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A perturbation theory scheme in terms of electron hopping, which is based on the Wick theorem for
Hubbard operators, is developed. Diagrammatic series contain single-site vertices connected by hopping lines
and it is shown that for each vertex the problem splits into the subspaces with “vacuum states” determined by
the diagonal Hubbard operators and only excitations around these vacuum states are allowed. The rules to
construct diagrams are proposed. In the limit of infinite spatial dimensions the total auxiliary single-site
problem exactly splits into subspaces that allows to build an analytical thermodynamically consistent approach
for a Hubbard model. Some analytical results are given for the simple approximations when the two-pole
(alloy-analogy solutiopand four-polg(Hartree-Fock approximatigstructure for Green'’s function is obtained.

Two poles describe contribution from the Fermi-liquid component, which is dominant for small electron and
hole concentration§‘overdoped case” of highF.’s), whereas other two describe contribution from the non-
Fermi liquid and are dominant close to half-fillifgunderdoped casey:

[. INTRODUCTION mode) can be studied almost analytically within DMET.
But in the case of the Hubbard model, the treatment of the
Many unconventional propertiefe.g., metal-insulator effective single impurity Anderson model is very compli-
transition, electronic(ant)ferromagnetisrh of the narrow- cated and mainly computer simulatiofexact diagonaliza-
band systemgtransition metals and their compounds, sometion of the finite-sized systems or quantum Monte Carlo
organic systems, higii; superconductors, ejccan be ex- (QMC)] are used, which calls for the development of the
plained only by the proper treatment of the strong local elecanalytical approaches.
tron correlations. The simplest models allowing for the elec- The first analytical approximation proposed for the Hub-
tron correlations are a single-band Hubbard model with onbard model was a simple Hubbard-I approximatforsee
site repulsiorlJ and hopping energiyand its strong-coupling Ref. 11 for its possible improvementhich is correct in the
limit (U>t): t-J model. Recent studies of the Hubbard-typeatomic {=0) and band | =0) limits but is inconsistent in
models connected mainly with the theory of highsuper- the intermediate cases and cannot describe metal-insulator
conductivity and performed in the weakU&4t) and transition. Hubbard's alloy-analogy solutin (so-called
strong- U>t) coupling limits, elucidate some important Hubbard-Ill approximationincorporates into the theory an
features of these model8ut still a lot of problems remains, electron scattering on the charge and spin fluctuations that
especially for theU>t case where there are no rigorous allows us to give qualitative description of the changes of the
approaches. density-of-state at the metal-insulator transition point.
Such approaches can be built using systematic perturbddubbard-l and Hubbard-Ill approximations introduces two
tion expansion in terms of the electron hopginging dia-  types of particlegelectrons moving between empty sites and
grammatic technique for Hubbard operatdf€One of them  electrons moving between sites occupied by electrons of op-
was proposed for the HubbardUE&o limit) and t-J posite spin with the different energies that differ by and
models>® The lack of such approach is connected with theform two Hubbard bands. Related schemes of the so-called
concept of a “hierarchy” system for Hubbard operatorstwo-pole approximations>**which are justified by the/U
when the form of the diagrammatic series and final results<1 perturbation theory expansioffsare also considered.
strongly depend on the system of the pairing priority forHowever, in the recent QMC studiés’ it is clearly distin-
Hubbard operators. On the other hand it is difficult to generguished four bands in the spectral functions rather than the
alize it on the case of the arbitraky. two bands predicted by the two-pole approximations. Such
In the last decade the essential achievements in the theofgur-band structure is reproduced by the strong-coupling ex-
of the strongly correlated electron systems are connectegiansion for the Hubbard modélin the one-dimensional
with the development of the dynamical mean-field theorycase. Within other approaches let us mention non-crossing
(DMFT) proposed by Metzner and Vollhafdior the Hub-  approximationt®'® Edwards-Hertz approadi?! iterative
bard modelsee also Ref. 8 and references thexrddMFT is  perturbation theor§??3alloy-analogy based approactég®
a nonperturbative scheme that allows to project the Hubbardnd linked cluster expansior%?’ which are reliable in cer-
model on the single impurity Anderson model and is exact irtain limits and the construction of the thermodynamically
the limit of infinite space dimensionsiE ). There are no  consistent theory still remains opé&h.
restrictions on th&J value within this theory and it turns out The aim of this paper is to develop for Hubbard-type
to be useful for intermediate couplindgJ¢-t) for which it ~ models a rigorous perturbation theory scheme in terms of
ensures the correct description of the metal-insulator phasglectron hopping that is based on the Wick theorem for Hub-
transition and determines the region of the Fermi-liquid be-bard operators' and is valid for arbitrary value o) (U
havior of the electron subsystem. Moreover, some class of) and does not depend on the “hierarchy” system Xor
the binary-alloy-type modelge.g., the Falicov-Kimball operators. In the limit of infinite spatial dimensions, these
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analytical schemes allow us to build a self-consistent Our aim is to calculate the grand canonical potential func-
Kadanoff-Baym type theofy for the Hubbard model and tional
some analytical results are given for simple approximations.

