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Excitonic order at strong coupling: Pseudospin, doping, and ferromagnetism
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A tight-binding model is introduced to describe the strong interaction limit of excitonic ordering. At sto-
ichiometry, the model reduces in the strong-coupling limit to a pseudospin model with approxir@ate U
symmetry. Excitonic order appears in the pseudospin model as in-plane pseudomagnetisid) Smhietry
unifies all possible singlet and triplet order parameters describing such states. Superexchange, Hunds-rule
coupling, and other perturbations act as anisotropies splitting ¢ tdanifold, ultimately stabilizing a
paramagnetic triplet state. The tendency to ferromagnetism with dopingserved experimentally in the
hexaboridesis explained as a spin-flip transition to a different orientation of ttié) drder parameter. The
physical mechanism favoring such a reorientation is the enhanced cohéieddeence lower kinetic energy
of the doped electrons in a ferromagnetic background relative to the paramagnet. A discussion of the physical
meaning of various excitonic states and their experimental consequences is also provided.

[. INTRODUCTION hexaborides, as these materials are most likely best described
by an intermediate-coupling model. Nevertheless, many use-
The unexpected discovery of high-itinerant ferromag- ful insights are gained from this complementary limit. As
netism in doped hexaboridefias reignited interest in the usual, the principal assumption of the strong-coupling limit
problem of excitonic ordering near the semiconductor-metals the dominance of potential energy over kinetic energy.
transition?® Excitonically ordered states are characterized byThis is achieved concretely using a tight-binding mddele
an off-diagonal order parameter describing pairing betweefgs.(4)—(7), in Sec. I, in which the conduction and valence
conduction electrons and valence holes. Early theoreticdtands of the conventional continuum theories are replaced
work by Volkov et al* anticipated the emergence of ferro- by localizeda andb orbitals, respectively. The analog of the
magnetism on doping such an excitonic state. These authok&nd gap in the continuum model is the level splittieg
considered the limit of nearly nested overlapping conductior= E,—E,>0. The order parameter characterizing excitonic
and valence bands witlveakrepulsive electron-electron in- ordering is then a matrix in spin space,
teractions. In this limit, the problem can be approximately
cast into a form nearly identical to BCS theory, and studied Aa,g:albﬁ, Q)
using the techniques of mean-field theory. Although this
work (and some subsequent recent stwlissiffered from whereaz creates an electron with spw=1,| in thea or-
the important physical mistake of neglecting the instability tobital, andb, annihilates an electron with spi@ in the b
phase separation, ferromagnetism nevertheless remains a @gebital. Excitonically ordered states thus have some partial
neric feature in a corrected treatmé&t. occupation of the nominally excitea states, as a result of
While the appearance of ferromagnetism in the weakCoulombic repulsion. In general ,; is a proper order pa-
coupling limit is encouraging, it is far from a conclusive and rameter(i.e., one which characterizes a spontaneously bro-
complete theoretical explanation for the experiments. Firstken symmetryif the a andb orbitals have different symme-
Coulomb interactions in the hexaborides are not particularlytries. In this paper, we consider a “minimal model” with
weak, and most likely are comparable to the Fermi energyhis property, comprised of oreeand oneb orbital per unit
and band overlap. Second, the above explanation appearsdell—see Fig. 1. This mimics the situation in the
hinge on the first-order nature of the excitonic to normalhexaborides, for which the conduction and valence states
(E-N) transition in the BCS limit. While this feature, math- also transform as different representations of the cubic point
ematically analogous to the first-order transition to the norgroup!! Because of complications arising from orbital de-
mal state due to pair breaking by an external Zeeman field igeneracy, however, the appropriate representations for the
a superconductdt} is present in the nested mean-field limit, hexaborides are three dimensional rather than scalar. We de-
there do not appear to be any general theoretical grounder the possible complications arising from these additional
mandating this behavior more generally. Moreover, the unidegrees of freedom to a future investigation.
versality of the experimental results, now observed in a large As for the more familiar Hubbard modésee, e.g. Ref.
number of different compounds (€alaBs BaBs, 12), the problem simplifies somewhat in the strong-coupling
Ca,_,CeBg, SrB;, etc),’? argues for the robustness of the limit. Considering first the undoped systethalf-filled, or
phenomenon. two electrons per unit cellwe obtain a quantum pseudospin
To determine whether excitonic ferromagnetism is indeednodel[Egs.(8)—(12), Sec. Ill]. Within this model, the exci-
more general than its weak-coupling theoretical basis, herwnic insulator(El) appears as an intermediate state separat-
we consider the completely oppos#izong-couplingegime.  ing not a metal and a semiconductor butlatt insulatorand
This is not expected to be directly applicable to thea semiconductofor band insulator In some respects, the
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is nearly free, and fixed only by weak “anisotropy” terms.
In the undoped material, these anisotropies favor a simple
paramagnetic triplet state. Doping introduces additional ex-
change energy contributions that modify the anisotropy,
causingA,; to “flip” into a different orientation with a
ferromagnetic moment. In the present model, the excitonic

order in the ferromagnet is of non-collinear triplet type, in

which

A=0, ANAF+0. (3)
As shown in Sec. V, in addition to ferromagnetic magneti-
zation, this state has additional spatially-varying local static

moments and spin currents transverse to the axis of net mag-
FIG. 1. Imaginative illustration of a model for which the tight- N€tization. The transition to this state from the paramagnet is
binding description employed phenomenologically here directly apgenerally first order, and therefore coincides with a jump in
plies. Red circles and blue plus green crosses represend d,, ~ the electronic density. Since experiments are performed at
orbitals, respectively. fixed charge densitydictated by the concentration of dopant
ions), the intermediate “forbidden” range of dopings can be
behavior is argued to be quite similar to that of a quantumfccommodated only by phase separation. With long-range
spin-1/2 X XZ antiferromagnet in a magnetic field, with ex- Coulomb interactions included, macroscopic phase separa-
citonic ordering analogous tXY antiferromagnetism. The tion is impossible, and charge domain formation is expected,
“spins” of the model, however, can take dive distinct  as already pointed out in Refs. 6 and 7.
states per site: one singlet state with both electrons in the The detaileddemonstration of this behavior with doping
lower-energyb orbital, and four different spin states with is nontrivial. As for many other strongly correlated systems,
onea electron and ond electron. This is in contrast to the the problem of doping is much more difficult than that of the
two states of a single spin-1/2 particle. stoichiometric Mott insulator. Indeed, as the EIl state lies
In the strong-coupling limit, this large Hilbert space is intermediate between band and Mott insulators, doping the
“unified” by several approximate symmetries valid at dif- El is a sort of interpolation between doping a conventional
ferent energy scales. At the largest energy scales this is d¥and insulator and doping an antiferromagnetic insulator.
enormous S(#) group, corresponding to arbitrary complex The latter problem is of course at the crux of the physics of
rotations of the four components df,;. The approximate high-temperature superconductivity, so that perhaps the ex-
SU4) symmetry fully unifies all possible excitonic states, perimental and theoretical insights gained in the hexaborides
including singlet, triplet, and singlet-triplet coexistences.will be more generally helpful. At any rate, doping the El
These are described by the general decomposition can be shown by very simple arguments to favor ferromag-
netism in strong coupling. Essentially, the physics of this
1 .o behavior is similar to the “Nagaoka effect” in a doped
A= (AT+Apa%), (2)  antiferromagnet—ferromagnetic alignment of the excitonic
order parameters allows for more coherent propagation of the

