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We have studied experimentally and theoretically the influence of electron-electron collisions on the propa-
gation of electron beams in a two-dimensional electron gas for excess injection energies ranging from zero up
to the Fermi energy. We find that the detector signal consistgiasiballisticelectrons, which either have not
undergone any electron-electron collisions or have only been scattered at small angles. Theoretically, the
small-angle scattering exhibits distinct features that can be traced back to the reduced dimensionality of the
electron system. A number of nonlinear effects, also related to the two-dimensional character of the system, are
discussed. In the simplest situation, the heating of the electron gas by the high-energy part of the beam leads
to a weakening of the signal of quasiballistic electrons and to the appearance of thermovoltage. This results in
a nonmonotonic dependence of the detector signal on the intensity of the injected beam, as observed
experimentally.

[. INTRODUCTION we have performed a new series of electron-beam experi-
ments for different samples at various temperatures and for a
The propagation of electron beams in the two-wide range of injection energies. In our experiments we can
dimensional electron-ga@DEG) of GaAs{Al,Ga)As het- identify specific two-dimensional effects, as well as novel
erostructures was studied in a number of publicati'Gﬁa,nd nonlinearities due to 2DEG heating. Our results cast doubts
has proven to be a very sensitive tool for studying electroron the interpretations in Refs. 4 and 5.
scattering-phenomena. In Refs. 1,2, the emphasis was on the In the course of this paper, we will first present the ex-
effects ofelectron-phonorscattering, where the beam was perimental results and their qualitative explanati8ec. I).
injected across tunnel barriers. These effects occur at reldNext we develop a theoretical approach for the electron-
tively large excess energies of the electron beam, typically obeam propagation in small systems, i.e., where the probabil-
the order of the optical phonon energy, some 30 meV. lIrity of secondary collision is negligibléSec. 1ll), and for the
later works®* the effects oflectron-electrorscattering phe- opposite case, the multicollision limithe propagation of a
nomena(occurring at much lower energies, typically below beam over long distances becomes possible due to specific
10 meV) were analyzed, using opposite quantum point-two-dimensional effect¢Sec. IV)]. In Sec. V we consider
contacts as injector and detector for the electron beam.  non-linear phenomena which can play an essential role for
In our papet we paid much attention to thermal beams in the interpretation of an electron-beam signal and we analyze
which the characteristic energy of beam electrensounted  the experimental data in the framework of the here devel-
from Fermi level, is of the order of the sample temperatureoped theory in Sec. VI. Throughout this paper we will use
T,. It was shown that electron-electron collisions played a‘energy units” for temperature and potential differences,
main role in damping such beams. The overall behavior of.e., the Boltzmann constakg and the electron chargeare
the signal attenuation could be reasonably understood usirgfual to 1.
the formula of Giuliani and Quirthfor the electron-electron
scattering rate in a 2DEG, implying that the result of a single Il. EXPERIMENT
electron-electron collision is sufficient for an unequilibrium
electron to escape from detectidrelaxation time approxi- The experiments were performed on gate-defined nano-
mation). This conclusion was subsequently confirmed bystructures in conventional modulation doped GaAs-
other group$:® (Al,Ga)As heterojunctions. Typical values for the carrier
In this work, we return to our studies of electron-electrondensity and mobility aren,=2.45<10" cm 2 and u~1
scattering in a 2DEG system, equipped with a much more<10° cn?(V s) %, corresponding to an impurity mean-free-
detailed framework of understanding of the dynamical scatpath of l;;,~20 um. A schematic topview of the sample
tering phenomen&;** which has first been used to explain gate-structure is given in Fig. 1. Schottky gatgey areas
the hydrodynamic electron flow-phenomena we observed #rm two opposite quantum point-contactsgndd, at litho-
few years agd? These newly developed theories enable agraphical distances df=0.6, 2, 3.4, and 4um for different
much more refined analysis of the experimental data. Spesamples.
cifically targeting the theoretical predictions of Refs. 7-11 In the experiments, the electron beam was injected
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FIG. 1. Schematic topview of the device layout. Hatched areas 03} ¢)
are Schottky gates, defining the device geometry, crossed squares
denote Ohmic contacts,andd symbolize the injector and detector Soal 1
guantum point-contact, respectively. E” >
>
L . . . 0.1
through the injector quantum point-contadty applying a dc
voltage V;=V,, and detected as the nonlocal voltayg
=V, across the detector point contattThe numbers 1, 2, 0 n . . 10
3, and 4 denote the Ohmic contacts to the 2DEG of the v, (mV)

