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Monte Carlo simulations of the decomposition of metastable solid solutions:
Transient and steady-state nucleation kinetics

F. Soisson and G. Martin
Section de Recherches de Me´tallurgie Physique, DECM-SRMP, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France

~Received 13 January 2000!

We present a study on the kinetics of coherent precipitation in weakly super-saturated substitutional solid
solutions by the Monte Carlo method. Our simulations are based on a simple atomistic model of diffusion by
vacancy jumps. The whole precipitation process~from early stages to late stage coarsening! is followed for
various supersaturations and temperatures, and typical behaviors observed in the simulations are compared to
those predicted by the classical theories. Special emphasis is placed on the first stages of the decomposition
~incubation and nucleation! and on the effects of the vacancy diffusion mechanism. Finally we consider the
addition of a third~impurity! element, which can be used to control the kinetic pathway: such effects are
quantitatively explored with the Monte Carlo method.
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I. INTRODUCTION

The decomposition of a metastable solid solutiona by
precipitation of a solute richb phase is generally divided
into three successive stages:1 the nucleation of stableb clus-
ters, their growth, and finally their coarsening. In this pap
we focus on the kinetics of the first steps, on the concept
incubation time and nucleation rate, using simulations by
Monte Carlo method in the framework of a simple atomis
diffusion model.

The precipitation of a phase can be observed in m
physical situations and it has been theoretically studied
set of models known as the ‘‘classical theory of nucleatio
~CTN!, since the early works of Volmer and Weber~1926!,
Farkas~1927!, Becker and Do¨ring ~1935!, Frenkel ~1939!,
and Zeldovitch~1942! ~see Refs. 2–6 for extensive review
and references therein!.

In these theories, the nucleation of theb clusters is con-
trolled by a balance between a volumic decrease in free
ergy (D f v) and an increase due to an interfacial energy (s).
This leads to the concepts of critical size and nucleation b
rier ~see below!. One of the main results is that, in a sol
solution of initial supersaturationS0, after a time lag~the
so-called ‘‘incubation time’’!, a steady-state nucleation re
gime is reached, corresponding to a steady-state nuclea
rate

Jst5J0 expF2
Ks3

~ ln S0!2G , ~1!

where, for a given temperature,K is a constant which de
pends on the cluster equilibrium shape and where the
factor J0 includes various kinetic parameters. The main p
dictions of the CTN are in good qualitative agreement w
experimental results.7 Especially, the nucleation rate is foun
to increase very rapidly with the super-saturationS0, as ex-
pected from Eq.~1!. There are still many open question
concerning the validity of this kind of model. However, b
cause it is difficult to perfectly control the experimental co
ditions and to estimate, for a given system, the various
PRB 620163-1829/2000/62~1!/203~12!/$15.00
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rameters involved in the theory@for instance, in Eq.~1!# it
appears quite difficult to perform an experimental quant
tive test of the CTN.

The main purposes of this paper are then the followi
To propose a numerical test of the CTN, i.e., a direct co
parison between the incubation times and nucleation r
predicted by the CTN and those measured in Monte Ca
simulations based on a simple atomistic model. This requ
an explicit link between the microscopic parameters involv
in the simulations and the macroscopic quantities involved
the CTN.

We also want to show how the details of the diffusio
mechanism, which are controlled by the microscopic para
eters, can affect the decomposition pathway.

In Sec. II, we will recall the main results of the CTN
applied to the case of a binary solid solution and the defi
tion of all the necessary thermodynamic and kinetic para
eters. Then a short comparison of these results with a
previous experimental data and numerical simulations is p
sented. In Sec. III, we describe our Monte Carlo simulatio
based on an atomistic kinetic model of diffusion~Sec. III A!
and the residence time algorithm~Sec. III B!. In Sec. III C
we give the sets of microscopic parameters we used,
their link with the data involved in the CTN. The results
Monte Carlo simulations and the comparison with the CT
predictions are given in Sec. IV. After a brief description
a whole nucleation, growth and coarsening sequence~Sec.
IV A !, we will focus on the steady-state nucleation kinet
~Sec. IV B! and on the transient regime and incubation tim
~Sec. IV C!. In Sec. IV D we show how the details of th
atomic diffusion mechanism can modify the kinetic pathwa
Section IV E is devoted to the modification of the previo
kinetic pathways by addition of impurities. These effects a
experimentally well known8 and Monte Carlo simulations
are used to simulate and rationalize such behaviors as
slowing down of the precipitation by vacancy trapping~Sec.
IV E 1! or the acceleration of the decomposition by preci
tation on nucleation agents~Sec. IV E 2!.

II. THE CLASSICAL THEORY OF NUCLEATION

We consider the case of a substitutionalA-B alloy with a
clustering tendency~i.e., with a phase diagram displaying
203 ©2000 The American Physical Society
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204 PRB 62F. SOISSON AND G. MARTIN
miscibility gap below a critical temperatureTc) and where
the diffusion occurs by vacancy jumps. A disordered so
solution of compositionCa

0 is quenched into the miscibility
gap, to a temperatureT corresponding to the solubility limi
Ca

eq(T). The first step of the phase separation occurs thro
thermal fluctuations, which lead to the nucleation of sm
B-rich clusters ofb phase in thea solid solution. The clus-
ters evolution is usually assumed to proceed by evapora
and condensation ofB monomers. The evolution of the num
ber N( i ,t) of clusters withi B atoms is then given by

dN~ i ,t !

dt
52~a i1b i !N~ i ,t !1b i 21N~ i 21,t !

