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Excitonic order at strong coupling: Pseudospin, doping, and ferromagnetism
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~Received 6 March 2000!

A tight-binding model is introduced to describe the strong interaction limit of excitonic ordering. At sto-
ichiometry, the model reduces in the strong-coupling limit to a pseudospin model with approximate U~4!
symmetry. Excitonic order appears in the pseudospin model as in-plane pseudomagnetism. The U~4! symmetry
unifies all possible singlet and triplet order parameters describing such states. Superexchange, Hunds-rule
coupling, and other perturbations act as anisotropies splitting the U~4! manifold, ultimately stabilizing a
paramagnetic triplet state. The tendency to ferromagnetism with doping~observed experimentally in the
hexaborides! is explained as a spin-flip transition to a different orientation of the U~4! order parameter. The
physical mechanism favoring such a reorientation is the enhanced coherence~and hence lower kinetic energy!
of the doped electrons in a ferromagnetic background relative to the paramagnet. A discussion of the physical
meaning of various excitonic states and their experimental consequences is also provided.
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I. INTRODUCTION

The unexpected discovery of high-Tc itinerant ferromag-
netism in doped hexaborides1 has reignited interest in th
problem of excitonic ordering near the semiconductor-me
transition.2,3 Excitonically ordered states are characterized
an off-diagonal order parameter describing pairing betw
conduction electrons and valence holes. Early theoret
work by Volkov et al.4 anticipated the emergence of ferr
magnetism on doping such an excitonic state. These aut
considered the limit of nearly nested overlapping conduct
and valence bands withweakrepulsive electron-electron in
teractions. In this limit, the problem can be approximat
cast into a form nearly identical to BCS theory, and stud
using the techniques of mean-field theory. Although t
work ~and some subsequent recent studies5! suffered from
the important physical mistake of neglecting the instability
phase separation, ferromagnetism nevertheless remains
neric feature in a corrected treatment.6,7

While the appearance of ferromagnetism in the we
coupling limit is encouraging, it is far from a conclusive an
complete theoretical explanation for the experiments. F
Coulomb interactions in the hexaborides are not particula
weak, and most likely are comparable to the Fermi ene
and band overlap. Second, the above explanation appea
hinge on the first-order nature of the excitonic to norm
(E-N) transition in the BCS limit. While this feature, math
ematically analogous to the first-order transition to the n
mal state due to pair breaking by an external Zeeman fiel
a superconductor,8,9 is present in the nested mean-field lim
there do not appear to be any general theoretical grou
mandating this behavior more generally. Moreover, the u
versality of the experimental results, now observed in a la
number of different compounds (Ca12xLaxB6, BaB6,
Ca12xCexB6, SrB6, etc.!,10 argues for the robustness of th
phenomenon.

To determine whether excitonic ferromagnetism is inde
more general than its weak-coupling theoretical basis, h
we consider the completely oppositestrong-couplingregime.
This is not expected to be directly applicable to t
PRB 620163-1829/2000/62~4!/2346~12!/$15.00
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hexaborides, as these materials are most likely best desc
by an intermediate-coupling model. Nevertheless, many u
ful insights are gained from this complementary limit. A
usual, the principal assumption of the strong-coupling lim
is the dominance of potential energy over kinetic ener
This is achieved concretely using a tight-binding model@see
Eqs.~4!–~7!, in Sec. II#, in which the conduction and valenc
bands of the conventional continuum theories are repla
by localizeda andb orbitals, respectively. The analog of th
band gap in the continuum model is the level splittingEG
5Ea2Eb.0. The order parameter characterizing exciton
ordering is then a matrix in spin space,

Dab5aa
†bb , ~1!

whereaa
† creates an electron with spina5↑,↓ in the a or-

bital, and bb annihilates an electron with spinb in the b
orbital. Excitonically ordered states thus have some par
occupation of the nominally exciteda states, as a result o
Coulombic repulsion. In general,Dab is a proper order pa-
rameter~i.e., one which characterizes a spontaneously b
ken symmetry! if the a andb orbitals have different symme
tries. In this paper, we consider a ‘‘minimal model’’ wit
this property, comprised of onea and oneb orbital per unit
cell—see Fig. 1. This mimics the situation in th
hexaborides, for which the conduction and valence sta
also transform as different representations of the cubic p
group.11 Because of complications arising from orbital d
generacy, however, the appropriate representations for
hexaborides are three dimensional rather than scalar. We
fer the possible complications arising from these additio
degrees of freedom to a future investigation.

As for the more familiar Hubbard model~see, e.g. Ref.
12!, the problem simplifies somewhat in the strong-coupli
limit. Considering first the undoped system~half-filled, or
two electrons per unit cell!, we obtain a quantum pseudosp
model@Eqs.~8!–~12!, Sec. III#. Within this model, the exci-
tonic insulator~EI! appears as an intermediate state sepa
ing not a metal and a semiconductor but aMott insulatorand
a semiconductor~or band insulator!. In some respects, th
2346 ©2000 The American Physical Society
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behavior is argued to be quite similar to that of a quant
spin-1/2XXZ antiferromagnet in a magnetic field, with ex
citonic ordering analogous toXY antiferromagnetism. The
‘‘spins’’ of the model, however, can take onfive distinct
states per site: one singlet state with both electrons in
lower-energyb orbital, and four different spin states wit
onea electron and oneb electron. This is in contrast to th
two states of a single spin-1/2 particle.

In the strong-coupling limit, this large Hilbert space
‘‘unified’’ by several approximate symmetries valid at di
ferent energy scales. At the largest energy scales this i
enormous SU~4! group, corresponding to arbitrary comple
rotations of the four components ofDab . The approximate
SU~4! symmetry fully unifies all possible excitonic state
including singlet, triplet, and singlet-triplet coexistence
These are described by the general decomposition

D5
1

2
~DsI1DW t•sW * !, ~2!

whereDs andDW t are the singlet and triplet order paramete
and I and sW are the 232 unit and Pauli matrices in spi
space, respectively. A system with approximate SU~4! in-
variance contains the germ of ferromagnetism, since sev
possible excitonic states~those with nonzero ReDsDW t*

and/or ImDW t`DW t* ) give rise to net exchange fields, an
hence a magnetic moment. SU~4! symmetry implies that
these states are low in energy. At intermediate energies
SU~4! symmetry reduces to an SU~2!3SU~2! invariance,
which reflects separate spin rotations of thea and b elec-
trons. The latter is a symmetry of the conventional co
tinuum models of EI’s, and transforms the order paramete
a ‘‘chiral’’ manner: D→UL

†DUR , where UL and UR are
SU~2! matrices. Finally, further weak interactions reduce t
to a simple SU~2!3Z2 symmetry at the~very! lowest
energies.

These symmetry considerations underly the simple ph
cal mechanism for ferromagnetism elucidated here.13 The
dominant tendency imposed by Coulomb interactions is
excitonic ordering. With approximate SU~4! symmetry, how-
ever, the ‘‘orientation’’~form of Dab) of the order paramete

FIG. 1. Imaginative illustration of a model for which the tigh
binding description employed phenomenologically here directly
plies. Red circles and blue plus green crosses represents and dxy

orbitals, respectively.
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is nearly free, and fixed only by weak ‘‘anisotropy’’ term
In the undoped material, these anisotropies favor a sim
paramagnetic triplet state. Doping introduces additional
change energy contributions that modify the anisotro
causingDab to ‘‘flip’’ into a different orientation with a
ferromagnetic moment. In the present model, the excito
order in the ferromagnet is of non-collinear triplet type,
which

Ds50, DW t`DW t* Þ0. ~3!