sample(Fig. 1, crossed squarneshe stress that the use of

all-dc techniques is very important for a proper interpretation FIG. 3. Experimental dependence of the detector siyfabn

of the observed signals. Differential resistance measurementise injector voltageV; for L=3.4 um at three different sample
with lock-in techniques will not elucidate the role of the temperature,=1.6 K (trace 1, 8.0 K (trace 2, and 11 K(trace
thermovoltage background to the signal in full. Both injector3)- (&) detector signal at zero magnetic field: electron beam is di-
and detector point contacts were adjusted atrthel pla- rected straight from injector to detectdlb) B=50 mT: the electron
teau, i.e., both contain one transverse mode, and thus remdiff2m is deflected and does not reach the detector difésiyopic

in the metallic regimeGQpCZnZeZ/h. (In other words, they bgckground s_igna}[thermovoltagte]. (c) Contribution of narrow-
do not act as tunnel barriers, as was the case in Refs. 1,Zd_lrected(c_]ua&balllstl() mov_ement of electrpns to the detector sig-
Thus, electrons of all possible energiess©<V,, are nal res_ultlng from subtracting the appropriate data sets of Fip. 2
present in the injected beam. from Fig. 2a) [T;=1.6 K (trace 1, 8.0 K(trace 2, and 11 K(trace

In the presence of a magnetic field perpendicular to the?’)]'

2DEG plane, the electron beam is deflected and the detector.

) . ) : injection energies (05V;<10 mV) at 1.6 K, one can see
signal, V(B) .y|elds the be‘?‘m profilésee Fig. 2 Fgr the that the detector signal first increases with increasing injector
present a point-contact adjustmentrat 1 and a injector-

detector distancd.=3.4 um we obtain the characteristic voltage. Then fol; >3 mV a strong increase of an isotropic

openina anale of iniector and detector which amountssto background signal is observed while at the same time the
~D18° (gee gef 15 ) ¥ beam profile broadens. For injection energies larger 10 meV

From Fig. 2, showing th& 4(B) dependence for different ﬁ,ggi@ezl%ﬁtmg:;;ély be resolved, while the background
To investigate the effects of electron-electron scattering

events on the beam propagation we are interested in the de-

pendence of detector-signal on the injection energg-a0.

Figure 3(a) presents the experimental results for the sample

L=3.4 um at three different sample temperatuiigs=1.6,

8, and 11 K. Additional measurementsot shown herg

were made at different samplgattice) temperatures;T,

=2.2,3.4,5, 15, and 17 K and for different injector-detector

distances. It can be seen from Figaj3that for low injection

: : energies the detector signal increases linearly With For

10 20 30 V;>3 meV only for the lowest temperatuteurve 1 a satu-

ration and even a small decrease is observed. For high injec-

FIG. 2. Magetic-field dependence of the detector sighafor  tion energies the/y(V;) dependence increases for all tem-

different injection voltages: 0.5, 1.4, 2.2, 2.9, 3.6, 4.4, 5.5, 6.0, 6.9peratures.

7.8, 8.8, and 10.1 mVbottom to top. Note that no offset is added As we have seen from Fig. 2, f&f;>>3 meV an increas-

to the experimental data. ing isotropic background signal is detected, which is not di-

0.4

=30 -20 -10

0
B (mT)
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L contacfFigs. 2 and &)], which is driven by the temperature
"""""" T difference between the heated 2DEG in between injector and
eV, I-‘% _.1. detector and the still cold 2DEG behind the detector.
% % As we will see below, the qualitative picture given above
S M is fully confirmed by the theory described in this work. We
will demonstrate that under our experimental conditions it is

possible to separate the electrons of the beam into two

T groups, i.e., “quasiballistic” £¢<eg) and “heating elec-
trons” (e >gq), which greatly simplifies the interpretation of
the experimental results.