1a i 11N~ i 11,t !, ~2!

wherea i andb i are, respectively, the ‘‘emission’’ and ‘‘con
densation’’ rate for clusters of sizei. If these rates are
known, the evolution of the cluster size distribution can
computed, starting from any initial distributionN( i ,t50).
However, if b i can be estimated in various physical situ
tions ~see below, Sec. III C!, such an estimation is muc
more difficult for the evaporation ratea i . The classical
theory rests on the assumption thata i is a characteristic of
the cluster as defined by its size only. Therefore it can
deduced from a relation of microscopic reversibility such
a i 115b iN

eq( i )/Neq( i 11), derived from the equilibrium
situation. The size distribution at equilibriumNeq( i ) is then
required to compute the evaporation rate. Even with th
approximations, an analytical treatment of Eq.~2! remains
difficult ~especially for the transient regime and the incub
tion time!: a numerical integration is then an alternati
tool.3,9

The free energy change on forming ab cluster of sizei
~with a radiusR) is given by

DF~R!5AR3D f v1BR2s5 iVbD f v1BS iVb

A D 2/3

s, ~3!

whereD f v is the driving force per unit volume for the pre
cipitation ands thea/b interfacial energy,Vb is the atomic
volume of theb phase, andA and B are some geometric
factors~for a spherical clusterA54p/3 andB54p). For a
dilute alloy, it can be shown that in simple cases1,7

D f v.2
kbT

Vb
ln S0 , ~4!

wherekb is the Boltzmann constant andS05Ca
0/Ca

eq(T) the
initial supersaturation. For an undersaturated solid solu
(S0,1), both terms in Eq.~3! are positive, the solid solution
is in a stable equilibrium and is made of solute clusters,
size distribution of which is given by

Neq~ i !5N0 expS 2
DF~ i !

kbT D , ~5!

where the appropriate choice forN0 according to Russell,5 is
the total number of atomic sites rather than the number oB
atoms. For a supersaturated solution (S0.1) the first term in
Eq. ~3! becomes negative. For small clusters,DF is positive
and increases up to a maximum which defines the crit
radius R* 522Bs/(3AD f v) and the ‘‘nucleation barrier’’
d
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DF* 5DF(R5R* )54B3s3/(27A2D f v
2). The critical clus-

ters of sizeR5R* ~or i 5 i * ) are in unstable equilibrium
with the solid solution: clusters of sizeR.R* will grow,
while the smaller ones are predicted to redissolve into
solid solution.

A. Steady-state nucleation

The steady-nucleationJst rate is defined as the rate a
which subcritical clusters reach the critical size. The first a
simplest expression ofJst is due to Volmer and Weber who
assumed that the critical cluster concentration~in a meta-
stablesupersaturated solid solution! is still given by the equi-
librium distribution @Eq. ~5!#. Then

JVW
st 5b~ i 5 i * !Neq~ i 5 i * !5b* N* . ~6!

More sophisticated treatments take into account the p
sible redissolution of some supercritical clusters and the
that the equilibrium distribution@Eq. ~5!# overestimates the
critical cluster concentration.2–4 They lead to the well-known
Becker-Döring expression of the steady-state nucleation r

JBD
st 5Zb* N* , ~7!

where Z is the Zeldovitch factor Z5@2(]2F/
] i 2) i* /(2pkbT)#1/2.

B. Transient nucleation kinetics: Incubation time

The previous steady-state nucleation rate is reached
a time lag~the so-called incubation timet i), which can be
interpreted as the time necessary to reach a steady-state
centration of critical clusters, starting from a disordered so
solution.5 The time dependent nucleation rate is thenJ(t)
5Jstexp(2ti /t). Various theoretical treatments~see Refs. 3
and 9! lead to

t i5
1

ub* Z2
~8!

with u values ranging from 2 for Feder4 to 4p for
Wakeshima.10 Numerical integrations of the equations~2!
usually give a value oft i between these two limits~see Refs.
3,9 and Sec. III C!.

The previous description and the corresponding exp
sions of Jst and t i rely on several assumptions which a
highly questionable.1,6 Let us stress that~i! an essential as
sumption is that a small~often microscopic! cluster is treated
in the same way as a largeb phase and described by th
same macroscopic thermodynamic parameters such
D f v , s, etc.~ii ! Clusters are only defined by the number
monomers they contain, while~especially for small cluster
size! various morphologies could be expected.~iii ! Growth
and decay of the clusters only occur by ‘‘condensation’’ a
‘‘evaporation’’ of B monomers: possible direct coagulatio
of small precipitates are not taken into account. A gener
zation of the CTN, with coagulation and cluster splittin
mechanisms, has been proposed by Binder and Mirold,11 but
additional approximations have to be introduced to comp
the rates corresponding to these events.~iv! Finally a funda-
mental approximation is the extrapolation from an equil
rium condition: a i 115b iN

eq( i )/Neq( i 11), at any time, to
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compute the emission rate. It corresponds to a situa
where the emission is a characteristic of the cluster, but d
not depend on the cluster environment.

C. Comparison with experimental results
and numerical simulations

Unfortunately, an experimental quantitative test of t
CTN is very difficult in the case of solid solutions.7 The
critical size for sufficiently rapid precipitation is indeed ge
erally very small ~typically less than 100 atoms!, which
makes the direct experimental observations of the nuclea
stage almost impossible. The quenching conditions are d
cult to control : if it is too slow, decomposition can occ
during the quench. The vacancy concentration~and so, the
diffusion coefficient ofB atoms! is rarely known exactly and
can evolve after the quench if it is not at its equilibriu
value. Moreover, for a given system, the quantities involv
in the CTN are often difficult to measure or compute : t
interfacial energy, the driving force@which, in addition to the
‘‘chemical’’ term of Eq.~4!, must take into account the ela
tic effects#, the condensation rateb* , the solute diffusion
coefficient, etc., whereas the predictions of the CTN are v
sensitive to small uncertainties on these parameters, e
cially for those involved in the exponential term ofJst. As a
result, the uncertainties on the nucleation rates are at l
between three and five orders of magnitude@see Refs. 7 and
12 for a discussion of these points, mainly concerning
first and classical experimental test of the CTN, by Servi a
Turnbull ~1966! who studied the coherent precipitation
cobalt in copper by electrical resistivity measurements13#.

