coulombic interaction in the subspaces
diagrammatic notations expressions~3.2! or ~3.4! can be rep-
resented as

~3.7!

where dots denote Coulombic correlation energyU5l2
1l02l↑2l↓ and dashed arrows denote bosonic zero-or
Green’s functions: doublong20(vm) or magnongss̄(vm).

For six-verticies one can get

L̂ isss
(6) ~vn ,vn1

,vn2
,vn3

,vn4
,vn5

![0,
L̂ iss̄s̄
(6)

~vn ,vn1
,vn2

,vn3
,vn4

,vn5
!5d~vn2vn1

1vn2
2vn3

1vn4
2vn5

!

3(
p

X̂i
ppgs(p)~vn!gs(p)~vn1

!gs̄(p)~vn2
!gs̄(p)~vn3

!gs̄(p)~vn4
!gs̄(p)~vn5

!

3$Ũss̄(p)~vn ,vn3
uvn22n3

!gs̄(p)~vn1n22n3
!Ũss̄(p)~vn1

,vn4
uvn52n4

!

2Ũss̄(p)~vn ,vn5
uvn22n5

!gs̄(p)~vn1n22n5
!Ũss̄(p)~vn1

,vn4
uvn32n4

!

2Ũss̄(p)~vn ,vn3
uvn42n3

!gs̄(p)~vn1n42n3
!Ũss̄(p)~vn1

,vn2
uvn52n2

!

1Ũss̄(p)~vn ,vn5
uvn42n5

!gs̄(p)~vn1n42n5
!Ũss̄(p)~vn1

,vn2
uvn32n2

!

1Yss̄s̄(p)~vn ,vn1
,vn2

,vn3
,vn4

,vn5
!%, ~3.8!
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where

Yss̄s̄(p)~vn ,vn1
,vn2

,vn3
,vn4

,vn5
!5H 6U3@g20~vn1n2

!2g20~vn1n4
!#@g20~vn11n3

!2g20~vn11n5
!# for p50,2

6U3@gss̄~vn2n3
!2gss̄~vn2n5

!#@gss̄~vn12n2
!2gss̄~vn12n4

!# for p5s ,s̄.
~3.9!
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In expression~3.8! the contributions of the first four terms i
braces can be presented by the following diagrams:

~3.10!

with the internal vertices of the same type as in Eq.~3.7!,
whereas the contribution of the last term can be prese
diagrammatically as

~3.11!

So, we can introduce primitive vertices

~3.12!

by which one can construct alln vertices in expansion~2.22!
according to the following rules:

~1! n vertices are constructed by the diagonal Hubb
operatorXpp and zero-order fermionic and bosonic lines co
nected by primitive vertices~3.12! specific for each subspac
p.

~2! External lines ofn vertices must be of the fermioni
type.

~3! Diagrams with the loops formed by zero-order ferm
onic and bosonic Green’s functions are not allowed beca
they are already included into the formalism, e.g.,

gives

For n vertices of higher order a new primitive vertex ca
appear but we do not check this due to the rapid increas
the algebraic calculations with the increase ofn. Diagrams
~3.7!, ~3.10!, and ~3.11! topologically are truncated Bethe
lattices constructed by the primitive vertices~3.12! and can
be treated as some generalization of the Hubbard stars30,31 in
the thermodynamical perturbation theory.

It should be noted that eachn vertex contains Coulombic
interactionU as in primitive vertices~3.12! ~denoted by dots!
as in the denominators of the zero-order Green’s functi
~2.19!. In theU→` limit, each term in the expressions forn
vertices can diverge but total vertex possesses finiteU→`
limit when diagrammatic series of Ref. 5 are reproduced

The second problem of calculation of the averages of
agonalX operators is more complicated. One of the ways
solve it is to use semi-invariant~cumulant! expansions as
ed

d
-

se

of

s

i-
o

was done in Refs. 5 and 6 for theU5` limit. Another way
is to consider thed5` limit where new simplifications ap-
pear.

IV. DYNAMICAL MEAN-FIELD THEORY

Within the frames of the considered perturbation theory
terms of electron hopping a single-electron Green’s funct
~2.11! can be presented in a form

Gs~vn ,k!5
1

Js
21~vn ,k!2tk

, ~4.1!

where we introduce an irreducible partJs(vn ,k) of Green’s
function which, in general, is not local. In the case of infin
dimensionsd→` one should scale the hopping integral a
cording to

t i j →
t i j

Ad
~4.2!

in order to obtain finite density of states and it was shown
Metzner in his pioneer work26 that in this limit the irreduc-
ible part become local

J i j s~t2t8!5d i j Js~t2t8! or Js~vn ,k!5Js~vn!
~4.3!

and such a site-diagonal function, as it was shown by Bra
and Mielsch,9 can be calculated by mapping the infinit
dimensional lattice problem ~2.1! with t i j

s (t2t8)
51/Ad ti j d(t2t8) on the atomic model with the auxiliary
Kadanoff-Baym field

t i j
s~t2t8!5d i j Js~t2t8!, ~4.4!

which has to be self-consistently determined from the con
tion that the same functionJs(vn) defines Green’s func-
tions for the lattice and atomic limit. The self-consistent s
of equations forJs(vn) and Js(vn) ~e.g., see Ref. 8 and
references therein! is the following:

1

N (
k

1

Js
21~vn!2tk

5
1

Js
21~vn!2Js~vn!