As shown in Sec. V, in addition to ferromagnetic magne
zation, this state has additional spatially-varying local sta
moments and spin currents transverse to the axis of net m
netization. The transition to this state from the paramagne
generally first order, and therefore coincides with a jump
the electronic density. Since experiments are performed
fixed charge density~dictated by the concentration of dopa
ions!, the intermediate ‘‘forbidden’’ range of dopings can b
accommodated only by phase separation. With long-ra
Coulomb interactions included, macroscopic phase sep
tion is impossible, and charge domain formation is expec
as already pointed out in Refs. 6 and 7.

The detaileddemonstration of this behavior with dopin
is nontrivial. As for many other strongly correlated system
the problem of doping is much more difficult than that of t
stoichiometric Mott insulator. Indeed, as the EI state l
intermediate between band and Mott insulators, doping
EI is a sort of interpolation between doping a conventio
band insulator and doping an antiferromagnetic insula
The latter problem is of course at the crux of the physics
high-temperature superconductivity, so that perhaps the
perimental and theoretical insights gained in the hexabor
will be more generally helpful. At any rate, doping the E
can be shown by very simple arguments to favor ferrom
netism in strong coupling. Essentially, the physics of t
behavior is similar to the ‘‘Nagaoka effect’’14 in a doped
antiferromagnet—ferromagnetic alignment of the excito
order parameters allows for more coherent propagation of
doped electrons, and hence a lowering of their kinetic
ergy. This mechanism is actuallystronger in the EI than in
the antiferromagnet, because of the globalcoherenceof the
excitonic condensate, and the near degeneracy@due to ap-
proximate SU~4! symmetry# of ferromagnetic and paramag
netic states. To provide a concrete demonstration of th
ideas, the strong-coupling zero-temperature phase diagra
the model is calculated in this paper using a ‘‘free Fer
gas’’ approximation. This approximation captures the m
importantsingle quasiparticlephysics of electronic propaga
tion in an excitonically ordered background, but neglects
teractions between these quasiparticles. For simplicity,
also assume afixed amplitudeTr D†D5D0

2/2 of the excitonic
order parameter. The latter assumption is valid for weak d
ing, x!1, in which theorientation of the ordering is of
paramount importance. Putting together the results of
calculation and the stoichiometric behavior, we arrive at
partial phase diagram in Fig. 2. This is in agreement with
general expectations stated above. It should be stres
however, that this analysis of doping is far from exhausti
More detailed investigations of both the weak- and stro
coupling limits are currently underway.15
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The remainder of the paper is structured as follows.
Sec. II, we present a detailed exposition of the~simplest!
tight-binding model capable of describing excitonically o
dered states, and consider the limit of infinite interact
strength. The bulk of the paper is contained in Sec. III, wh
the model is analyzed for large but finite interactions, foc
ing on the stoichiometric situation with two valence ele
trons per unit cell. For this electron density the model
insulating, but can sustain excitonic and other types of ord
ing. The properties of the model with doping are discusse
Sec. IV. We conclude in Sec. V with a clarifying discussi
delineating the physical properties of various possible e
tonic insulators, and the relation of the results of this pape
the hexaborides.

II. TIGHT-BINDING MODEL

A. ‘‘On-site’’ terms

We consider a minimal model capable of exhibiting ex
tonic order, which contains two orbitals per unit cell, so as
give rise to two bands in a noninteracting limit~the actual
situation in the hexaborides is more complex, with orbi
degeneracy leading to multiple electron and hole pockets!. A
strong-coupling limit is obtained by first considering on
local interactions within a unit cell,

H05(
i

EG~ai
†ai2bi

†bi !2m~ai
†ai1bi

†bi !

1U~ai↑
† ai↑ai↓

† ai↓1bi↑
† bi↑bi↓

† bi↓!1Vai
†aibi

†bi , ~4!

where a and b are electron annihilation operators for th
‘‘conduction’’ and ‘‘valence’’ states, respectively, obeyin
$aia ,aj b

† %5$bia ,bj b
† %5d i j dab . Here and throughout the pa

per, we use Latin indicesi , j , . . . to denote the lattice site
and Greek indicesa,b, . . . 5↑,↓ to denote the spin state

FIG. 2. Partial phase diagram of the strong-coupling model a
function ofEG ~half the bare splitting betweena andb orbitals!, and
m, the chemical potential. The shaded region is not analyzed in
paper. Thick lines indicate the boundary between the undoped
gion below~with two electrons per unit cell! and the doped region
above~with more than two electrons per unit cell!. The AF2 and
AF3 phases are antiferromagnetic Mott insulators with two a
three electrons per unit cell, respectively. The BI state is the b
insulator. Intermediate between the BI and AF2 phases are the ex
citonic insulator~EI! and an insulator with coexisting excitonic an
Neél order ~EI/AF!. The FM, FM* , PFM, and PFM* phases are al
ferromagnetic metals~see Table I for the differences between the
states!, while PM indicates a paramagnetic metallic phase. All
metallic states above exhibit excitonic order.
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Labels will be suppressed and implicit wherever clarity
lows. The parametersEG ,m,U,V describe the ‘‘band gap’’
~orbital energy difference!, chemical potential, on-site ‘‘Hub-
bard’’ repulsion, and nearest-neighbor repulsion, resp
tively, within the unit cell.

A crucial feature ofH0 is the absence of direct hoppin
between thea and b orbitals within the unit cell. For exci-
tonic ordering to be well defined, it is necessary at a mi
mum that thea and b states be distinguished by a discre
symmetry operation, e.g., parity. When this is the case, di
hopping between these orbitals is prohibited. It may be he
ful to imagine an artificial situation in which thea and b
orbitals represents and dxy orbitals on a single site of a
square lattice~see Fig. 1!.

In this situation,a and b orbitals are orthogonal both o
the same site and on nearest-neighbor sites. An overlais
possible, though for next-nearest-neighbor pairs, i.e., o
diagonal. In general, an exchange interactionis allowed by
symmetry, and takes the form

H152JH(
i

SW ia•SW ib , ~5!

whereSW ia5 1
2 ai

†sW ai and SW ib5 1
2 bi

†sW bi . Here and in the fol-

lowing, the Pauli matricessW act in the spin space. On phys
cal grounds, a ferromagnetic exchange (JH.0) is most ap-
propriate due to Hund’s rule effects for orthogonal orbita
For pedagogical purposes, we may wish to consider inst
the opposite antiferromagnetic sign for this exchange. Fr
the discussion in Sec. I, it is clear that an essential ingred
for excitonic ferromagnetism is the near degeneracy of s
glet and triplet states. To build this into the strong-coupli
model thus requires smallJH . For the majority of the paper
therefore, we will neglectJH or treat it as a small perturba
tion.

B. Infinite interaction limit

The analysis of the strong-coupling limit begins by fir
considering the on-site HamiltonianHsite5H01H1 in the
absence of electron hopping between adjacent unit cells.
may be thought of as the analog of theU5` analysis of an
ordinary Hubbard model. In this case, the occupation of e
orbital is a good quantum number, and the states can
straightforwardly enumerated. AssumingEG.V.0, and at
first also Jab50, one obtains the phase diagram shown
Fig. 3.

