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Effects of electron-electron scattering on electron-beam propagation
in a two-dimensional electron gas
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We have studied experimentally and theoretically the influence of electron-electron collisions on the propa-
gation of electron beams in a two-dimensional electron gas for excess injection energies ranging from zero up
to the Fermi energy. We find that the detector signal consists ofquasiballisticelectrons, which either have not
undergone any electron-electron collisions or have only been scattered at small angles. Theoretically, the
small-angle scattering exhibits distinct features that can be traced back to the reduced dimensionality of the
electron system. A number of nonlinear effects, also related to the two-dimensional character of the system, are
discussed. In the simplest situation, the heating of the electron gas by the high-energy part of the beam leads
to a weakening of the signal of quasiballistic electrons and to the appearance of thermovoltage. This results in
a nonmonotonic dependence of the detector signal on the intensity of the injected beam, as observed
experimentally.
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I. INTRODUCTION

The propagation of electron beams in the tw
dimensional electron-gas~2DEG! of GaAs-~Al,Ga!As het-
erostructures was studied in a number of publications,1–5 and
has proven to be a very sensitive tool for studying elect
scattering-phenomena. In Refs. 1,2, the emphasis was o
effects of electron-phononscattering, where the beam wa
injected across tunnel barriers. These effects occur at r
tively large excess energies of the electron beam, typicall
the order of the optical phonon energy, some 30 meV.
later works,3,4 the effects ofelectron-electronscattering phe-
nomena~occurring at much lower energies, typically belo
10 meV! were analyzed, using opposite quantum poi
contacts as injector and detector for the electron beam.

In our paper3 we paid much attention to thermal beams
which the characteristic energy of beam electrons«, counted
from Fermi level, is of the order of the sample temperat
T0. It was shown that electron-electron collisions played
main role in damping such beams. The overall behavior
the signal attenuation could be reasonably understood u
the formula of Giuliani and Quinn6 for the electron-electron
scattering rate in a 2DEG, implying that the result of a sin
electron-electron collision is sufficient for an unequilibriu
electron to escape from detection~relaxation time approxi-
mation!. This conclusion was subsequently confirmed
other groups.4,5

In this work, we return to our studies of electron-electr
scattering in a 2DEG system, equipped with a much m
detailed framework of understanding of the dynamical sc
tering phenomena,7–11 which has first been used to expla
the hydrodynamic electron flow-phenomena we observe
few years ago.12 These newly developed theories enable
much more refined analysis of the experimental data. S
cifically targeting the theoretical predictions of Refs. 7–
PRB 620163-1829/2000/62~3!/2057~8!/$15.00
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we have performed a new series of electron-beam exp
ments for different samples at various temperatures and f
wide range of injection energies. In our experiments we c
identify specific two-dimensional effects, as well as nov
nonlinearities due to 2DEG heating. Our results cast dou
on the interpretations in Refs. 4 and 5.

In the course of this paper, we will first present the e
perimental results and their qualitative explanation~Sec. II!.
Next we develop a theoretical approach for the electr
beam propagation in small systems, i.e., where the proba
ity of secondary collision is negligible~Sec. III!, and for the
opposite case, the multicollision limit@the propagation of a
beam over long distances becomes possible due to spe
two-dimensional effects~Sec. IV!#. In Sec. V we consider
non-linear phenomena which can play an essential role
the interpretation of an electron-beam signal and we ana
the experimental data in the framework of the here dev
oped theory in Sec. VI. Throughout this paper we will u
‘‘energy units’’ for temperature and potential difference
i.e., the Boltzmann constantkB and the electron chargee are
equal to 1.

II. EXPERIMENT

The experiments were performed on gate-defined na
structures in conventional modulation doped GaA
~Al,Ga!As heterojunctions. Typical values for the carri
density and mobility arene52.4531011 cm22 and m'1
3106 cm2(V s)21, corresponding to an impurity mean-free
path of l imp'20 mm. A schematic topview of the sampl
gate-structure is given in Fig. 1. Schottky gates~gray areas!
form two opposite quantum point-contacts,i andd, at litho-
graphical distances ofL50.6, 2, 3.4, and 4mm for different
samples.