The Falicov-Kimball model is also considered as an exactly 1 - 1 .
soluble limit of Hubbard mode!. Q== Eln SW_QO_,EW‘T(E»O'
Il. PERTURBATION THEORY IN TERMS OF ELECTRON 1 g
HOPPING Qo= Eln Spe™ £, (2.10

We consider the lattice electronic system that can be des'ingle-electron Green functions
scribed by the following statistical operator:

P 5Q
p=e Ptog(p), (2.1 Gijo(7— T’)=<TaiTU(T)ajU(T’)>=U—,
&ij(T_ T )
. B (B (2.1
o(B)=Tex —f de dr’
0 0 and mean values
1 1 dQ
X D t?(T—T’)aTU(T)a-U(T’)], - oo &
where
n=n,+n;; m=n,—n, (2.12
Ho=2> H; (2.2 whereu,=pu+coh is a chemical potential for the electrons
I

with spin o-. Here,( ...)=(1/2)Sp( . ..p), Z=Spp, or in
is a sum of the single-site contributions and for the Hubbardnteracting representation
model we must put

1 N A
Hi=Un;;nj; —u(nj; +ni ) —h(ni; —n; ), (...)= ((B)) (- o(B)o=(...a(B))oc,
0
2.3 213

where( ... )o=(1/Zg)Sp( . . .~ PHo); Zy=Spe™ At
We expand the scattering matrix(8) in Eq. (2.1) into
tjo(r—1') foro=1 the series in terms of electron hopping and (o1 3)), we
ti(r—1")= 0 foro=|" (2.4  obtain a series of terms that are products of the hopping
integrals and averages of the electron creation and annihila-
'gon operators or, using E¢R.9), Hubbard operators that will
e calculated with the use of the corresponding Wick’s theo-

tﬂ(r—r’)ztijé‘(f—r').

In addition for the Falicov-Kimball model we must also put

It is supposed that we know eigenvalues and eigenstat
of the zero-order HamiltoniafR.2),

rem.
Hili,p)=X,li,p) (2.5 Wick’s theorem for Hubbard operators was formulated in
Ref. 3(see also Ref. 4 and references therdhor the Hub-
and one can introduce Hubbard operators bard model we can define four diagonal Hubbard operators
. XPP (p=0,2,/,1) which are of bosonic type, four annihila-
XPA=1i,p\i,q| (2.6)  tion X%, X0, X172 X!2 and four conjugated creation fermi-

onic operators, and two annihilatiog'’, X°? and two con-

jugated creation bosonic operators. The algebra Xof
operators is defined by the multiplication rule

in terms of which zero-order Hamiltonian is diagonal

Ho=2 20 AXPP. 2.7
TP XISXPI= 5, X9, (2.14

For the Hubbard model we have four statéisp) the conserving condition
=|i,ni;,n;): 1i,00=1i,0,0) (empty sitg, [i,2)=[i,1,1)
(double occupied sike [i,1)=]i,1,0), and [i,|)=]i,0,1)

(sites with spin-up and spin-down electrprmgth energies % XPP=1, (219
Ao=0, Ap=U—2u, Nj=h—u, Ny=—h—pu. and the commutation relations
(2.8
rs [o]e] — S rq ps
The connection between the electron operators and the Hub- [X™ X7 = 6 (8spXi ™ = 6gX), (2.16
bard operators is the following: where one must use anticommutator when both operators are

9 o 00 - of the fermionic type and commutator in all other cases. So,
Nip=X{ "+ X7, a, =X "+ oX". (2.9 commutator or anticommutator of two Hubbard operators is
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not ac number but a new Hubbard operator. Then the aver- In particular, for the Hubbard model one can introduce the
age of aT products ofX operators can be evaluated by the following pairings:

consecutive pairing, while taking into account standard per-

mutation rules for bosonic and fermionic operators, of all DA 0 oo
off-diagonal Hubbard operator¥P9 according to the rule @io(11)ajo(7) = =8ii{goo(T — m)(X°(m) + X7° (7))

(Wick’s theorem $gas(r — 7)(XE(m) + X77(n))),

e

[unaunne! .
X7 (r)XEY (7) = —Soigpa(r — m)[X7*(1), XP(m)] aia(m)aly(r) = =8 fo(r — 1) X7 (1),
"
(217 aly(n)aly(r) = 8iifo (T =) -0 - X}(n),
until we get the product of the diagonal Hubbard operators ~———
only. Here we introduce the zero-order Green’s function al,(m)X77(r) = 61905 (1 — 71)al,(n),
1 (M)X7°(r) = —6ijg02( Jaiz(11)
o aig(T) X7 (1) = —8ijgss (T — T1)aia(71),
Opq(T— Tl):E > Upg( wp) €' onl™ ™) .’ ’
" a,-,(rl)X}"(r) = —8iigeo(T — 1) - 0 - aj(1), (2.20
:e(T—Tl))\pq ini()\pq) T>Tl
int(}\pq)_l T<’Tl,
(218  where
1 -
where A pq=A,—\q and n.(\)=———, and its Fourier fo(@n)=0s0(wn) = G25(@n) = = Ug0(@n) g2, @n).
efr+1 (2.21)
transform is equal
_ 1 Applying such pairing procedure to the expansion of
gpq(wn)_ T 219 ~ . . . —
lwp—Apq (a(B)) we get the following diagrammatic representation:

<&(ﬂ>>o=<ex;>{—£'5h —;i} -%{} L
~HS _& _..._m _}> 223

where arrows denote the zero-order Green’s functi@rsd,  and by introducing pseudospin variablgé=3(P;' = P,)
wavy lines denote hopping integrals aféi ... stay for  one can transform the Falicov-Kimball model into an Ising-
some complicated i vertices,” which for such type pertur- type model with the effective multisite retarded pseudospin
bation expansion are an irreducible many-particle single-sitinteractions. Expressiof2.23 can be obtained from the sta-
Green’s functions calculated with single-site Hamiltoniantistical operator(2.1) by performing partial averaging over
(2.7). Each vertexGreen’s functioh is multiplied by a di- fermionic variables, which gives an effective statistical op-
agonal Hubbard operator denoted by a circle and one gets atator for pseudospingons).