The experimental situation is often better for non so
systems. The condensation of liquid droplets in a va
phase is much easier to observe and measure.14 Unfortu-
nately the free energy formation is much more difficult
calculate for the droplets in a vapor than in condensed ph
because of the many degrees of freedom due to the pos
translations and rotations. As a consequence, there are
monly uncertainties of at least 10 orders of magnitude on
pre-exponential factor of the nucleation rate.2

Because of all the previous difficulties, the use of nume
cal simulations has been proposed since a long time to
the CTN. The observation difficulties can then be avoid
the aging conditions~vacancy concentrations, temperatu
initial configuration, etc.! are perfectly controlled and the us
of a simple model avoids additional terms such as those
to elastic effects.

The kinetics of phase separation has been extensi
simulated by various Monte Carlo technics~see, e.g., Refs. 1
and 7 for a review!. For computational time reasons, how
ever, most of the published studies deal with strongly sup
saturated systems and later growth and coarsening reg
rather than with the transient and the steady-state nuclea
ones. This later regime has been simulated by Heermann15 in
the case of a two-dimensional ferromagnet under exte
magnetic field. They checked the exponential dependenc
Jst as a function of the supersaturation predicted by Eq.~1!,
with a value ofs close to the estimated one. No estimati
of the pre-exponential factor and no observation of the tr
sient kinetics were reported. More recently Shneidm
et al.16 observed transient kinetics in the same kind
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system and a qualitative agreement between MC and C
But he did not achieve a quantitative comparison. Here
consider a solid solution~i.e., a globally conserved instea
nonconserved order parameter, diffusion by vacancy jum
rather than Kawazaki mechanism, 3D instead of 2D simu
tions!.

III. MONTE CARLO SIMULATIONS

A. Atomistic kinetic model

We consider a rigid lattice with a body-centered cub
~bcc! structure. The diffusion occurs via vacancy~V! jumps
towards nearest-neighborA or B atoms. The vacancy ex
change frequency with, for example, aB atom, is given by

GB-V5nB expS 2
EB

act

kbTD , ~9!

nB is an ‘‘attempt frequency’’ and the activation energyEB
act

is the energy change required to move theB atom from its
initial stable position to the saddle point position.EB

act is
computed as the difference between thetotal energy of the
system when theB atom is in the saddle point position («SP)
and thetotal energy before the jump (« ini). Assuming that
the energy of the alloy is a sum of pair interactionsVi j , it is
equal to the binding energy of theB atom at the saddle poin
(es

B) minus the energy of the bonds between the atom and
neighbors before the jump17

EB
act5«SP2« ini5es

B2 (
j PNN(B)

VB j ~10!

For the sake of simplicity, we only consider here the near
neighbors~NN! of B. EB

act and GB-V depend on the loca
atomic configurations around theB-V pair through the ‘‘bro-
ken’’ bondsVB j . In an actual alloyes

B can also depend on
the atomic configuration around the saddle point position
therefore, it could be computed as a sum of pair interacti
between the saddle point atom and its neighbors.18 However,
for the sake of simplicity and since we do not try to fit
specific alloy system,es

A andes
B ~as the attempt frequencie

nA andnB) are assumed to be constant in the following.

B. Monte Carlo methods

This diffusion model can be handled by various kine
methods, such as mean-field technics19 or Monte Carlo
simulations.20,21 The latter method is particularly suitabl
here since it naturally takes into account the correlations
tween vacancy jumps and the thermal fluctuations, wh
play a major role in the nucleation process. We use simu
tion boxes withN0 lattices sites,NA A atoms,NB B atoms,
NV vacancies, and periodic boundary conditions. Typi
sizes areN051283 atomic sites for a whole precipitatio
process,N052563 for the nucleation rate and incubatio
time measurements. At each Monte Carlo Step~MCS!, a
vacancyV can undergoz exchanges with its nearest neig
bors (z: coordination number,z58 for the bcc structure!,
with the corresponding frequenciesG1 ,G2 , . . . ,Gz . One of
these exchanges is chosen according to the residence
algorithm ~RTA! described elsewhere.20 It gives an estima-
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tion of the physical time associated to each MCS:tMCS

5(( i 51
i 5z3NVG i)

21, and is more efficient with the vacanc
diffusion mechanism than the Metropolis algorithm, esp
cially at low temperature. As long as vacancy pairs can
ignored, the corresponding physical time scale is invers
proportional to the vacancy concentrationCv in the simula-
tion box. We usually have one vacancy in the simulation b
and the times obtained with different box sizes can be
rectly compared by multiplyingt* 5StMCS by the vacancy
concentration.

C. Microscopic parameters—Link with the CTN

The precipitation occurs due to vacancy jumps and
kinetics is entirely controlled by~i! the vacancy concentra
tion and~ii ! the set of vacancy exchange frequencies withA
andB atoms depending on the local atomic configurations
order to compare the CTN predictions and the Monte Ca
results, the quantities involved in Eqs.~3!–~8! must be re-
lated to the microscopic parameters of Eqs.~9!,~10!. The
phase diagram only depends on the mixing energyV5
2(z/2)3(VAA1VBB22VAB). If V.0, it displays a misci-
bility gap below the critical temperatureTc.0.8 V/2kb
~with the parameters of Table I,Tc.3155 K).