In the experiments, the electron beam was injec
2057 ©2000 The American Physical Society
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2058 PRB 62H. PREDELet al.
through the injector quantum point-contacti by applying a dc
voltage Vi5V12 and detected as the nonlocal voltageVd
5V34 across the detector point contactd. The numbers 1, 2
3, and 4 denote the Ohmic contacts to the 2DEG of
sample~Fig. 1, crossed squares!. We stress that the use o
all-dc techniques is very important for a proper interpretat
of the observed signals. Differential resistance measurem
with lock-in techniques will not elucidate the role of th
thermovoltage background to the signal in full. Both injec
and detector point contacts were adjusted at then51 pla-
teau, i.e., both contain one transverse mode, and thus re
in the metallic regimeGQPC5n2e2/h. ~In other words, they
do not act as tunnel barriers, as was the case in Refs.!
Thus, electrons of all possible energies, 0,«,Vi , are
present in the injected beam.

In the presence of a magnetic field perpendicular to
2DEG plane, the electron beam is deflected and the dete
signal, Vd(B) yields the beam profile~see Fig. 2!. For the
present a point-contact adjustment atn51 and a injector-
detector distanceL53.4 mm we obtain the characteristi
opening angle of injector and detector which amounts tof
;18° ~see Ref. 15!.

From Fig. 2, showing theVd(B) dependence for differen

FIG. 1. Schematic topview of the device layout. Hatched ar
are Schottky gates, defining the device geometry, crossed sq
denote Ohmic contacts,i andd symbolize the injector and detecto
quantum point-contact, respectively.

FIG. 2. Magetic-field dependence of the detector signalVd for
different injection voltages: 0.5, 1.4, 2.2, 2.9, 3.6, 4.4, 5.5, 6.0,
7.8, 8.8, and 10.1 mV~bottom to top!. Note that no offset is added
to the experimental data.
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injection energies (0.5<Vi<10 mV) at 1.6 K, one can se
that the detector signal first increases with increasing inje
voltage. Then forVi.3 mV a strong increase of an isotrop
background signal is observed while at the same time
beam profile broadens. For injection energies larger 10 m
a beam signal can hardly be resolved, while the backgro
increases continuously.

To investigate the effects of electron-electron scatter
events on the beam propagation we are interested in the
pendence of detector-signal on the injection energy atB50.
Figure 3~a! presents the experimental results for the sam
L53.4 mm at three different sample temperaturesT051.6,
8, and 11 K. Additional measurements~not shown here!
were made at different sample~lattice! temperatures,T0
52.2, 3.4, 5, 15, and 17 K and for different injector-detec
distances. It can be seen from Fig. 3~a! that for low injection
energies the detector signal increases linearly withVi . For
Vi.3 meV only for the lowest temperature~curve 1! a satu-
ration and even a small decrease is observed. For high in
tion energies theVd(Vi) dependence increases for all tem
peratures.

As we have seen from Fig. 2, forVi.3 meV an increas-
ing isotropic background signal is detected, which is not

s
res

,

FIG. 3. Experimental dependence of the detector signalVd on
the injector voltageVi for L53.4 mm at three different sample
temperaturesT051.6 K ~trace 1!, 8.0 K ~trace 2!, and 11 K~trace
3!. ~a! detector signal at zero magnetic field: electron beam is
rected straight from injector to detector,~b! B550 mT: the electron
beam is deflected and does not reach the detector directly@isotropic
background signal~thermovoltage!#. ~c! Contribution of narrow-
directed~quasiballistic! movement of electrons to the detector si
nal resulting from subtracting the appropriate data sets of Fig. 2~b!
from Fig. 2~a! @T051.6 K ~trace 1!, 8.0 K ~trace 2!, and 11 K~trace
3!#.
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rectly related to the ballistic electron-beam propagation.
order to extract the ballistic part of the detector signal
measured the isotropic background signal separately by
peating the experiment for high magnetic fieldsB
550 mT) to ensure that the electron beam is totally
flected and ballistic beam electrons do not contribute to
detector signal@Fig. 3~b!#. Subtracting this background sig
nal from the data measured forB50 T we obtain the pure
electron-beam contribution to the detector signal@Fig. 3~c!#.
Now the result is similar for all temperatures: We obse
first a linear increase ofVd with increasingVi and then a
saturation followed by a decrease for high injection energ
while with increasing sample temperature the maxim
electron-beam signal decreases@Fig. 3~c!#.