expression with averages of the products of diagonal Hub- So, after applying Wick’s theorem our problem splits into

bard operators. two problemsii) calculation of the irreducible many-particle
For the Falicov-Kimball model, expressi¢2.22 reduces ~Green’s functiongverticeg in order to construct expression
and contains only single loop contributions (2.22 and(ii) calculation of the averages of the products of

diagonal Hubbard operators and summing up the resulting

03, = (o - L2 -%{:} -%@ ~f) o seres

Ill. IRREDUCIBLE MANY-PARTICLE GREEN’S

) (2.23 FUNCTIONS
where For the Hubbard model by applying the Wick theorem for
S X operators one gets for two-vertex
px L R _ oo 00
- g P =P =1 e = e (U2) —®— = goo(wn)(X77 + X{7)
iw + ,LL* +—= A~ 22 A
" 2 +g25(wn ) (XP? + X77), GV
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for four-vertex

wno

Wn+maH

s = AS; {(Wr, Wngm » Wntpmy Wn)

“am? = X0G00(wa)goo(Wntm) (U + UPgao(wnsni+m)) goo(n)gso(wnt4m)
+Xi2 2926(Wn)926(wn+m) (U -U 2»‘12<>(°"r»+n'+m)) 920 (W) G20 (Wi m)
+Xf”gao(wn)g,o(wn+m) (U 4 U*goo(wn-n')) g20(wn) G20 (Wnt 4m)
+ X7 926 (wn) 25 (Wntm) (U ~ U?Gos (W) gs0(wns ) goo(wnrtm ),

A 3.2

too @n @O m @nr 4 m,@n) =0

and so on. Expressiori8.1) and(3.2) and for the vertices of Here

higher order possess one significant feature. They decom-

pose into four terms with different diagonal Hubbard opera- U+ U9 @nsiom) for p=0,2
tors XPP, which project our single-site problem on certain U ,(p)(@n,0|on) =
“vacuum” states(subspaces and zero-order Green'’s func-

tions, which describe all possible excitations and scattering

processes around these “vacuum” states: i.e., creation and U(r;(p)(wn1wllwm)20;<r(p)(wl L 0p| 0p) (3.6
annihilation of single electrons and of the doublgmair of

electrons with opposite spipdor subspacep=0 andp s a renormalized Coulombic interaction in the subspaces. In
=2 and creation and annihilation of single electrons withdiagrammatic notations expressidBs?) or (3.4) can be rep-
appropriate spin orientation and of the magispin flip) for  resented as

subspacep=1 andp=|.

UxU2g,5(wn_)  for p=o 0,

. : 1 2
In compact form expression(8.1) and(3.2) can be writ- },.( for p=0,2
ten as 1 4 1 4 |3 4
—— = szppga(l’)(wﬂ) 33 o = X +
) : 2 3 2 3 L 2
)..».( forp=o0,0
and 4 3
T =Y X% (wn)Gotp)wnsm) 3.7
’ T3 o s 1l )2y 1) (3.4  where dots denote Coulombic correlation eneldy=\,
+Xo—A;—A\| and dashed arrows denote bosonic zero-order
Where Green'’s functions: doublog, w,,) or magnong,(wy,).

For six-verticies one can get

doo(@n) for p=00

(35 A®

go’(p)(wn): gz;wn) for p:;’2 icoo

(on 1@Wn Wn,ys O, Oy wns)EOv

~ (6
Ai(vzfgﬂ(w” ,wnl,wnz,wn3,wn4,wn5) = 0(wn— W+ @n, = 0p,t0p, wns)
X% Xippgo(p)(wn)go(p)(wnl)g;(p)(wnz)g;(p)(wn3)g;(p)(wn4)g;(p)(wn5)

X{U o) (@n»@n,| @n,—n,) 9oy (@nn,—n) U sopy(@n,, @n, | @n )
= U otp)(@n @n] 0n, 1) Go(p)(@n 1 n,-n) Usap)(@n,, @n, | @n, )
= U o(p)(@n @, 0n,—n) 9o(p)(@nn,—ny) U ooy @n,, @n, | 0n )
+ Otr;(p)(wn ywn5| @n,—ng)Yo(p)(@n+ n4—n5)0m7(p)(wnl, wn2| ®n,—n,)

Y poa(p)(@n, @n,, 0n, On, 0n, @00 )} (3.8
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where
+ U 920( @n+n,) ~ 2o @n1n,) I G20 @n, +n,) —Goo @n 40 )] for p=0,2

iUs[ga;wnfna)_gaojwnfns)][go(rjwnlfnz)_go(rjwnlfn)] for p=o ,;.
(3.9

Ya;(p)(wn 1@Wny Wn,,y Wng,s wn41wn5) =

In expression(3.8) the contributions of the first four terms in was done in Refs. 5 and 6 for thé=c limit. Another way

braces can be presented by the following diagrams: is to consider thal=< limit where new simplifications ap-
pear.
H_ _+—& <
3.1
r 1a (3.10 IV. DYNAMICAL MEAN-FIELD THEORY

with the internal vertices of the same type as in E3j7) Within the frames of the considered perturbation theory in
whereas the contribution of the last term can be presente{§™MS Of electron hopping a single-electron Green’s function
diagrammatically as (2.11) can be presented in a form

)..V.< : (3.1 G, (wn k)=

So, we can introduce primitive vertices

—, 4.1
zol(wn-k)_tk

where we introduce an irreducible p&t,(w, k) of Green's

X >,_ >,\’ (3.12 function which, in general, is not local. In the case of infinite
> ' dimensionsd—< one should scale the hopping integral ac-
cording to
by which one can construct allvertices in expansiof2.22
according to the following rules: ti;
(1) n vertices are constructed by the diagonal Hubbard tij*ﬁ (4.2

operatorXPP and zero-order fermionic and bosonic lines con-

nected by primitive verticee3.12) specific for each subspace in order to obtain finite density of states and it was shown by

Metzner in his pioneer wofR that in this limit the irreduc-

(2) External lines ofn vertices must be of the fermionic ible part become local

type.
(3) Diagrams with the loops formed by zero-order fermi- = _,\_ o = = K)==
onic and bosonic Green’s functions are not allowed because Bijo(1=1) =05 (7= 1) or Ey(wn.k) H”(w(“j_g)

they are already included into the formalism, e.g.,
and such a site-diagonal function, as it was shown by Brandt
):( and Mielsch® can be calculated by mapping the infinite-
dimensional lattice problem (2.1) with tf(7—17")
gives =1/\/at”5(r— 7') on the atomic model with the auxiliary
Kadanoff-Baym field