Equilibrium shape. For theA andB parameters of Eq.~3!,
we assume a spherical cluster shape~i.e., A54p/3 and B
54p). Except for very small sizes, this is indeed the sha
observed in the simulations at relatively high temperatu
~for approximately T.Tc/2). When the temperature de
creases, interfaces become planar with a faceting by$110%
crystallographic planes. Stable clusters tend to adopt a r
lar dodecahedron shape,20 sufficiently close to the spherica
one to keep the same value forA andB.

Driving force. In our case~simple unmixing and dilute
solution! the driving force for precipitation@Eq. ~4! with
Vb5a3/2# is related to the solubility limit~via the supersatu
ration S05Ca

0/Ca
eq) which at low temperature (T<0.3

3Tc) is correctly given by the well-known mean-fiel
~Bragg-Williams! approximation. At higher temperature th
approximation becomes too poor and the actual solub
limit is carefully determined by a standard semi gran
canonical Monte Carlo simulation.22,23

Interfacial energy. Within the conditions we study~low
supersaturations, temperatures far from the critical one!, the
precipitate interface remains sharp, with a typical width clo
to the lattice parametera. According to Becker’s theory, the
a/b interfacial energys can be related to the mixing energ
by counting the number of ‘‘wrong’’A-B bonds by area
unit5

TABLE I. Microscopic parameters for jump frequencies.

Parameters Set 1 Set 2

VAA 21.07 eV 21.07 eV
VBB 21.07 eV 21.24 eV
VAB 20.985 eV 21.07 eV
es

A 26.415 eV 26.5 eV
es

B 26.215 eV 26.5 eV
nA 3.6531015 s21 1.0231016 s21

nB 3.6531015 s21 1.0231016 s21
-
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s^hkl&5
«^hkl&V

a2
~Ca

eq2Cb
eq!2 ~11!

where«^hkl& is a geometric constant which depends on
interface crystallographic orientation^hkl&. For the numeri-
cal results we use a typical value ofa50.287 nm~that of
the bcc iron!. For higher temperatures and supersaturation
diffuse interface model would have to be considered, withs
computed according to the Cahn-Hilliard method,24 Monte
Carlo,25,26cluster variation25 or low-temperature expansion27

methods.
Condensation rate. The expression for the condensatio

rate b* of a B atom on a critical cluster depends on th
limiting step.1 If the condensation is limited by the jump ofB
across the interface,b* is proportional to the cluster are
b* }2p(R* )2GB-VCa

0/a2. In our case, the adsorption i
clearly limited by the long-range diffusion ofB towards the
matrix. By solving the corresponding diffusion equation o
gets1,6

b* 58pR* DB
aCa

0/a3, ~12!

whereDB
a is the diffusion coefficient ofB in the a matrix.

The two previous expressions forb* are indeed numerically
rather close as far as the critical radius does not exceed a
lattice parameters.DB

a is a key parameter and must be car
fully estimated in order to take into account the effect of t
vacancy mechanism, i.e., correlation between successive
cancy jumps. The expression ofDB

a as a function of the
variousB jump frequencies is provided by the theory of d
fusion in dilute alloys~see the Appendix!. It strongly de-
pends on the set of microscopic parameters.

Asymmetry effects on the diffusion mechanism: migra
of B monomers and small clusters. Indeed, it must be em
phasized that two sets of microscopic paramet
$VAA ,VBB ,VAB ,es

A ,es
B ,nA, ,nB% can give the same mixing

energy ~i.e., the same equilibrium phase diagram and
same interfacial free energys) and the sameDB

a for B
monomers, while the details of the diffusion mechanism oB
are different. That means that they will give different kine
pathways, especially different nucleation rates and incu
tion times, even if the classical predictions of Eqs.~7! and
~8! are the same.

Such differences come from the ‘‘asymmetry effects
extensively studied by Athe`neset al.,21 which reflect the ten-
dency of a vacancy to exchange rather withA or B atoms. In
our diffusion model two degrees of asymmetry can be
fined a* 5(VAA2VBB)/(VAA1VBB22VAB) and c* 5es

A

2es
B . An important result is that the relative mobility ofB

monomers and smallB clusters ~dimers, trimers, etc.!
strongly depends on the value ofa* andc* .21,28

In the following, we use two sets of parameters~Table I!.
They correspond to the same values of all the quantities
volved in the CTN~especiallyDB

a , see the Appendix!. With
the second one (a* 521 andc* 50), as we will see later
and as it can be expected from Athe`nes’ results,21 only B
monomers are mobiles. With the first one (a* 50 and c*
,0), smallB clusters can migrate too: it comes mainly fro
the fact that in this case, the vacancy is trapped onB mono-
mers and small clusters. For this reason, the first set of
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rameters is less time consuming and it has been used m
extensively in our simulations. However the simulations p
formed with the second set of parameters are closer to
CTN situation: when onlyB monomers can migrate, one ca
expect thatb clusters will evolve only by evaporation an
condensation of individualB atoms.

IV. RESULTS AND DISCUSSIONS

Precipitation processes will be studied in Monte Ca
simulations starting from completely disordered~random!
solid solutions, at various temperatures and supersaturat
For the first time~Secs. IV A–IV C! the first set of param-
eters of Table I will be used. Ab cluster is defined as a se
of B atoms, each of which is a nearest neighbor of at le
oneB atom in that cluster. Once the critical sizei * has been
determined, the evolution of the numberNp( i . i * ) of super-
critical b clusters and their average size^ i & ~in number ofB
atoms in the cluster! are directly measured. Unfortunately,
is very difficult to geti * directly from the observation of the
cluster size distribution, since no discontinuities are expec
at the critical size.2,7 It is then estimated from the minimum
of Eq. ~5!. We will see in Sec. IV B that the equilibrium
distribution predicted by Eq.~5! is relatively well checked
during the nucleation stage: this point tends to justify the
of the classical value fori * .

