PHYSICAL REVIEW B VOLUME 62, NUMBER 3 15 JULY 2000-I

Wave spectrum of multilayers with finite thicknesses of interfaces
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To describe a multilayer structure with arbitrary thicknesses of the interfaces between layers, we introduce

a model in which the dependence of a material parameter along the axis of such a superlattice is described by
a Jacobian elliptic sine function. Depending on the value of the modulfsthe elliptic function, the model
describes the limiting cases of multilayers with sharp interfages, d/| =0, whered is the thickness of the
interface,| is the period of the superlatticeand of sinusoidal superlatticex €0, d/I=1/4), as well as all
intermediate situations. We investigate the wave spectrum in such a superlattice. The dependences of the
widths of the gaps in the spectrum at the boundaries of all odd Brillouin zones on thé/fasice found. It is

shown that the thicknesses of the interfaces can be determined if the experimental value of the relation between
the widths of the first gap v, and any other gap v,, is known.

I. INTRODUCTION Il. THE MODEL AND METHOD OF CALCULATION

The spectrum of waves of different natu(spin, elastic For definitenes we consider here a ferromagnetic superlat-
pectru wav ! KN, €1aslic, -~ ice with a magnetic anisotropg(z) varying along thez

eIectromagnetIlc, _et):.ls Vr\]’? Irl1—stud|ed thzorenhcalll_y f(_)r WO axis. The direction of the anisotropy is taken to be constant
types of superlattices, which correspond to the limiting casegq 1o coincide with the axis. We represenB(z) in the
of the relation between the thickness of the interfatesid (5,
d/I=0, and the dependence of a material parameter along B(2)=p[1+yp(2)], (D)
the superlattice axiz has the form of rectangular spatial . . .
P 9 P hereg is the average value of the anisotropyis its rela-
of view, because the solution in each layer can be written azormalized (p?)=1) function (the angular brackets denote
. : " veraging over the peridd. To model the general situation
amplitudes can be found from the matching conditions at th?/ve express(2) in the form of a Jacobian elliptic function:
structure. A transcendental equation is obtained as a result,
from which the wave spectrunm= w(k) can be found, p(z)=k
effectively used in obtaining this transcendental equation.Hered= 7l/8K is the effective thickness of the interfaces. In
The model corresponding to infinitely thin interfaces hasintroducing the effective thickness we chose the numerical
and spifi-‘?waves in superlattices. the sinusoidal superlattice; in so doing the main variation of
To the second limiting case corresponds the situatio® Material parameter occurs over the lendtfor all values
equal to each other, i.ed/| =1/4. The simplest model for the first and second kind, respectively, anés the modulus
this situation is a sinusoidal superlattice. The wave equatiofff these integrals. The coefficient multiplying srg/2d) is
well known. Different types of waves in solids were studied
for this case in Refs. 13—15. In Ref. 16 spin waves were 1.0+
with infinitely thin interfaces and for a sinusoidal superlat- : —
tice. -2\ -di2: [ di2 12
value between these limiting cases. A model is introduced in
the present paper which permits considering this general
the wave spectrum on the thicknesses of the interfaces ithickness of the interfaces is much smaller than the thickness of the
multilayer media. layers @/1=1/8; «'=10"2).

. 2

the periodl of the multilayer structure. For the first type
pulses. This model is the simplest from a mathematical poin ve rms variation, anch(z) is a centralized (p)=0) and
a superposition of plane waves, the relation between whos
boundaries of the layers and from the periodicity of the
K 1/2 Tz
! ! . K—E) Sr(ﬁ
wherek is the wave vector. The transfer-matrix method is
been widely used in studies of electromagn@fielastic>=’  coefficient to ber/2, so thaid/l =1/4 for the limiting case of
where the thicknesses of both the interface and the layer a®f d/! (Fig. 1). K andE are the complete elliptic integrals of
in this case is the Mathieu equation, whose wave spectrum is 0
considered for both limiting cases, namely for a superlattice
In real multilayers the ratiad/| can have an arbitrary
situation and obtaining the dependence of characteristics of FIG. 1. A typical form of the functior{2) for the case where the
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the normalization constant, which follows from the condition In an investigation of the spin waves in such a system, the
(p?)=1. Equation(2) describes both limiting cased!| =0 magnetization is represented in the form

at k=1 (K=x), d/I=1/4 atk=0 (K==/2), and all in-

termediate situations. We describe the dynamics of a ferro- M(x,t)=M(z)+m(x,t), (1)

magnet by the Landau-Lifshits equation, whereM (z) describes the inhomogeneous ground stafe