These experimental results can be understood from
following qualitative considerations. Let us assume, for s
plicity, that the lattice temperature~the primary temperature
of the system! is equal to zero. Then, for a nonequilibriu
electron with excess energy« above the Fermi energy«F ,
the mean-free-path for collisions with equilibrium electro
decreases with increasing«, roughly speaking asl ee(«)
;«22ln «21, «!«F .13 Therefore, at sufficiently smallVi all
injected electrons will reach the detector, whose readout t
is proportional to the number of injected electrons,Vd}Vi ,
schematically shown in Fig. 4.~Electrons of all energies 0
<«<Vi are present in the beam, with equal weight!. This
linear increase ofVd with Vi saturates for energies«>«0
when the electron-electron scattering mean free path le
( l ee) becomes comparable toL, the distance between injecto
and detector:Vi5«0 for l ee(«0)5L. Electrons with larger
energies,«0,«,Vi , will scatter and do not reach the dete
tor. Thus, the signalVd is determined by a fraction of elec
trons which is completely saturated atVi;«0 and should not
change on a further increase ofVi . However, as is eviden
from Fig. 3~a!, the signal, upon reaching a maximum, sta
to decrease slightly. The only possible mechanism leadin
such behavior is heating of the 2DEG in between injec
and detector point-contact by the electron beam. The he
2DEG then leads to damping of the electron beam due
enhanced electron-electron scattering. At still higherVi , Vd
shows again an increase@Fig. 3~a!#. This is due to the addi-
tional build-up of a thermovoltage across the detector po

FIG. 4. Schematic view of the characteristic energies of
electron-beam experiments. Potential barriers are shown at the
ter of the quantum point-contacts. Typical energies are indica
«F ~Fermi energy!, eVi ~injection energy!, and «0 „maximum en-
ergy for electrons reaching the detector ballistically@ l («0)5L#….
Note, the effective charging of the area behind the detector (eVd) is
at least 30 times smaller than the injection energy and there
negligible on the scale of this diagram.
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contact@Figs. 2 and 3~b!#, which is driven by the temperatur
difference between the heated 2DEG in between injector
detector and the still cold 2DEG behind the detector.16

As we will see below, the qualitative picture given abo
is fully confirmed by the theory described in this work. W
will demonstrate that under our experimental conditions i
possible to separate the electrons of the beam into
groups, i.e., ‘‘quasiballistic’’ («,«0) and ‘‘heating elec-
trons’’ («.«0), which greatly simplifies the interpretation o
the experimental results.

III. ONE-COLLISION APPROXIMATION

The detected signalVd is determined by the distribution
function of nonequilibrium electronsf in the vicinity of de-
tector point contact. For now, we neglect nonlinearities d
to heating of the 2DEG in between injector and detect
which is a valid approximation for sufficiently low exces
energies of the injected electrons. The linearized Boltzm
equation, describing the behavior of the distribution functi
f, then has the form

vx

] f

]x
1vy

] f

]y
5 Ĵ f , f ~x50,y,p!5 f 0~y,p!. ~1!

Here, f 0(y,p) is the beam profile at the exit from th
injector, and the axisx is directed from injector to detecto
~see Fig. 1!. Ĵ f is a linearized integral describing th
electron-electron collisions. It is convenient to write it as

Ĵ f 52n f 1E dp8npp8 f p8 , n5E dp8np8p . ~2!

Here, the collision-integral kernelnp8p determines the
probability of the appearance of a nonequilibrium electr
(np8p.0) or hole (np8p,0) in statep8 after the nonequilib-
rium electron has disappeared from statep ~i.e., has been
scattered into another state!. The kernel has a complex struc
ture and in the general case can not be presented in ele
tary functions. We have

np8p5
1

n~«!
E dp1dp2~2Cp8p1pp2

2Cp8pp1p2
!, ~3!

where

Cp8pp1p2
5Wp8pp1p2

@12n~«8!#n~«1!n~«2!

3d~p81p2p12p2!d~«81«2«12«2!. ~4!

Here Wp8pp1p2
is proportional to the square of the matr

element of the electron-electron interaction, andn(«) is the
equilibrium Fermi distribution function.