FIG. 4. Schematic view of the characteristic energies of the

e
<
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electron-beam experiments. Potential barriers are shown at the cen- I1l. ONE-COLLISION APPROXIMATION
ter of the quantum point-contacts. Typical energies are indicated: . . . S
e¢ (Fermi energy, eV, (injection energy, ands, (maximum en- The detected signaly is determined by the distribution

ergy for electrons reaching the detector ballisticdllyeo)=L]). ~ function of nonequilibrium electronkin the vicinity of de-
Note, the effective charging of the area behind the deteetu)(is ~ tector point contact. For now, we neglect nonlinearities due
at least 30 times smaller than the injection energy and therefort0 heating of the 2DEG in between injector and detector,
negligible on the scale of this diagram. which is a valid approximation for sufficiently low excess
energies of the injected electrons. The linearized Boltzmann

rectly related to the ballistic electron-beam propagation. irgquation, describing the behavior of the distribution function

order to extract the ballistic part of the detector signal we" then has the form

measured the isotropic background signal separately by re- of of

peating the experiment for high magnetic field8 ( Ux(y_x+vya_:jf’ f(x=0y,p)="fo(y.p). 1
=50 mT) to ensure that the electron beam is totally de-

flected and ballistic beam electrons do not contribute to the Here, fo(y.p) is the beam profile at the exit from the
detector signalFig. 3(b)]. Subtracting this background sig- . . ' Og'% i is di pd ¢ . d

nal from the data measured f&=0 T we obtain the pure |njector., an tAe :fmsz IS, |re(?te r'om Injector to' .etector
electron-beam contribution to the detector sidifd). 3(c)]. (see Fig. 1 Jf is a linearized integral describing the
Now the result is similar for all temperatures: We observetlectron-electron collisions. It is convenient to write it as
first a linear increase o¥, with increasingV; and then a

saturation followed by a decrease for high injection energies, Jf=—pf+ f dp’ vy fpr, v= f dp’ vyrp- 2)
while with increasing sample temperature the maximum

electron-beam s_,lgnal decrea3éa. )] Here, the collision-integral kernek,:, determines the

Srobability of the appearance of a nonequilibrium electron
(vpp>0) or hole (v,,<<0) in statep’ after the nonequilib-
rium electron has disappeared from statdi.e., has been
scattered into another statdhe kernel has a complex struc-
ture and in the general case can not be presented in elemen-
tary functions. We have

following qualitative considerations. Let us assume, for sim
plicity, that the lattice temperatur¢he primary temperature
of the systemis equal to zero. Then, for a nonequilibrium
electron with excess energy above the Fermi energye,
the mean-free-path for collisions with equilibrium electrons
decreases with increasing, roughly speaking ag..(¢)

~& 2ne L, e<ep . '3 Therefore, at sufficiently smalt; all 1
injected electrons will reach the detector, whose readout then vp/p=mf dp1dp2(2¥ 5. pp, ~ Wprppyp,) 3
is proportional to the number of injected electrokgeV;,

schematically shown in Fig. 4Electrons of all energies 0 where

<g<V, are present in the beam, with equal wejghthis

linear increase oW with V; saturates for energies=¢, W orpp,p, = Worpp,p,l 1= N(e")IN(e1)N(e2)
when the electron-electron scattering mean free path length , ,
(I becomes comparable kg the distance between injector XS(p'+p=p1—P2)d(e' te—e1—83). (4)

. . 1P2
energiesgo<e<V;, will scatter and do not reach the detec- o ot of the electron-electron interaction arfd) is the
tor. Thus, the signaV/ is determined by a fraction of elec- equilibrium Fermi distribution function. '
trons which is comple_tely saturated\it~ e, and S_hOUId_ not We now introduce the angular scattering distribution
change on a further increase df. However, as is evident function
from Fig. 3a), the signal, upon reaching a maximum, starts
to decrease slightly. The only possible mechanism leading to
such behavior is heating of the 2DEG in between injector g(cp)=1flmf de'vprp, 6)
and detector point-contact by the electron beam. The heated
2DEG then leads to damping of the electron beam due tavhere ¢ is the scattering angle. For simplicity, we assume
enhanced electron-electron scattering. At still higiler V4 parabolic bandsg= p?/2m), which is a good approximation
shows again an increa$Eig. 3@)]. This is due to the addi- for the conduction band in GaA#,Ga)As heterostructures.
tional build-up of a thermovoltage across the detector pointAt sufficiently smalle andT, the form ofg(¢) is determined
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mainly by the phase-space restraints imposed by the two-

dimensional character of the 2DEG® Roughly speaking, 0.3f .