5Gs
(a)~vn ,$Js~vn!%!, ~4.5!

whereGs
(a)(vn ,$Js(vn)%) is a Green’s function for atomic

limit ~4.4!.
Grand canonical potential for lattice is connected with t

one for atomic limit by the expression9
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V

N
5Va2

1

b (
ns

H ln Gs
(a)~vn!2

1

N (
k

ln Gs~vn ,k!J .

~4.6!

On the other hand, we can write for the grand canon
potential for atomic limitVa the same expansion as in E
~2.22! but now we have averages of the products of diago
X operators at the same site. According to Eq.~2.14! we can
multiply them and reduce their product to a singleX operator
or

r

in

tic
’s

rt
l

al

that can be taken outside of the brackets and exponen
~2.22! and its average is equal tôXpp&05e2blp/(qe2blq.
Finally, for the grand canonical potential for the atomic lim
we get

Va52
1

b
ln(

p
e2bV(p), ~4.7!

where
~4.8!
ic
he

the
are the ‘‘grand canonical potentials’’ for the subspaces.
Now we can find single-electron Green’s function f

atomic limit by

Gs
(a)~t2t8!5

dVa

dJs~t2t8!
5(

p
wpGs(p)~t2t8!,

~4.9!

where

Gs(p)~t2t8!5
dV (p)

dJs~t2t8!
~4.10!

are single-electron Green functions for the subspaces cha
terized by the ‘‘statistical weights’’

wp5
e2bV(p)

(
q

e2bV(q)

~4.11!

and our single-site atomic problem exactly~naturally! splits
into four subspacesp50,2,↓,↑.

We can introduce irreducible parts of Green’s functions
subspacesJs(p)(vn) by

Gs(p)~vn!5
1

Js(p)
21 ~vn!2Js~vn!

, ~4.12!

where

~4.13!

According to the rules of the introduced diagramma
technique,n vertices are terminated by the fermionic Green
functions @see diagrams~3.7!, ~3.10!, and ~3.11!# and this
allows us to write a Dyson equation for the irreducible pa
and to introduce a self-energy in subspaces
ac-

s

Js(p)
21 ~vn!5gs(p)

21 ~vn!2Ss(p)~vn!, ~4.14!

where self-energy

Ss(p)~vn!

depends on the hopping integralJs8(vn8) only through
quantities

Cs8(p)~vn8!5Gs8(p)~vn8!2Js8(p)~vn8!

[Js8(p)
2

~vn8!Js8~vn8!

3$11Js8(p)~vn8!Js8~vn8!1•••%.

~4.15!

It should be noted, that the total self-energy of the atom
problem is connected with the total irreducible part by t
expression

Ss~vn!5 ivn1m2Js
21~vn! ~4.16!

and it has no direct connection with the self-energies in
subspaces.

The fermionic zero-order Green’s function~3.5! can be
also represented in the following form:

gs(p)5
1

ivn1ms2Uns̄(p)
(0) , ~4.17!

where

ns(p)
(0) 52

dlp

dms
5H 0 for p50,s̄

1 for p52,s
~4.18!

is an occupation of the stateup& by the electron with spins,
and Green’s function~4.12! can be written as
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Gs(p)~vn!5
1

ivn1ms2Uns̄(p)
(0)

2Ss(p)~vn!2Js~vn!
.

~4.19!

Now, one can reconstruct expressions for the grand
nonical potentialsV (p) in subspaces from the known stru
ture of Green’s functions. To do this, we scale hopping in
gral

Js~vn!→aJs~vn!, aP@0,1# ~4.20!

which allows to define the grand canonical potential as

V (p)5lp1E
0

1

da
1

b (
ns

Js~vn!Gs(p)~vn ,a! ~4.21!

and after some transformations one can get

V (p)5lp2
1

b (
ns

ln
Js(p)

21 ~vn!2Js~vn!

Js(p)
21 ~vn!

2
1

b (
ns

Ss(p)~vn!Cs(p)~vn!1F (p) , ~4.22!

where

F (p)5
1

b (
ns

E
0

1

daSs(p)~vn ,a!
dCs(p)~vn ,a!

da
~4.23!

is some functional, such that its functional derivative w
respect toC produces self-energy:

dF (p)

dCs(p)~vn!
5Ss(p)~vn!. ~4.24!

So, if one can find or construct self-energy

Ss(p)~vn!

he can find Green’s functions and grand canonical poten
for subspaces and, according to~4.7! and~4.9!, solve atomic
problems.