whereA andA, are the singlet and triplet order parameters,doped electrons, and hence a lowering of their kinetic en-
and 7 and & are the 2¢2 unit and Pauli matrices in Spin ergy. This mechanism is actualstrongerin the El than in

space, respectively. A system with approximate(&Un- the antiferromagnet, because of the globaherenceof the
pace, b Y. y PP elxcitonic condensate, and the near degenefdag to ap-

vana.nce cont-ams- the germ of ferrgmagnetlsm, smceﬁsever%roximate SW) symmetry of ferromagnetic and paramag-
possible excitonic statesthose with nonzero REAF  petic states. To provide a concrete demonstration of these
and/or ImA//AAY) give rise to net exchange fields, and ideas, the strong-coupling zero-temperature phase diagram of
hence a magnetic moment. 8 symmetry implies that the model is calculated in this paper using a “free Fermi
these states are low in energy. At intermediate energies thgas” approximation. This approximation captures the most
SU(4) symmetry reduces to an $2)X SU(2) invariance, importantsingle quasiparticlgphysics of electronic propaga-
which reflects separate spin rotations of th@nd b elec- tion in an excitonically ordered background, but neglects in-
trons. The latter is a symmetry of the conventional con-teractions between these quasiparticles. For simplicity, we
tinuum models of EI's, and transforms the order parameter iralso assume fixed amplitudélr ATA = A3/2 of the excitonic
a “chiral” manner: A—>UIAUR, whereU, and Ui are  order parameter. The latter assumption is valid for weak dop-
SU(2) matrices. Finally, further weak interactions reduce thising, x<1, in which the orientation of the ordering is of
to a simple SW2)XZ, symmetry at the(very) lowest paramount importance. Putting together the results of this
energies. calculation and the stoichiometric behavior, we arrive at the
These symmetry considerations underly the simple physipartial phase diagram in Fig. 2. This is in agreement with the
cal mechanism for ferromagnetism elucidated Hér&he general expectations stated above. It should be stressed,
dominant tendency imposed by Coulomb interactions is tdiowever, that this analysis of doping is far from exhaustive.
excitonic ordering. With approximate $4 symmetry, how- More detailed investigations of both the weak- and strong-
ever, the “orientation”(form of A, ;) of the order parameter coupling limits are currently underway.
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Labels will be suppressed and implicit wherever clarity al-
lows. The parametergg,u,U,V describe the “band gap”
(orbital energy differendechemical potential, on-site “Hub-

////////////// |

é A crucial feature ofH, is the absence of direct hopping
between thea and b orbitals within the unit cell. For exci-
EI tonic ordering to be well defined, it is necessary at a mini-
“L mum that thea and b states be distinguished by a discrete
E symmetry operation, e.g., parity. When this is the case, direct
G hopping between these orbitals is prohibited. It may be help-

FIG. 2. Partial phase diagram of the strong-coupling model as 44/ t0 imagine an artificial situation in which tha and b
function of Eg (half the bare splitting betweemandb orbitalg, and ~ Orbitals represens and d,, orbitals on a single site of a
w, the chemical potential. The shaded region is not analyzed in thi§quare latticésee Fig. 1
paper. Thick lines indicate the boundary between the undoped re- In this situation,a andb orbitals are orthogonal both on
gion below(with two electrons per unit cdlland the doped region the same site and on nearest-neighbor sites. An ovéslap
above (with more than two electrons per unit gellThe AP and  possible, though for next-nearest-neighbor pairs, i.e., on a
AF® phases are antiferromagnetic Mott insulators with two anddiagonal. In general, an exchange interacti@allowed by
three electrons per unit cell, respectively. The Bl state is the bandymmetry, and takes the form
insulator. Intermediate between the Bl and?Afhases are the ex-
citonic insulator(El) and an insulator with coexisting excitonic and
Ned order (EI/AF). The FM, FM¢, PFM, and PFM phases are alll S o
ferromagnetic metalésee Table | for the differences between these Hi= _‘]Hzi Sia*Sib» ®)
stateg, while PM indicates a paramagnetic metallic phase. All the
metallic states above exhibit excitonic order.

>
"ﬂw

whereS;,=taloa; andS,=1b/ab;. Here and in the fol-

nlowing, the Pauli matrices act in the spin space. On physi-
cal grounds, a ferromagnetic exchandg ¥ 0) is most ap-

X > ) T - propriate due to Hund'’s rule effects for orthogonal orbitals.
dered states, and consider the limit of infinite interactiong pedagogical purposes, we may wish to consider instead

ts;rengtz. ;I'_he bullk of(’;hfe pi’iper icto?t:_itlne_dtln S?.C' III,]:/vherqhe opposite antiferromagnetic sign for this exchange. From
the model IS analyzed for farge but inite Interactions, 10CUSy, o yiseyssion in Sec. |, it is clear that an essential ingredient
ing on the stoichiometric situation with two valence elec-

i it cell. For this elect density th del i for excitonic ferromagnetism is the near degeneracy of sin-
rons per unit cell. or this electron densily the mode ISglet and triplet states. To build this into the strong-coupling

insulating, but can sustain excitonic and other types of Orde_rr'nodel thus requires small, . For the majority of the paper,

ing. The properties of the model with doping are discussed Bherefore, we will neglecd,, or treat it as a small perturba-

Sec. IV. We conclude in Sec. V with a clarifying discussion,[ion
delineating the physical properties of various possible exci-

tonic insulators, and the relation of the results of this paper to
the hexaborides. B. Infinite interaction limit

The analysis of the strong-coupling limit begins by first
considering the on-site HamiltoniaA g,.=Hy+H; in the
A. “On-site” terms absence of electron hopping between adjacent unit cells. This
may be thought of as the analog of the=c analysis of an

We consider a minimal model capable of exhibiting exci-~_ " . .
tonic order, which contains two orbitals per unit cell, so as toordlnary Hubbard model. In this case, the occupation of each

give rise to two bands in a noninteracting linfthe actual gtrgita:\tlff)r\?vzfrg?de%lljj?r?:rj;:eguzgsedﬁ?ndj\]/izta;ens dC:tn be
situation in the hexaborides is more complex, with orbital 9 y ' b ’

degeneracy leading to multiple electron and hole pog¢kéts first alsoJa,=0, one obtains the phase diagram shown in

. L2 . . . . Fig_ 3.
strong-coupling limit is obtained by first considering only . . .
local interactions within a unit cell, For the present study, we are particularly interested in

densities near two electrons per unit cell. Note that the dop-
ing behavior(i.e. on increasingu) in this regime depends
Ho=2>, Es(aa;—b/b) - u(alai+blby) crucially on the relative strength &g andU. In particular,
' for 2Eg>U -V, the preferred charg®=2e state is one
+ U(aiTTaiTaiTiaii"_ biTTbmbiTLbu)vaaiTaibrbi , (4  with both electrons in the lower orbital, corresponding to the
band insulator. ForU—-V>2Eg;, by contrast, the two-
where a and b are electron annihilation operators for the electron ground state has one electron in each orbital, and
“conduction” and “valence” states, respectively, obeying hence a net spin on each site. This is the ultrastrong coupling
{ai,.a] gt =1{bi,.blg}= ;3,5 Here and throughout the pa- (i.e., loca) version of a Mott insulator. Note thateither of
per, we use Latin indicesj, ... to denote the lattice site, these two states exhibits amxcitonicorder. This can be seen
and Greek indicesy,3, ...=1,| to denote the spin state. by directly computing{a’b)=0 in either state. In fact, the