g(¢) consists of a narrow bunch of electrons flying forward 1

in an angle range of the order of (¢ +T)"%- 2 and a <

bunch of holes, of approximately the same width, flying E 2

backward(see Ref. 11 Therefore, the electron-electron scat- >

tering is effectively a small-angular process. 0.1t -
For the general case, E(L) cannot be solved. However,

under conditions where the probability of collisions is small, 0.0 . ) , )

i.e.,lee=v(e)v Ye)>L, ore<eg, we can use perturbation "0 2 4 6 8 10

theory for the collision integral. In the first order or one- Vi(mV)

collision approximation we then have

FIG. 5. Calculated/4(V;) dependences without taking into ac-
XV v count electron heating of the 2DEG in between injector and collec-
f(x,y,p)Z(l— —)fo(y— —yx,p> tor. Curve 1: Modified one-collisional approximation Eq#),(8);
Ux Ux curve 2: relaxation-time approximation; with¢=18°, L
=3.4um, £g=0.2 meV, ance=9 meV.

1(x ’ ’ Uy
+ v_xfo dx f dp’ vpprfol Y= U_XX The experimentally measured voltage drbf, is deter-
mined by the current passing the detector point-contact and
v! can be calculated from
Uy _Yylyr
+ U___’ X',P
v
o Vd=ef dSJ dep(e)uf(x=L,y=0p). 8
Xv R
E( 1= U_x forQfo. © Here p(¢) is the function characterizing the angular ac-

ceptance of the detector point-contact, which is positioned at
The first term on the right-hand sid®HS) of Eq. (6)  (L,0). For simplicity, we use in our numerical calculations
describes the number of nonscattered particles reaching int@eaviside step functions to represent the angular character-
the vicinity of a point &,y). The secondintegra) termQf,  istics of injector and detector point contacts:
describes particles that reach the same spatial region, after

having been scattered once. ple)<0(pl2—|¢l),

Note that for high-energy beams % T), the probability B o
of undergoing a second collision is approximately one order foly,p)=0(pl2—|¢]) O(Vi—¢). 9
of magnitude lower than that of the first collisiGhThis is In this model, the behavior of4(V,) is determined by

conne_cted with the fact that after collision with equil!prigm two parameters, i.e., the angular injectiand acceptange
(Fermi seaelectrons, the excess energy of a noneqwhbrlumrange of the point contaet and the distance between injec-
electron €) must be redistributed between three partnersior and detectot.. For more realistic models of the angular
i.e., e~el3l.de)~3% (), T<s<er, where ¢ is the response of quantum point contacts we refer to Ref. 15
characteristic energy of the scattered electrons. Therefore, The dependenc¥y(V;) is calculated using Eq$7)—(9),
the one-collision approximation is valid for a relatively wide including the expressions for the kerngl, obtained in Ref.
range of energies as long &s(e)=L. On observing this 11, setting=18°, andL=3.4 um, i.e., close to the experi-
and the fact thanf0~ v(s)Qfo> VQfo~ V(;)QfOr it is mental (_:ondltlons. The re_s_ult is shown_|r_1 Fig. 5 for _the f_uII
straightforward to build a new “modified” one-collision ap- €XPression of the modified one-collision approximation
proximation. After partial summation of the terms of the it- (MOCA) (curve 1 and the relaxation-time approximation
eration series on the parametét.(s) of Eq. (1) one ob- (RTA) (curve 3. We clearly observe that the curves saturate

tains the following expression in zeroth order approximationVith increasingV; . Saturation occurs at a higher injection
for the parametex/| (8—)_ voltageV; and a higher signal levely, for the MOCA as
ee! .

compared with the RTA. The difference between these
v 1 (x ) curves (about 15% characterizes the role of two-
f~e” Vx’”xfo(y— —yx,p) + —J' dx’f dp’ vy "X 'x  dimensional effects for the given parameters. This difference
Ux UxJo is due to the integral term in Eq7), which can be omitted
when 2D effects are negligible.

(7) In the next section we show that the role of the two-
dimensionality is much larger whe#>(go/e¢)*2 In this
limit, a saturation of the curve &; <3¢, does not take place

This formula is valid where <3g,. The first term on the at all.