For the present study, we are particularly interested
densities near two electrons per unit cell. Note that the d
ing behavior~i.e. on increasingm) in this regime depends
crucially on the relative strength ofEG andU. In particular,
for 2EG.U2V, the preferred chargeQ52e state is one
with both electrons in the lower orbital, corresponding to t
band insulator. ForU2V.2EG , by contrast, the two-
electron ground state has one electron in each orbital,
hence a net spin on each site. This is the ultrastrong coup
~i.e., local! version of a Mott insulator. Note thatneitherof
these two states exhibits anexcitonicorder. This can be see
by directly computinĝ a†b&50 in either state. In fact, the
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operatorsa†b andb†a act to transform the two phases in
one another, i.e., move an electron from the lower to up
orbital, or vice versa.

C. Hopping terms

To investigate further, we must introduce hopping b
tween adjacent cells. We will principally consider the sim
plest such term

H85(̂
i j &

t~ai
†aj1bi

†bj1 H.c.!, ~6!

where ^ i j & indicates that the sum is over nearest-neigh
pairs of sites. Different hopping integralsta and tb between
the two orbitals can also be easily included, but do
change the results significantly, so we will keepta5tb5t for
simplicity @see, however, the discussion of particle-hole sy
metry in Sec. V surrounding Eqs.~51!–~55!#. In general,
there are also hopping processes connectinga andb orbitals.
Due to the symmetry of the orbitals in Fig. 1, these oc
only for next-nearest neighbors,

H95 (
^^ i j &&

tab sgn@~xi2xj !~yi2yj !#~ai
†bj1H.c.!, ~7!

where the double angular brackets denote a sum over
nearest neighborsi and j. Note that the hopping matrix ele
ments in Eq.~7! are real, and vary in sign. The sign vari
tions reflect the symmetry differences~under rotations! be-
tween thes andd orbitals. The reality of the coefficients is
matter of convention, which we fix by choosing the orbi
wave functions to be real. We will assume, as appropriat
this example, thattab!t, so thatH9 is small, and can there
fore be treated perturbatively.

It is sometimes an important perturbation, because it
duces the symmetry of the Hamiltonian. In particular, all
the terms inH01H11H8 conserve the number ofa and b
particles separately. Neglecting thea-b hopping, therefore,
the model has SU(2)3U(1)3U(1) continuous symmetries
corresponding to conservation of spin, anda andb charges.
The perturbationH9 reduces the continuous symmetries
the model down to SU(2)3U(1) corresponding to spin an
total charge, which are required by the physics of the syst

FIG. 3. Strong-coupling~ultralocal! phase diagram in theEG-m
plane, neglecting exchange and all intercell hopping and inte
tions. Regions with zero and four electrons per unit cell are
shown. In each phase, the lowest-energy states are pictured, w
a orbital above and ab orbital below.
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Equation~7! actually still respects a number of discrete sy
metries, such asb→2b simultaneously with ap/2 rotation.
These symmetries, which in fact comprise the point-gro
operations of the square lattice, can be viewed as a resi
discrete subgroup of the original U~1! present in the absenc
of H9. We will see in Sec. III that this gives rise to an Isin
symmetry under which the excitonic order parameters tra
form.

III. EFFECTIVE THEORY FOR THE UNDOPED SYSTEM

In the central region of Fig. 2, e.g., for (U1V)/2,m
,(U13V)/2, all sites are doubly occupied in the stron
coupling limit. Nevertheless, for 2EG<U2V, the low-
energy states are highly degenerate. Well to the left of
thick vertical line, eacha andb orbital is singly occupied, so
that there are effectively two spin-1/2 degrees of freedom
each unit cell. In the infinite coupling limit these are com
pletely free, but they will interact due to virtual hoppin
processes whenH8 ~andH9) is included. Far to the right of
the vertical line, the unique low-energy state consists o
doubly occupiedb orbital in each unit cell, and hopping i
unimportant. As the vertical line is approached from eith
side, virtual hopping processes can induce interactions
volving all five low-energy states.

A. Bosonic t-J model

In this subsection, we develop an effective model for t
interesting region near the vertical line. In this region, it
necessary and sufficient to truncate the Hilbert space to
the five low-energy states in each unit cell~although higher-
energy states must be kept in virtual processes!. The physics
is amusingly similar to a sort of generalized bosonict-J
model. On the left-hand side of the thick vertical line, ea
unit cell is occupied by two spins. At second order inH8,
these interact via effective exchange interactions,

Heff
s 5(̂

i j &
J~SW ia•SW ja1SW ib•SW jb!2(

i
JHSW ia•SW ib , ~8!

whereJ5t2/(V12EG). This exchange constant may be o
tained by perturbatively computing the energy difference
tween singlet and triplet states on a bond to second orde
the hoppings, and neglecting the deviation from the verti
line ~i.e., settingU52EG1V) in the denominators. The lat
ter approximation is valid provideduU2V22EGu!V. Well
to the left of the vertical line~in particular whenU2V
22EG@t), no doubly occupiedb states are present, and E
~8! is a complete model. It describes two ferromagnetica
bulk coupled Heisenberg spin-1/2 antiferromagnets. On a
percubic lattice~square or cubic in two or three dimension
respectively!, one expects long-range antiferromagnetic
der of spins on the same orbital sublattice, witha andb spins
aligned parallel at each site.

As the vertical line is approached, the energy cost o
doubly occupiedb orbital is reduced toward zero, and the
must be introduced into the lattice. Unit cells with both ele
trons in theb orbital act as ‘‘holes,’’ having no associate
local moment. Unlike the usualt-J model holes, they are
however, bosonic and neutral~relative to the magnetic state

c-
t
an
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they represent the removal of ana electron and replacemen
with a b electron!. Hole hopping occurs at second order int,

Heff
h 52mh(

i
hi

†hi1th(̂
i j &

~hi
†hj1hj

†hi !Pi j

1(̂
i j &

Vhhhi
†hihj

†hj , ~9!

wheremh52EG2U1V1t2/(2V)2t2/@2(2EG1V)# is the
hole ‘‘chemical potential,’’ th5t2/(2V), Vhh5t2/V

2 1
2 t2/(2EG1V), and Pi j 5( 3

2 12SW ia•SW ja)( 3
2 12SW ib•SW jb) is

the operator which interchanges the spin states at sitesi and
j. As in a conventional doped antiferromagnet, the prese
of thePi j operator in the hopping term leads to difficulties
hole motion in an antiferromagnetic spin background. Na
successive hopping of a single hole in an antiferromagn
state results in a generalization of the well-known ‘‘string
of misaligned spins in its wake.

Introducing thea-b hopping term@Eq. ~7!# affects the
system in several ways. There are renormalizations of
coupling constants in Eqs.~9! and ~8!, of order tab

2 /V,
tab
2 /(V14EG). Since, by assumption,tab!t, these are neg

ligible. New exchange couplings are also generated betw
next-nearest-neighbora and b spins, which were not previ
ously present. Because they are small, unfrustrating,
break no additional symmetries, these are also negligi
The most important effect is to introduce a term which v
latesh-particle conservation:

Heff
nnn5 (

^^ i j &&
y@hihj~OW a; i j

t†
•OW b; i j

t† 1Oa; i j
s† Ob; i j

s† !1H.c.#.

~10!

HereOW a/b; i j
t† creates a triplet of spin-1 states ofa/b particles

on the pair of sitesi j , Oa/b; i j
s† creates a singlet ofa/b par-

ticles on this pair, and the ‘‘fugacity’’y52tab
2 /V. Note

that although Eq.~10! violates conservation of the numbe
of ‘‘holes,’’ it creates and annihilates them only in pair
There thus remains a conserved Ising charge or pa
@5( ihi

†hi (mod 2)#, signifying whether the number of hole
is even or odd. This parity can be traced back to fact that
two orbitals on each site transform differently under spa
reflections.