The remainder of the paper is structured as follows. |
Sec. Il, we present a detailed exposition of flsemples}
tight-binding model capable of describing excitonically or-

II. TIGHT-BINDING MODEL
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Equation(7) actually still respects a number of discrete sym-
metries, such as— —b simultaneously with ar/2 rotation.
These symmetries, which in fact comprise the point-group
operations of the square lattice, can be viewed as a residual
discrete subgroup of the original(l) present in the absence

of H”. We will see in Sec. Ill that this gives rise to an Ising
symmetry under which the excitonic order parameters trans-
form.

lll. EFFECTIVE THEORY FOR THE UNDOPED SYSTEM

In the central region of Fig. 2, e.g., folUHV)/2<pu

FIG. 3. Strong-couplindultraloca) phase diagram in thEg-u <(U"_’_3V)_/2’_ all sites are doubly occupied in the strong
plane, neglecting exchange and all intercell hopping and interaccUPling limit. Nevertheless, for Es<U—V, the low-
tions. Regions with zero and four electrons per unit cell are no€Nergy states are highly degenerate. Well to the left of the

shown. In each phase, the lowest-energy states are pictured, with #aick vertical line, ea_Lcta andb ort_)ital is singly occupied, so _
a orbital above and & orbital below. that there are effectively two spin-1/2 degrees of freedom in

each unit cell. In the infinite coupling limit these are com-
operatorsa’b andb'a act to transform the two phases into pletely free, but they will interact due to virtual hopping
one another, i.e., move an electron from the lower to uppeprocesses wheR' (andH") is included. Far to the right of

orbital, or vice versa. the vertical line, the unique low-energy state consists of a
doubly occupiedb orbital in each unit cell, and hopping is
C. Hopping terms unimportant. As the vertical line is approached from either

i , . ) side, virtual hopping processes can induce interactions in-
To investigate further, we must introduce hopping be'volving all five low-energy states.

tween adjacent cells. We will principally consider the sim-
plest such term ]
A. Bosonict-J model
H/:E t(aiTaJ- +binj+ H.c), 6 _ In thi_s subs_ection, we develo_p an effective_ mode_:l for_ tr_le
) interesting region near the vertical line. In this region, it is

necessary and sufficient to truncate the Hilbert space to just
the five low-energy states in each unit o@lithough higher-
energy states must be kept in virtual processEse physics
Ofig amusingly similar to a sort of generalized bosotid
model. On the left-hand side of the thick vertical line, each
‘unit cell is occupied by two spins. At second orderHn,
these interact via effective exchange interactions,

where (ij) indicates that the sum is over nearest-neighbo
pairs of sites. Different hopping integratg andt,, between
the two orbitals can also be easily included, but do n
change the results significantly, so we will kegp-t,=t for
simplicity [see, however, the discussion of particle-hole sym
metry in Sec. V surrounding Eq$51)—(55)]. In general,
there are also hopping processes connectiagdb orbitals.
Due to the symmetry of the orbitals in Fig. 1, these occur

only for next-nearest neighbors, :ﬁ:<i21> J(éia.éja+§ib.§jb)_2i JuSa-Sp, ®

H":«%) tap SO (X — X)) (Yi—yp](a'bj+H.c), (7) whereJ=t?/(V+ 2Eg). This exchange constant may be ob-
tained by perturbatively computing the energy difference be-
where the double angular brackets denote a sum over nefween singlet and triplet states on a bond to second order in
nearest neighborsandj. Note that the hopping matrix ele- the hoppings, and neglecting the deviation from the vertical
ments in Eq.(7) are real, and vary in sign. The sign varia- line (i.e., settingd =2Es+ V) in the denominators. The lat-
tions reflect the symmetry differencésnder rotationsbe-  ter approximation is valid provided) —V—2Eg|<V. Well
tween thes andd orbitals. The reality of the coefficients is a to the left of the vertical line(in particular whenU —V
matter of convention, which we fix by choosing the orbital —2E;>1), no doubly occupiedb states are present, and Eq.
wave functions to be real. We will assume, as appropriate ii8) is a complete model. It describes two ferromagnetically
this example, that,,<t, so thatH” is small, and can there- bulk coupled Heisenberg spin-1/2 antiferromagnets. On a hy-
fore be treated perturbatively. percubic lattice(square or cubic in two or three dimensions,
It is sometimes an important perturbation, because it rerespectively, one expects long-range antiferromagnetic or-
duces the symmetry of the Hamiltonian. In particular, all ofder of spins on the same orbital sublattice, vétAndb spins
the terms inHy+H,+H' conserve the number @ andb  aligned parallel at each site.
particles separately. Neglecting theb hopping, therefore, As the vertical line is approached, the energy cost of a
the model has SU(2)U(1)x U(1) continuous symmetries, doubly occupiedb orbital is reduced toward zero, and they
corresponding to conservation of spin, emdndb charges. must be introduced into the lattice. Unit cells with both elec-
The perturbatiorH” reduces the continuous symmetries oftrons in theb orbital act as “holes,” having no associated
the model down to SU(2¥ U(1) corresponding to spin and local moment. Unlike the usuatJ model holes, they are,
total charge, which are required by the physics of the systenhowever, bosonic and neutraklative to the magnetic state,
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they represent the removal of arelectron and replacement J. 4
with a b electron. Hole hopping occurs at second ordett,in H&?z%> > ,;1 (T,f‘57']5“+i<—>j)+joiszZ—H2i 77,
(11
Her= —MhZ h'h; +th<i2_> (hih;+hlh)P; and77= (=} _, 7~ T;")/2. The generalized exchange con-
. stants 7, =2t,, J,=Vhn, and Zeeman field{=dV,,/2
D Tt Hh-
+ & Vinhihihjhy, ©) This form of the Hamiltonian exposes a strong similarity

to the spin-1/2XXZ model in a Zeeman field. In particular,

where u,=2Eg—U+V+1t%/(2V) —t?/[2(2Eg+V)] is the the_ “poson hopping”J. is z{nalogous to. an antifgrromag-
hole “chemical potential,” t,=t%(2V), Vp,=t2/V netic in-plane exchangeS(Sj termg, spin-boson interac-
> a2 52y tion 7% to an antiferromagnetic Ising exchange, dddo a
—3t%/(2Eg+V), and P, =(3+2S,-S.) (3 +2Sy,-Sy) is <
2 G ) ij—\2 a’“ja/\2 b’ <jb - >
the operator which interchanges the spin states at iséed z-axis field. For7, > 7, and7{ not too large, one expects the

analog of cantedXY antiferromagnetism, while for7,

J'f’i‘ﬁ ';‘)_a Cor:'vfnrtli?]ntil dr?pedinanI'ffrg?ngntetaff?? pliiesenfcgjb one instead expectsaxis Ising antiferromagnetism
ofthe’; operato € Nopping term 1eads 1o diflicutties ot 44 5 threshold value of|. For large fields,|H|

hole motion in an antiferromagnetic spin background. Naive, 7. .7,. one ulimately expects fully polarized states

successive hpppmg of a §|ngle hole in an antlferro‘r‘nagng,tu\;vhich correspond to the Mott and band insulators for
state results in a generalization of the well-known ‘“string