Starting from the grand canonical potential~4.7! and
~4.22! one can get for mean values~2.12!,

ns5(
p

wpns(p) , ~4.25!

ns(p)5ns(p)
(0) 1

1

b (
n

@Gs(p)~vn!2Js(p)~vn!#2
]F (p)

]ms
,

where in the last term the partial derivative is taken over
ms not in the chains~4.15!. The second term on the righ
hand side of Eq.~4.25! can be represented diagrammatica
as

~4.26!

and the first contributions into the last term are the followi
a-

-

ls

e

~4.27!

where double lines denote quantitiesCs(p)(vn). Loop

is connected with the superconducting or magnon susce
bilities for subspacesp50,2 or p5s,s̄, respectively.

For the single atom@Js(vn)50# we have F (p)50,
Gs(p)(vn)5Js(p)(vn)5gs(p)(vn), and

ns5(
p

wp

1

b (
n

gs(p)~vn!5(
p

wpns(p)
(0) , ~4.28!

but in the general case@Js(vn)Þ0# we cannot prove that the
sum rule

ns5
1

b (
n

Gs
(a)~vn! ~4.29!

is fulfilled.

A. Falicov-Kimball model

For the Falicov-Kimball modelJ↓(vn)50 and according
to Eqs.~3.2! and ~3.8!,

S↑(p)~vn![0; J↑(p)~vn!5g↑(p)~vn! ~4.30!

and

V (p)5lp2
1

b (
n

ln@12J↑~vn!g↑(p)~vn!#, ~4.31!

G↑
(a)~vn!5

12n↓
ivn2l↑02J↑~vn!

1
n↓

ivn2l2↓2J↑~vn!
,

~4.32!

n↑5
1

b (
n

G↑
(a)~vn!, n↓5w21w↓ ~4.33!

which immediately gives results of Ref. 9~see also Ref. 32!.
For the Hubbard model there are no exact expressions

self-energy but the set of Eqs.~4.12!, ~4.14!, and ~4.22! al-
lows one to construct different self-consistent approxim
tions.

B. Alloy-analogy approximation

The simplest approximation, which can be done, is to

Ss(p)~vn!50, ~4.34!

which gives

Js(p)~vn!5gs(p)~vn! ~4.35!

and

V (p)5lp2
1

b (
ns

ln@12Js~vn!gs(p)~vn!# ~4.36!
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and for the Green’s function for the atomic problem one c
obtain a two-pole expression

Gs
(a)~vn!5

w01ws

ivn2ls02Js~vn!
1

w21ws̄

ivn2l2s̄2Js~vn!
~4.37!

of the alloy-analogy solution for the Hubbard model, whi
is a zero-order approximation within the considered
proach and is exact for the Falicov-Kimball model. For th
approximation, mean values~2.12! are equal to

ns5
1

b (
n

Gs
(a)~vn!1w21ws2

w01ws

ebls011
2

w21ws̄

ebl2s̄11

Þ
1

b (
n

Gs
(a)~vn! ~4.38!

and, for some values of the chemical potential, they can
unphysical values: negative or greater than one.

C. Hartree-Fock approximation

The next possible approximation is to take into acco
the contribution from diagram~4.26! and to construct the
equation for the self-energy in the following form:

Ss(p)~vn!5
1

b (
n8

UCs̄(p)~vn8!, ~4.39!

which, together with the expression for mean values

ns(p)5ns(p)
(0) 1

1

b (
n

Cs(p)~vn!

5ns(p)
(0) 2

1

2
1

1

2
tanh

b

2
@Uns̄(p)2ms#

1
1

b (
n8

Gs(p)~vn8!, ~4.40!

gives for the Green’s function in the subspaces expressio
the Hartree-Fock approximation:

Gs(p)~vn!5
1

ivn1ms2Uns̄(p)2Js~vn!
. ~4.41!

Now, grand canonical potentials in the subspaces are eq

V (p)5lp2
1

b (
ns

ln@12Js~vn!Js(p)~vn!#

2U~ns(p)2ns(p)
(0) !~ns̄(p)2ns̄(p)

(0)
! ~4.42!

and for the Green’s function for the atomic problem~4.9!
one can obtain four-pole structure

Gs
(a)~vn!5(

p

wp

ivn1ms2Uns̄(p)2Js~vn!
. ~4.43!

Expression~4.43!, in contrast to the alloy-analogy solutio
~4.37!, possesses the correct Hartree-Fock limit for sm
Coulombic interactionU!t:
n

-

et

t

in

al

ll

Gs
(a)~vn!5

1

ivn1ms2Uns̄2Js~vn!
~4.44!

whenwp' 1
4 and

ns(p)'ns5
1

b (
n

Gs
(a)~vn!.

On the other hand, in the same way as an alloy-anal
solution, it describes the metal-insulator transition with t
change ofU.