Linearizing Eq.(3), we obtain the wave equation

M= M Hm+ d  IHp 3
-9 M ax d(aM/ax) | |’ © w2 B
2 _ 2_ M2y |, —
with the energy density Vit w(4mgMg)? aMS(MX M{) (u=0. (12
1 [oM)? 5 One can see that the coefficients in this equation contain the
m= o A oy _E'B(Z)(M'b) —M-H. (4) functions(10) quadratically. Because of this, E@.2) trans-

. o _ o _ forms into the Lameequation, and it is this well-studied
HereM is the magnetizatiortl is the magnetic fieldyis the  equation that describes the spin waves in such systéms.

gyromagnetic ratiog is the exchange parameter, énts the Another situation where Jacobian elliptic functions appear
direction of the magnetic anisotropy axis, which coincidesis a ferromagnetic film on an antiferromagnetic substrate. In
with the z axis. this case the magnetic moment is fixed on one surface of the

The external magnetic fielti and the static part of the film, and under the action of the external magnetic fielld
magnetizationM are also directed along this axis. Repre-which is oriented in the direction opposite to the direction of

senting the magnetization in the form M, an inhomogeneous rotation of the magnetization occurs
along thez axis. The oscillations of the magnetic moment on
M(x,t)=Mo+m(x,t), (5 the background of this inhomogeneous ground state are de-

performing the usual linearization of E) under the con-  SCribed by a wave equation that has the fErm

dition |[m|<|My|, and takingmeexp(wt), we obtain the fol-
lowing equation for the circular projection=m,+im,: V2

VZu+[v—ep(z)]u=0. (6)
In writing Eq. (6) we have introduced the notations

w? HM,(2)
a(4mgMg)?>  aM?

u=0. (13)

Here, in contrast to Eq12), the functionM,(z) appears
linearly. But this ground state is described by an equation

w— VB containing the square of the Jacobian elliptic sine funéfion
v= , E=—, @)
agM @ m
_ 2
wherewy=g(H+ BM). My /Mo=—1+2« snz(leaMO). (14)

In the scalar approximation both the spectrum of elastic o , o
waves in a medium with an inhomogeneous density and th&hus, the wave equation is the Larequation in this case,
spectrum of electromagnetic waves in a medium with an in{00. In contrast to the situations described above, the wave
homogeneous dielectric permeability are also described b§duation in our case does not reduce to the Laaeation.

this equation with redefinitions of the parameters. For elastid hat is why we can use an approximate approach to the
waves we have solution of an equation with an arbitrary periodic potential.

According to the Floquet theorem we seek the solution of
v=(wlv)?, s=vy,, (8)  Eq.(6) in the form

where vy, is the rms variation of the density of the material - _
andv is the wave velocity. For electromagnetic waves we u(x)=e* > wpe'P?, (15
have p===

wherek is the wave vectorg is the vector of the reciprocal
superlattice [g|=2=/1), and we represent the functigi(z)

wheree, is the average value of the dielectric permeability, by the Fourier series
ve IS its rms deviation, and is the speed of light.

One might expect that the problem of investigating the
wave equation(6) with the functionp(z) in the form of Eq.
(2) is analogous to the problem of spin waves in a ferromag-
net with a domain structure. Indeed, the ground state in the Substituting Eqs(15) and (16) in Eq. (6), we obtain the
latter case is periodically inhomogeneous because of the irequation foru,:
homogeneous orientation of the static part of the magnetiza-
tion, which is also described by Jacobian elliptic functidhs:

v=g4(w/C)?, e=vy,, 9

)

pD)= 2 ppe (16)

©

[v—k§+k§—<kz—pq>2]up=sp_2 tpPp-p,. (1D
1—700

z B z \ﬁ
M= MOSF(Z\[Z)’ My = MOC”(E E)’ M.=0. In the following, we will consider waves propagating along
(100  thezaxis (k,=k). The equation f01,upl then becomes
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o 1.2 - - . -
[v—(k=p10)?Isp, =& 2 Hppp,-p,- (18 ——
P2=— I n=1
Expressingupl from this equation, and substituting it into \\