RHS corresponds to the usual relaxation-time approximation

Jf=—»f. Note that the modified one-collision approxima- IV. MULTICOLLISION REGIMES

tion Eq. (7) is based on an exact consideration of the first

collision and not on perturbation theory. It does not take into In the limit where the electrons undergo a number of col-

account any further collisions. lisions on their way from injector to detector, it is impossible

X fo

!
v v v
y y 7y
y— U—Xx+(———,)x’,p’ .

Ux vy
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FIG. 6. The temporal evolution of a thermalized spatially uni-
form distribution x(t,¢) [T/eg=0.1 and x|i—o*&(¢)]. (@ t
= Tee; (D) t=107¢, (curve 1. Curve 2 for comparison the 3D case
after a few electron-electron collisioridriftlike distribution).

to obtain a completely analytical solution of the spatially
inhomogeneous problem of beam propagation. Instead,
will discuss below a simple qualitative theory that ad-
equately describes this multicollision regime.

To obtain realistic numerical values of the angular relax-
ation rate we first consider the momentum relaxation in time

for a spatially homogeneous distribution. For simplicity, we
take the thermalized distributiofi=(—dn/de) x(¢,t), i.e.,
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path is considerably less tharand whose scattering is small
angular:
go<e<e*. (10

Note that after a few collisions the energy of such par-
ticles drops very rapidly to values close &g, upon which
the particles will reach the detector without further collision.
In contrast, the opening angle broadenia@f the electron
beam is determined by the first collisian~ e/eg<1. It is
then straightforward to evaluate the contribution to the de-
tector signal of the group of electrons with energies in the
range €q,¢):

Ae ¢

ry

€~ E&p )\F

e

Va~(&e—&o) EF T (13)
The transverse beam broadening js=L «. The detector
width is chosen to be of the order of the electron Fermi
wavelength A\ (corresponding to the occupation of one
mode in the quantum point-contaciVe have assumed an

angle of acceptancé< a for the detector point-contact;in
the other case, ith=«, the multiplier ¢/« can be omitted
for the above expression.

The order of magnitude of the contribution of ballistic
electrons to the detector signal can be estimatedVas
~gohg(L @) 1, where we assume identical characteristics
for injector and detector quantum point-contacts. Therefore,

e condition for a predominance of the group of nonballistic
electrons to the detector signal takes the form

€0
N

This inequality is satisfied more easily for samples with

(12

equilibrium is established in energy but not in momentum. Inl@rger L (i.e., smallereo) or larger acceptance angles

this case the kernel of the collision integral contains onlyUnder our experimental conditions the LHS and RHS in Eq.
differences in the angular variables, and the solution of thé12 coincide by an order of magnitude, and it tumns out that
Boltzmann equation reduces to the calculation of a onethe 2D effects lead to corrections of the order of unity. In
dimensional Fourier transform. Here, we use the numericat@se¢> \eo/e it should be possible to observe the long-

results of the angular distribution functiag(¢) that were
obtained in Ref. 11(In the case of nonthermalized distribu-

distance beam propagation as predicted in Ref. 8. In other
words, one can detect an electron beam over a distance ex-

tions the angular and energy variables are not separable aggeding substantially the electron-electron mean-free-path

therefore the solution of the Boltzmann equation becomes
much more difficult problem.Figure 6 shows the results of
a calculation for thermalized conditions®}=0.1sr and for

different timest after beam injection. From this figure fol-

ke @s a result of one-dimensional electron-hole diffusion.

(2) For g¢<T, ballistic electrons are practically absent.
Roughly speaking, the number of quasiparticles reaching the
detector without any collisions is exponentially small and

lows that the beam remains narrow up to times of the ordeproportional to ex[)—.L/Iee('D]=exp(—T2852'). High-energy
of 107, Whereas in the three-dimensional case a smootl&|eCtr0n_S with energiesg>¢e>T loose their excess energy
driftlike distribution is already established after a delay ofvery quickly, after a few collisions, and cool down to ener-

the order of one collision time. From now on, we will use the
convention 0.2=¢* to denote the characteristic energy of
a beam, below which the specific features of two-
dimensional relaxation essentially manifest themselves.

Depending on the relative magnitude &f and the tem-
peratureT of the 2DEG, different multicollision regimes are
possible.