) ( ti(r—1")=6;d (17— 1), (4.9

For n vertices of higher order a new primitive vertex can . . . .
appear but we do not check this due to the rapid increase (Wh'Ch has to be self-conglslezntly determlned from,the condi-
the algebraic calculations with the increasenoDiagrams tion that the same functloa:(.,(w_n)_defmes Green; func-
(3.7, (3.10, and (3.11 topologically are truncated Bethe- tions for_the lattice and atomic limit. The self-consistent set
lattices constructed by the primitive vertic&12) and can ©f equations for= ,(wy) andJ,(w,) (e.g., see Ref. 8 and
be treated as some generalization of the Hubbard®3ghi ~ "eferences therejris the following:
the thermodynamical perturbation theory.

It should be noted that eachvertex contains Coulombic 1 1 1
interactionU as in primitive vertice$3.12 (denoted by dojs N ; =
as in the denominators of the zero-order Green's functions
(2.19. In theU— o limit, each term in the expressions for =G (wy,{d(wn)}), (4.5
vertices can diverge but total vertex possesses fliitecw
limit when diagrammatic series of Ref. 5 are reproduced. Whererf‘)(wn J{J,(wn)}) is a Green’s function for atomic

The second problem of calculation of the averages of dilimit (4.4).
agonalX operators is more complicated. One of the ways to Grand canonical potential for lattice is connected with the
solve it is to use semi-invariarcumulanj expansions as one for atomic limit by the expressidn

E o) -t B, wn)—d(wp)
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1 that can be taken outside of the brackets and exponent in

NG ()~ N > Gg(wn,k)]- (2.22 and its average is equal {XPP)y=e /S e Pha,
: 4.6 Finally, for the grand canonical potential for the atomic limit
we get
On the other hand, we can write for the grand canonical

potential for atomic limit(), the same expansion as in Eq. Q= EI 2 ~ B0
(2.22 but now we have averages of the products of diagonal a B n 5 € ?
X operators at the same site. According to Ej14) we can
multiply them and reduce their product to a sinjleperator ~ where

|
Q(p)=)\,+%{£ﬁ- +%{3 +%O +...
+{::j:(::} +{§j PR {::[[:} +} @8

o_o 1
NG

(4.7)

are the “grand canonicgl potentials” for the :subspa(_:es. E;(lp)(wn):g;(lp)(wn)_zg(p)(wn), (4.14
Now we can find single-electron Green’s function for
atomic limit by where self-energy
6Q
GB(r=r) = = WGy o)
8 (t—7") b
(4.9 depends on the hopping integrd], (w,/) only through
quantities
where
Q) T“/(P)(w”'):GU’(P)(wn’)_EU’(p)(“’n’)
Gyp(7— 7)== —"— (4.10 —
(p)( 8d (7—17") E:i/(p)(wn')Jo'(wn')
are single-electron Green functions for the subspaces charac- X{1+E s (p)(@n)dgr(wp) + - - - 1.
terized by the “statistical weights” (4.15
B e Ap) It should be noted, that the total self-energy of the atomic
Wp= (41D problem is connected with the total irreducible part by the
> e P expression
q
and our single-site atomic problem exacthaturally splits Eo(wn)=iwn+,u,—5;1(wn) (4.16

into four subspacep=0,2,,7.
We can introduce irreducible parts of Green’s functions inand it has no direct connection with the self-energies in the
subspace& ) (w,) by subspaces.
The fermionic zero-order Green's functidB.5 can be
also represented in the following form:

Go(py(@n) = : (4.12
o(P)\®n) ™

= ipy(@n) = Io(@n)

1
where o(p) = : (4.17
9ote) Ia)n-l-,u,g—Ung)()p)
Ea(p)(wn) = —p— 1 9 +Qg+ (413)
where
. : . : 0 =0,0
According to the rules of the introduced diagrammatic n(()()):_%: forp=0.r (4.18

techniquen vertices are terminated by the fermionic Green'’s 7P dus, |1 forp=20

functions[see diagramg3.7), (3.10, and (3.11)] and this
allows us to write a Dyson equation for the irreducible partsis an occupation of the statp) by the electron with spir,
and to introduce a self-energy in subspaces and Green'’s functiori4.12 can be written as
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I Py S ooy (@n) —Jo(@p)

(4.19

”o(p)
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(4.27

K
/ %%
\ s ’

where double lines denote quantitiés,(w,). Loop

Now, one can reconstruct expressions for the grand ca-

nonical potentiald) , in subspaces from the known struc-
ture of Green'’s functions. To do this, we scale hopping inte-

gral
ae[0,1] (4.20

which allows to define the grand canonical potential as

Jo(@n)—ady(wn),

)G y(py(@wn, @) (4.21)

and after some transformations one can get

1 2o (wn)—Jd,(wp)
_ a(p)\ ¥n o\Wn
Qe =Xrp =2 In — 1
‘:‘(r(p)(wn)

1
~3 % S o(0) (@) P oy (@) + Py, (4.2

where

1 1 dq’o’(p)(wnva)

(4.23

o

is connected with the superconducting or magnon suscepti-
bilities for subspacep=0,2 orp= o, respectively.

For the single atom[J,(w,)=0] we have ® =0,
Go(p)(wn) = :o(p)(wn) = go(p)(wn)1 and

0
E WoN

but in the general cagd ,(w,) # 0] we cannot prove that the
sum rule

1
no=§ Wo g ; Yo(p)(@n) (4.28

1

=5 2 GP(wn)

Ne E (429}

is fulfilled.