L L IEE >0 andH <0, respectively.
of misaligned spins in its wake. S isinalv HPS disol S0 i .
Introducing thea-b hopping term[Eg. (7)] affects the urprisingly, e diSplays an enormous invariance

5 4 5v 5 4 * v5
system in several ways. There are renormalizations of thendermT*—=,_,U,, " andT**—%,_,U,,T* whereU
coupling constants in Eqs9) and (8), of order tgb/V, Is an SU4) matrix. SU4) symmetry is expected to be a good

. : approximation over a range of energies, because in the
t2,/(V+4Eg). Since, by assumption,,<t, these are neg- : - U 1
ligible. New exchange couplings are also generated betwee*r%hys’Ical limitsV<U~Eg andJy<J<J,,J;,H. Thus we

. . . . will take the approach of first solving the $4) invariant
next-nearest-neighba and b spins, which were not previ- o .
X odel, and considering successively the exchanhjesd
ously present. Because they are small, unfrustrating, an

break no additional symmetries, these are also negligible.”’ which reduc_e the Symmetry H e to SU2)X SU2)
The most important effect is to introduce a term which Vio_(mdependenphysmalspm rotations of the andb moment}

o o and SU2)x U(1), respectively.
latesh-particle conservation: Finally, we consider the effects of the hole-pair creation

and annihilation terms in Eq10), which can also be tran-
HOAn= s y[hihj(étaTij'O_)LTij+02TijOETij)+H'C']' scribed ir|1to the pseudo-spin language. One firdf;
«in ’ ' o —HPE+Hey, Where
(10)
Hig= 3 FITETE TET - T TRTS 177
(

Hereégﬁb;ij creates a triplet of spin-1 statesafb particles &

on the pair of sitesj, Oj}b;i- creates a singlet od/b par-

ticles on this pair, and thJe “fugacity’y=2t§blv. Note +7?37J153_7Jis17?4_7f47?1]' (12
that although Eq(10) violates conservation of the number The coupling7,«y. While it is perhaps not completely trans-
of “holes,” it creates and annihilates them only in pairs. parent in this notatiofia better notation for this term will be
There thus remains a conserved lIsing charge or parityyioduced in Sec. Il C—see E(L9)], the effect oL is to
[=3;h{h; (mod 2)], signifying whether the number of holes fyrther break the S@)xU(1) symmetry down to S(2)

two orbitals on each site transform differently under spatialsymmetry discussed in Sec. Il A.

reflections.
C. Mean-field theory and undoped phase diagram

B. Pseudospin description We expect that a simple Weiss mean-field thedWFT)

To understand the behavior of this model, we now intro-gives qualitatively correct results for the stoichiometric
duce a useful reformulation. Formally, the five possiblephase diagram, as it does for the ordina¢XZ+Zeeman
states on each site can be viewed as different quantizemiodel*® NeglectingHg¢, the MFT consists of replacing
values of a generalized pseudospin, and the above terms . - 5 s A
then take the form of nearest-neighbor interactions be- TEOTPH (T TPHHTI(T) —(TIONT), (13
tween these spins. In particular, we define five states p

&6r each bond andj on the lattice, and similarly for tH&2T?
site via [1)=abl[v), [2)=albl|v), |3)=albl[v), |4) : y -

R e e interaction. With this replacement, the Hamiltonian de-
=a bj[v), and|5)=b;b||v). The Hamiltonian can be re- o ples on different lattice sites, and the problem reduces to
written In terms Of, 5<5 spin matrices 7*", where  golying the appropriate single-site  problems  self-
(u'|T*"|v"y=6"* 8""". Neglecting for the moment the consistently. As an antiferromagnetic solution is expected,
hole-non-conserving terms in E@10), HY;=HP5+const, this amounts to equations for tHeight-componenttrans-
where verse staggered magnetization, defined KJ*°)=
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K% g =L UHS)=23Tr(ATA)2+T,|TrAlZ, (19
EI where J=da 9J/2|c|* and Jy=a"9J,/2/c|?. The above
MPS T T terms are essentially completely determined by the25U

X SU(2) and SU2)x U(1) symmetries. To proceed, we em-
ploy two identities derivable from Ed2):

BI |

1 S o
Tr(ATA)?= g(A;Asmr Ap)?

FIG. 4. Mean-field phase diagram of the fully @Winvariant 1 . R L
pseudospin model. A large pseudo-Zeeman fieldich scales lin- + - |AYAHAAF —TIANATFI? (16
early with the orbital splittingg) stabilizes either the Mott insu- 8
lating (MI) or band insulatingBl) state, depending upon its sign.

For “in-plane” anisotropy (7, >.7,), the intervening phase is an TrA=As (17)

excitonic insulator(El). In the opposite limit(“Ising” anisotropy) B

it consists of a micro-phase-separated state with a checkerboardy assumption,J>Jy, so that the first term in Eq15)
P “Sep creates the dominant splitting of the 8W ground-state de-

pattern of alternating band and Mott insulating configurations at the eneracy. The low-enerav submanifold thus consists of order
lattice scale. In obtaining the pseudospin model from the strongg Y- 9y

coupling limit of Egs.(4)—(6), one finds in-plane anisotropy, and parametersa Wh'Cha mmuﬁmzeﬁTA('A)z. Equation(16) then

the intermediate state is expected to be excitonically ordered.  implies AT A+ AAF —iA/AAY =0 [note that the first term

in Eq. (16) is constant and equal lzbé/S]. The physical con-
tent of this condition is made clear by calculating the mean
spin polarization on the site using the mean-field wave
function in Eq.(14):

(—1)[n** 1+in?, and the uniform and staggeredaxis
magnetizations, defined &) =m,+ (—1)'n,. Because of
SU(4) symmetry, all orientations off are degenerate, and it
is sufficient to assumenfzniékl. In this subspace, the R R 1 L R R
equations of MFT becomiglentical to those of the conven- Sa=(Sa) = W(iAt/\A? +ASAHAAT). (19
tional spin-1/2 XXZ antiferromagnet in a Zeeman field.
These equations were solved in Ref. 17. The resulting phasehus the influence of the exchange couplihgs to favor
diagram is shown in Fig. 4. states withs,=0.

SinceJ, > J,, we expect a transverse pseudospin polar- This condition still allows a fairly large range of states,

ization, (7#°)#0, provided|H|<H.=dJ, . Remarkably, ihe simplest of which are pure singletA(|=A,, A,=0)
the transverse components of the pseudospin operator are li triol —0 K40 ANA*=0) order-
exactly the excitonic order parameters. In particular, straightf:’m pure cofinear trp eths=0, A#0, AL, ) order .
5_ N ings. The additional effect of the Hunds-rule ferromagnetic
forward algebra shows7*>=(—A; A, —A |, Ap). ling Jo. is to introd I extra » for th
Thus for 7, >7,, MFT predicts an excitonic insulator. coupiing J 1S 1o Introduce a smail extra mass- for the

We now turn to the evolution of the ground state in thissmglet order parameter, favoring a pure tr!plet state.

. . . . The phaseof the triplet order parameter is determined by
regime on introducing the symmetry-breaking termsiiy . s . Y ; .