We now introduce the angular scattering distributi
function

g~w!5n21mE d«8np8p , ~5!

wherew is the scattering angle. For simplicity, we assum
parabolic bands («5p2/2m), which is a good approximation
for the conduction band in GaAs-~Al,Ga!As heterostructures
At sufficiently small« andT, the form ofg(w) is determined

e
en-
d:

re
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mainly by the phase-space restraints imposed by the t
dimensional character of the 2DEG.7–10 Roughly speaking,
g(w) consists of a narrow bunch of electrons flying forwa
in an angle range of the order of6(«1T)1/2«F

21/2 and a
bunch of holes, of approximately the same width, flyi
backward~see Ref. 11!. Therefore, the electron-electron sca
tering is effectively a small-angular process.7–9

For the general case, Eq.~1! cannot be solved. Howeve
under conditions where the probability of collisions is sma
i.e., l ee5v(«)n21(«)@L, or «!«0, we can use perturbatio
theory for the collision integral. In the first order or on
collision approximation we then have

f ~x,y,p!5S 12
xn

vx
D f 0S y2

vy

vx
x,pD

1
1

vx
E

0

x

dx8E dp8npp8 f 0F y2
vy

vx
x

1S vy

vx
2

vy8

vx8
D x8,p8G

[S 12
xn

vx
D f 01Q̂f 0 . ~6!

The first term on the right-hand side~RHS! of Eq. ~6!
describes the number of nonscattered particles reaching
the vicinity of a point (x,y). The second~integral! term Q̂f 0
describes particles that reach the same spatial region,
having been scattered once.

Note that for high-energy beams («@T), the probability
of undergoing a second collision is approximately one or
of magnitude lower than that of the first collision.10 This is
connected with the fact that after collision with equilibriu
~Fermi sea! electrons, the excess energy of a nonequilibri
electron («) must be redistributed between three partne
i.e., «̄'«/3,l ee( «̄)'32l ee(«),T!«!«F , where «̄ is the
characteristic energy of the scattered electrons. There
the one-collision approximation is valid for a relatively wid
range of energies as long asl ee( «̄)>L. On observing this
and the fact thatQ̂n f 0;n(«)Q̂f 0@nQ̂f 0;n( «̄)Q̂f 0, it is
straightforward to build a new ‘‘modified’’ one-collision ap
proximation. After partial summation of the terms of the
eration series on the parameterx/ l ee(«) of Eq. ~1! one ob-
tains the following expression in zeroth order approximat
for the parameterx/ l ee( «̄):

f 'e2nx/vxf 0S y2
vy

vx
x,pD1

1

vx
E

0

x

dx8E dp8npp8e
2n(«8)x8/vx8

3 f 0F y2
vy

vx
x1S vy

vx
2

vy8

vx8
D x8,p8G . ~7!

This formula is valid when«,3«0. The first term on the
RHS corresponds to the usual relaxation-time approxima
Ĵ f 52n f . Note that the modified one-collision approxim
tion Eq. ~7! is based on an exact consideration of the fi
collision and not on perturbation theory. It does not take i
account any further collisions.
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The experimentally measured voltage drop,Vd , is deter-
mined by the current passing the detector point-contact
can be calculated from

Vd5eE d«E dwr~w!vxf ~x5L,y50,p!. ~8!

Here r(w) is the function characterizing the angular a
ceptance of the detector point-contact, which is positione
(L,0). For simplicity, we use in our numerical calculation
Heaviside step functions to represent the angular chara
istics of injector and detector point contacts:

r~w!}u~f/22uwu!,

f 0~y,p!}u~f/22uwu!u~Vi2«!. ~9!

In this model, the behavior ofVd(Vi) is determined by
two parameters, i.e., the angular injection~and acceptance!
range of the point contactf and the distance between inje
tor and detectorL. For more realistic models of the angula
response of quantum point contacts we refer to Ref. 15

The dependenceVd(Vi) is calculated using Eqs.~7!–~9!,
including the expressions for the kernelnpp8 obtained in Ref.
11, settingf518°, andL53.4 mm, i.e., close to the experi
mental conditions. The result is shown in Fig. 5 for the f
expression of the modified one-collision approximati
~MOCA! ~curve 1! and the relaxation-time approximatio
~RTA! ~curve 2!. We clearly observe that the curves satura
with increasingVi . Saturation occurs at a higher injectio
voltageVi and a higher signal levelVd , for the MOCA as
compared with the RTA. The difference between the
curves ~about 15%! characterizes the role of two
dimensional effects for the given parameters. This differe
is due to the integral term in Eq.~7!, which can be omitted
when 2D effects are negligible.

In the next section we show that the role of the tw
dimensionality is much larger whenf.(«0 /«F)1/2. In this
limit, a saturation of the curve atVi,3«0 does not take place
at all.