A. General kinetic evolution: Nucleation-growth-coarsening

Figure 1 gives an example of a whole precipitation
quence, with the first set of parameters of Table I, atT
50.4 V/2kb (.0.5 Tc) and at a relatively small super
saturation (Ca

053%, i.e., S0.3.75). The simulation box
containsN051283 lattice sites. As can be seen, the classi
picture holds quite well. One observes the four clas
cal stages: incubation ~approximately for t* 3Cv
,5310213 s); nucleation ~for 5310213 s,t* 3Cv
,10211 s) during which the number of precipitatesNp in-
creases linearly with the time, while their size^ i & is ap-
proximately constant; growth ~for 10211 s,t* 3Cv
,2310210 s) during which a sudden drop of the supersa
ration leads to a rapid increase of the precipitate size:^ i &
}ta ~with the classical growtha53/2 value, i.e.,R}t1/2)
while their number evolves slowly; and finally, after a tra
sient regime, the coarsening~for t* 3Cv.1029 s): the ma-
trix has almost reached its equilibrium composition, t
smallest precipitates shrink to the benefit of the larger o
and one observes the classical exponents:^ i &}t ~i.e., R
}t1/3) and Np}t21. It has been observed that the grow
regime vanishes as the initial supersaturation increases
exponenta decreases and the bump on the^ i & versust curve
flattens. This can be explained by the contribution of sm
clusters direct coagulation to the precipitation. For the sa
reason,a is also sensitive to the asymmetry of diffusio
These effects are discussed by Athe`neset al. in Ref. 21. We
will now focus on the first steps of the precipitation.

B. Nucleation rate

At supersaturations lower than the one of Fig. 1, the cr
cal size increases and so the supercritical cluster density
creases very rapidly. It is then necessary to use larger s
re
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he

ns.

st
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e
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e
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lation boxes (N052563 lattice sites! to observe a sufficien
number of supercritical clusters in a reasonable comp
tional time, and therefore to be able to measure nuclea
rates and incubation times with a sufficient precision. D
pending on the supersaturation, two kinds of behaviors
be observed. At low supersaturation@e.g., S0.3.75, as
shown in Fig. 2~a!#, the evolution of the number of supe
critical clusters clearly displays an incubation time, then
steady-state nucleation rate which can be directly measu

FIG. 1. Decomposition of a metastable solid solution of comp
sition Ca

053% during a thermal aging atT50.4 V/2kb ~i.e., T
.0.5Tc andS0.3.75). The critical size isi * 519 atoms. From the
top to the bottom: evolution of the total number of subcritical clu
ters@N( i< i * ), full line#, together with the number ofB monomers
and dimers (N1 andN2, dotted lines!; of the a matrix composition
Ca (s); of the total number of supercritical clustersNp( i . i * )
(d) and of the averaged cluster size^ i & (L). Monte Carlo simu-
lations with the first set of parameters of Table I, 1283 lattice sites
and 1 vacancy.
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At higher supersaturation@e.g.,S0.7.5, Fig. 2~b!#, the incu-
bation time vanishes and no steady-state nucleation rate
be defined. However, an initial nucleation rateJini can still be
measured att50 @dotted line on Fig. 2~b!#.

1. Cluster size distributions

During the steady-state nucleation regime, when it occ
the observed cluster size distribution can be compared to
predicted by Eq.~5!. As can be seen in Fig. 3, the agreeme
is reasonable: the use of the classical expression to deter
the critical size is then justified. As expected, the equilibriu
expression overestimates the critical cluster concentratio
fact which is taken into account in Eq.~7! by the Zeldovitch
factor.

However some differences between simulated and cla
cal distributions can be observed, especially for very sm
cluster sizes. This is not surprising, because of the uncer
ties on the quantities involved in Eq.~3!, the assumption on
the ~spherical! cluster shape and the lack of line and po
contributions which, in addition to the bulk and surfa
terms of Eq.~3!, should be taken into account in the fre
energy of small clusters, as shown by Periniet al.26

FIG. 2. Evolution of the number of supercritical clustersNp at
the beginning of the precipitation process~nucleation!. Monte Carlo
simulations with the first set of parameters of Table I, 2563 lattice
sites and 1 vacancy.~a! For T50.4 V/2kb and Ca

053% ~i.e., T
.0.5Tc and S0.3.75), ~b! for T50.4 V/2kb and Ca

056% ~i.e.,
T.0.5Tc andS0.7.5).
an
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2. Evolution of the nucleation rate with the supersaturation

The evolution ofJst ~or of Jini for the higher supersatura
tions! is represented as a function ofS0 on Fig. 4 for various
temperatures. As expected from the CTN equations~4!–~7!,
the exponential ofJst is found to decrease as (lnS0)

22, with
a slope which gives an interfacial energys very close to the
s^110&5460 mJ m22 value estimated at low temperatu
from the interactions potentials of Table I, according to E
~11! ~the ^110& interfaces being that of lowest energy!. It
must be noticed that indeed the agreement is still valid

FIG. 3. Cluster size distribution during the steady-state nuc
ation stage. The lines correspond to the equilibrium distribution
Eq. ~5!, the squares to the Monte Carlo simulations~with the first
set of parameters of Table I, 2563 lattice sites, 1 vacancy!. Full
squares, dotted line:T50.5 V/2kb and Ca

054.5% ~i.e., T
.0.625Tc andS0.2.25); empty squares, full line:T50.2 V/2kb

andCa
050.8% ~i.e., T.0.25Tc andS0.6.3).