A. Falicov-Kimball model

For the Falicov-Kimball model | (w,) =0 and according
to Egs.(3.2) and(3.8),

and
is some functional, such that its functional derivative with

respect to¥ produces self-energy:

0P (p)

No(p)(wn) - (4.29

2 o(m(@n).
So, if one can find or construct self-energy

2 o (p)(@n)

he can find Green'’s functions and grand canonical potentials

for subspaces and, according(th7) and(4.9), solve atomic
problems.

Starting from the grand canonical potentigl.7) and
(4.22 one can get for mean valu¢®.12),

2T(p)(c’)n)EO; ET(p)(wn):gT(p)(wn) (4.30
1
Q(p)=>\p—ﬁ 2 IN[1—3;(0n) g py(@n)],  (4.3D
1-n n
G(a) l l ,
! (n)= )\TO ‘JT(wn) n_)\ZL_JT(wn)
(4.32
1
nT=—E G%a)(wn), n=wy+w, (4.33

B A

which immediately gives results of Ref.(See also Ref. 32

For the Hubbard model there are no exact expressions for
self-energy but the set of Eq&t.12), (4.14), and (4.22) al-
lows one to construct different self-consistent approxima-
tions.

n,= % ana(p) s (425)
B. Alloy-analogy approximation
1 P . N . .
—n©@ L= = _2%p)
ng(p)—na(pﬁﬂ ; [Go(p)(@n) = E o(p)(@n)] T The simplest approximation, which can be done, is to put
3 =0, 4.3

where in the last term the partial derivative is taken over the @ (@) (4.39

. ot in the chaing4.15. The second term on the right- which gives

hand side of Eq(4.25 can be represented diagrammatically _

as :fo-(p)(wn) = go-(p)(wn) (4.39

O 426 and

Oy =
and the first contributions into the last term are the following ®)

1
N~ g nEU IN[1—J (@) oy (@n)]  (4.30
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and for the Green’s function for the atomic problem one can 1
obtain a two-pole expression G (wp)=- (4.44
font o= Un,—Jg(wn)
G(a>(wn)_ Wot Wy Wt Wo whenw,~ 7 and
7 _)\‘TO J”(wn) n_)\Z;_J(r(wn)

(437) nlJ'(p)~“¢7':1 2 Gfra)(wn)-
of the alloy-analogy solution for the Hubbard model, which B “n

is a zero-order approximation within the considered apg, the other hand,
proach and is exact for the Falicov-Kimball model. For this
approximation, mean valudg.12 are equal to

in the same way as an alloy-analogy
solution, it describes the metal-insulator transition with the
change ofu.

In Fig. 1 the frequency distribution of the total spectral

L weight function

no=3 2 G®(wn)+Wy+w,—

Wot W,  Wotw,

eProo+1  efraot1
1
1 po(@)=—IGP(0—i0") (4.45
# 52 G (4.39 ™
" _ _ as well as contributions into it from the subspafesparate
and, for some values of the chemical potential, they can gaerms in Eq.(4.43] are presented for the different electron

unphysical values: negative or greater than one. concentrationchemical potentialvalues. One can see, that
the spectral weight function contains two peaks, which cor-
C. Hartree-Fock approximation respond to the two Hubbard bands. Each band is formed by

The next possible approximation is to take into accoumIhe two close peak:p 0 ando for the lower Hubbard band

the contribution from diagrani4.26) and to construct the andp=2 and o for the upper one, with weighta/, Eq.

equation for the self-energy in the following form: (4.11). The main contributions comesee Fig. 2 from the
subspaces p=0 for the low-electron concentrations

(n<%,u<0), p=2 for the low-hole concentrations (2n

<Z u>U) and p:a,;for the intermediate values. For the
small electron or hole concentrations, the Green’s function
for the atomic probleng4.43 possesses correct Hartree-Fock
1 limits too.
—nO® 4 = 2 Such four-pole structure of the single-electron Green'’s
n Nypy + V(@) p g
()~ (P BN o(pi&n function can be obtained also for the one-dimensional chain

1
Soplon= 5 2 UWig(on), (439

which, together with the expression for mean values

1 1 with the N=2 periodic boundary conditiofsee the Appen-
n© _ —+—tanh§[Ung( )~ Kol dix), which is equivalent to the two-site problem considered
otp) P by Harris and Langé> Here, two poles correspond to the

1 noninteracting electrons or holes, which hope over the empty
+— 2 Go(py(@nr), (4.40 sites, and give the main contribution for small concentra-

' tions. The other two poles give the main contribution close to
Half filling and correspond to the hopping of the strongly-

ives for the Green’s function in the subspaces expression i
g P P correlated electrons over the resonating valence BMB)

the Hartree-Fock approximation:

states.
1 So, one can suppose that the Hubbard model describes
U(p)(wn)_ . (4.4) strongly-correlated electronic systems that contain four com-
ot pe=UNgp) = I @) ponents(subspaces Subspacep=0 andp=2 describe the

é{ferml liquid component(electron and hole, respectivgly

Now, grand canonical potentials in the subspaces are equ
9 P P q which is dominant for the small electron and hole concentra-

1 tions, when the chemical potential is close to the bottom of
Qpy=Ap— B 2 IN[1-3,(00) E ) (@p)] the lower band and top of the upper one. On the other hand,
ne subspacesp=1 and | describe the non-Fermi-liquid

(0) ) (4.42) (strongly correlated, e.g., RVBomponent, which is domi-
(p) nant close to half—filling Within the considered Hartree-Fock
and for the Green'’s function for the atomic problém9) approximation, ah~2 and 2-n~% we have transition be-

0 _
— UMy = NSy (Mg =N

one can obtain four-pole structure tween these two regimes: Fermi liquid and non-Fermi liquid.
It reminds us that the known properties of the higheom-
@ B W, pounds, where for the nondoped case=(L) compounds are
Gy (‘”n)_E (4.43 in the antiferroelectric dielectric state, then for small doping

Poiont s = Uy =Jo(@n) the non-Fermi-liquid behavior is observéahderdoped case
Expression(4.43, in contrast to the alloy-analogy solution n=<1) and after some optimal doping value the properties of
(4.37), possesses the correct Hartree-Fock limit for smalthe compound sharply change from the non-Fermi to the
Coulombic interactiord <t: Fermi liquid (overdoped casge
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FIG. 1. Spectral weight functiop,(w) (4.45); total and for each subspace, for the different chemical potential val@eg:=U/2,n
=1; (b) u=-1,n=0.07;(c) ©=0.01n=0.72;(d) u=—0.01n=0.66 U=4,T=0.2).