IV. MULTICOLLISION REGIMES

In the limit where the electrons undergo a number of c
lisions on their way from injector to detector, it is impossib

FIG. 5. CalculatedVd(Vi) dependences without taking into ac
count electron heating of the 2DEG in between injector and col
tor. Curve 1: Modified one-collisional approximation Eqs.~7!,~8!;
curve 2: relaxation-time approximation; withf518°, L
53.4 mm, «050.2 meV, and«F59 meV.
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to obtain a completely analytical solution of the spatia
inhomogeneous problem of beam propagation. Instead,
will discuss below a simple qualitative theory that a
equately describes this multicollision regime.

To obtain realistic numerical values of the angular rela
ation rate we first consider the momentum relaxation in ti
for a spatially homogeneous distribution. For simplicity, w
take the thermalized distributionf 5(2]n/]«)x(w,t), i.e.,
equilibrium is established in energy but not in momentum
this case the kernel of the collision integral contains o
differences in the angular variables, and the solution of
Boltzmann equation reduces to the calculation of a o
dimensional Fourier transform. Here, we use the numer
results of the angular distribution functiong(w) that were
obtained in Ref. 11.~In the case of nonthermalized distribu
tions the angular and energy variables are not separable
therefore the solution of the Boltzmann equation become
much more difficult problem.! Figure 6 shows the results o
a calculation for thermalized conditions atT050.1«F and for
different timest after beam injection. From this figure fo
lows that the beam remains narrow up to times of the or
of 10tee, whereas in the three-dimensional case a smo
driftlike distribution is already established after a delay
the order of one collision time. From now on, we will use t
convention 0.1«F[«* to denote the characteristic energy
a beam, below which the specific features of tw
dimensional relaxation essentially manifest themselves.

Depending on the relative magnitude of«0 and the tem-
peratureT of the 2DEG, different multicollision regimes ar
possible.

~1! Let us start with the case of low temperatures,T
!«0. We assume thatL is so large that«0,«* . In this case,
the particles that undergo multiple collisions but still contr
ute to the electron beam signal, are those whose mean

FIG. 6. The temporal evolution of a thermalized spatially u
form distribution x(t,w) @T/«F50.1 and xu t50}d(w)#. ~a! t
5tee; ~b! t510tee ~curve 1!. Curve 2 for comparison the 3D cas
after a few electron-electron collisions~driftlike distribution!.
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path is considerably less thanL and whose scattering is sma
angular:

«0,«,«* . ~10!

Note that after a few collisions the energy of such p
ticles drops very rapidly to values close to«0, upon which
the particles will reach the detector without further collisio
In contrast, the opening angle broadeninga of the electron
beam is determined by the first collisiona;A«/«F!1. It is
then straightforward to evaluate the contribution to the
tector signal of the group of electrons with energies in
range («0 ,«):

Vd;~«2«0!
lF

r'

f

a
;«F

«2«0

«

lF

L
f. ~11!

The transverse beam broadening isr'.La. The detector
width is chosen to be of the order of the electron Fer
wavelength lF ~corresponding to the occupation of on
mode in the quantum point-contact!. We have assumed a
angle of acceptancef!a for the detector point-contact;15 in
the other case, iff>a, the multiplierf/a can be omitted
for the above expression.

The order of magnitude of the contribution of ballist
electrons to the detector signal can be estimated asVd
;«0lF(Lf)21, where we assume identical characterist
for injector and detector quantum point-contacts. Therefo
the condition for a predominance of the group of nonballis
electrons to the detector signal takes the form

f.A«0

«F
. ~12!

This inequality is satisfied more easily for samples w
larger L ~i.e., smaller«0) or larger acceptance anglesf.
Under our experimental conditions the LHS and RHS in E
~12! coincide by an order of magnitude, and it turns out th
the 2D effects lead to corrections of the order of unity.
casef@A«0 /«F it should be possible to observe the lon
distance beam propagation as predicted in Ref. 8. In o
words, one can detect an electron beam over a distance
ceeding substantially the electron-electron mean-free-p
l ee as a result of one-dimensional electron-hole diffusion

~2! For «0!T, ballistic electrons are practically absen
Roughly speaking, the number of quasiparticles reaching
detector without any collisions is exponentially small a
proportional to exp@2L/lee(T)#5exp(2T2«0

