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Wave spectrum of multilayers with finite thicknesses of interfaces
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A. A. Maradudin
Department of Physics and Astronomy, University of California, Irvine, California 92697

~Received 6 December 1999!

To describe a multilayer structure with arbitrary thicknesses of the interfaces between layers, we introduce
a model in which the dependence of a material parameter along the axis of such a superlattice is described by
a Jacobian elliptic sine function. Depending on the value of the modulusk of the elliptic function, the model
describes the limiting cases of multilayers with sharp interfaces (k51, d/ l 50, whered is the thickness of the
interface,l is the period of the superlattice! and of sinusoidal superlattices (k50, d/ l 51/4), as well as all
intermediate situations. We investigate the wave spectrum in such a superlattice. The dependences of the
widths of the gaps in the spectrum at the boundaries of all odd Brillouin zones on the ratiod/ l are found. It is
shown that the thicknesses of the interfaces can be determined if the experimental value of the relation between
the widths of the first gapDn1 and any other gapDnn is known.
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I. INTRODUCTION

The spectrum of waves of different nature~spin, elastic,
electromagnetic, etc.! is well-studied theoretically for two
types of superlattices, which correspond to the limiting ca
of the relation between the thickness of the interfacesd and
the period l of the multilayer structure. For the first typ
d/ l 50, and the dependence of a material parameter a
the superlattice axisz has the form of rectangular spati
pulses. This model is the simplest from a mathematical p
of view, because the solution in each layer can be written
a superposition of plane waves, the relation between wh
amplitudes can be found from the matching conditions at
boundaries of the layers and from the periodicity of t
structure. A transcendental equation is obtained as a res1

from which the wave spectrumv5v(k) can be found,
wherek is the wave vector. The transfer-matrix method
effectively used in obtaining this transcendental equatio2

The model corresponding to infinitely thin interfaces h
been widely used in studies of electromagnetic,3,4 elastic,5–7

and spin8–12 waves in superlattices.
To the second limiting case corresponds the situa

where the thicknesses of both the interface and the layer
equal to each other, i.e.,d/ l 51/4. The simplest model fo
this situation is a sinusoidal superlattice. The wave equa
in this case is the Mathieu equation, whose wave spectru
well known. Different types of waves in solids were studi
for this case in Refs. 13–15. In Ref. 16 spin waves w
considered for both limiting cases, namely for a superlat
with infinitely thin interfaces and for a sinusoidal superla
tice.

In real multilayers the ratiod/ l can have an arbitrary
value between these limiting cases. A model is introduce
the present paper which permits considering this gen
situation and obtaining the dependence of characteristic
the wave spectrum on the thicknesses of the interface
multilayer media.
PRB 620163-1829/2000/62~3!/2181~4!/$15.00
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II. THE MODEL AND METHOD OF CALCULATION

For definitenes we consider here a ferromagnetic supe
tice with a magnetic anisotropyb(z) varying along thez
axis. The direction of the anisotropy is taken to be const
and to coincide with thez axis. We representb(z) in the
form

b~z!5b@11gr~z!#, ~1!

whereb is the average value of the anisotropy,g is its rela-
tive rms variation, andr(z) is a centralized (̂r&50) and
normalized (̂r2&51) function ~the angular brackets denot
averaging over the periodl ). To model the general situatio
we expressr(z) in the form of a Jacobian elliptic function

r~z!5kS K

KÀED 1/2

snS pz

2dD . ~2!

Hered5p l /8K is the effective thickness of the interfaces.
introducing the effective thickness we chose the numer
coefficient to bep/2, so thatd/ l 51/4 for the limiting case of
the sinusoidal superlattice; in so doing the main variation
a material parameter occurs over the lengthd for all values
of d/ l ~Fig. 1!. K andE are the complete elliptic integrals o
the first and second kind, respectively, andk is the modulus
of these integrals. The coefficient multiplying sn(pz/2d) is

FIG. 1. A typical form of the function~2! for the case where the
thickness of the interfaces is much smaller than the thickness o
layers (d/ l 51/8; k851022).
2181 ©2000 The American Physical Society
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the normalization constant, which follows from the conditi
^r2&51. Equation~2! describes both limiting cases:d/ l 50
at k51 (K5`), d/ l 51/4 at k50 (K5p/2), and all in-
termediate situations. We describe the dynamics of a fe
magnet by the Landau-Lifshits equation,

Ṁ52gFM3S 2
]Hm

]M
1

]

]x

]Hm

]~]M /]x! D G , ~3!

with the energy density

Hm5
1

2
aS ]M

]x D 2

2
1

2
b~z!~M "b!22M "H. ~4!