The results presented in Figs. 1 and 2 are obtained for @ (4.46

relatively high temperature. With the temperature decrease,
on the one hand, the transition between the Fermi and non-
Fermi liquid becomes sharp and, on the other hand, for some . ) . .
chemical potential values there can be three solutions of EdD the diagrammatic expansion for functiong{y, . On the
(4.40 with two of them corresponding to the phase- other hand, such a skeletal diagram produces additional con-
separated states. The consideration of the phase separatiorffipution into the self-energy
the Hubbard model is not a topic in this paper and will be the
subject of further investigations. TN

: J —_ (4.4

D. Beyond the Hartree-Fock approximation

Self-energy in the Hartree-Fock approximatiisee Eq. \yhich is frequency dependent. Also, in order to get a self-
(4.41)] describes some self-consistent shift of the initial en-cqnsistent set of equations, we introduce renormalized
ergy levels and does not depend on the frequency. All othegosonic Green'’s functions

improvements of the expression for self-energy add the fre-

guency dependent contributions. To see this, let us consider 1 1

the contribution into the mean values from the first diagram Do @) = ———=—; D s(wy)=———o,

in (4.27). This diagram originates from the following skeletal iwn—Nog i omn—Ngg
diagram (4.48



15

1.0

Too 2.0

n

FIG. 2. Statistical weights of the subspaees (4.11) as func-
tions of the electron concentratiod €4,7=0.2).

~ 1
Noo=Not U g nE Vo py(@n),

~ 1
)\0';: )\0';_ U B % U\I’J(p)(wn)-

Finally, for the Green'’s functiof4.19 we get the general
representation

(T ( n)_ ]
(P S o) (@n) —Jo( 1)
(4.49

(1) +/.Lo. Un(,.(p)

where the Hartree-Fock contributitny, is extracted and

Sop)(©n)
is a frequency dependent part of the self-energy,
within the considered approximation is equal

S (p)(@n) =US, (@), (4.50

where

U
Sue)(@n) =+ 2 Do) @n, 0n) ¥ (@)
n

(4.51

™

and

Dof(wnin) forp=0,2

DO’;(wn—n')

D(J’; Wp,Wnr )= —
e (@n @) for p=oo.

(4.52

Now, mean value$4.25 are equal
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1
—n T
Noo) =Notp)+ 5 ; Vo (py(@n)

oty (@ @)V o) (00) W oy (@)
(4.53

and for the grand canonical potentials in the subspaces we
obtain the following expressions:

1 .
Qp=Rp~ 5 2 IN[1=3y(0n)Z p(p)(@n)]
. 2 -1
5 > U[1=UD3@n+n) 920 (@ns )]
nn’
XW o) (@n) W i(p) (@n) (4.54
for p=0,2, and
1 L
Qp=Rp~ 5 2 IN[1=Iy(0n) = o(p)(@n)]
1 2 -1
- E 2 U[liUDg;(wnfn’)gg;(wnfn’)]
nn’
X\I’U(p)(wn)\p;(p)(wn’) (453
for p=o,0.

In order to analyze the structure of the poles in @49,
an analytical continuation of the expression for

2 o(p)(@n)

from the imaginary axis to the real one should be done. To
do it, we use the well-known identity

1 gion0”

E; iw,—\

=*n.(\), (4.56

WhicRyhich follows from Eq.(2.18, and analytical properties of

the Green'’s function

1 [+
GU(Z)=;f_ de

Green’s functions in the subspacé,(z), irreducible
parts =, (2), and dynamical mean-field,(z) all possess
the same analytical properties. Finally, 185, (z) we get
the following expressions:

3G, (w—i0")

ZI—w

(4.57

Jqu(p)(w_|0 )

S, =_—77f don,
(p) Z+w— )\20

+n_(NaUV 55 (Xo—2) (4.58

for subspacep=0,2 and
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j‘P;(p)(w*iOJ“) V. SUMMARY

U_ [+
So(p)(2)= 1;73[% don. (@) 7w — A finite-temperature perturbation theory scheme in terms

7 of electron hopping, which is based on the Wick theorem for
FIn_(N o)+ 1]UqJ;(p)(z—XU;) (459  Hubbard operators and is valid for arbitrary valuedJofU

_ <) has been developed for Hubbard-type models. Dia-

for p=o,0. Analytical continuation of the expressions grammatic series contain single-site vertices, which are irre-
(4.53, (4.54), and(4.55 can be done in the same way. One ducible many-particle Green's functions for unperturbated
can see that contribution@.58 and (4.59 diverge when sjngle-site Hamiltonian, connected by hopping lines. Apply-
N0=0 andX,;=0, respectively, which is an unphysical re- ing the Wick theorem for Hubbard operators has allowed us
sult. to calculate these vertices and it is shown that for each vertex
So, we cannot include into the consideration only onethe problem splits into subspaces with “vacuum states” de-

contribution from diagram(4.47 but must sum up all dia- termined by the diagondprojectior) operators and only ex-

grams of the following type: citations around these ‘“vacuum states” are allowed. The
e Lo e vertices possess finitd— « limit when diagrammatic series
é o —24¢ ot é . of the strong-coupling approatfare reproduced. The rules

to construct diagrams by the primitive vertices are proposed.