22). High-energy
electrons with energies«F.«.T loose their excess energ
very quickly, after a few collisions, and cool down to ene
gies of the order of the lattice temperatureT. Simultaneously,
the beam acquires an angular broadening of the orde
A«/«F,1. After this initial relaxation, providedT,«* , we
still have a narrow distribution of electrons~and holes with
opposite momenta! whose movement is a one-dimension
diffusion in coordinate space—an effect which is genuin
caused by the two-dimensionality of the electron system. T
angular broadening in time of this specific group can be
pressed asa;AT/«F@ t/tee(T)#1/4 ~see Refs. 7,10!. The con-
tribution of this narrowly directed group of electrons to th
detected signal can be evaluated using Eq.~11!. Taking into
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account, that, assuming one-dimensional diffusion, the t
an electron needs to reach from injector to detector is of
order ofvF

21L2l ee
21(T) we obtain

a;A«/«F1AT/«F@L/ l ee~T!#1/2, ~13!

r';L$A«/«F1AT/«F@L/ l ee~T!#3/2%.

As one can see from these expressions, the result of
~11! obtained above is retrieved for«.T3«0

22[T* . At the
same time, the contribution to the detector signal of electr
with energiesT0,«,T* is given by

Vd;«
lFl ee

2 ~T!

L3

«Ff

T
. ~14!

According to Eqs.~11! and~14!, the signal decreases wit
increasingL according to a power law, but not exponential
This again is essentially a two-dimensional effect~see Refs.
8,9! and should be well-pronounced in high-mobili
samples with sufficiently largeL. Thus, it is possible to cre
ate conditions in a two-dimensional electron gas under wh
the electron-beam signal is determined rather by a hig
energy quasiballistic group of electrons which experien
small-angle scattering than by purely ballistic electrons«
<«0.

V. NONLINEAR EFFECTS AND HEATING

Due to the heating of the electron gas between injec
and detector point-contacts for ‘‘high’’ excess energies
detector signal consists not only of quasiballistic beam e
trons but also of an isotropic signal resulting in a thermovo
age across the detector. This causes the growth ofVd for
injection energiesVi.5 mV in our experiments@Figs. 3~a!
and 3~b!#. The contribution of the thermopower to the dete
tor signal is given by

DVd5S~T!DT, DT5T2T0 . ~15!

Here,T is the electron gas temperature between injec
and detector andT0 is the gas temperature beyond the det
tor ~which is close to the lattice temperature!, S(T) is the
Seebeck coefficient~thermopower! of the detector~heating
of the 2DEG between injector and detector by the injec
electron beam was already discussed by us in Ref. 3!. As
discussed above~Sec. II!, on increasingVi , the increase ofT
leads to an increase of the thermovoltage on the one h
and to the decrease of the mean-free-path of quasiball
electrons on the other hand, and therefore to the appear
of a minimum in the dependenceVd(Vi).

For «0.«* ~the limit where specific 2D effects can b
neglected!, only ballistic electrons contribute to the bea
signal. We then have as a rough estimate for the tempera
dependence of the signal

Vd~T!;ke2L/ l ee(T)1S~T!DT, k21;LlF
21f~Vi

211«0
21!.
~16!

An analysis of this expression shows that a minimum
Vd(T) is always present whenVi.«0. This statement holds
as well in the multicollision regime«0,T,«* @see Eq.
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~14!#. It is evident that with increasingVi the temperature of
the 2DEG between injector and detector point-contact
creases. However, this does not necessarily imply that
Vd(Vi) dependence replicatesVd(T) of Eq. ~16! qualita-
tively, becauseVi enters explicitly in Eq.~16! and not only
throughT(Vi). One can only state definitely that the bea
signal should decrease sooner or later on increasingVi .

Generally speaking, the theoretical determination of
dependenceT(Vi) requires solving a complex nonlinea
problem on the beam’s self-action. However, the essen
dependence of the mean-free-path on excess energy a
considerable simplifications for sufficiently highVi , i.e., the
separation of the injected particles in~i! ‘‘heating’’ ~high-
energy electrons which do not reach the detector! and ~ii !
quasiballistic electrons~which contribute mainly to the beam
signal, but not to heating!. Such a separation is undoubted
possible atVi.«0.«* . ~If Vi<«0 we can neglect heating.!