In their absence, the excitonic order parameter can “ oint”the Ising anisotropy” terms in Eq(12). To see this, we

. TEeEIE U : P PO o\vrite 745 and 75 directly in terms ofA. One finds

in any direction which is equivalent under the broken(§U

symmetry. Within MFT, this amounts to complete freedom

to choose the four complex componentsAgf,, subject to Heg= > Ji Tr(AA+ATAD). (19

the constraint TATA=3(1-H2H2)=A%2. In term of i

singlet and triplet components defined by E2), this con-  Note that Eq.(19) explicitly breaks the (1) symmetry of
straint simply impliegA ¢+ A¥ - A;=A2. The perturbations phase rotations ok, down to the Ising invariancA — — A.

in H3; can be viewed as “anisotropies” favoring submani- If Hy is considered a weak perturbation, it can be treated by
folds within this space. simply evaluating its expectation value in the mean-field

To clarify the nature of the anisotropy terms, it is helpful ground stat¢Eq. (14)], giving (A;)=(A;)=A, sincei and;j
to work with the mean-field wave function|Wo)  are next-nearest neighbors. Using &= (A2+A,-A})/2,
:Hi‘S‘“BDv }’Vhere|5|>:Hib?¢bu|0> is the noninteracting one finds(since 7'>0) that Eq.(19) favors animaginary
band-insulating state, and triplet order parametek,= — A* . This isdifferentfrom the
weak-coupling treatment of Ref. 6, in whichraal triplet
order parameter was found to be preferred.

Unlike in superconductivity, the phase of the excitonic
order parameter has physical significance, as discussed by
is a local “exciton creation operator.” Herdc|2=(1 Halperin and ché.ln particular, it is straightforward to
—HI'H)/2. It is now straightforward to evaluate the expec-show that aeal A; order parameter corresponds to a nonzero
tation value ofH, in the mean-field ground state. Up to a average spin density within the unit cell of the crystal, while
constant for fixed TATA, on a hypercubic lattice one finds for Et imaginary, the spin density is zero but there are in-
the bulk energy density stead nonzero spiourrents The imaginary triplet state ob-

gl=c 1+<—1>i|c|*223 Akzal,big (14
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tained here is therefore a sort of spin “flux phase” with
nonzero spin currents. See Sec. V for a more in-depth dis- [wy=2 walll €fIBI), (20)
cussion. '“ 17
Apart from this difference, the strong-coupling results of whereboth the doped electron’s wave functiafy, and the
this section are in very close agreement with the weakexcitonic order parametek,,; (implicit in g.’f) are consid-
coupling results of Ref. 6. Indeed, not too much significancesred as variational parameters. For fixedﬂéﬁ, the energy
should be attached to the difference in phase of the OrdQﬂepends 0n|y upod, Jy, andt. In particu|ar, one finds
parameters, as indeed the models are in any case not com-
pletely identical. In fact, the detailed correspondence of re- ev=L‘d<\If1|Hd0p€J\Ifl>=eb[l—Zd(aolL)d]+L‘dee,
sults up to this point strongly argues for a continuous smooth (21
int_erpolation(“adiabatic continuity”) of most phy_sical prop- wherea, is the lattice spacing,
erties of such systems as the overall interaction strength is
increased from small to large values. A
Finally, we comment on the modifications to the @\ ee=t2 BT aplip (22
invariant phase diagram in the presence of the symmetry- {n
breaking terms in Eqg8) and(10). As argued above, these and the matrix?aﬂ= |C|25a,3+ |c|‘2(AAT)aB. Physically,

favor an imaginary triplet state whefi=0. Inside the Mott we identify the first term in Eq(21) as the bulk energy

insulator, these terms stabilize an antiferromagnetically Oyensi ;
' ) . . ensity, reduced by the presence of a single doped electron
dered magnetic state. On approaching the Mott msulat} y y b g P

boundary, therefore, we expect the emergence of magnet occupying the volume fractiore(L)°]. In the second term,
ordering. This implies the existence of at least one addition e quantitye, is then readily interpreted as the energy of the

. . . dded electron. Equatid@2) is then a hopping Hamiltonian
phase boundary separating the triplet(#hich has no non- for this electron. In a polarized excitonic background, this

Zero spin denS|Mrom a r_nagnet|cally ordgreq El with non- hopping is in general nondiagonal in spin. In terms of singlet
zero average spin density, somewhere inside the region 0 triplet components

which the El phase occurs in the 8)invariant model.
(1+c]?) -
[ —— +

S, 0%, (23

IV. DOPING T= 5 o

In this section, we consider the behavior as a low density - . o o
of electrons is added to the system. In the strong—couplin%’heresav the mean spin polarization on thesite, is given
limit, this reduces to an effectivied-like model, in which the Y Ed.(18). Minimizing Eq. (22) in the space of normalized

Hilbert space is restricted to states in which all sitesit ~Wave functionsy;, gives the tight-binding Schadinger
cells) are either doublycorresponding to the excitonic pseu- €duation,

dospins modeled aboyer triply occupied, the latter con-

taining onea and twob electrons. The system is then gov- > > ?aﬁlﬂjg:éelﬂia, (24)
erned by an effective HamiltonianH jope= Hgg+ Hbg (i "B

+PH"P, whereP projects onto this restricted Hilbert space. where the angular brackets indicate a sum over the nearest
As many years of work on higiiz superconductivity has neighborsj of sitei. The single-particle eigenstates of this

taught us, the problem of doping a correlatdbtt) insula-  equation are plane waves with spins polarized parallel and

tor, particularly with spin(and here pseudospiordering, is antiparallel tos, , with eigenvalues

extremely complex and difficult. Here, we will adopt the ar

absolute simplest approach extending the above MFT to the 1+]c|?

low-electron-density limit. We assume, as suggested by the eei(k)=2t[

weak-coupling analysis, that the essential ingredient for ex- 2

citonic ferromagnetism ]15 r:he ?fppr_oxmate _Ienhfar[aedms where a, is the lattice spacing. The location of the
case SWA)| symmetry of the effective Hamiltonian. In con- ininum-energy electronic excitations depends crucially on

sidering the doped state, then, it is crucial to determine i . >
what way the added electrons affect the splitting of the der—{he magnitude 08,, and hencet. When>7/3, elec-

d

‘21 [coskiag], (25)

*[Sdl

generate SW) ground-state manifold. trons with spin parallel and antiparallel 8 have minimum
energy at different points in momentum space. Such large
A. Variational treatment for a single electron values of correspond to strongly overlapping bands, close

to the boundary between the Mott and excitonic insulators.

For simplicity, we will specialize to the case whEsg|<(1
+|c|?)/2, which occurs fof{<H,/3. In this case, the mini-

prates, coherent motion of an added electron, however, i@f‘ll energy single-particle energy excitations for both spin
greatly hindered bypseud@-spin ordering of the insulating orlenta'Flons ha_1ve mome_ntui_nz(w, s fT)' Furthermore,
background. Moreover, coherent motion is possible to ghe optimal spin orientation is parallel & . Such an elec-
varying degree depending upon the precise nature of th&on takes advantage of the "Zeeman” energy due to the
background. We first consider this effect for a single addedxchange fieldproportional tos,) generated by the “core”
electron using the variational method. A natural variationalspins(i.e., the spins of the two electrons per unit cell present
ansatz is in the insulatoy.