(1) Let us start with the case of low temperaturds,
<egq. We assume thdt is so large thaty<e*. In this case,
the particles that undergo multiple collisions but still contrib-

gies of the order of the lattice temperatdreSimultaneously,

the beam acquires an angular broadening of the order of
Velep<l. After this initial relaxation, provided <e*, we

still have a narrow distribution of electrortand holes with
opposite momenjawhose movement is a one-dimensional
diffusion in coordinate space—an effect which is genuinely
caused by the two-dimensionality of the electron system. The
angular broadening in time of this specific group can be ex-
pressed as~ \T/e([t/ 764 T) ] (see Refs. 7,20 The con-
tribution of this narrowly directed group of electrons to the

ute to the electron beam signal, are those whose mean-fretetected signal can be evaluated using @4). Taking into
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account, that, assuming one-dimensional diffusion, the timél14)]. It is evident that with increasinyg; the temperature of
an electron needs to reach from injector to detector is of théhe 2DEG between injector and detector point-contact in-

order ofvp *L2l_2(T) we obtain creases. However, this does not necessarily imply that the
V4(V;) dependence replicategy(T) of Eq. (16) qualita-
a~\elep+\Tlee[L/ o T)]Y2, (13)  tively, because/; enters explicitly in Eq(16) and not only
throughT(V;). One can only state definitely that the beam
ro~L{Neleg+\Tleg[ L/l (T)1%3. signal should decrease sooner or later on increagjng

) Generally speaking, the theoretical determination of the
(11) obtained above is retrieved far>T3z,?=T*. Atthe  problem on the beam’s self-action. However, the essential
same time, the contribution to the detector signal of electrongependence of the mean-free-path on excess energy allows

with energiesT,<e<T* is given by considerable simplifications for sufficiently high, i.e., the
5 separation of the injected particles () “heating” (high-
87\F|ee(T) ep (14 Ceroy electrons which do not reach the detéctmd (ii)

PR

quasiballistic electronévhich contribute mainly to the beam
signal, but not to heatingSuch a separation is undoubtedly
According to Eqs(11) and(14), the signal decreases with possible av;>g,>¢&*. (If V;<g, we can neglect heating.
increasing. according to a power law, but not exponentially. ~ Thus, under certain conditions one can use the following
This again is essentially a two-dimensional effesste Refs. quasilinear approach: First, we find the electron gas heating
8,9 and should be well-pronounced in high-mobility AT(V;) due to the high-energy part of the beam, and then,
samples with sufficiently large. Thus, it is possible to cre- using the electron temperatufehus obtained, we determine
ate conditions in a two-dimensional electron gas under whiclthe signal of the quasiballistic part. In particular, in the
the electron-beam signal is determined rather by a higherelaxation-time approximation we have
energy quasiballistic group of electrons which experience
small-angle scattering than by purely ballistic electrens
=gjp.

L3 T

f:eL/vxTee(SvT)fo(y—L?,p), (17)
X

V. NONLINEAR EFFECTS AND HEATING WhereT=T0+ AT(V,) In fact, this means that the separa-
tion reduces the nonlinear problem to two linear equations.
Due to the heating of the electron gas between injector Finally, we want to consider the case wheg<V,<e*
and detector point-contacts for “high” excess energies thayhere, due to the specific two-dimensional effects, the in-
detector signal consists not only of quasiballistic beam elecjected particles slowly relax their directionality, but rapidly
trons but also of an isotropic signal resulting in a thermovolt-ose their excess enerdyin this limit, it is not possible to
age across the detector. This causes the growtWjofor  separate heating particles from quasiballistic ones. The beam
injection energies/;>5 mV in our experiment$Figs. 3a)  signal is proportional t6Z(T) T~ * [see Eq(14)] and, hence,
and 3b)]. The contribution of the thermopower to the detec-jt s sensitive to heating. This essentially nonlinear situation
tor signal is given by could be realized experimentally for high quality samples
AV =S(T)AT, AT=T—T,. (15) with a large distancé between injector and detector.