Thus, under certain conditions one can use the follow
quasilinear approach: First, we find the electron gas hea
DT(Vi) due to the high-energy part of the beam, and th
using the electron temperatureT thus obtained, we determin
the signal of the quasiballistic part. In particular, in th
relaxation-time approximation we have

f 5e2L/vxtee(«,T) f 0S y2L
vy

vx
,pD , ~17!

whereT5T01DT(Vi). In fact, this means that the separ
tion reduces the nonlinear problem to two linear equation

Finally, we want to consider the case when«0,Vi,«*
where, due to the specific two-dimensional effects, the
jected particles slowly relax their directionality, but rapid
lose their excess energy.7 In this limit, it is not possible to
separate heating particles from quasiballistic ones. The b
signal is proportional tol ee

2 (T)T21 @see Eq.~14!# and, hence,
it is sensitive to heating. This essentially nonlinear situat
could be realized experimentally for high quality samp
with a large distanceL between injector and detector.

VI. DISCUSSION OF THE EXPERIMENT

In this section we want to compare the experimental
sults, Sec. II, with our theoretical results. A series of me
surements for different sample temperaturesT051.6, 2.2,
3.4, 5.0, 8.0, 11, 15, and 17 K were available for analy
~partly shown in Fig. 3!. For temperaturesT0,8 K, the
modified one-collision approximation@Eqs.~7!, ~8!, and~9!#
allows a proper description of the experiment forVi
,3 mV, see Fig. 4~note thatl ee'L53.4 mm for Vi5«0
.2 mV). For higher values ofVi , where heating is essen
tial, one can use the relaxation-time approximation@Eq.
~17!#, taking into account theT(Vi) dependence.

To compare theory with experiment we extract the he
ing DT(Vi) in two different ways. First, by measuring th
heating caused by the electron beam as a function of in
tion energy, using the thermovoltage across the dete
quantum point contact as a thermometer17 and second, by
analyzing the set of experimental data for the anisotropic p
of the signal~Fig. 3!, see below.

The result of an electron-temperature measurement de
mined via thermopower for a lattice temperatureT051.6 K
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is displayed in the inset of Fig. 7. Here, the detector po
contact conductance was adjusted to yield a maximum t
mopower (S'20 mV/K),17 where the conductance of th
injector point-contact was fixed at one mode so that its th
mopower is negligible compared with the detector. The m
surements were done at small magnetic fields (B550 mT) to
prevent beam electrons from reaching the detector point c
tact directly.

Alternatively, the decrease of the detector signal due
the quasiballistic part of the electron beam allows for
estimate of the 2DEG beam heating. We assume that the
of these curves at valuesVi larger than the injector voltage a
the maximum inVd ~which we now denote asVi

max) de-
scribes the signal from the full narrowly directed fraction
electrons as a function of 2DEG temperature, i.e.,Vd@T0
1DT(Vi)#. Thus, the curves in Fig. 3 are members of
one-parameter family which differ only by the value of th
temperatureT0. For the validity of this statement, it is im
portant that heating can be neglected at the local maxim
of Vd(Vi) for each curve,DT(Vi

max)'0. From Fig. 3~b! it is
evident that atVi

max the thermovoltage is indeed negligibl
Let us now consider any two curvesT01 and T02 of this
family and letT01,T02. Then curveT01 has always larger
values Vd for a given Vi than curveT02, and curveT01
decreases to a signalVd , equal in size to the maximum o
curveT02 at a given, larger, value ofVi . Now, it is evident
that T011DT(Vi)5T02. In this manner, we are able to re
construct the functionDT(Vi). Let us emphasize that it i
convenient to choose the local maximumVi

max as a starting
point for recoveringDT(Vi), since, in the vicinity of this
point there is no need~i! to correct for the increase of th
signal due to the quasiballistic group of electrons with
creasingVi , that takes place at lowVi in the linear response
regime and~ii ! to take heating effects into account. As a
example, let us consider the curves 1 and 2 of Fig. 3,
T0151.6 K andT0258 K. The maximum value of curve 2 i
approximately 0.135 mV. The same value ofVd for curve 1
is reached in decreasing part of the curve atVi;5.2 mV.
Thus, we obtain a heating temperature ofDT.T022T01
56.4 K for Vi;5.2 mV. The results obtained for the expe