B. Pseudospin description

To understand the behavior of this model, we now int
duce a useful reformulation. Formally, the five possib
states on each site can be viewed as different quant
values of a generalized pseudospin, and the above te
then take the form of nearest-neighbor interactions
tween these spins. In particular, we define five states
site via u1&5a↑

†b↑
†uv&, u2&5a↑

†b↓
†uv&, u3&5a↓

†b↑
†uv&, u4&

5a↓
†b↓

†uv&, and u5&5b↑
†b↓

†uv&. The Hamiltonian can be re
written in terms of 535 spin matrices T mn, where

^m8uT mnun8&5dmm8dnn8. Neglecting for the moment the
hole-non-conserving terms in Eq.~10!, Heff

h 5Heff
ps1const ,

where
ce
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e
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Heff
ps5(̂

i j &

J'

2 (
m51

4

~T i
m5T j

5m1 i↔ j !1JzT i
zT j

z2H(
i

T i
z ,

~11!

andT i
z5((m51

4 T i
mm2T i

55)/2. The generalized exchange co
stants J'52th , Jz5Vhh , and Zeeman fieldH5dVhh/2
2mh .

This form of the Hamiltonian exposes a strong similar
to the spin-1/2XXZ model in a Zeeman field. In particula
the ‘‘boson hopping’’J' is analogous to an antiferromag
netic in-plane exchange (Si

1Sj
2 terms!, spin-boson interac-

tion J z to an antiferromagnetic Ising exchange, andH to a
z-axis field. ForJ'@Jz andH not too large, one expects th
analog of cantedXY antiferromagnetism, while forJz
@J' , one instead expectsz-axis Ising antiferromagnetism
up to a threshold value ofuHu. For large fields, uHu
@J' ,Jz , one ultimately expects fully polarized state
which correspond to the Mott and band insulators forH
.0 andH,0, respectively.

Surprisingly,Heff
ps displays an enormous SU~4! invariance

underT5m→(n51
4 UmnT5n andTm5→(n51

4 Umn* Tn5, whereU
is an SU~4! matrix. SU~4! symmetry is expected to be a goo
approximation over a range of energies, because in
physical limitsV!U;EG andJH!J!J' ,Jz ,H. Thus we
will take the approach of first solving the SU~4! invariant
model, and considering successively the exchangesJ and
JH , which reduce the symmetry ofH eff to SU~2!3SU~2!
~independentphysicalspin rotations of thea andb moments!
and SU~2!3U~1!, respectively.

Finally, we consider the effects of the hole-pair creati
and annihilation terms in Eq.~10!, which can also be tran
scribed into the pseudo-spin language. One findsH eff

ps

→Heff
ps1Heff

I , where

Heff
I 5 (

Š^ i j &‹
JI@T i

25T j
251T i

35T j
352T i

15T j
452T i

45T j
151T i

52T j
52

1T i
53T j

532T i
51T j

542T i
54T j

51#. ~12!

The couplingJI}y. While it is perhaps not completely trans
parent in this notation@a better notation for this term will be
introduced in Sec. III C—see Eq.~19!#, the effect ofHeff

I is to
further break the SU~2!3U~1! symmetry down to SU~2!
3Z2. TheZ2 invariance is the remnant of the physical par
symmetry discussed in Sec. III A.

C. Mean-field theory and undoped phase diagram

We expect that a simple Weiss mean-field theory~MFT!
gives qualitatively correct results for the stoichiomet
phase diagram, as it does for the ordinaryXXZ1Zeeman
model.16 NeglectingHeff

s , the MFT consists of replacing

Ti
m5Tj

5m→^Ti
m5&Tj

5m1Ti
m5^Tj

5m&2^Ti
m5&^Tj

5m&, ~13!

for each bondi andj on the lattice, and similarly for theTi
zTj

z

interaction. With this replacement, the Hamiltonian d
couples on different lattice sites, and the problem reduce
solving the appropriate single-site problems se
consistently. As an antiferromagnetic solution is expect
this amounts to equations for the~eight-component! trans-
verse staggered magnetization, defined by^Ti

m5&5
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(21)i@n'
2m211in'

2m#, and the uniform and staggeredz-axis

magnetizations, defined by^Ti
z&5mz1(21)inz . Because of

SU~4! symmetry, all orientations ofn'
k are degenerate, and

is sufficient to assumen'
k [n'dk1. In this subspace, the

equations of MFT becomeidentical to those of the conven
tional spin-1/2 XXZ antiferromagnet in a Zeeman field
These equations were solved in Ref. 17. The resulting ph
diagram is shown in Fig. 4.

SinceJ'.Jz , we expect a transverse pseudospin po
ization, ^T m5&Þ0, provided uHu,Hc5dJ' . Remarkably,
the transverse components of the pseudospin operato
exactly the excitonic order parameters. In particular, straig
forward algebra showsT m55(2D↑↓ ,D↑↑ ,2D↓↓ ,D↓↑).
Thus forJ'.Jz , MFT predicts an excitonic insulator.

We now turn to the evolution of the ground state in th
regime on introducing the symmetry-breaking terms inHeff

s .
In their absence, the excitonic order parameter can ‘‘poi
in any direction which is equivalent under the broken SU~4!
symmetry. Within MFT, this amounts to complete freedo
to choose the four complex components ofDab , subject to
the constraint TrD†D5 1

4 (12H 2/H c
2)[D0

2/2. In term of
singlet and triplet components defined by Eq.~2!, this con-
straint simply impliesuDsu21DW t* •DW t5D0

2 . The perturbations
in Heff

s can be viewed as ‘‘anisotropies’’ favoring subman
folds within this space.

To clarify the nature of the anisotropy terms, it is helpf
to work with the mean-field wave function,uC0&
5) iE i

†uBI&, whereuBI&5) ibi↑
† bi↓uv& is the noninteracting

band-insulating state, and

E i
†5cS 11~21! i ucu22(

ab
Dab* aia

† bibD ~14!

is a local ‘‘exciton creation operator.’’ Hereucu25(1
2H/Hc)/2. It is now straightforward to evaluate the expe
tation value ofHeff

s in the mean-field ground state. Up to
constant for fixed TrD†D, on a hypercubic lattice one find
the bulk energy density

FIG. 4. Mean-field phase diagram of the fully SU~4!-invariant
pseudospin model. A large pseudo-Zeeman field~which scales lin-
early with the orbital splittingEG) stabilizes either the Mott insu
lating ~MI ! or band insulating~BI! state, depending upon its sign
For ‘‘in-plane’’ anisotropy (J'.Jz), the intervening phase is a
excitonic insulator~EI!. In the opposite limit~‘‘Ising’’ anisotropy!
it consists of a micro-phase-separated state with a checkerb
pattern of alternating band and Mott insulating configurations at
lattice scale. In obtaining the pseudospin model from the stro
coupling limit of Eqs.~4!–~6!, one finds in-plane anisotropy, an
the intermediate state is expected to be excitonically ordered.
se

r-

are
t-

’’

l

-

eb[L2d^Heff
s &52J̃ Tr~D†D!21 J̃HuTr Du2, ~15!

where J̃5da2dJ/2ucu4 and J̃H5a2dJH/2ucu2. The above
terms are essentially completely determined by the SU~2!
3SU~2! and SU~2!3U~1! symmetries. To proceed, we em
ploy two identities derivable from Eq.~2!:

Tr~D†D!25
1

8
~Ds* Ds1DW t* •DW t!