FIG. 4. Evolution of the steady-state nucleation rateJst with the
supersaturation. Monte Carlo simulations atT50.3 V/2kb (L),
T50.4 V/2kb (s), and T50.5 V/2kb (h) ~first set of param-
eters of Table I, 2563 lattice sites, 1 vacancy!. The black symbols
for high super-saturations correspond to initial nucleation ratesJini

in the case where no steady state is reached. Classical th
Volmer-Weber@Eq. ~6!, dotted line# and Becker-Do¨ring @Eq. ~7!,
full line# estimations.
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high supersaturation where no steady state is reached~this is
the case for the few black symbols on Fig. 4!. In view of the
great sensitivity ofJst on small uncertainties ons, the clus-
ters shape andb* , the CTN prefactor is also in good agre
ment with the Monte Carlo simulation. Moreover, in mo
cases, the predictions of the Becker-Do¨ring theory@Eq. ~7!#
are closer to the Monte Carlo results than those of the s
pler Volmer-Weber theory@Eq. ~6!#.

C. Incubation time

The terminology concerning the incubation concept is
deed often confusing. In the CTN, the incubation tim
~sometimes called time-lag or induction time! is defined as
the time necessary to obtain the metastable equilibrium c
centration of critical clusters, starting from a random so
solution. In experiments, the ‘‘incubation time’’ often refe
to the time necessary to observe the first precipitates
clearly depends on the experimental resolution. In Mo
Carlo simulations, as can be seen from Fig. 2~a!, starting
from a completely random solid solution, one has to wait
a time t i before to reach a steady-state nucleation regi
This later timet i corresponds to the classical concept
incubation and will be compared in the following to the cla
sical predictions.

This can be illustrated by the following simulation~Fig.
5!: prior to the quench at the decomposition temperatureT,
the system is maintained for a long time at a temperaturT
1DT just above the miscibility gap. The under-saturat
solid solution reaches astable equilibrium state, i.e., the
equilibrium cluster size distribution and the equilibriu
value of the short range order parameter. If the system is
quenched toT ~at time t50) the solid solution decompose
but starting from a state which is quite close to its newmeta-
stableequilibrium state, rather than from a random config
ration: if DT is not too high, the incubation period vanishe

On the other hand, after the incubation regime, once
steady state has been reached, the mean time necess
observe the nucleation of a new stable cluster in a system

FIG. 5. Evolution of the number of supercritical clustersNp at
the beginning of the precipitation process atT50.4 V/2kb and
Ca

053% ~i.e., T.0.5Tc and S0.3.75): (d) starting from a ran-
dom solid solution and (s) starting from a solid solution main
tained during 23109 MCS just above the solubility limit~at T
50.55 V/2kb.0.69Tc). Monte Carlo simulations with the first se
of parameters of Table I, 2563 lattice sites and 1 vacancy.
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volumeV will be tn51/(V3Jst). Notice thattn depends on
the size of the system, whilet i does not. Moreover at a give
temperature,tn}exp(lnS0)

22 evolves more rapidly with the
supersaturation thant i}1/@S03(ln S0)

3#. A third time is
sometimes introduced for finite-size systems:t15t i1tn is
the time of apparition of the first supercritical cluster.16

Figure 6 displays the incubation timest i measured in the
simulations performed with the first set of parameters
Table I for three temperatures. It is compared with thr
estimations of the ‘‘classical’’ incubation time: two analyt
cal expressions of Feder@t i51/(2b* Z2)# and Wakeshima
@t i51/(4pb* Z2)# and one obtained by numerical integr
tion of Eq. ~2!. All these estimations predict that the incub
tion time decreases with increasing supersaturation a
@S03(ln S0)

3# ~the exact dependence oft i with S0 depends
on the approximation chosen forb* ). As can be seen, stron
and weak supersaturations have to be distinguished.

For small supersaturations the order of magnitude is r
sonable, even if incubation time measured in the simulati
is lower than the estimated one. As it has been alre
observed,3,9 numerical integration of cluster dynamic Eq.~2!
gives, for small supersaturations, incubation times betw
Feder’s and Wakeshima’s estimations. In the simulationst i
is found to be smaller than predicted by the Feder’s exp
sion and closer, but still lower than the Wakeshima’s pred
tion. Simulations at lower supersaturations would of cou
be very useful for a more quantitative comparison. Unfor
nately, such conditions correspond to larger critical nucle
and longer incubation times and they would require too la
simulation boxes and too long simulation times.

As we will see in the next section, the origin of a larg
part of the discrepancy can be the contribution, in addit
with individual B atoms, of smallb clusters which can mi-

FIG. 6. Evolution of the incubation time with the supersatu
tion. Monte Carlo simulations atT50.3 V/2kb (L), T
50.4 V/2kb (s), andT50.5 V/2kb (h) ~first set of parameters
of Table I, 2563 lattice sites, 1 vacancy!. Classical theory: numeri-
cal integration of Eq.~2! at T50.3 V/2kb (l), T50.4 V/2kb

(d), andT50.5 V/2kb (j), and Feder’s@t i51/(2b* Z2), dotted
line# and Wakeshima’s@t i51/(4pb* Z2), full line# estimations.
For the sake of clarity, Feder’s estimation has been omitted foT
50.5 V/2kb .
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210 PRB 62F. SOISSON AND G. MARTIN
grate and directly coagulate with other clusters, and thus
celerate the nucleation process.