Here, T is the electron gas temperature between injector VI. DISCUSSION OF THE EXPERIMENT
and detector andl, is the gas temperature beyond the detec-
tor (which is close to the lattice temperatyr&(T) is the
Seebeck coefficienfthermopower of the detector(heating
of the 2DEG between injector and detector by the injecte
electron beam was already discussed by us in RefA8
discussed abovsec. ), on increasing/;, the increase of
leads to an increase of the thermovoltage on the one han A X
and to the decrease of the mean-free-path of quasiballisti%IIOWS a proper description of the experiment fok

electrons on the other hand, and therefore to the appearances MV S€€ Fig. 4(note thatlee~L =3.4 um for Vi=eg,
of a minimum in the dependenag,(V,). =2 mV). For higher values o¥;, where heating is essen-

For so>&* (the limit where specific 2D effects can be tial, one can use the relaxation-time approximatidty.

neglected, only ballistic electrons contribute to the beam (17)], taking into account th&(V;) dependence.

signal. We then have as a rough estimate for the temperature To compare theo_ry with experim(_ent we extract t_he heat-
dependence of the signal Ing AT(V,) in two different ways. First, by measuring the

heating caused by the electron beam as a function of injec-
Vy(T)~ ke HedD+ ST)AT, k ~LAg o (Vi T+egh). tion energy, using the thermovoltage across the detector
(1)  quantum point contact as a thermométeand second, by
analyzing the set of experimental data for the anisotropic part
An analysis of this expression shows that a minimum inof the signal(Fig. 3), see below.
Vq4(T) is always present whe¥l;>¢e,. This statement holds The result of an electron-temperature measurement deter-
as well in the multicollision regimes(<T<e&* [see Eq. mined via thermopower for a lattice temperatiig=1.6 K

In this section we want to compare the experimental re-
sults, Sec. Il, with our theoretical results. A series of mea-
urements for different sample temperatuiigs=1.6, 2.2,
4, 5.0, 8.0, 11, 15, and 17 K were available for analysis
(partly shown in Fig. B For temperatured,<8 K, the
Hmdified one-collision approximatidrEgs. (7), (8), and(9)]
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20 ments at the lowest sample temperatifg=1.6 K are
0-31 912 shown in the inset of Fig. {squares It can be seen that the
F o5 extracted heating temperatures agree well with 2DEG tem-
02t e %3 4 5 8 10 perature measurements for applied magnetic fields. We

therefore can use this(V;) dependence for further consid-
erations. Note that the heating temperature depends not only
] on V; but also on the initial sample temperatufg: AT
=AT(V;,Ty). For higherT,, the 2DEG heating is less effi-
cient, see Fig. 3.

10 Additionally, the electron temperature can be estimated
Vi (mv) roughly from the heat balance between the energies trans-
fered from the electron beam into the 2DEG and removed by
phonons* We then have

FIG. 7. The comparison of theory and experiment foy
=1.6 K: modified one-collision approximatiodashed ling the
experimenf(solid line), and the relaxation-time approximation with V. T
taking into account the heatir(gotted ling. The |nseF @splays the UF<8>)\F_Ine“ vepsﬁk,:—neE. (18
dependence of the electron temperature on injector voltage, €F €F
AT(V;), obtained from heating temperature measuremésuid
line) and from the experimentally determined temperature depen- Here, (e)~V;/2 is the average energy of the electron
dence of the detector signéfig. 3) (squares beam,n.V;/eg is the number of injected electrong,, is the

frequency of electron-phonon collisionsjs the sound ve-
is displayed in the inset of Fig. 7. Here, the detector point-IOC'ty’ ke is the Fermi wave vector, arll s the area of the

. . : heated 2DEG region. Thus, we obtain for the electron tem-
contact conductance was adjusted to yield a maximum ther-

mopower §~20 uV/K),1 where the conductance of the Po o'

injector point-contact was fixed at one mode so that its ther- Aeloo er

mopower is negligible compared with the detector. The mea- T~ Eep (o). 19
F

surements were done at small magnetic fieBlss 50 mT) to
prevent beam electrons from reaching the detector point con- | d | hi . tor th
tact directly. n order to evaluate this expression we assume for the

Alternatively, the decrease of the detector signal due texi)gsrl(r:nnfrga}l ksiula tl'%;l 1Ot6h§m_floII0W|:ng mi//all;f]zs{g
the quasiballistic part of the electron beam allows for an PR ' EF ’

. . tgken to be of the order of the area between injector and
estimate of the 2DEG beam heating. We assume that the paﬁetector, Viz. 20Qum?. The mean-free-path for electron-

of these curves at valu&g larger than the injector voltage at phonon collisionsl,, is estimated at 10@m, yielding

curves . S
the maximum inVy (which we now denote a¥"™™) de- 1y 5 5 my)=7 3"k [Eq. (19)]. In spite of this very crude

s<|:r|t;es the S'gmfil frq{m theff;ggzgr?ww dlretcted fract_lron of model, we thus find a remarkable agreement with the elec-
electrons as a function o emperature, N To tron temperature obtained from the experimental data