In the limit of infinite spatial dimensions the total auxil-

. N iary single-site problem exactlynaturally splits into sub-
+ bt +... (4.60 spacegfour for Hubbard modeland a considered analytical

scheme allows to build a self-consistent Kadanoff-Baym-

which gives an expression free from the above-mentione@P€ theory for the Hubbard model. Some analytical results
divergences are given for simple approximations: an aIon-anang_y ap-
proximation, when two-pole structure for Green’s function is

- ’ [1+s;(p)(wn)]2 obtained, which is exact for the Falicov-Kimball model, and

S opy(wn)=U[1+ Sé(p)(wn)]—UW, the Hartree-Fock-type approximation, which results in the
o(p) ©n (4.61) four-pole structure for the Green’s function. Expanding be-

' yond the Hartree-Fock approximation calls for considering

whereS, ;) (w;) is defined above and the frequency dependent contributions into the self-energy
U and resummation of the diagrammatic series.
Sty (@n)= 5 2 D yaipy(@n+@n) ¥ oy (@) In general, the expression
n
Sop)(@nr) = Sy (@nr) w
2L Pote) T 462  GP(w)=2 - —2 ,
1+S;(p)(‘0n’) P |wn+ﬂa_Una(p)_za(p)(wn)_‘]a(wn)

(5.
'’ U — —
S,"(p)(w”)_ﬁ ? Doatp)(@n s @n)Wop)(@nr) gives an exact four-pole structure for the single-electron
5 Green’s function of the effective atomic problem. In Eq.
( Sspy(@nr) — S:,(p)(wn')) (4.14) zero-order Green’s function8.5) are the same for the
x ' subspacep=0,0 andp=2,0, respectively, and correspond
1+ S;(p)( wyr) : ; ;
to the two-pole solution of the one-site problem without hop-
Such diagram resummation must be also done in the expreping. Switching on of the electron hopping splits these two
sion for the mean value@.53, where the last term must be poles and the value of splitting is determined by the values of
replaced by the self-energy parts in the subspaces, which describe the
contributions from the different scattering processes. Alloy-

1 analogy approximation neglects by the such scattering pro-
212 _
_'—__2 nEn/ U Daa(p)(wnawn’)w(r(p)(wn)wu(p)(wn') cesses
, v 2
o HESomlon) 1 Spplen) 0 3 o(py(@n)=0
1+ So(p)(@n) 1+ S (wnr)

(4.63  Which results in the two-pole structure for the Green'’s func-
tions (4.37. But, in general, Green’s functions possesses
Besides diagran4.47), there are a lot of other diagrams four-pole structure and even the Hartree-Fock approximation
that diverge and need additional resummation of the dia¢4.43 clearly shows it.
grammatic series. But now it is difficult to clear out what It should be noted that the four-pole structure of the
types of diagrams are leading in different case, which call$Green’s function for the atomic problem might not result in
for additional investigation. But it is, obviously, that such the four bands of the spectral weight functitsee Fig. L
contributions will shift the boundary between the Fermi andThe presented consideration allows us to suppose that each
non-Fermi-liquid behavior. pole describes contributions from the different components
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(subspacef the electronic system: Fermi liquidubspaces [10)=]],7)= a;T|2>: - aL|5)’
p=0,2) and non-Fermi liquidg=1,]), and for small elec-

tron and hole concentrationa€ 5 and 2—n<$) the Fermi- [11)=1]0,2) = a£T|3>= _a;l|5>,
liquid component gives the main contributigtoverdoped

regime” of high-T.'s), whereas in other cases the non-Fermi |12)=|2,])= aIT|6>: a‘{l|9> S— a;¢|8>’

liquid one (“underdoped regime).

113)=|],2)=a},|6)=a],|11)= —al |10,
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for discussions. 16)=12.9=a};|139 = —a},|129) = a] [15) =2} [14)
and one can introduce Hubbard operatéPs’=|p){q| act-
APPENDIX: TWO-SITE PROBLEM ing in the space of these states. Now, electron creation op-

Let us consider an infinite one-dimensional chain with theerators can be presented in the following form:

N :2 periodic boundgry condition. Mgthematically jt IS gt — x4l X754 X824 x9.34 x12,6_ y1410_ y1511 X16.13
equivalent to the two-site problem considered by Harris and

Lange%5 but now we can introduce the lattice Fourier trans- aL _ X2 X683 XBA_ Y105, y12.9 w1311, ¥147; ¥16.15
formation, with two wave-vector values in the first Brillouin (A5)
zoneq=0 andq=, and perform all calculations for the

grand canonical ensemble. The Hamiltonian of the model isp] = X514 X744 X10.24 X11.34 X136 X148 K159 x(16.12
the following: !

|15)=|T,2)=a;l|7>=a51|9>= _aIT|11>,

a;l — X3,1+ X6,2_ X9,4_ Xll,5_ X12,8_ Xl3,10+ X15,7_ X16’14.
H:,E ( Unmnu—uE Nio
i=1,2 o

T T
+t a, a,,+a, a,). .
; (81,825 T 82,814 By transformations

(A1)
We can introduce the Fourier transform of the electron hop- L1
ping 2) [4) |12 |1®)__ V2 2
tq=tcosq:[_t forq= (A2) 2 2
and our aim is to calculate the single-electron Green’s func- ( 2) [3) [12) |[12)
tion ~ e~ ~
13y 15) [13) [15
Gi(wn) +Gyo(w,)  forg=0
Ga(w,tq):{Gllu n _GIZU n f q_ (A3) (A6)
110(@n) 120(@y)  forg=m, and
whereGy; (7 7') =(Tal,(7)aj (7).
The initial basis of states contains 16 many-electron two- 1 -1 0 _ 1
site stategp;,p,), wherep;={n;;n; }, i.e., Ecos,(ﬁ ES"’W’ N
11)=10,0, 8) L g Looss 2 o 8)
—sing ——=Cos¢p — ~
2)=|1.0=a} |1), o) | ||z vz 2 %)
9)=l0.1)=a},|1) 1 Esng Leoss Lo || 1E0
=|0,ly=a3[1), —sing —=cos¢p — —
? 13) V2 V2 V2 |T1)
|4)=[1,00=a};|1), 1 -1 o L
—=C0S¢p —=Sin¢ —
[5)=[0,7)=a} 1), V2 V2 V2
(A7)
6)=|1,1)=a} |2)=—a]||3), ot

where sin 2(t)= , the Hamiltonian(A1) can be

JU?/4 + 4t2

|7>:|T’T>:aZT|4>:_aJ{T|5>.