For high supersaturations, the incubation time measu
in the simulations drops much more rapidly than expec
from the classical theory. It must be noticed that even for
highest supersaturations used in the simulations corresp
ing to Fig. 6, the nucleation barrier is still much higher th
kbT ~with typically DF* .6 kbT), so that the CTN should
be valid.1,7 However, the incubation time measured in t
simulations can be two orders of magnitude smaller th
predicted. Once again, the contribution of direct coagulat
of smallb clusters can explain a part of this discrepancy,
only a part of it, as will be seen in the next section.

D. Effects of diffusion mechanisms on nucleation kinetics

All the previous results have been obtained with the fi
set of parameters of Table I, i.e., in a case where botB
monomers and smallB clusters can migrate. One can expe
that the contribution of these latter clusters~which is not
taken into account in the classical expression oft i and Jst)
leads to a general acceleration of the nucleation proces
With the second set of parameters, only theB monomers can
migrate, all the quantities involved in the CTN~especially

FIG. 7. Time evolution of the size of oneb cluster at T
50.3 V/2kb and Ca

051% (T.0.375 Tc and S0.7.7). Monte
Carlo simulation with 323 lattice sites, 1 vacancy and:~a! the first
set of parameters of Table I,~b! the second set of parameters
Table I.
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DB
a , see the Appendix! remaining the same as with the pr

vious set of microscopic parameters.
At a microscopic scale, the effect of the smallB clusters

mobility is illustrated on Fig. 7, which shows the evolutio
of the number ofB atoms in one given b cluster du-
ring simulations atT50.3 V/2kb and Ca

051% ~i.e., T
.0.375 Tc and S0.7.7) performed using the two sets o
parameters of Table I. In the first case@Fig. 7~a!#, the cluster
can suddenly undergo a growth or decay of63,4, . . . , or
even 7B atoms because clusters of such sizes can migra
the matrix. In the second case@Fig. 7~b!#, the cluster size
evolves only by61 steps which correspond to the evapo
tion and condensation of individualB atoms.

The effect on the incubation time and nucleation rate
illustrated on Figs. 8 and 9. When smallB clusters can mi-
grate the incubation time is smaller and the nucleation rat
larger than when onlyB monomers are mobile. AtT
50.3 V/2kb , the difference can reach almost one order

FIG. 8. Evolution of the incubation time as a function of th
supersaturation. Monte Carlo simulations with the first (L) and the
second (n) set of parameters of Table I, 2563 lattice sites, 1 va-
cancy. Classical theory: Wakeshima’s~dotted line,W) and Feder’s
~dotted line,F) estimations; numerical integration of Eq.~2! ~full
line, l).

FIG. 9. Evolution of the nucleation rate as a function of t
supersaturation. Monte Carlo simulations with the first (L) and the
second (n) set of parameters of Table I, 2563 lattice sites, 1 va-
cancy. Classical theory: Volmer-Weber@Eq. ~6!, full line# and
Becker-Döring estimations@Eq. ~7!, dotted line#.
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magnitude for the incubation time~Fig. 8! and a factor 3 for
the nucleation rate~Fig. 9!. The difference must even b
higher at lower temperature~since correlation effects in
crease!. For low supersaturations, when diffusion occu
only by migration ofB monomers, the incubation time i
between Feder’s and Wakeshima’s estimations, and it
comes very close to the value obtained by numerical inte
tion of Eq. ~2!. As it could be expected, since the contrib
tion of the direct coagulation of small clusters is not tak
into account in the CTN, the Monte Carlo results are clo
to the classical prediction with the second set of paramet

However, as can be seen on Fig. 8, this cannot explain
the discrepancy with the classical expression oft i for high
supersaturations. A part of the remaining difference m
indeed be due to the fact that the value ofb* given by Eq.
~12! is underestimated at high supersaturation, when
critical clusters becomes very small~typically i * ,20). They
have then more complex shapes than spherical ones20 and
their corresponding surface-to-volume ratio is larger. As
example, for the highest supersaturation used in the sim
tions of Fig. 8 (S0.15), the critical size is indeed very sma
( i * .5) and a direct examination of the microstructure d
ing the nucleation stage suggests a surface-to-volume rat
critical clusters approximately 3 times larger than the o
given by the spherical approximation used to get Eq.~12!.
Moreover, one observes for such cases important time fl
tuations of the clusters interface.29 For i * ,20, the order of
magnitude of these fluctuations can be of the size of
critical cluster itself. The assumption of a spherical and st
critical cluster then leads to an underestimation ofb* .

Vacancy versus direct-exchange mechanisms. A related
important issue is the comparison with Monte Carlo simu
tions based on Kawazaki dynamics~i.e., direct exchange
mechanism between neighboring atoms!, which are com-
monly used to study phase separation or ordering. Sev
authors21,30 have studied to what extent the Kawaza
mechanism affects the kinetic pathway, as compared with
more realistic vacancy exchange mechanism. They s
gested, for instance, that the classical Lifshitz-Slyos
Wagner~LSW! coarsening regime (R}t1/3) is reached faste
with the vacancy mechanism. It has also been claimed
direct exchange favors the coarsening by monom
evaporation-condensation while vacancy exchange favor
rect coagulation.

However, we have seen here that the vacancy diffus
mechanism yields these various behaviors, depending on
choice of the microscopic parameters which control
asymmetry in diffusion properties ofA and B atoms. In an
extensive study on this topic, Athe`nes et al.21 have shown
that most of these various kinetic pathways can be rep
duced by a suitable choice of the parameters of a dir
exchange mechanism, provided that the exchange activa
energies are computed as a difference between the sa
point and the initial energy of the systemEact5«SP2« ini ,
and not as the difference~or a fraction of the difference!
between the configurational energies before and after the
changeEact5«fin2« ini , as it is done in the classical kineti
Ising model~see Sec. III A!. However, the direct exchang
mechanism cannot fully reproduce the kinetic pathwa
which imply the segregation of vacancies at precipita
e-
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matrix interfaces, in particular the latter increase of the c
tribution of direct coagulation to the coarsening process
low temperature.