HereM is the magnetization,H is the magnetic field,g is the
gyromagnetic ratio,a is the exchange parameter, andb is the
direction of the magnetic anisotropy axis, which coincid
with the z axis.

The external magnetic fieldH and the static part of the
magnetizationM0 are also directed along this axis. Repr
senting the magnetization in the form

M ~x,t !5M01m~x,t !, ~5!

performing the usual linearization of Eq.~3! under the con-
dition umu!uM0u, and takingm}exp(ivt), we obtain the fol-
lowing equation for the circular projectionm5mx1 imy :

¹2m1@n2«r~z!#m50. ~6!

In writing Eq. ~6! we have introduced the notations

n5
v2v0

agM
, «5

gb

a
, ~7!

wherev05g(H1bM ).
In the scalar approximation both the spectrum of ela

waves in a medium with an inhomogeneous density and
spectrum of electromagnetic waves in a medium with an
homogeneous dielectric permeability are also described
this equation with redefinitions of the parameters. For ela
waves we have

n5~v/v !2, «5ngu , ~8!

wheregu is the rms variation of the density of the mater
and v is the wave velocity. For electromagnetic waves
have

n5«e~v/c!2, «5nge , ~9!

where«e is the average value of the dielectric permeabili
ge is its rms deviation, andc is the speed of light.

One might expect that the problem of investigating t
wave equation~6! with the functionr(z) in the form of Eq.
~2! is analogous to the problem of spin waves in a ferrom
net with a domain structure. Indeed, the ground state in
latter case is periodically inhomogeneous because of the
homogeneous orientation of the static part of the magnet
tion, which is also described by Jacobian elliptic functions17

Mx5M0 snS z

k
Ab

a D , M y5M0 cnS z

k
Ab

a D , Mz50.

~10!
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In an investigation of the spin waves in such a system,
magnetization is represented in the form

M ~x,t !5M ~z!1m~x,t !, ~11!

whereM (z) describes the inhomogeneous ground state~10!.
Linearizing Eq.~3!, we obtain the wave equation

¹2m1F v2

a~4pgM0!2
2

b

aM0
2 ~Mx

22M y
2!Gm50. ~12!

One can see that the coefficients in this equation contain
functions~10! quadratically. Because of this, Eq.~12! trans-
forms into the Lame´ equation, and it is this well-studied
equation that describes the spin waves in such systems.18

Another situation where Jacobian elliptic functions app
is a ferromagnetic film on an antiferromagnetic substrate
this case the magnetic moment is fixed on one surface of
film, and under the action of the external magnetic fieldH,
which is oriented in the direction opposite to the direction
M , an inhomogeneous rotation of the magnetization occ
along thez axis. The oscillations of the magnetic moment
the background of this inhomogeneous ground state are
scribed by a wave equation that has the form19

¹2m1F v2

a~4pgM0!2
2

HMx~z!

aM0
2 Gm50. ~13!

Here, in contrast to Eq.~12!, the functionMx(z) appears
linearly. But this ground state is described by an equat
containing the square of the Jacobian elliptic sine function20:

Mx /M052112k2 sn2S zA H

aM0
D . ~14!

Thus, the wave equation is the Lame´ equation in this case
too. In contrast to the situations described above, the w
equation in our case does not reduce to the Lame´ equation.
That is why we can use an approximate approach to
solution of an equation with an arbitrary periodic potenti
According to the Floquet theorem we seek the solution
Eq. ~6! in the form

m~x!5eikx (
p52`

`

mpeipqz, ~15!

wherek is the wave vector,q is the vector of the reciproca
superlattice (uqu52p/ l ), and we represent the functionr(z)
by the Fourier series

r~z!5 (
p52`

`

rpeipqz. ~16!

Substituting Eqs.~15! and ~16! in Eq. ~6!, we obtain the
equation formp :

@n2kx
21ky

22~kz2pq!2#mp5« (
p152`

`

mp1
rp2p1

. ~17!

In the following, we will consider waves propagating alon
the z axis (kz5k). The equation formp1

then becomes
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@n2~k2p1q!2#mp1
5« (

p252`

`

mp2
rp12p2

. ~18!

Expressingmp1
from this equation, and substituting it int

Eq. ~17!, we obtain

@n2~k2pq!2#mp5«2(
p1

(
p2

mp2
rp12p2

rp2p1

n2~k2p1q!2
. ~19!

Taking into account only the termp25p in the second
sum of this equation corresponds to the first order of per
bation theory. The dispersion law in this approximation c
responding to the main branch of the solution (p50) has the
form

n2k25«2 (
n52`

`
rnr2n

n2~k2nq!2
, ~20!

where we have replaced the summation indexp1 by n.