In the strong-coupling limit, the majority of the energy of
an added electron is kinetic, sinte 7,7, ~t?/V, etc.. Just
as in the simpler but much studieeld model for the cu-
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In the undoped system, howevég,=0, due to the anisot-
ropy in Eq.(15). We therefore expect that the optimal order
parameter in the doped system is determined by a competi-
tion between these two terms. With some algebra, it is
straightforward to verify that, due to the Hunds-rule term
Ju , the complex pure triplet statee., with &/\5{‘ #0, but
A¢=0) is always more energetically favorable than a singlet-
triplet coexistence(with ReAZ* A,#0).X® Without loss of
generality, it is thus convenient to choose a spin quantization
axis, letting

Ay=Ay(cosox+i singy). (26)

One then finds,= — (AZ/2|c|?)sin(26)z. In any such state, \ / 5
§b=§a, so that the core spins also contribute to the ferro- ¢

magnetic moment. : N
9 FIG. 5. Free Fermi gas approximation of the zero-temperature

phase diagram. The abscissa, is the nondimensionalized chemi-
B. Free Fermi gas approximation cal potential, and the ordina#® &, indicates the strength of exci-
tonic ordering relative to superexchange interactipsse EQs.
(29—-(35) for precise definitions The properties of the various
&hases shown are listed in Table I. For largemot shown, both
excitonic ordering and ferromagnetism disappear, owing to the re-
e&ﬁction of the amplitude oA.

9°- \Eé‘(g )} (29
PRa Ak

It remains to determine the optimal angle To proceed,
we need to extend E@21) to a small but nonzerdensityof
doped electrons. At low densities, it seems natural to negle
interactions between doped electrons, and use the simpl
possiblefree Fermi gasestimate for the electronic dopant
energy. In particular, we approximate the energy of the sys-
tem as the sum of two contributions: a “bulk” contribution ef=?52
from the undoped unit cells containing two electrons and a
spatially uniform order parametek,;, and a “dopant”
contribution, approximated by the energy of a free Fermi ga
of electrons with dispersion given by E@5). For concrete-

gvhere

ness, the detailed formulas are presented in the following for . 33(1+[c*)? (30)
three spatial dimensionsdE&3). At low densities, only 8a® ’
single-particle states ne&r=w= (7, ,7) are occupied, so
it is convenient to expand around this poikt 7+ q, yield- A%
ing the dispersion o= CEEERE (39
2 . 2921 _ 2 2 2
=2 g |5 TR 5 ()
2 2 28 (32)
166 ¢
Here we have reinstated(ahifted chemical potentiak to )
control the density of doped electrons. It is both convenient g=sin20, (33)
and physically helpful to work at fixed chemical potential _
rather than fixed charge density, as this naturally allows for %
the possibility of phase separation. As is perhaps not surpris- A=1+ 3t(T|c|2) (34)
ing based on the results of weak-coupling anal§$ie will
see that phase separation does indeed occur in a physically y=M\I8. (35)
interesting parameter range of the mogslleast within this
approximatio. The function&(g, y) is straightforwardly related to the en-

Because we are interested in the energy density only inergy density of the three-dimensional free-electron gas in a
sofar as to determine the anglewe neglect in the following Zeeman field. In general it depends not onlygand y, but
all terms independent of. Inserting Eq.(26) into Eqg. (15  also ondé. For simplicity, we will assumeédg|<1, which

gives the bulk energy holds near to the excitonic insulator-band insulator bound-
ary, and is satisfied more generally in the interesting region
ep=[3JAg/(8a3|c|*)]sir? 26+ const (28)  of the phase diagrafiwhered is O(4;), sinces <1 in the

strong-coupling limit J/t<1—see Fig. % In this case,

(in three dimensions This must be added to the ground-state£(d. ¥) becomes independent éf Its functional form is
energy of the free Fermi gas of doped electrons. Simple but

tedious algebraic calc_ulatlons lead to the final expression for &(g,y)= 2 (y+20)%20(y+29), (36)
the total energy density of the system, 2==1
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TABLE I. Phases of the doped El in the free-Fermi-gas approxi-is a jump in the electronic charge densityfrom zero in the
mation. The five columns list the abbreviation, the presence or abinsulator to a nonzero value in the metal.
sence of doping, the magnetic order, the degree of polarization, and

the excitonic angle ), respectively, for the six phases. V. DISCUSSION

Phase Doped? Mag. Pol. Angle A. Symmetries and properties of excitonic insulators

El no para n/a 9=0 The model introduced in Sec. Il contains many possible
PM yes para n/a =0 excitonically ordered states in various regions of its phase
PEM yes ferro partial & o< 7l diagram. In the undoped case, we have argued that a simple
M yes ferro full O< 0< /4 paramagnetic collinear triplet ordering is most likely, while a
PEM* yes ferro partial 0= w4 state with EtA5f¢0 is obtained for electron densities
EM* yes ferro full 0= ml4 slightly greater than two per unit cell. Nevertheless, if, as

supposed, S4) symmetry is a good approximation, then
many other possible states must necessarily be nearly as low
where® () is the Heaviside step function. Equatiof®9)—  in energy. In the hope that the truth may ultimately be de-
(36) give the energy density of the system as a function oftided by experimental measurements, it seems useful to de-

chemical potentiak (throughy) and order parameter angle lineate the physical characteristics of each of these phases.

¢ (throughg). The optimal excitonic anglé is determined With th(_a exception of the noncollinea_rly_ordered states,
by minimizing (%, 6) at fixed . If 7 and 6 are known, the the analysis of the next few paragraphs is identitabugh

density of doped electr nd itinerant maanetization den- in somewhat different notationto that of Halperin and
ensity of doped electronsa erant magnetization den- ;.o 3 First, let us consider the existence of a time-averaged
sity m;; are then given by the free-fermion results:

magnetic moment. In the tight-binding formulation, the elec-
tron field operator is expanded in terms of Wannier orbitals,

2
= Ve, 2, (rr29%0(y+z9, (37

X

%m:Ei[¢a<r—Ri>am+¢b<r—Ri>bia], (39)

- 1 z where ¢4(r) is the Wannier function for the@/b orbital,
it 6\/5772a3 =1 and we neglect the othéunoccupiedl states. Consider next
the spin-density operator. We will assume for simplicity
Note that the system is dopéle., x+0) whenevery+|g| (though this is 'no't essent)ghat each Wannier function has
>0. One should also keep in mind that the full magnetiza-Support only within one unit cell. EquatidB9) then leads to

2y+29%0(y+zg). (39

tion densitym=m;;+ My, includes a contributiom,, = a representation for the spin-density operaior
— (A2/|c|?a®)sin(29) from the core spins. . .