+AT(V;)]. Thus, the curves in Fig. 3 are members of a[AT(V-:S 2 MV)=6.4 K]
one-parameter family which differ only by the value of the As Imen.tioned abbve, .the experimental data can be ap-

teor:lgiﬁt#;?rﬁéai%r tzgnv‘alédg ?;é?:j Satf;[ﬁ;nleonctéllltng;?r:u roximated using the modified one-collision approximation
P 9 g g. (7)] for injection energie®/;<V{"® and the relaxation-

s . o
of .\éd(vi)hfor el\aﬁgxcErveﬁT(Vi ?NO' FrqmdFlgd $0) Ilt' Isbl time approximationEq. (17)] for V, which is sufficiently
evident that alvi™ the thermovoltage is indeed negligible. large in comparison wit{"®. At high T(V;) the scattering

Let us now consider any two curvely, and To, of this is not small-angular and leads to a more or less isotropic

family and letTo;<Top. Then curveTy, has always larger background, i.e., 2D effects are absent. According to this, we
valuesVy for a given Vi than _cur\(eToz, and cur_veT01 plotted in Fig. 7 the modified one-collision approximation
decreases to a signslly, equal in size to the maximum of (dashed ling experiment(solid line) for To=1.6 K and the
curve Ty, at a given, larger, value of;. Now, it is evident relaxation-time approximatiofRTA) (dotted ling, which

that TOl+AT(Vi):T02' In this manner, we are able t(? '®" takes into account electron-heating effects. For the RTA we
construct the functiolT(V;). Let us emphasize that it is pove used the asymptotic expression

convenient to choose the local maximwfi® as a starting
point for recoveringAT(V;), since, in the vicinity of this . e24+2m?T?  &f
point there is no need) to correct for the increase of the Tee (£, T)= Ante F‘-T+8,
signal due to the quasiballistic group of electrons with in- F
creasingV;, that takes place at loW; in the linear response which is valid for arbitrary ratio of small values @& and
regime and(ii) to take heating effects into account. As an /s .° The coefficients for the theoretical calculations were
example, let us consider the curves 1 and 2 of Fig. 3, i.echosen in such a way that coincidence is achieved for small
To1=1.6 K andTy,=8 K. The maximum value of curve 2 is injection energies, where the linear increase is observed and
approximately 0.135 mV. The same value\gf for curve 1 electron travel ballistically in any case. Thus, in fact, no
is reached in decreasing part of the curveVat-5.2 mV.  additional fitting parameters are used. For this calculation, it
Thus, we obtain a heating temperature ®T=Ty,—Ty;  is important that the detector siag <L ¢. As one can see
=6.4 K for V;~5.2 mV. The results obtained for the experi- from Fig. 7, the divergence between the relaxation-time ap-

(20
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proximation and the experiment is only due to specific two-beam. We have shown that due to the reduced dimension-
dimensional effects and reaches a maximum in the vicinityality of the system the quasiballistic fraction consists not
of V;=3 mV, where on the one hand a number of the scatonly of purely ballistic electrons but also of a significant
tered particles is comparable with the number of pure ballishumber of electrons which have experienced small-angle
tic, and on the other hand scattering is still small angular. electron-electron scattering events. The small-angle character
of electron-electron scattering is essentially a two-
VIl. CONCLUSIONS dimensional effect, predicted earlier by #% which mani-
] . fests itself in the experiments discussed here. In addition, we
We have studied the role of different groups of electronsyaye formulated the conditions where 2D effects can be best
on the propagation of electron beams in a high-mobility two-ghserved and thus electron-beam propagation over very long
dimensional electron gas for wide range of excess energiegjstances should be possible.
We have observed a nonmonotonic dependence of the detec-
tor signal on the excess energy of the injected electrons. This ACKNOWLEDGMENTS
result can be explained in the framework of our model, sepa-
rating the beam electrons into two groups, i.e., “quasiballis- This work was supported by the Volkswagen-Stiftung
tic” electrons and “heating” electronéhigh-energy part of a (Grant No. 1/72 53}, and by the DFG MO 771/1-2.
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