2

1
1

8
uDs* DW t1DsDW t* 2 iDW t`DW t* u2, ~16!

Tr D5Ds. ~17!

By assumption,J@JH , so that the first term in Eq.~15!
creates the dominant splitting of the SU~4! ground-state de-
generacy. The low-energy submanifold thus consists of or
parameters which minimize Tr(D†D)2. Equation~16! then
implies Ds* DW t1DsDW t* 2 iDW t`DW t* 50 @note that the first term
in Eq. ~16! is constant and equal toD0

2/8#. The physical con-
tent of this condition is made clear by calculating the me
spin polarization on thea site using the mean-field wav
function in Eq.~14!:

sWa5^SW a&5
1

4ucu2 ~ iDW t`DW t* 1Ds* DW t1DsDW t* !. ~18!

Thus the influence of the exchange couplingJ is to favor
states withsWa50.

This condition still allows a fairly large range of state
the simplest of which are pure singlet (uDsu5D0 , DW t50)
and pure collinear triplet (Ds50, DW tÞ0, DW t`DW t* 50) order-
ings. The additional effect of the Hunds-rule ferromagne
coupling JH is to introduce a small extra ‘‘mass’’ for the
singlet order parameter, favoring a pure triplet state.

The phaseof the triplet order parameter is determined
the ‘‘Ising anisotropy’’ terms in Eq.~12!. To see this, we
rewrite T m5 andT 5m directly in terms ofD. One finds

Heff
I 5 (

^^ i j &&
JI Tr~D iD j1D j

†D i
†!. ~19!

Note that Eq.~19! explicitly breaks the U~1! symmetry of
phase rotations ofD, down to the Ising invarianceD→2D.
If Heff

I is considered a weak perturbation, it can be treated
simply evaluating its expectation value in the mean-fie
ground state@Eq. ~14!#, giving ^D i&5^D j&5D, sincei and j

are next-nearest neighbors. Using TrD25(Ds
21DW t•DW t)/2,

one finds~sinceJ I.0) that Eq.~19! favors animaginary

triplet order parameterDW t52DW t* . This isdifferent from the
weak-coupling treatment of Ref. 6, in which areal triplet
order parameter was found to be preferred.

Unlike in superconductivity, the phase of the exciton
order parameter has physical significance, as discusse
Halperin and Rice.3 In particular, it is straightforward to
show that areal DW t order parameter corresponds to a nonz
average spin density within the unit cell of the crystal, wh
for DW t imaginary, the spin density is zero but there are
stead nonzero spincurrents. The imaginary triplet state ob
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tained here is therefore a sort of spin ‘‘flux phase’’ wi
nonzero spin currents. See Sec. V for a more in-depth
cussion.

Apart from this difference, the strong-coupling results
this section are in very close agreement with the we
coupling results of Ref. 6. Indeed, not too much significan
should be attached to the difference in phase of the o
parameters, as indeed the models are in any case not
pletely identical. In fact, the detailed correspondence of
sults up to this point strongly argues for a continuous smo
interpolation~‘‘adiabatic continuity’’! of most physical prop-
erties of such systems as the overall interaction strengt
increased from small to large values.

Finally, we comment on the modifications to the SU~4!-
invariant phase diagram in the presence of the symme
breaking terms in Eqs.~8! and ~10!. As argued above, thes
favor an imaginary triplet state whenH50. Inside the Mott
insulator, these terms stabilize an antiferromagnetically
dered magnetic state. On approaching the Mott insula
boundary, therefore, we expect the emergence of magn
ordering. This implies the existence of at least one additio
phase boundary separating the triplet EI~which has no non-
zero spin density! from a magnetically ordered EI with non
zero average spin density, somewhere inside the regio
which the EI phase occurs in the SU~4!-invariant model.

IV. DOPING

In this section, we consider the behavior as a low den
of electrons is added to the system. In the strong-coup
limit, this reduces to an effectivet-J-like model, in which the
Hilbert space is restricted to states in which all sites~unit
cells! are either doubly~corresponding to the excitonic pse
dospins modeled above! or triply occupied, the latter con
taining onea and twob electrons. The system is then go
erned by an effective HamiltonianHdope5Heff

s 1Heff
ps

1P̃H8P̃, whereP̃ projects onto this restricted Hilbert spac
As many years of work on high-Tc superconductivity has

taught us, the problem of doping a correlated~Mott! insula-
tor, particularly with spin~and here pseudospin! ordering, is
extremely complex and difficult. Here, we will adopt th
absolute simplest approach extending the above MFT to
low-electron-density limit. We assume, as suggested by
weak-coupling analysis, that the essential ingredient for
citonic ferromagnetism is the approximate enhanced@in this
case SU~4!# symmetry of the effective Hamiltonian. In con
sidering the doped state, then, it is crucial to determine
what way the added electrons affect the splitting of the
generate SU~4! ground-state manifold.

A. Variational treatment for a single electron

In the strong-coupling limit, the majority of the energy
an added electron is kinetic, sincet@J,J';t2/V, etc.. Just
as in the simpler but much studiedt –J model for the cu-
prates, coherent motion of an added electron, howeve
greatly hindered by~pseudo!-spin ordering of the insulating
background. Moreover, coherent motion is possible to
varying degree depending upon the precise nature of
background. We first consider this effect for a single add
electron using the variational method. A natural variatio
ansatz is
s-
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uC1&5(
ia

c iaaia
† )

j Þ i
E j

†uBI&, ~20!

whereboth the doped electron’s wave functionc ia and the
excitonic order parameterDab ~implicit in E j

†) are consid-
ered as variational parameters. For fixed TrD†D, the energy
depends only uponJ, JH , andt. In particular, one finds

ev5L2d^C1uHdopeuC1&5eb@122d~a0 /L !d#1L2dee ,
~21!

wherea0 is the lattice spacing,

ee5t(̂
i j &

c ia* T̂abc j b , ~22!

and the matrixT̂ab5ucu2dab1ucu22(DD†)ab . Physically,
we identify the first term in Eq.~21! as the bulk energy
density, reduced by the presence of a single doped elec
@occupying the volume fraction (a/L)d#. In the second term
the quantityee is then readily interpreted as the energy of t
added electron. Equation~22! is then a hopping Hamiltonian
for this electron. In a polarized excitonic background, th
hopping is in general nondiagonal in spin. In terms of sing
and triplet components,

T̂5
~11ucu2!

2
1sWa•sW * , ~23!

wheresWa , the mean spin polarization on thea site, is given
by Eq. ~18!. Minimizing Eq. ~22! in the space of normalized
wave functions c ia gives the tight-binding Schro¨dinger
equation,

t(̂
j i &

(
b

T̂abc j b5eec ia , ~24!

where the angular brackets indicate a sum over the nea
neighborsj of site i. The single-particle eigenstates of th
equation are plane waves with spins polarized parallel
antiparallel tosWa , with eigenvalues

ee6~k!52tF11ucu2

2
6usWauG(

i 51

d

@coskia0#, ~25!

where a0 is the lattice spacing. The location of th
minimum-energy electronic excitations depends crucially
the magnitude ofsWa , and henceH. When H.Hc/3, elec-
trons with spin parallel and antiparallel tosWa have minimum
energy at different points in momentum space. Such la
values ofH correspond to strongly overlapping bands, clo
to the boundary between the Mott and excitonic insulato
For simplicity, we will specialize to the case whenusWau,(1
1ucu2)/2, which occurs forH,Hc/3. In this case, the mini-
mal energy single-particle energy excitations for both s
orientations have momentumk5(p, . . . ,p). Furthermore,
the optimal spin orientation is parallel tosWa . Such an elec-
tron takes advantage of the ‘‘Zeeman’’ energy due to
exchange field~proportional tosWa) generated by the ‘‘core’’
spins~i.e., the spins of the two electrons per unit cell pres
in the insulator!.
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In the undoped system, however,sWa50, due to the anisot-
ropy in Eq.~15!. We therefore expect that the optimal ord
parameter in the doped system is determined by a com
tion between these two terms. With some algebra, it
straightforward to verify that, due to the Hunds-rule te
JH , the complex pure triplet state~i.e., with DW t`DW t* Þ0, but
Ds50) is always more energetically favorable than a sing
triplet coexistence~with ReDs* DW tÞ0).18 Without loss of
generality, it is thus convenient to choose a spin quantiza
axis, letting

DW t5D0~cosu x̂1 i sinu ŷ!. ~26!