Equations29)—(38) completely determine the state of the 25(r)=¢'o ¢, (40)
system at zero-temperature as a functiomoénd 5. The . .
mathematical problem of minimizing; is algebraically =|¢>a(r)|2(aTaa>+|¢b(r)|2<bTab)
quite tedious, and significant care must be taken to avoid R R
spurious local minima and saddle points. The results of a +x (N dp(r)(@a’ab)+¢h (r) pa(r)(bToa). (41)

careful study are shown in Fig. 5. All the phases shown are- proceed, we choose both Wannier functions tores.

excitonically ordered, but differ in doping excitonic angle Thenfor the undoped cas¢he spin density can be rewritten
0, and magnetizatiom. The properties of each are summa- . R N
in terms ofs,,, andA;:

rized in Table I. In the strong-coupling limit, we expdste
Sec. IV) 8/5.>1, in which case there is a direfitst-order = - - -
transition from a paramagnetic excitonic insulator to a fully- S(r)=|a(r)]?sat[Pp(r)|?Sp+2¢ha(r) pp(r)REA, 2
polarized ferromagnetic metédFMFP*).
The phase boundaries in Fig. 5 variously indicate firstrurther recall Eq(18) and its analog fogb;
(discontinuous and secon@liscontinuous order transitions.
All the vertical phase boundaries denote continuous transi-
tions, while most of the transitions on curved phase bound-
aries are discontinuous. The exceptions are the )
PPFM -FPFM* boundary(which is everywhere second or- There are trlus nonzero s}aﬂc local moments whenever
den and the lower portion of the FPFM-FPPMransition ReAX A, InA/AAY , or ReA, are nonzero. In the simplest
line, which is continuous below the tricritical point indicated gych States&tzlﬁtlé’ wheree is a real unit vector. In this
in the figure. case, there is a spatially varying static moment within the
Which portion of this phase diagram is most phySicaIIyunit cell oriented along the axis. Thenet moment (inte-

significant? In the strong-coupling limig.<<1, and it there- . ' s
fore seems reasonable to suppéﬁéc>1,cso that the system grated over the unit cellis, however, zero, unless;\A{

undergoes a simple and direct first-order transition from the* 0, in which case the real and imaginary partsigfare
undoped and paramagnetic El to the fully-rotated half-poth nonzero and not parallel. In addition to the net ferro-
metallic ferromagnet, FPFM*. Coincident with this transition magnetic polarization along Ir&t/\&f , such states have a

I S
Sa/bzw[lﬁt/\Afi(AgAtWLAsAf)]' (43



PRB 62 EXCITONIC ORDER AT STRONG COUPLING: ... 2355

noncollinear static spin density in the unit cell. The net mo-this density, andnly at this density, we may entertain the
ment along these other directions remains zero. To see whpyossibility of symmetry under the transformation PH:

such states sustain a net polarization, consider the particular

case given in Eq(26), with excitonic angled. One can then a,—prby, Do pray,. (52

use Eq.(2) to rewrite the order-parameter matrix as ) L

In the new variables, the excitonic order parameter becomes
A=alo? bl ThusA——AT (here the superscrigk indi-
cates the matrix transpgsender PH. Also useful is the op-
eratora’a—b'b=a’b+b'b—2 (proportional to77 in the

n=2 subspace which is invariant under PH. Thusbg [see

(44)] immediately shows that the amplitude for up- and Eqg. (11)] is PH invariant. Similarly, it is straightforward to

down-spins are ynequal, S0 Iong @ss not a mult!ple ofr. show that under PH, the two spin operators are exchanged:
Some confusion may arise in the reader with regard to

time-reversal symmetry. It appears surprising to hﬁyand éaHpHéb- (53)
i&tAEf , the latter containing a cross product, both contrib-

N S . . . . | .
uting to s, . In fact, both terms transform like a spin under TEUSHe_flir:S at|§0 P'; mvaérlljnt, .ﬁs ".BIEﬁ.’ as can tie egsH)IgH
time reversal. This is simplest to see in the path—integra? own. Thus the undoped Hamiltonian IS invariant under .

representation of the quantum system, in which the fermior?onsIderlng the order parameters, we find that
operators are replaced by time-dependent Grassman fields

A
A= 7°[(cosn9+ sinf)ot +(cosf—sin@) o~ ]. (44

Inspection of the mean-field wave functi¢kgs. (14) and

el Ac—pyAq, (54)
a,—a,(t), a:;—>aa(t), and similarly forb,, ,bL. The Grass- s PATs
fields then t f der time- | ding t . v
man fields then transform under time-reversal according to [ (55
aq(t)—oypas(—t), (45 Thus the combination R&* A, is odd under PH, and hence

cannot give rise to a total moment, sinSgy7 is PH invari-

Aa(t) = — 0y 8s(— 1), 46 ant, ImAA\A* | however, is PH invariant, and can hence
_ couple directly to a ferromagnetic moment.
b,(t)— oY ghs(—1), (47) It should be stressed that Pid not a microscopically
exact symmetryeven in the stoichiometric situation. It oc-
Ha(t)ﬁ—a);ﬁbﬁ(—t)_ (48) curred in the above analysis only because of the arbitrary

choice of equal hopping betweenand b orbitals, t,=ty
Note the important minus sign iﬂthe above_transformation,:t, in Eq.(6). In general, one expects#t, , which leads to
which is possible because, anda, (b, andb,) are inde- different antiferromagnetic exchange constants betwaen
pendent fieldgnot related by complex conjugatipin the  andb spins inH [Eq. (8)]. Different exchange constants
path integral. This reflects the antiunitary nature of time-destroy the invariance of the Hamiltonian under the inter-
reversal symmetry. At any rate, Eq4) and(2) then imply  change ofa andb spins[Eq. (53)], which is the effect of PH.
that It is straightforward to show that, when this asymmetry is

included in the microscopic Hamiltonian, states with

As—AS, (49) ReA*A#0 are also ferromagnetic. In addition, even in the
_ . model with t,=t,, doping breaks the PH symmetry, and
* >

Ar—— A (50 gives rise to a ferromagnetic moment in the ReA,#0

. L . tate.
under time reversal. The combination of complex conjuga> . . .
P g Considerations similar to those above E4l) apply to

tion and the minus sign fol; imply that both terms in Eq. . . o

(43) are odd under time reversal. Indeed, the necessary arfl € electronic che}rgeﬂgensn)o)(, current d_enS|ty 0, and

sufficient conditions for broken time-reversal symmetry jgSPIn current densityX*") operators. One finds

R4y #0 andfor InfAs)#0. . p(1)= €| ¢a(1)|2na— €| (1) *ny— 2e54(r) (1) ReA,,

A perhaps surprising consequence of Etl) is that ap-

parently if ReA* A,#0 but ImAAA* =0, there is no net R e ) R

magnetization. In fact, this result applies only to the particu- ()= IMAJLa(NVéu(r) = PNV ea(r)], (56

lar undoped model considered here, and is a consequence of

a special variety of particle-hole symmetgyhich we denote 1

PH). To make this explicit, define a hole creation operator (1) = 5 Im A{[ ¢a(1) 2, b(r) — bp(1)dyba(r) .

bZza{’leﬁ. Then the electron number operator can be re-

written as In the final equation abové*” is the current density for spin
polarized along the axis propagating in the direction. For

n=a'a+b'b=2+a’a-Db'D. (51)  completeness, the mean-field expressions for the numizer of

andb particles are
In the undoped system, the mean number of electrons per

unit cell is two, so thata'a—b'b)=0. Thus precisely at n,=(a'a)=|c| 2TrAA, (57)
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nb=<bTb)=2—na. (58 tical gap can be estimated by considering the energy cost
required to transfer an electron from one unit cell to its
neighbor. At the optimal conditions for excitonic ordering,
. ) - ~ one hasU=2E;+V, and a straightforward calculation of
Flon of the various pther type; of ordgnng. If km;&O there energies from Eq4) gives the optical gap,~V. Thus one

is a spontaneouspin currentin trle ur;ut cell. This is neces- expects at leasi,<U,E¢ . Note that in the strong-coupling
sarily the case for any state withy/\Af #0, which, as dis-  |imit, there is no universal relation betweén, and the ex-
cussed above, also exhibits noncollinear static moments. Thsitonic order parameter.