In Fig. 1 the frequency distribution of the total spectr
weight function

rs~v!5
1

p
IGs

(a)~v2 i01! ~4.45!

as well as contributions into it from the subspaces@separate
terms in Eq.~4.43!# are presented for the different electro
concentration~chemical potential! values. One can see, tha
the spectral weight function contains two peaks, which c
respond to the two Hubbard bands. Each band is formed
the two close peaks:p50 ands for the lower Hubbard band
and p52 and s̄ for the upper one, with weightswp Eq.
~4.11!. The main contributions come~see Fig. 2! from the
subspaces p50 for the low-electron concentration
(n, 2

3 ,m,0), p52 for the low-hole concentrations (22n

, 2
3 ,m.U) andp5s,s̄ for the intermediate values. For th

small electron or hole concentrations, the Green’s funct
for the atomic problem~4.43! possesses correct Hartree-Fo
limits too.

Such four-pole structure of the single-electron Gree
function can be obtained also for the one-dimensional ch
with the N52 periodic boundary condition~see the Appen-
dix!, which is equivalent to the two-site problem consider
by Harris and Lange.15 Here, two poles correspond to th
noninteracting electrons or holes, which hope over the em
sites, and give the main contribution for small concent
tions. The other two poles give the main contribution close
half-filling and correspond to the hopping of the strong
correlated electrons over the resonating valence bond~RVB!
states.

So, one can suppose that the Hubbard model descr
strongly-correlated electronic systems that contain four co
ponents~subspaces!. Subspacesp50 andp52 describe the
Fermi-liquid component~electron and hole, respectively!
which is dominant for the small electron and hole concen
tions, when the chemical potential is close to the bottom
the lower band and top of the upper one. On the other ha
subspacesp5↑ and ↓ describe the non-Fermi-liquid
~strongly correlated, e.g., RVB! component, which is domi-
nant close to half-filling. Within the considered Hartree-Fo
approximation, atn' 2

3 and 22n' 2
3 we have transition be-

tween these two regimes: Fermi liquid and non-Fermi liqu
It reminds us that the known properties of the high-Tc com-
pounds, where for the nondoped case (n51) compounds are
in the antiferroelectric dielectric state, then for small dopi
the non-Fermi-liquid behavior is observed~underdoped case
n&1) and after some optimal doping value the properties
the compound sharply change from the non-Fermi to
Fermi liquid ~overdoped case!.
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FIG. 1. Spectral weight functionrs(v) ~4.45!; total and for each subspace, for the different chemical potential values:~a! m5U/2,n
51; ~b! m521,n50.07; ~c! m50.01,n50.72; ~d! m520.01,n50.66 (U54,T50.2).
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The results presented in Figs. 1 and 2 are obtained
relatively high temperature. With the temperature decre
on the one hand, the transition between the Fermi and n
Fermi liquid becomes sharp and, on the other hand, for s
chemical potential values there can be three solutions of
~4.40! with two of them corresponding to the phas
separated states. The consideration of the phase separat
the Hubbard model is not a topic in this paper and will be
subject of further investigations.

D. Beyond the Hartree-Fock approximation

Self-energy in the Hartree-Fock approximation@see Eq.
~4.41!# describes some self-consistent shift of the initial e
ergy levels and does not depend on the frequency. All o
improvements of the expression for self-energy add the
quency dependent contributions. To see this, let us cons
the contribution into the mean values from the first diagr
in ~4.27!. This diagram originates from the following skelet
diagram
or
e,
n-
e

q.

n in
e

-
er
-
er

~4.46!

in the diagrammatic expansion for functionalF (p) . On the
other hand, such a skeletal diagram produces additional
tribution into the self-energy

~4.47!

which is frequency dependent. Also, in order to get a s
consistent set of equations, we introduce renormali
bosonic Green’s functions

D20~vm!5
1

ivm2l̃20

; Dss̄~vm!5
1

ivm2l̃ss̄

,

~4.48!
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l̃205l201U
1

b (
ns

Cs(p)~vn!,

l̃ss̄5lss̄2U
1

b (
ns

sCs(p)~vn!.

Finally, for the Green’s function~4.19! we get the genera
representation

Gs(p)~vn!5
1

ivn1ms2Uns̄(p)2S̃s(p)~vn!2Js~vn!
,

~4.49!

where the Hartree-Fock contributionUns̄(p) is extracted and

S̃s(p)~vn!

is a frequency dependent part of the self-energy, wh
within the considered approximation is equal

S̃s(p)~vn!5USs(p)~vn!, ~4.50!

where

Ss(p)~vn!56
U

b (
n8

Dss̄(p)~vn ,vn8!Cs̄(p)~vn8!

~4.51!

and

Dss̄(p)~vn ,vn8!5H D20~vn1n8! for p50,2

Dss̄~vn2n8! for p5ss̄.
~4.52!

Now, mean values~4.25! are equal

FIG. 2. Statistical weights of the subspaceswp ~4.11! as func-
tions of the electron concentration (U54,T50.2).
h

ns(p)5ns(p)
(0) 1

1

b (
n

Cs(p)~vn!

6
1

b2 (
nn8

U2Dss̄(p)
2

~vn ,vn8!Cs(p)~vn!Cs̄(p)~vn8!