One then findssWa52(D0
2/2ucu2)sin(2u)ẑ. In any such state

sWb5sWa , so that the core spins also contribute to the fer
magnetic moment.

B. Free Fermi gas approximation

It remains to determine the optimal angleu. To proceed,
we need to extend Eq.~21! to a small but nonzerodensityof
doped electrons. At low densities, it seems natural to neg
interactions between doped electrons, and use the sim
possiblefree Fermi gasestimate for the electronic dopan
energy. In particular, we approximate the energy of the s
tem as the sum of two contributions: a ‘‘bulk’’ contributio
from the undoped unit cells containing two electrons an
spatially uniform order parameterDab , and a ‘‘dopant’’
contribution, approximated by the energy of a free Fermi
of electrons with dispersion given by Eq.~25!. For concrete-
ness, the detailed formulas are presented in the following
three spatial dimensions (d53). At low densities, only
single-particle states neark5p5(p,p,p) are occupied, so
it is convenient to expand around this point,k5p1q, yield-
ing the dispersion

ee6~q!522tF ~11ucu2!

2
6usWauG F32

q2a0
2

2 G2m̃. ~27!

Here we have reinstated a~shifted! chemical potentialm̃ to
control the density of doped electrons. It is both conveni
and physically helpful to work at fixed chemical potent
rather than fixed charge density, as this naturally allows
the possibility of phase separation. As is perhaps not surp
ing based on the results of weak-coupling analysis,6,7 we will
see that phase separation does indeed occur in a phys
interesting parameter range of the model~at least within this
approximation!.

Because we are interested in the energy density only
sofar as to determine the angleu, we neglect in the following
all terms independent ofu. Inserting Eq.~26! into Eq. ~15!
gives the bulk energy

eb5@3JD0
4/~8a0

3ucu4!#sin2 2u1const ~28!

~in three dimensions!. This must be added to the ground-sta
energy of the free Fermi gas of doped electrons. Simple
tedious algebraic calculations lead to the final expression
the total energy density of the system,
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dc
E~g,g!G , ~29!

where

ē5
3J~11ucu2!2

8a3
, ~30!

d5
D0

2

ucu2~11ucu2!
, ~31!

dc5S 5p2~11ucu2!

16A6

J

t D 2

, ~32!

g5sin 2u, ~33!

l511
m̃

3t~11ucu2!
, ~34!

g5l/d. ~35!

The functionE(g,g) is straightforwardly related to the en
ergy density of the three-dimensional free-electron gas i
Zeeman field. In general it depends not only ong andg, but
also ond. For simplicity, we will assumeudgu!1, which
holds near to the excitonic insulator-band insulator bou
ary, and is satisfied more generally in the interesting reg
of the phase diagram@whered is O(dc), sincedc!1 in the
strong-coupling limit J/t!1—see Fig. 5#. In this case,
E(g,g) becomes independent ofd. Its functional form is

E~g,g!5 (
z561

~g1zg!5/2Q~g1zg!, ~36!

FIG. 5. Free Fermi gas approximation of the zero-tempera
phase diagram. The abscissal/dc is the nondimensionalized chem
cal potential, and the ordinated/dc indicates the strength of exci
tonic ordering relative to superexchange interactions@see Eqs.
~29!–~35! for precise definitions#. The properties of the various
phases shown are listed in Table I. For largerl ~not shown!, both
excitonic ordering and ferromagnetism disappear, owing to the
duction of the amplitude ofD.
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whereQ(g) is the Heaviside step function. Equations~29!–
~36! give the energy density of the system as a function
chemical potentialm̃ ~throughg) and order parameter ang
u ~throughg). The optimal excitonic angleu is determined
by minimizinge(m̃,u) at fixedm̃. If m̃ andu are known, the
density of doped electronsx and itinerant magnetization den
sity mit are then given by the free-fermion results:

x5A 2

6p2a3 (
z561

~g1zg!3/2Q~g1zg!, ~37!

mit5
1

6A2p2a3
(

z561
z~g1zg!3/2Q~g1zg!. ~38!

Note that the system is doped~i.e., xÞ0) wheneverg1ugu
.0. One should also keep in mind that the full magneti
tion densitym5mit1mcore includes a contributionmcore5
2(D0

2/ucu2a3)sin(2u) from the core spins.
Equations~29!–~38! completely determine the state of th

system at zero-temperature as a function ofl and d. The
mathematical problem of minimizinge f is algebraically
quite tedious, and significant care must be taken to av
spurious local minima and saddle points. The results o
careful study are shown in Fig. 5. All the phases shown
excitonically ordered, but differ in dopingx, excitonic angle
u, and magnetizationm. The properties of each are summ
rized in Table I. In the strong-coupling limit, we expect~see
Sec. IV! d/dc@1, in which case there is a directfirst-order
transition from a paramagnetic excitonic insulator to a ful
polarized ferromagnetic metal~FMFP* ).

The phase boundaries in Fig. 5 variously indicate fi
~discontinuous! and second~discontinuous! order transitions.
All the vertical phase boundaries denote continuous tra
tions, while most of the transitions on curved phase bou
aries are discontinuous. The exceptions are
PPFM* -FPFM* boundary~which is everywhere second o
der! and the lower portion of the FPFM-FPFM* transition
line, which is continuous below the tricritical point indicate
in the figure.

Which portion of this phase diagram is most physica
significant? In the strong-coupling limit,dc!1, and it there-
fore seems reasonable to supposed/dc@1, so that the system
undergoes a simple and direct first-order transition from
undoped and paramagnetic EI to the fully-rotated ha
metallic ferromagnet, FPFM*. Coincident with this transitio

TABLE I. Phases of the doped EI in the free-Fermi-gas appro
mation. The five columns list the abbreviation, the presence or
sence of doping, the magnetic order, the degree of polarization,
the excitonic angle (u), respectively, for the six phases.

Phase Doped? Mag. Pol. Angle

EI no para n/a u50
PM yes para n/a u50
PFM yes ferro partial 0,u,p/4
FM yes ferro full 0,u,p/4
PFM* yes ferro partial u5p/4
FM* yes ferro full u5p/4
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is a jump in the electronic charge densityx, from zero in the
insulator to a nonzero value in the metal.