Eq. (17), we obtain 08 AN
\ﬂ \\
>
< 0.6t AN

HpyPpy—pyPp—py & N
[v—(k—pa)pp=e?> 2 —————=. (19 .
P P2 v—(k—p10) 0.4} AN
Taking into account only the term,=p in the second \\

sum of this equation corresponds to the first order of pertur- 0.2 n=3 AN

bation theory. The dispersion law in this approximation cor- N

responding to the main branch of the solutign<0) has the 00 005 01 015 o2

form ) Can )

* PP — FIG. 2. The dependences of the gap widths in the specirum
2_ .2 nP-n . . o
v—k=e 5 (200 ond/l for the first (1=1) and third 4=3) Brillouin zones. The
n=== v—(k—nq) relation A v;/Av, is also shown by the dashed curve.

where we have replaced the summation inggxoy n. ) ) ) o
We obtain from this equation the general law determining

the width of the gap in the spectrum at the boundary of the

nth odd Brillouin zone for the superlattice with an arbitrary
Equation(20) is valid for any periodic functiop(z). Us-  value ofd/I:

ing the well-known coefficients of the representation of the

Jacobian elliptic sine function by a Fourier sefiésye ob- _ 2me  QIN2

lll. THE WAVE SPECTRUM

tain for our case Avp=vy =y, = ’ (25)
VK(K—E) 1-QI"
T Qlni2 ) o1 wherev, and v, are the solutions of Eq24) atk=k,,.
Pn= sgnn), In Fig. 2 the dependences 4fv,, on d/l are depicted for
N —_ _olnl g p n p
IWK(K=E) 1-Q the first (©=1) and third 6= 3) Brillouin zones. The ratio
where 3Av3/Av, is shown also by the dashed curve. One can see

that the width of the gap for the first Brillouin zone depends
_ . ' b , P only slightly on d/l (it increases whend/l increases
Q—exp( K ) KI) =K, =1 whereas for the third zone the gap width goes to zero when
(22 d/I increases. Analysis of E¢R5) shows that the decrease of
o ) ) the gap width with the increase dfl occurs for all Brillouin
Substituting Eq(21) into Eq. (20) we obtain the general zones except the first. Analytical dependences ef on d/I

equation for the wave spectrum= w(k) in our case: andn can be obtained from E@25) for the limiting cases of
5 5 smalld/I(k—1),
, e Qln 23
v—ke= , 4.2 2
K(K=E) % (1-QI")2 v (k—nq)? Ayt Ad LT Jf4d 26
. o " a|n| Il 2\ 12 wl) |
wheren=+1,=3 .... It iswell known that a periodic po-

tential induces the strongest modification of the spectrum irand ford/|—1/4 (k—0),
the vicinities of the Brillouin zone boundariek=k;,

=nq/2, wheren can have both odd and even integer values. Av,= \/§8<
Equation (20) determines the modifications of the wave

spectrum only in the vicinities of the odd boundaries of the i
Brillouin zones. The modifications of the spectrum in the It follows from Eq.(27) that the widths of all gaps fan
vicinities of the boundaries of the even zones are higher#1 vanish for the sinusoidal superlattice whefi=1/4.
order quantities, which cannot be described by E2@). and This means that in this case the f!rst order of the p_erturbatlon
(23). With the proviso thats/v<1, the resonances in the theory does not give a contrlbutlon. to the gap Wldt'hS. The
sum in Eq.(23) influence one another only slightly. That is latter are (_jetermlned b_y terms of h|_gh_er_orders which were
why we can restrict ourselves to the two-wave approxima—n_Ot taKen into accognt in our analysis: it is known that for a
tion in the vicinity of each odd Brillouin zone boundary, Sinusoidal superlattica v,e".

keeping in the sum only the term corresponding to the Bril-

louin zonen considered: IV. CONCLUSION

22 Qini The model introduced in this paper permits describing the
e . (24 dependence of characteristics of the wave spectrum on the
K(K—E) (1—-Qln2 thickness of the interfaces We have carried out this de-

| )(nl—l)/Z

=79 27

(v=K?)[v—(k—ng)?]=
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scription in the first order of perturbation theory for the wavedifferent Brillouin zone$??® This phenomenon has to be
spectrum in the vicinities of the boundaries of all odd Bril- taken into account when one analyzes experimental values of
louin zones. It is shown that the dependence of the widths aothe gap widths. The decrease of the gap induced by the finite
the gaps in the spectrum at the boundaries of the Brillouirthickness of interfaces can be separated, in principle, from
zones ond/| differs significantly for the different zones. the decrease induced by the randomization, because the re-
Whereas the gap width of the first zoner,; increases lation between the gap widths of different Brillouin zones
slightly with increasingd/l, the gap widths for the other changes in different ways with increasidg and increasing
zonesAv,, n#1, decrease with increasimjl. Experimen-  randomization.