~4.53!

and for the grand canonical potentials in the subspaces
obtain the following expressions:

V (p)5lp2
1

b (
ns

ln@12Js~vn!Js(p)~vn!#

2
1

b2 (
nn8

U@16UD20
2 ~vn1n8!g20

21~vn1n8!#

3Cs(p)~vn!Cs̄(p)~vn8! ~4.54!

for p50,2, and

V (p)5lp2
1

b (
ns

ln@12Js~vn!Js(p)~vn!#

2
1

b2 (
nn8

U@16UDss̄
2

~vn2n8!gss̄
21

~vn2n8!#

3Cs(p)~vn!Cs̄(p)~vn8! ~4.55!

for p5s,s̄.
In order to analyze the structure of the poles in Eq.~4.49!,

an analytical continuation of the expression for

S̃s(p)~vn!

from the imaginary axis to the real one should be done.
do it, we use the well-known identity

1

b (
n

eivn01

ivn2l
56n6~l!, ~4.56!

which follows from Eq.~2.18!, and analytical properties o
the Green’s function

Gs~z!5
1

pE2`

1`

dv
IGs~v2 i01!

z2v
. ~4.57!

Green’s functions in the subspacesGs(p)(z), irreducible
partsJs(p)(z), and dynamical mean-fieldJs(z) all possess
the same analytical properties. Finally, forSs(p)(z) we get
the following expressions:

Ss(p)~z!56
U

p
PE

2`

1`

dvn1~v!
ICs̄(p)~v2 i01!

z1v2l̃20

6n2~ l̃20!UCs̄(p)~ l̃202z! ~4.58!

for subspacesp50,2 and
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Ss(p)~z!56
U

p
PE

2`

1`

dvn1~v!
ICs̄(p)~v2 i01!

z2v2l̃ss̄

7@n2~ l̃ss̄!11#UCs̄(p)~z2l̃ss̄! ~4.59!

for p5s,s̄. Analytical continuation of the expression
~4.53!, ~4.54!, and~4.55! can be done in the same way. On
can see that contributions~4.58! and ~4.59! diverge when
l̃2050 andl̃ss̄50, respectively, which is an unphysical r
sult.

So, we cannot include into the consideration only o
contribution from diagram~4.47! but must sum up all dia-
grams of the following type:

~4.60!

which gives an expression free from the above-mentio
divergences

S̃s(p)~vn!5U@11Ss(p)9 ~vn!#2U
@11Ss(p)8 ~vn!#2

11Ss(p)~vn!
,

~4.61!

whereSs(p)(vn) is defined above and

Ss(p)8 ~vn!5
U

b (
n8

Dss̄(p)~vn ,vn8!Cs̄(p)~vn8!

3
Ss̄(p)~vn8!2Ss̄(p)

8 ~vn8!

11Ss̄(p)~vn8!
, ~4.62!

Ss(p)9 ~vn!5
U

b (
n8

Dss̄(p)~vn ,vn8!Cs̄(p)~vn8!

3S Ss̄(p)~vn8!2Ss̄(p)
8 ~vn8!

11Ss̄(p)~vn8!
D 2

.

Such diagram resummation must be also done in the exp
sion for the mean values~4.53!, where the last term must b
replaced by

6
1

b2 (
nn8

U2Dss̄(p)
2

~vn ,vn8!Cs(p)~vn!Cs̄(p)~vn8!

3S 11Ss(p)8 ~vn!

11Ss(p)~vn!
1

11Ss̄(p)
8 ~vn8!

11Ss̄(p)~vn8!
21D 2

.

~4.63!

Besides diagram~4.47!, there are a lot of other diagram
that diverge and need additional resummation of the d
grammatic series. But now it is difficult to clear out wh
types of diagrams are leading in different case, which c
for additional investigation. But it is, obviously, that suc
contributions will shift the boundary between the Fermi a
non-Fermi-liquid behavior.
e

d

s-

-

ls

V. SUMMARY

A finite-temperature perturbation theory scheme in ter
of electron hopping, which is based on the Wick theorem
Hubbard operators and is valid for arbitrary values ofU (U
,`) has been developed for Hubbard-type models. D
grammatic series contain single-site vertices, which are i
ducible many-particle Green’s functions for unperturba
single-site Hamiltonian, connected by hopping lines. App
ing the Wick theorem for Hubbard operators has allowed
to calculate these vertices and it is shown that for each ve
the problem splits into subspaces with ‘‘vacuum states’’ d
termined by the diagonal~projection! operators and only ex
citations around these ‘‘vacuum states’’ are allowed. T
vertices possess finiteU→` limit when diagrammatic series
of the strong-coupling approach5,6 are reproduced. The rule
to construct diagrams by the primitive vertices are propos

In the limit of infinite spatial dimensions the total auxi
iary single-site problem exactly~naturally! splits into sub-
spaces~four for Hubbard model! and a considered analytica
scheme allows to build a self-consistent Kadanoff-Bay
type theory for the Hubbard model. Some analytical resu
are given for simple approximations: an alloy-analogy a
proximation, when two-pole structure for Green’s function
obtained, which is exact for the Falicov-Kimball model, a
the Hartree-Fock-type approximation, which results in t
four-pole structure for the Green’s function. Expanding b
yond the Hartree-Fock approximation calls for consider
the frequency dependent contributions into the self-ene
and resummation of the diagrammatic series.