V. DISCUSSION

A. Symmetries and properties of excitonic insulators

The model introduced in Sec. II contains many possi
excitonically ordered states in various regions of its ph
diagram. In the undoped case, we have argued that a sim
paramagnetic collinear triplet ordering is most likely, while
state with DW t`DW t* Þ0 is obtained for electron densitie
slightly greater than two per unit cell. Nevertheless, if,
supposed, SU~4! symmetry is a good approximation, the
many other possible states must necessarily be nearly as
in energy. In the hope that the truth may ultimately be d
cided by experimental measurements, it seems useful to
lineate the physical characteristics of each of these phas

With the exception of the noncollinearly ordered stat
the analysis of the next few paragraphs is identical~though
in somewhat different notation! to that of Halperin and
Rice.3 First, let us consider the existence of a time-averag
magnetic moment. In the tight-binding formulation, the ele
tron field operator is expanded in terms of Wannier orbita

ca~r !5(
i

@fa~r2Ri !aia1fb~r2Ri !bia#, ~39!

wherefa/b(r ) is the Wannier function for thea/b orbital,
and we neglect the other~unoccupied! states. Consider nex
the spin-density operator. We will assume for simplic
~though this is not essential! that each Wannier function ha
support only within one unit cell. Equation~39! then leads to
a representation for the spin-density operatorSW :

2SW ~r !5c†sW c, ~40!

5ufa~r !u2^a†sW a&1ufb~r !u2^b†sW b&

1fa* ~r !fb~r !^a†sW b&1fb* ~r !fa~r !^b†sW a&. ~41!

To proceed, we choose both Wannier functions to bereal.
Thenfor the undoped case, the spin density can be rewritte
in terms ofsWa/b andDW t :

SW ~r !5ufa~r !u2sWa1ufb~r !u2sWb12fa~r !fb~r !ReDW t .
~42!

Further recall Eq.~18! and its analog forsWb :

sWa/b5
1

4ucu2 @ iDW t`DW t* 6~Ds* DW t1DsDW t* !#. ~43!

There are thus nonzero static local moments whene
ReDs* DW t , Im DW t`DW t* , or ReDW t are nonzero. In the simples

such states,DW t5uDW tuê, whereê is a real unit vector. In this
case, there is a spatially varying static moment within
unit cell oriented along theê axis. Thenet moment~inte-
grated over the unit cell! is, however, zero, unlessDW t`DW t*

Þ0, in which case the real and imaginary parts ofDW t are
both nonzero and not parallel. In addition to the net fer
magnetic polarization along ImDW t`DW t* , such states have

i-
b-
nd
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noncollinear static spin density in the unit cell. The net m
ment along these other directions remains zero. To see
such states sustain a net polarization, consider the partic
case given in Eq.~26!, with excitonic angleu. One can then
use Eq.~2! to rewrite the order-parameter matrix as

D5
D0

2
@~cosu1sinu!s11~cosu2sinu!s2#. ~44!

Inspection of the mean-field wave function@Eqs. ~14! and
~44!# immediately shows that the amplitude for up- a
down-spins are unequal, so long asu is not a multiple ofp.

Some confusion may arise in the reader with regard
time-reversal symmetry. It appears surprising to haveDW t and
iDW t`DW t* , the latter containing a cross product, both contr

uting to sWa/b . In fact, both terms transform like a spin und
time reversal. This is simplest to see in the path-integ
representation of the quantum system, in which the ferm
operators are replaced by time-dependent Grassman fi
aa→aa(t), aa

†→āa(t), and similarly forba ,ba
† . The Grass-

man fields then transform under time-reversal according

aa~ t !→sab
y āb~2t !, ~45!

āa~ t !→2sab
y ab~2t !, ~46!

ba~ t !→sab
y b̄b~2t !, ~47!

b̄a~ t !→2sab
y bb~2t !. ~48!

Note the important minus sign in the above transformati
which is possible becauseaa and āa (ba and b̄a) are inde-
pendent fields~not related by complex conjugation! in the
path integral. This reflects the antiunitary nature of tim
reversal symmetry. At any rate, Eqs.~1! and ~2! then imply
that

Ds→Ds* , ~49!

DW t→2DW t* ~50!

under time reversal. The combination of complex conju
tion and the minus sign forDW t imply that both terms in Eq.
~43! are odd under time reversal. Indeed, the necessary
sufficient conditions for broken time-reversal symmetry
Rê DW t&Þ0 and/or Im̂Ds&Þ0.

A perhaps surprising consequence of Eq.~41! is that ap-
parently if ReDs* DW tÞ0 but ImDW t`DW t* 50, there is no net
magnetization. In fact, this result applies only to the parti
lar undoped model considered here, and is a consequen
a special variety of particle-hole symmetry~which we denote
PH!. To make this explicit, define a hole creation opera
b̃a

†5sab
y bb . Then the electron number operator can be

written as

n5a†a1b†b521a†a2b̃†b̃. ~51!

In the undoped system, the mean number of electrons
unit cell is two, so that̂ a†a2b̃†b̃&50. Thus precisely at
-
hy
lar

o

-

l
n
lds

,

-

-

nd

-
of

r
-

er

this density, andonly at this density, we may entertain th
possibility of symmetry under the transformation PH:

aa→PHb̃a , b̃a→PHaa . ~52!

In the new variables, the excitonic order parameter beco
D5aa

†sab
y b̃b

† . ThusD→2DT ~here the superscriptT indi-
cates the matrix transpose! under PH. Also useful is the op
erator a†a2b†b5a†b1b̃†b̃22 ~proportional toT z in the
n52 subspace!, which is invariant under PH. ThusHeff

ps @see
Eq. ~11!# is PH invariant. Similarly, it is straightforward to
show that under PH, the two spin operators are exchang

SW a↔PHSW b . ~53!

Thus Heff
s is also PH invariant, as isHeff

I , as can be easily
shown. Thus the undoped Hamiltonian is invariant under P
Considering the order parameters, we find that

Ds→PHDs , ~54!

DW t→PH2DW t . ~55!

Thus the combination ReDs* DW t is odd under PH, and hence

cannot give rise to a total moment, sinceSW TOT is PH invari-
ant. ImDW t`DW t* , however, is PH invariant, and can hen
couple directly to a ferromagnetic moment.

It should be stressed that PHis not a microscopically
exact symmetry, even in the stoichiometric situation. It oc
curred in the above analysis only because of the arbitr
choice of equal hopping betweena and b orbitals, ta5tb
5t, in Eq.~6!. In general, one expectstaÞtb , which leads to
different antiferromagnetic exchange constants betweea
and b spins inHeff

s @Eq. ~8!#. Different exchange constant
destroy the invariance of the Hamiltonian under the int
change ofa andb spins@Eq. ~53!#, which is the effect of PH.
It is straightforward to show that, when this asymmetry
included in the microscopic Hamiltonian, states wi
ReDs* DW tÞ0 are also ferromagnetic. In addition, even in t
model with ta5tb , doping breaks the PH symmetry, an
gives rise to a ferromagnetic moment in the ReDs* DW tÞ0
state.

Considerations similar to those above Eq.~41! apply to
the electronic charge density (r), current density (IW) , and
spin current density (Jmn) operators. One finds

r~r !52eufa~r !u2na2eufb~r !u2nb22efa~r !fb~r !ReDs ,

IW~r !5
e

m
Im Ds@fa~r !¹W fb~r !2fb~r !¹W fa~r !#, ~56!

Jmn~r !5
1

2m
Im D t

m@fa~r !]nfb~r !2fb~r !]nfa~r !#.

In the final equation above,Jmn is the current density for spin
polarized along them axis propagating in then direction. For
completeness, the mean-field expressions for the numbera
andb particles are

na5^a†a&5ucu22 Tr D†D, ~57!
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nb5^b†b&522na . ~58!