: : diagonalized
18)= |2,O>:an|2>: _a11|4>'

19)=11,1)=al,|3y=—a]|4), (A4) H=§p: ApXPP. (A8)
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Here

Ng=U+J—-2u,
(A9)
Nog=—J—2u,
AN=U—2pu,

ANZ=Nz=U-3u+t,
A3=N5=U—-3u—t,
Ag=2U—-4pu
are eigenvalues and
J A 4 (U>t) (A10)
= _— = .
JU?/4+4t?+u2 U

Finally, with the use of the Wick theorert2.17) for the

Hubbard operators acting in the space of eigenstfélt)es‘or
the single-electron Green'’s functigA3) we obtain

Al(tq)+ Bl(tq) A2(tq)
oty otd+ty o—-U-t

BZ(tq)
o—U—-J+ty’

Golw,tg)=

q
(A11)

where

1+ eBr—1) 4 oBrtt) 4 o280 4 %(eﬁ(;ﬁt) + 2Bk

1
Ai(t)= 7

+ e_.B(U_ZM)+ e_ﬁ(u_3M+t))

e_ﬁ(2U_4M) + e_ﬁ(u_3M+t) + e_ﬁ(u_?’ﬂ_t) + eZBM

1
Ay(t)= 7

1
+ E(eﬁ(/""'t)_}_ ezﬁ/“_{_ e_B(U_ZM)+ e_B(U_3M+t))

(A12)

VU?/4 + 4t

+e U200 4 o= BU-3u-1)]

1 2t
Bl,z(t)=§ 1 |[ef~ D4 gh2ut)

and

Z=2 e A%,
P
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One can see, that Green's functigAll) possesses a
four-pole structure and the spectrum contains four “bands”
grouped near the initial energy levels of the one-site problem
0 andU. The distance between the centers of gravity of the
grouped bands is equal 8dEq. (A10)] and is of the order of
magnitude of the effective exchange interaction. It is obvious
that the weights of the bands satisfy the sum rule

The spectral weight function is equal
(E)=i2 IGL(E-i0",tg)
Po 7TN 3 o2 g

1
= S[ALDE-D)

+AL(— 1) S(E+1)+Ay(1) S(E—U—1)

+ A (— 1) S(E—U+1)+By(t) S(E+J+1)
+By(—t)S(E+J—1)+By(t) S(E—U—J+1)
+By(—t1)S(E-U—J—1)] (A14)

contains the same eight energies obtained by Harris and
Langée® but with different weights and originates from the
four poles(bands of the Green'’s functiorfA11) for the two-

site problem.

The nature of these peaks is clear from the ground-state
properties of the model. At zero temperature, depending on
the value of the chemical potential or electron concentration,
the ground states are the followingg &t): empty staten
=0 (u<—1t):

[1)=0,0,

Gylw,q)= , (A15)

w—tq

one-electron states=3 (—t<u<t—J):

1

V2

~ 1

15) 2

A3=NE=—pu—t,

3)

(a},—aj|)[0,0),

(a},—aj,)[0,0),

G —0)= 3/4 N 1/4 ALG
o @,q= )—m payre (A16)
L2 1/4(1+sin2¢) 1/4(1-sin2¢)

w+t w+J—t wo—U-J-t ’

G w,q=m)=

two-electron states=1 (t—J<u<U+J—t):
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1
—=cos¢(aj;a} —aj a};)[0,0)

V2

[9) =
L sing(a],al, —aj} a},)[0,0),
2
Ng=—2u—J,

1/2(1+sin2¢q)
o+J+t,

1/2(1—sin2¢y)
wo—U—-J+t; '
(A17)

Go(w,q)=

three-electron states=3(U+J—t<u<U-+t):

13)=

V2

(ag1+az)]2,2),

|15)=

V2

AN=Ae=U—3u—t,

(a1 +a;))[2,2),

1/4(1—sin2¢)
w+J+t

1/4(1+sin 2¢)

Col®,q=0)= w0—U—J+1

1/2

+—
w—U-—-t’

(A18)
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G L 1/4 N 3/4
A0 =M= U
and four-electron statas=2 (u>U +t):
16)=12.2,
Ae=2U—4pu,

G = ! Al9
a(w.Q)—m- (A19)

For small electronif~0 or holen~2) concentrations we
get Green’s functiongA15) and (A19), respectively, which
describe hopping of the noninteracting particles over empty
states.

On the other hand, for the half-fillegymmetri¢ casen

~1, the ground statf9) is mainly a RVB-type state. Now,
Green’s function(A1l7) possesses two-poles shifted by the
value of the effective exchange interactidrirom the one-

site levels and describes the electron transfer over the RVB
states. The weight of each pole depends on the hopping
value, but its total contribution into the spectral weight func-
tion (A14) is equal to3 as it should be for the symmetric
case.

For other cases the number and weights of the poles in the
spectral weight functioriA14) strongly depend on the elec-
tron concentratiorichemical potentialand wave-vector val-
ues and contain contributions from the noninteracting elec-
trons (holes and the strongly hybridized RVB states.
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