In general, the expression

Gs
(a)~vn!5(

p

wp

ivn1ms2Uns̄(p)2S̃s(p)~vn!2Js~vn!
,

~5.1!

gives an exact four-pole structure for the single-elect
Green’s function of the effective atomic problem. In E
~4.14! zero-order Green’s functions~3.5! are the same for the
subspacesp50,s andp52,s̄, respectively, and correspon
to the two-pole solution of the one-site problem without ho
ping. Switching on of the electron hopping splits these t
poles and the value of splitting is determined by the values
the self-energy parts in the subspaces, which describe
contributions from the different scattering processes. Allo
analogy approximation neglects by the such scattering p
cesses

Ss(p)~vn!50

which results in the two-pole structure for the Green’s fun
tions ~4.37!. But, in general, Green’s functions possess
four-pole structure and even the Hartree-Fock approxima
~4.43! clearly shows it.

It should be noted that the four-pole structure of t
Green’s function for the atomic problem might not result
the four bands of the spectral weight function~see Fig. 1!.
The presented consideration allows us to suppose that
pole describes contributions from the different compone
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~subspaces! of the electronic system: Fermi liquid~subspaces
p50,2) and non-Fermi liquid (p5↑,↓), and for small elec-
tron and hole concentrations (n, 2

3 and 22n, 2
3 ) the Fermi-

liquid component gives the main contribution~‘‘overdoped
regime’’ of high-Tc’s!, whereas in other cases the non-Fer
liquid one ~‘‘underdoped regime’’!.
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APPENDIX: TWO-SITE PROBLEM

Let us consider an infinite one-dimensional chain with
N52 periodic boundary condition. Mathematically it
equivalent to the two-site problem considered by Harris a
Lange,15 but now we can introduce the lattice Fourier tran
formation, with two wave-vector values in the first Brilloui
zone q50 and q5p, and perform all calculations for th
grand canonical ensemble. The Hamiltonian of the mode
the following:

H5 (
i 51,2

S Uni↑ni↓2m(
s

nisD 1t(
s

~a1s
† a2s1a2s

† a1s!.

~A1!

We can introduce the Fourier transform of the electron h
ping

tq5t cosq5H t for q50

2t for q5p
~A2!

and our aim is to calculate the single-electron Green’s fu
tion

Gs~v,tq!5H G11s~vn!1G12s~vn! for q50

G11s~vn!2G12s~vn! for q5p,
~A3!

whereGi j s(t2t8)5^Tais
† (t)aj s(t8)&.

The initial basis of states contains 16 many-electron tw
site statesup1 ,p2&, wherepi5$ni↑ni↓%, i.e.,

u1&5u0,0&,

u2&5u↓,0&5a1↓
† u1&,

u3&5u0,↓&5a2↓
† u1&,

u4&5u↑,0&5a1↑
† u1&,

u5&5u0,↑&5a2↑
† u1&,

u6&5u↓,↓&5a2↓
† u2&52a1↓

† u3&,

u7&5u↑,↑&5a2↑
† u4&52a1↑

† u5&,

u8&5u2,0&5a1↑
† u2&52a1↓

† u4&,

u9&5u↑,↓&5a1↑
† u3&52a2↓

† u4&, ~A4!
i

l
i-

e

d
-

is

-

-

-

u10&5u↓,↑&5a2↑
† u2&52a1↓

† u5&,

u11&5u0,2&5a2↑
† u3&52a2↓

† u5&,

u12&5u2,↓&5a1↑
† u6&5a1↓

† u9&52a2↓
† u8&,

u13&5u↓,2&5a2↑
† u6&5a1↓

† u11&52a2↓
† u10&,

u14&5u2,↑&5a1↓
† u7&5a2↑

† u8&52a1↑
† u10&,

u15&5u↑,2&5a2↓
† u7&5a2↑

† u9&52a1↑
† u11&,

u16&5u2,2&5a1↑
† u13&52a2↑

† u12&5a1↓
† u15&5a2↓

† u14&

and one can introduce Hubbard operatorsXp,q5up&^qu act-
ing in the space of these states. Now, electron creation
erators can be presented in the following form:

a1↑
† 5X4,12X7,51X8,21X9,31X12,62X14,102X15,111X16,13,

a1↓
† 5X2,12X6,32X8,42X10,51X12,91X13,111X14,71X16,15,

~A5!

a2↑
† 5X5,11X7,41X10,21X11,31X13,61X14,81X15,92X16,12,

a2↓
† 5X3,11X6,22X9,42X11,52X12,82X13,101X15,72X16,14.