simpler state with,=i|A|e hasonly the spin currents, and

is the magnetic analog of a “flux phase” in modern termi-

nology. Similarly, if the singlet order parameter has an B. Relevance to the hexaborides

imaginary part Im\s#0, there are nonzero charge currents  The models and discussions in this paper demonstrate the
within the unit cell. This is exactly a flux phase. Finally, a feasibility of a strong-coupling approach to excitonic order-
real singlet order paramete;=AF+#0, gives rise to a jng. A direct application of the results to the hexaborides is,
charge-density(r) that breaks the point group symmetry of however, not appropriate, due to the simplified nature of the
the crystal, sincep,(r) ¢,(r) is not a scalar. Hamiltonian discussed here. It is possible to generalize the
Another important characteristic of the phases with triplettight-binding model discussed here to a “two-bandi-(and
ordering is a finite(transversg uniform spin susceptibility.  d-orbital) Hamiltonian which more accurately models the
This is a very general consequence of broken spin-rotationahysics of these materials. This model contains the signifi-
invariance. In the simplest collinear triplet state&,  cantingredient of orbital degeneracy, and hence considerable
=A0ei ¢e, wheree is a real vector. The elementary excita- additional richness. Such orbital degeneracy is the tight-
tions of the symmetry-broken state can then be classifiefinding analog of the valley degeneracy encountered in
only by their spin along the triplet axi§or- €. The trans- Pand-theoretic treatments. Tieethodsof this paper, how-
ever, remain applicable in this case as well. A thorough treat-

verse compgnents Bror i however, do not commute With - s problem presents an attractive and challenging
A¢. An applied Zeeman field along one of these axes theremeoretical opportunity.

fore immediately acts to mix together the former ground and |1 is reasonable to ask at this point whether there are any
excited states. It is fairly straightforward to demonstrate bysyperimental consequences of the excitonic scenario which
this mechanism a constant transverse spin susceptibility fofye relatively model independent, and can therefore be firmly
the collinearly ordered triplet states. For noncollinearly or-siated in advance of more accurate results? For this, we look
dered triplets, we conjecture thall components of the uni- 5 the discussion of Sec. VA focusing particularly on the
form susceptibility are finite. This distinction is most likely properties in the undoped material. The excitonic scenario
primarily academic, as experimentally available Samp|e?postulates symmetry breaking even without doping, which
would presuznably break up into domains with random ori-gjstinguishes it from, e.g., low-density ferromagnetiane
entations ofA., thus effectively isotropizing the bulk sus- Wigner. All calculations so far appear to favor triplet order-
ceptibility. Very crude estimates for the magnitudexotan ing, which implies first aconstant (temperature independent
be obtained in both the strong- and weak-coupling limits ofat low T) susceptibilityin the insulator. Second, triplet or-
excitonically ordered states. In strong coupling, the suscepdering necessarily gives rise éither static spin moments or
tibility can be computed by naive perturbation theory in thestatic spin currentéor both within the unit cell. Because the
mean-field ground state. In the optimal cas€=0), in latter are presumably difficult to observe, this is a less strong
which the excitonic ordering is maximal, one fings condition. Third, because the triplet state breaks spin-
~uglJ. , where7, ~t?/V is the characteristic stiffness for rotational invariance, it implies the existence of two low-
excitonic orderingsee Sec. I, andug is the Bohr magne- energy collective “magnon” mode&resumably dispersing
ton. In weak coupling, the susceptibility is approximately asw~uv (k| at low energies which could be observable via
equal to the free-electron valug~ D (eg) ug, whereD (eg) inelastic neutron or Raman scattering. Fourth, an excitonic
is the density of states at the Fermi energy. explanation for ferromagnetism upon doping requires that
A puzzling aspect of the experimental data on thethe “pseudo-spin flip” phenomena occur, and heficethis
hexaborides is the absence of a substantial gap in opticaknse¢approximate S(#t) symmetry. This approximate sym-
conductivity measurements in the undoped materials. In germetry implies the existence of additional collective modes
eral, the excitonically ordered insulators discussed laeee with small excitation gaps.
expected to exhibit hard optical gapse., a complete ab- It is natural to ask, given the above emphasis on the un-
sence of weight inr(w) at smallw] at low frequencies and doped state, whether the excitonic ferromagnet is itself truly
zero temperature, so this is an important point which such a distinct phase of matter separate from the more familiar
theory must contend with. Several possible physical situaftheoretically Wigner ferromagnet? The answer depends
tions can, however, resolve this apparent discrepancy. In thepon the extent to and manner in which the dopiams
weak- and intermediate-coupling limits, it is possible to sus-influence the behavior of the electrons. In the models inves-
tain a metallic state simultaneously with excitonic order.tigated to date, the dopants influence the material only inso-
This requires imperfectly nested Fermi surfaces—a detaileéar as to donate extra charge carriers, providing no perturba-
investigation of this possibility is underway. Even in the tion to thepotential felt by the electrons except to slightly
strong-coupling limit, it is also possible that a gap exists, buincrease the neutralizing positive background charge. In this
is anomalously small. Indeed, in the present model, the optreatment, the lattice point-group symmetries are strictly

From Eqgs.(56), we can read off the physical interpreta-
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maintained, and the excitonic ferromagnet is indeed a dis- Clearly, further predictions are possible within more spe-
tinct state of matter: it exhibits more broképoint group  cific models. Several authSrérecently pointed out the like-
symmetries than the Wigner ferromagnet. In reality, the doplihood of phase separation at low electron densities. This
ant ions most likely distribute randomly throughout the crys-occurs naturally in the pseudo-spin-flip picture, but because
tal, and thereby perturb the potential experienced by the eledt has already been discussed, we will not dwell on it here.
trons. This random potential explicitly breaks the lattice Probably most importantly, any excitonically ordered state
invariances, and washes out this sharp distinction betweepy definition breaks the point-group symmetry of the lattice.
the excitonic and Wigner ferromagnets. This symmetry b_reaklng is directly ob_servable, but un_fortu-
Whether this effect is of practical importance is unclear.Nately depends in detail on the way it occurs. In particular,
The largeincreaseof conductivity upon doping suggests that many of the triplet states that appear to be favored have less
the electrons are not strongly scattered by the dopant ions. ﬁ)rbwous order parameters, S0 that more work needs to be
any case, the physics at a low electron density is quite subtléj.One to as_certalr_l the appropriate experlmental probes. _Fur-
In particular, the environment around a nearly isolated dop'—[her modeling using the strong c_;oupllng approach promises
ant atom retains a large fraction of the symmetries of thd® Nelp resolve these and other issues.
pure lattice(e.g., a lanthanum dopant replacing strontium
preserves cubic point-group symmetries around the lantha-
num ion. Because electrons interact with only one impurity Thanks to C. M. Varma for stimulating interest in this
at a time at low densities, the symmetry of the local environproblem, and to Z. Fisk for providing copies of experimental
ment is expected to improve the distinction between Wignedata. This research was supported by the NSF CAREER pro-
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