FIG. 7. The comparison of theory and experiment forT0

51.6 K: modified one-collision approximation~dashed line!, the
experiment~solid line!, and the relaxation-time approximation wit
taking into account the heating~dotted line!. The inset displays the
dependence of the electron temperature on injector volt
DT(Vi), obtained from heating temperature measurements~solid
line! and from the experimentally determined temperature dep
dence of the detector signal~Fig. 3! ~squares!.
t-
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ments at the lowest sample temperatureT051.6 K are
shown in the inset of Fig. 7~squares!. It can be seen that the
extracted heating temperatures agree well with 2DEG te
perature measurements for applied magnetic fields.
therefore can use thisT(Vi) dependence for further consid
erations. Note that the heating temperature depends not
on Vi but also on the initial sample temperatureT0 : DT
5DT(Vi ,T0). For higherT0, the 2DEG heating is less effi
cient, see Fig. 3.

Additionally, the electron temperature can be estima
roughly from the heat balance between the energies tr
fered from the electron beam into the 2DEG and removed
phonons.14 We then have

vF^«&lF

Vi

«F
ne;neps\kF

T

«F
neS. ~18!

Here, ^«&;Vi /2 is the average energy of the electro
beam,neVi /«F is the number of injected electrons,nep is the
frequency of electron-phonon collisions,s is the sound ve-
locity, kF is the Fermi wave vector, andS is the area of the
heated 2DEG region. Thus, we obtain for the electron te
perature

T;
lFl ep

S

«F

s\kF
^«&. ~19!

In order to evaluate this expression we assume for
experimental situation the following values:s;6
3105 cm s21, kF51.183106 cm21, «F59 mV, and S is
taken to be of the order of the area between injector
detector, viz. 200mm2. The mean-free-path for electron
phonon collisions l ep is estimated at 100mm, yielding
T(Vi55.2 mV).7.3 K @Eq. ~19!#. In spite of this very crude
model, we thus find a remarkable agreement with the e
tron temperature obtained from the experimental d
@DT(Vi.5.2 mV)56.4 K#.

As mentioned above, the experimental data can be
proximated using the modified one-collision approximati
@Eq. ~7!# for injection energiesVi,Vi

max and the relaxation-
time approximation@Eq. ~17!# for Vi which is sufficiently
large in comparison withVi

max. At high T(Vi) the scattering
is not small-angular and leads to a more or less isotro
background, i.e., 2D effects are absent. According to this,
plotted in Fig. 7 the modified one-collision approximatio
~dashed line!, experiment~solid line! for T051.6 K and the
relaxation-time approximation~RTA! ~dotted line!, which
takes into account electron-heating effects. For the RTA
have used the asymptotic expression

tee
21~«,T!5

«212p2T2

4p\«F
ln

«F

T1«
, ~20!

which is valid for arbitrary ratio of small values ofT/«F and
«/«F .9 The coefficients for the theoretical calculations we
chosen in such a way that coincidence is achieved for sm
injection energies, where the linear increase is observed
electron travel ballistically in any case. Thus, in fact,
additional fitting parameters are used. For this calculation
is important that the detector sizelF!Lf. As one can see
from Fig. 7, the divergence between the relaxation-time

e,

n-
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proximation and the experiment is only due to specific tw
dimensional effects and reaches a maximum in the vicin
of Vi53 mV, where on the one hand a number of the sc
tered particles is comparable with the number of pure ba
tic, and on the other hand scattering is still small angula

VII. CONCLUSIONS

We have studied the role of different groups of electro
on the propagation of electron beams in a high-mobility tw
dimensional electron gas for wide range of excess energ
We have observed a nonmonotonic dependence of the d
tor signal on the excess energy of the injected electrons.
result can be explained in the framework of our model, se
rating the beam electrons into two groups, i.e., ‘‘quasibal
tic’’ electrons and ‘‘heating’’ electrons~high-energy part of a
ev

.

.T

v.
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.

i.
-
y
t-
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s
-
s.

ec-
is

a-
-

beam!. We have shown that due to the reduced dimensi
ality of the system the quasiballistic fraction consists n
only of purely ballistic electrons but also of a significa
number of electrons which have experienced small-an
electron-electron scattering events. The small-angle chara
of electron-electron scattering is essentially a tw
dimensional effect, predicted earlier by us,8,9,11 which mani-
fests itself in the experiments discussed here. In addition,
have formulated the conditions where 2D effects can be b
observed and thus electron-beam propagation over very
distances should be possible.
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