By transformations

S u2& u4& u12& u14&

u3& u5& u13& u15&
D 5I 1

A2
2

1

A2

1

A2

1

A2

I
3S u2̃& u4̃& u12̃& u14̃&

u3̃& u5̃& u13̃& u15̃&
D

~A6!

and

S u8&

u9&

u10&

u11&

D 5I 1

A2
cosf

21

A2
sinf 0

21

A2

1

A2
sinf

1

A2
cosf

21

A2
0

1

A2
sinf

1

A2
cosf

1

A2
0

1

A2
cosf

21

A2
sinf 0

1

A2

I S u8̃&

u9̃&

u10̃&

u11̃&

D ,

~A7!

where sin 2f(t)5
2t

AU2/4 14t2
, the Hamiltonian~A1! can be

diagonalized

H5(
p

l p̃Xp̃,p̃. ~A8!
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Here

l 1̃50,

l 2̃5l 4̃52m1t,

l 3̃5l 5̃52m2t,

l 6̃5l 7̃5l10̃522m,

l 8̃5U1J22m,
~A9!

l 9̃52J22m,

l11̃5U22m,

l12̃5l14̃5U23m1t,

l13̃5l15̃5U23m2t,

l16̃52U24m

are eigenvalues and

J5
4t2

AU2/414t21U/2
→ 4t2

U
~U@t !. ~A10!

Finally, with the use of the Wick theorem~2.17! for the
Hubbard operators acting in the space of eigenstatesu p̃&, for
the single-electron Green’s function~A3! we obtain

Gs~v,tq!5
A1~ tq!

v2tq
1

B1~ tq!

v1J1tq
1

A2~ tq!

v2U2tq

1
B2~ tq!

v2U2J1tq
, ~A11!

where

A1~ t !5
1

Z F11eb(m2t)1eb(m1t)1e2bm1
1

2
~eb(m1t)1e2bm

1e2b(U22m)1e2b(U23m1t)!G ,
A2~ t !5

1

Z Fe2b(2U24m)1e2b(U23m1t)1e2b(U23m2t)1e2bm

1
1

2
~eb(m1t)1e2bm1e2b(U22m)1e2b(U23m1t)!G ,

~A12!

B1,2~ t !5
1

2Z S 16
2t

AU2/4 14t2D @eb(m2t)1eb(2m1J)

1e2b(U22m1J)1e2b(U23m2t)#

and

Z5(
p

e2bl p̃.
One can see, that Green’s function~A11! possesses a
four-pole structure and the spectrum contains four ‘‘band
grouped near the initial energy levels of the one-site prob
0 andU. The distance between the centers of gravity of
grouped bands is equal toJ @Eq. ~A10!# and is of the order of
magnitude of the effective exchange interaction. It is obvio
that the weights of the bands satisfy the sum rule

A1~ tq!1A2~ tq!1B1~ tq!1B2~ tq!51. ~A13!

The spectral weight function is equal

rs~E!5
1

pN (
q

IGs~E2 i01,tq!

5
1

2
@A1~ t !d~E2t !

1A1~2t !d~E1t !1A2~ t !d~E2U2t !

1A2~2t !d~E2U1t !1B1~ t !d~E1J1t !

1B1~2t !d~E1J2t !1B2~ t !d~E2U2J1t !

1B2~2t !d~E2U2J2t !# ~A14!

contains the same eight energies obtained by Harris
Lange15 but with different weights and originates from th
four poles~bands! of the Green’s function~A11! for the two-
site problem.

The nature of these peaks is clear from the ground-s
properties of the model. At zero temperature, depending
the value of the chemical potential or electron concentrati
the ground states are the following (U@t): empty staten
50 (m,2t):

u1̃&5u0,0&,

l 1̃50,

Gs~v,q!5
1

v2tq
, ~A15!

one-electron statesn5 1
2 (2t,m,t2J):

u3̃&5
1

A2
~a2↓

† 2a1↓
† !u0,0&,

u5̃&5
1

A2
~a2↑

† 2a1↑
† !u0,0&,

l 3̃5l 5̃52m2t,

Gs~v,q50!5
3/4

v2t
1

1/4

v2U2t
, ~A16!

Gs~v,q5p!5
1/2

v1t
1

1/4~11sin 2f!

v1J2t
1

1/4~12sin 2f!

v2U2J2t
,

two-electron statesn51 (t2J,m,U1J2t):



pty

,
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VB
ing
c-
c
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-

ec-
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u9̃&5
1

A2
cosf~a1↑

† a2↓
† 2a1↓

† a2↑
† !u0,0&

2
1

A2
sinf~a1↑

† a1↓
† 2a2↓

† a2↑
† !u0,0&,

l 9̃522m2J,

Gs~v,q!5
1/2~11sin 2fq!

v1J1tq
1

1/2~12sin 2fq!

v2U2J1tq
,

~A17!

three-electron statesn5 3
2 (U1J2t,m,U1t):

u13̃&5
1

A2
~a1↑1a2↑!u2,2&,

u15̃&5
1

A2
~a1↓1a2↓!u2,2&,

l13̃5l15̃5U23m2t,

Gs~v,q50!5
1/4 ~12sin 2f!

v1J1t
1

1/4~11sin 2f!

v2U2J1t

1
1/2

v2U2t
, ~A18!
r.