III. THE WAVE SPECTRUM

Equation~20! is valid for any periodic functionr(z). Us-
ing the well-known coefficients of the representation of t
Jacobian elliptic sine function by a Fourier series,21 we ob-
tain for our case

rn5
p

iAK „KÀE…

Qunu/2

12Qunu
sgn~n!, ~21!

where

Q5expS 2
pK 8

K D , K 8~k!5K ~k8!, k85A12k2.

~22!

Substituting Eq.~21! into Eq. ~20! we obtain the genera
equation for the wave spectrumv5v(k) in our case:

n2k25
p2«2

K „KÀE… (
n

Qunu

~12Qunu!2

1

n2~k2nq!2
, ~23!

wheren561,63 . . . . It is well known that a periodic po-
tential induces the strongest modification of the spectrum
the vicinities of the Brillouin zone boundariesk5krn
5nq/2, wheren can have both odd and even integer valu
Equation ~20! determines the modifications of the wav
spectrum only in the vicinities of the odd boundaries of t
Brillouin zones. The modifications of the spectrum in t
vicinities of the boundaries of the even zones are high
order quantities, which cannot be described by Eqs.~20! and
~23!. With the proviso that«/n!1, the resonances in th
sum in Eq.~23! influence one another only slightly. That
why we can restrict ourselves to the two-wave approxim
tion in the vicinity of each odd Brillouin zone boundar
keeping in the sum only the term corresponding to the B
louin zonen considered:

~n2k2!@n2~k2nq!2#5
p2«2

K „KÀE…

Qunu

~12Qunu!2
. ~24!
r-
-

in

.

r-

-

-

We obtain from this equation the general law determin
the width of the gap in the spectrum at the boundary of
nth odd Brillouin zone for the superlattice with an arbitra
value ofd/ l :

Dnn5nn
12nn

25
2p«

AK „KÀE…

Qunu/2

12Qunu
, ~25!

wherenn
1 andnn

2 are the solutions of Eq.~24! at k5krn .
In Fig. 2 the dependences ofDnn on d/ l are depicted for

the first (n51) and third (n53) Brillouin zones. The ratio
3Dn3 /Dn1 is shown also by the dashed curve. One can
that the width of the gap for the first Brillouin zone depen
only slightly on d/ l ~it increases whend/ l increases!,
whereas for the third zone the gap width goes to zero w
d/ l increases. Analysis of Eq.~25! shows that the decrease o
the gap width with the increase ofd/ l occurs for all Brillouin
zones except the first. Analytical dependences ofDnn on d/ l
andn can be obtained from Eq.~25! for the limiting cases of
small d/ l (k→1),

Dnn5
4«

punu F11
4d

p l
2

1

2 S p4n2

12
23D S 4d

p l D
2G , ~26!

and ford/ l→1/4 (k→0),

Dnn5A2«S 12
l

4dD (unu21)/2

. ~27!

It follows from Eq. ~27! that the widths of all gaps forn
Þ1 vanish for the sinusoidal superlattice whend/ l 51/4.
This means that in this case the first order of the perturba
theory does not give a contribution to the gap widths. T
latter are determined by terms of higher orders which w
not taken into account in our analysis: it is known that fo
sinusoidal superlatticeDnn}«n.

IV. CONCLUSION

The model introduced in this paper permits describing
dependence of characteristics of the wave spectrum on
thickness of the interfacesd. We have carried out this de

FIG. 2. The dependences of the gap widths in the spectrumDnn

on d/ l for the first (n51) and third (n53) Brillouin zones. The
relation 3Dn3 /Dn1 is also shown by the dashed curve.
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scription in the first order of perturbation theory for the wa
spectrum in the vicinities of the boundaries of all odd Br
louin zones. It is shown that the dependence of the width
the gaps in the spectrum at the boundaries of the Brillo
zones ond/ l differs significantly for the different zones
Whereas the gap width of the first zoneDn1 increases
slightly with increasingd/ l , the gap widths for the othe
zonesDnn , n5” 1, decrease with increasingd/ l . Experimen-
tal measurement of the ratio between the widths of the g
at the boundaries of the first and, for example, third Brillou
zones offers the possibility of determining the thickness
the interfaces in a multilayered medium.

We considered an ideal periodic superlattice in this pap
It is known that partial randomization of the superlatti
leads to a decrease of the widths of the gaps in the w
spectrum in such a system, and this decrease is differen
i-

y,

s.

r

of
n

ps

f

r.

ve
for

different Brillouin zones.22,23 This phenomenon has to b
taken into account when one analyzes experimental value
the gap widths. The decrease of the gap induced by the fi
thickness of interfaces can be separated, in principle, fr
the decrease induced by the randomization, because th
lation between the gap widths of different Brillouin zon
changes in different ways with increasingd/ l and increasing
randomization.
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