From Eqs.~56!, we can read off the physical interpret
tion of the various other types of ordering. If ImDW tÞ0, there
is a spontaneousspin currentin the unit cell. This is neces
sarily the case for any state withDW t`DW t* Þ0, which, as dis-
cussed above, also exhibits noncollinear static moments.
simpler state withDW t5 i uD tuê hasonly the spin currents, and
is the magnetic analog of a ‘‘flux phase’’ in modern term
nology. Similarly, if the singlet order parameter has
imaginary part ImDsÞ0, there are nonzero charge curren
within the unit cell. This is exactly a flux phase. Finally,
real singlet order parameter,Ds5Ds* Þ0, gives rise to a
charge-densityr(r ) that breaks the point group symmetry
the crystal, sincefa(r )fb(r ) is not a scalar.

Another important characteristic of the phases with trip
ordering is a finite~transverse! uniform spin susceptibility.
This is a very general consequence of broken spin-rotatio
invariance. In the simplest collinear triplet states,D t

5D0eifê, whereê is a real vector. The elementary excit
tions of the symmetry-broken state can then be classi
only by their spin along the triplet axis,SW TOT•ê. The trans-
verse components ofSW TOT , however, do not commute with
DW t . An applied Zeeman field along one of these axes the
fore immediately acts to mix together the former ground a
excited states. It is fairly straightforward to demonstrate
this mechanism a constant transverse spin susceptibility
the collinearly ordered triplet states. For noncollinearly
dered triplets, we conjecture thatall components of the uni
form susceptibility are finite. This distinction is most like
primarily academic, as experimentally available samp
would presumably break up into domains with random o
entations ofDW t , thus effectively isotropizing the bulk sus
ceptibility. Very crude estimates for the magnitude ofx can
be obtained in both the strong- and weak-coupling limits
excitonically ordered states. In strong coupling, the susc
tibility can be computed by naive perturbation theory in t
mean-field ground state. In the optimal case (H50), in
which the excitonic ordering is maximal, one findsx
;mB /J' , whereJ';t2/V is the characteristic stiffness fo
excitonic ordering~see Sec. III!, andmB is the Bohr magne-
ton. In weak coupling, the susceptibility is approximate
equal to the free-electron value,x;D(eF)mB , whereD(eF)
is the density of states at the Fermi energy.

A puzzling aspect of the experimental data on t
hexaborides is the absence of a substantial gap in op
conductivity measurements in the undoped materials. In g
eral, the excitonically ordered insulators discussed hereare
expected to exhibit hard optical gaps@i.e., a complete ab-
sence of weight ins(v) at smallv# at low frequencies and
zero temperature, so this is an important point which suc
theory must contend with. Several possible physical sit
tions can, however, resolve this apparent discrepancy. In
weak- and intermediate-coupling limits, it is possible to s
tain a metallic state simultaneously with excitonic ord
This requires imperfectly nested Fermi surfaces—a deta
investigation of this possibility is underway. Even in th
strong-coupling limit, it is also possible that a gap exists,
is anomalously small. Indeed, in the present model, the
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tical gap can be estimated by considering the energy
required to transfer an electron from one unit cell to
neighbor. At the optimal conditions for excitonic orderin
one hasU52EG1V, and a straightforward calculation o
energies from Eq.~4! gives the optical gapDo'V. Thus one
expects at leastDo!U,EG . Note that in the strong-coupling
limit, there is no universal relation betweenDo and the ex-
citonic order parameter.

B. Relevance to the hexaborides

The models and discussions in this paper demonstrate
feasibility of a strong-coupling approach to excitonic orde
ing. A direct application of the results to the hexaborides
however, not appropriate, due to the simplified nature of
Hamiltonian discussed here. It is possible to generalize
tight-binding model discussed here to a ‘‘two-band’’ (p- and
d-orbital! Hamiltonian which more accurately models th
physics of these materials. This model contains the sign
cant ingredient of orbital degeneracy, and hence consider
additional richness. Such orbital degeneracy is the tig
binding analog of the valley degeneracy encountered
band-theoretic treatments. Themethodsof this paper, how-
ever, remain applicable in this case as well. A thorough tre
ment of this problem presents an attractive and challeng
theoretical opportunity.

It is reasonable to ask at this point whether there are
experimental consequences of the excitonic scenario w
are relatively model independent, and can therefore be fir
stated in advance of more accurate results? For this, we
to the discussion of Sec. V A focusing particularly on t
properties in the undoped material. The excitonic scena
postulates symmetry breaking even without doping, wh
distinguishes it from, e.g., low-density ferromagnetisma la
Wigner. All calculations so far appear to favor triplet orde
ing, which implies first aconstant (temperature independe
at low T) susceptibilityin the insulator. Second, triplet or
dering necessarily gives rise toeitherstatic spin moments o
static spin currents~or both! within the unit cell. Because the
latter are presumably difficult to observe, this is a less stro
condition. Third, because the triplet state breaks sp
rotational invariance, it implies the existence of two low
energy collective ‘‘magnon’’ modes~presumably dispersing
asv'vsuku at low energies!, which could be observable via
inelastic neutron or Raman scattering. Fourth, an excito
explanation for ferromagnetism upon doping requires t
the ‘‘pseudo-spin flip’’ phenomena occur, and hence~in this
sense! approximate SU~4! symmetry. This approximate sym
metry implies the existence of additional collective mod
with small excitation gaps.

It is natural to ask, given the above emphasis on the
doped state, whether the excitonic ferromagnet is itself tr
a distinct phase of matter separate from the more fam
~theoretically! Wigner ferromagnet? The answer depen
upon the extent to and manner in which the dopantions
influence the behavior of the electrons. In the models inv
tigated to date, the dopants influence the material only in
far as to donate extra charge carriers, providing no pertu
tion to thepotential felt by the electrons except to slightl
increase the neutralizing positive background charge. In
treatment, the lattice point-group symmetries are stric
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maintained, and the excitonic ferromagnet is indeed a
tinct state of matter: it exhibits more broken~point group!
symmetries than the Wigner ferromagnet. In reality, the d
ant ions most likely distribute randomly throughout the cry
tal, and thereby perturb the potential experienced by the e
trons. This random potential explicitly breaks the latti
invariances, and washes out this sharp distinction betw
the excitonic and Wigner ferromagnets.

Whether this effect is of practical importance is uncle
The largeincreaseof conductivity upon doping suggests th
the electrons are not strongly scattered by the dopant ion
any case, the physics at a low electron density is quite su
In particular, the environment around a nearly isolated d
ant atom retains a large fraction of the symmetries of
pure lattice~e.g., a lanthanum dopant replacing strontiu
preserves cubic point-group symmetries around the lan
num ion!. Because electrons interact with only one impur
at a time at low densities, the symmetry of the local enviro
ment is expected to improve the distinction between Wig
and excitonic ferromagnets.
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Clearly, further predictions are possible within more sp
cific models. Several authors6,7 recently pointed out the like-
lihood of phase separation at low electron densities. T
occurs naturally in the pseudo-spin-flip picture, but beca
it has already been discussed, we will not dwell on it he
Probably most importantly, any excitonically ordered sta
by definition breaks the point-group symmetry of the lattic
This symmetry breaking is directly observable, but unfor
nately depends in detail on the way it occurs. In particu
many of the triplet states that appear to be favored have
obvious order parameters, so that more work needs to
done to ascertain the appropriate experimental probes.
ther modeling using the strong coupling approach promi
to help resolve these and other issues.
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