,

,

ev
Gs~v,q5p!5
1/4

v1t
1

3/4

v2U1t
,

and four-electron statesn52 (m.U1t):

u16̃&5u2,2&,

l16̃52U24m,

Gs~v,q!5
1

v2U2tq
. ~A19!

For small electron (n'0 or holen'2) concentrations we
get Green’s functions~A15! and ~A19!, respectively, which
describe hopping of the noninteracting particles over em
states.

On the other hand, for the half-filled~symmetric! casen

'1, the ground stateu9̃& is mainly a RVB-type state. Now
Green’s function~A17! possesses two-poles shifted by t
value of the effective exchange interactionJ from the one-
site levels and describes the electron transfer over the R
states. The weight of each pole depends on the hopp
value, but its total contribution into the spectral weight fun
tion ~A14! is equal to 1

2 as it should be for the symmetri
case.

For other cases the number and weights of the poles in
spectral weight function~A14! strongly depend on the elec
tron concentration~chemical potential! and wave-vector val-
ues and contain contributions from the noninteracting el
trons ~holes! and the strongly hybridized RVB states.
t.

d

,
.

1E. Dagotto, Rev. Mod. Phys.66, 763 ~1994!.
2Yu. A. Izyumov, S. P. Cojocaru, and V. A. Moskalenko, Teo

Mat. Fiz. 97, 270 ~1993! @Theor. Math. Phys.97, 1290~1993!#;
V. A. Moskalenko and L. Z. Kon, Condens. Matter Phys.1~13!,
41 ~1998!.

3P. M. Slobodjan and I. V. Stasyuk, Teor. Mat. Fiz.19, 423~1974!
@Theor. Math. Phys.19, 616 ~1974!#.

4Yu. A. Izyumov and Yu. N. Skryabin,Statistical Mechanics of
Magnetically Ordered Systems~Consultants Bureau, New York
1989!.

5Yu. A. Izyumov and B. M. Letfulov, J. Phys.: Condens. Matter2,
8905 ~1990!.

6Yu. A. Izyumov, B. M. Letfulov, E. V. Shipitsyn, M. Bartkowiak
and K. A. Chao, Phys. Rev. B46, 15 697~1992!.

7W. Metzner and D. Vollhardt, Phys. Rev. Lett.62, 324 ~1989!.
8A. Georges, G. Kotliar, W. Krauth, and M. J. Rosenberg, R

Mod. Phys.68, 13 ~1996!.
9U. Brandt and C. Mielsch, Z. Phys. B: Condens. Matter75, 365

~1989!; 79, 295 ~1990!; 82, 37 ~1991!.
10J. Hubbard, Proc. R. Soc. London, Ser. A276, 238 ~1963!.
11A. Dorneich, M. G. Zacher, C. Gro¨ber, and R. Eder,

cond-mat/9909352~unpublished!.
12J. Hubbard, Proc. R. Soc. London, Ser. A281, 401 ~1964!.
13L. M. Roth, Phys. Rev.184, 451 ~1969!.
14W. Nolting and W. Borgiel, Phys. Rev. B39, 6962~1989!.
15A. B. Harris and R. V. Lange, Phys. Rev.157, 295 ~1967!.
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17S. Pairault, D. Se´néchal, and A.-M. S. Tremblay, Phys. Rev. Let
80, 5389~1998!; cond-mat/9905245~unpublished!.

18T. Pruschke, D. L. Cox, and M. Jarrell, Phys. Rev. B47, 3553
~1993!.

19T. Obermeier, T. Pruschke, and J. Keller, Phys. Rev. B56, 8479
~1997!.

20D. M. Edwards and J. A. Hertz, Physica B163, 527 ~1990!.
21S. Wermbter and G. Czycholl, J. Phys.: Condens. Matter6, 5439

~1994!; 7, 7335~1995!.
22H. Kajueter and G. Kotliar, Phys. Rev. Lett.77, 131 ~1996!.
23T. Wegner, M. Potthoff, and W. Nolting, Phys. Rev. B57, 6211

~1998!.
24T. Herrmann and W. Nolting, Phys. Rev. B53, 10 579~1996!.
25M. Potthoff, T. Herrmann, and W. Nolting, Eur. Phys. J. B4, 485

~1998!.
26W. Metzner, Phys. Rev. B43, 8549~1991!.
27V. Janis̆, cond-mat/9704076~unpublished!.
28F. Gebhard,The Mott Metal-Insulator Transition: Models an

Methods~Springer-Verlag, Berlin, 1997!.
29G. Baym and L. P. Kadanoff, Phys. Rev.124, 287 ~1961!; G.

Baym, ibid. 127, 1391~1962!.
30P. G. J. van Dongen, J. A. Verge´s, and D. Vollhardt, Z. Phys. B:

Condens. Matter84, 383 ~1991!.
31C. Gros, W. Wenzel, R. Valentı´, G. Hülsenbeck, and J. Stolze
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