tal measurement of the ratio between the widths of the gaps

at the boundaries of th_e _fi_rst and, for exa_mple, thir_d Brillouin ACKNOWLEDGMENTS
zones offers the possibility of determining the thickness of
the interfaces in a multilayered medium. This work was supported by the NATO Science Program

We considered an ideal periodic superlattice in this paperand Cooperation Partner Linkage Grant No. 974573, NATO
It is known that partial randomization of the superlattice (Networking Infrastructure Grant No. 973201, NATO Com-
leads to a decrease of the widths of the gaps in the wavputer Networking Supplement No. 976181, and the Russian
spectrum in such a system, and this decrease is different féroundation for Basic Research, Grant No. 00-02-16105.

L. Brillouin and M. Parodi,Propagation des Ondes dans les Mi- 13T, Tamir, H. C. Wang, and A. A. Oliner, IEEE Trans. Microwave

lieux PeriodiquegMasson et Cie & Dunod, Paris, 1966 Theory TechMTT-12, 324 (1964).
°F. G. Bass, A. A. Bulgakov, and A. P. Tetervadtigh-frequncy ~ 14C. Yeh, K. F. Casey, and Z. Kaprielian, IEEE Trans. Microwave
Properties of Semiconductor Superlatticddauka, Moscow, Theory TechMTT-13, 297 (1965.
1989. 15K. Casey, J. R. Matthes, and C. Yeh, J. Math. PH\&. 891
3P. Yeh, A. Yariv, and Chi-Shain Hong, J. Opt. Soc. A8, 423 (1969.
, a977. , _ 18yy. 1. Gorobets, A. E. Zyubanov, A. N. Kuchko, and K. D. Shed-
N. G. Bebenin, Zh. Esp. Teor. Fiz103 2154(1993. [JETP76, zuri, Fiz. Tverd. TelalLeningrad 34, 1486(1992 [Sov. Phys.
; 1077(1993]. Solid State34, 790 (1992].
V. G. Savin and N. A. Shulga, Akust. ZR1, 260(1975; 21, 448

1"M. Ya. Shirobokov, Zh. Eksp. Teor. Fi15, 57 (1945.

18\, M. Farztdinov and E. A. Turov, Fiz. Met. Metallove®9, 458
(1970. ’

19yy. V. Zzakharov and V. A. Ignatchenko, Zhkg&p. Teor. Fiz59,
951 (1970 [Sov. Phys. JETB2, 517 (1971)].

20A. Aharoni, E. H. Erei, and S. Shtrikman, J. Appl. Phg8, 1956

(1975.

6B. Djafari-Rouhami, L. Dobrzynski, O. H. Duparc, R. E. Camley,
and A. A. Maradudin, Phys. Rev. B3, 1711(1983.

"B. Djafari-Rouhani, A. A. Maradudin, and R. F. Wallis, Phys.
Rev. B29, 6454(1984.

8p. Grunberg and K. Mika, Phys. Rev. &, 2955(1983.

°R. E. Camley, T. S. Rahman, and D. L. Mills, Phys. Rev2'B 1 (1959. ) ) ) )
261 (1983. Handbook of Mathematical Functionsdited by M. Abramowitz
10vy. V. Gribkova and M. I. Kaganov, Pis’'ma ZhkEp. Teor. Fiz. and I. A. Stegar(Dover, New York, 196}
47, 588(1988 [JETP Lett.47, 682 (1988]. 22y. A. Ignatchenko, Yu. I. Mankov, and A. A. Maradudin, Phys.
1B, Hillebrands, Phys. Rev. B1, 530 (1990. Rev. B59, 42(1999.

2R, E. Camley and R. L. Stamps, J. Phys.: Condens. Matter 23v. A. Ignatchenko, Yu. I. Mankov, and A. A. Maradudin, J.
3727(1993. Phys.: Condens. Mattdrl, 2773(1999.