Elastic effects. One of the limitations of these simulation
is that elastic strains, which are present in many alloy s
tems, are not taken into account. Such effects mainly re
in a reduction of the total driving force. In the frame of th
CTN, it can be simply taken into account by the addition
an elastic contribution to the chemical term of Eq.~3! and
leads to a general slowing down of the decomposition. I
also well known that the equilibrium shape of the coherenb
precipitates depends on their size.31 Phase field methods~see,
e.g., many examples in Ref. 32! and Monte Carlo simula-
tions ~with direct exchange mechanisms33–35! have been pro-
posed to study such effects~but to our knowledge, they hav
not been used to address the question of incubation!.

Beyond these classical effects, one may speculate tha
details of the diffusion mechanisms, for example, the relat
mobility of monomers and small clusters would be affect
by elastic strains, but that the kinetic pathway would still
dictated by the mobility spectrum of variousb clusters.
However, for the time being, even for fully coherent pha
transformations, the introduction of strain interactions us
more realistic ~e.g., embedded atom method! potentials
would considerably increase the computer time since lo
range interactions would have to be computed~including in
the saddle point positions! at each vacancy jump. Mont
Carlo simulations would then become very time consumi
at least for the kind of systems we study here~i.e., large
systems, at low concentrations and low temperatures, w
strong correlations effects!.

E. Impurity effects

For a given supersaturation and temperature, the kine
of precipitation in a binaryA-B alloy will occur according to
the behaviors described above. However, for practical r
sons, it can be very useful to modify and control this proce
for example to avoid or to stabilize a given microstructure.
many industrial metallurgical processes, this is achieved
addition of a thirdC element.8 In this section, we show how
our simulation method can be used to predict and rationa
some of these impurity effects.

1. Vacancy trapping

A first and very simple effect is the vacancy trapping
the C impurity. If the vacancies spend a constant ratio
their time on immobileC atoms, and if these ‘‘trapped’
vacancies are not replaced in thea matrix ~because they are
not equilibrium but quenched-in vacancies, or because
kinetics of precipitation are too quick to allow the point d
fect sources to supply new vacancies!, the whole precipita-
tion process will be slowed down by the same ratio. Suc
trapping occurs when the formation energy of vacancie
significantly lower nearC atoms than on the other atom
sites~in pure A). In our atomistic model, the difference o
formation energy between atomic sites nearest neighbor
C atom and atomic sites in pureA is DEv

for5VAA2VAC , i.e.,
the vacancy trapping effect becomes important ifVAC
@VAA . One can take for example the case of largeC atoms
on a A-B lattice with a small lattice parameter, which wi
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212 PRB 62F. SOISSON AND G. MARTIN
have high and positive interactions energies in sta
(VAC ,VBC ,VCC) as in saddle point (es

C) positions.
Figure 10 illustrates such a slowing down of theb pre-

cipitation in aA97.5B2.5 alloy, with the first set of parameter
of Table I, atT50.4 V/2kb (.0.5Tc). It displays the evo-
lution of the Warren-Cowley parameteraB ~which character-
izes theB atomic fraction aroundB atoms, i.e., theB short
range order!, a convenient way to follow the whole precip
tation process.

The dotted line corresponds to the precipitation kinet
without C addition.aB is found to follow a Johnson-Mehl
Avrami law aB5aB

`$12exp(2ktn)%.20 The full line corre-
sponds to the precipitation kinetics with an addition ofNC
atoms~corresponding to 10 ppm! with VAC510.3 eV ~and
VBC510.3 eV, VCC512 eV, es

C513.5 eV). At this
temperature, the vacancy spends approximatelyz
3(NC /N0)3exp(2DEv

for/kbT).2 more times on neares
neighbor positions ofC atoms than on the other lattice site
and, as can be seen on Fig. 10, the whole precipitation ki
ics is simply slowed down by a constant ratio~approximately
a factor of 3!. At lower temperatures, the trapping effe
becomes rapidly much more important and can comple
‘‘freeze’’ the kinetics.

It should be noticed that the trapping ratio depends o
on VAA2VAC . The otherC parameters~i.e., mainly thees

C

energy for smallC contents! will only affect the correlation
between successiveV-C exchanges, not the vacancy conce
tration aroundC atoms. With lower~even negative! values of
VBC , VCC , and es

C , the same slowing down rate will b
obtained resulting from a great number of very rapidV-C
exchanges rather than from a smaller number of slower
changes.

2. Stabilization of small clusters

An opposite effect is obtained by adding an impurityC
which will stabilize smallb clusters. A small number ofC
atoms with a high ordering tendency withB atoms in thea
solid solution~i.e., such asVBC!VAB and VAA) will form

FIG. 10. Evolution of the Warren-Cowley parameter ofB atoms
at T50.4 V/2kb in a A97.5B2.5 alloy (T.0.5Tc and S0.3) with
~full line! and without~dotted line! an addition of 10 ppm of va-
cancy trapping impurities~see text!. Monte Carlo simulations with
the first set of parameters of Table I, 1283 lattice sites, 1 vacancy.
le

s
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ly

y
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very stable clusters ofB atoms nearest-neighbor of aC atom,
for size (i;8) which can be far below the critical one.

As in Fig. 10, the dotted line of Fig. 11 corresponds to t
time evolution of aB in a binary A97.5B2.5 alloy at T
50.4 V/2kb . The full line gives the kinetics with an addi
tion of 100 ppm ofC atoms such asVBC522.0 eV ~and
VAC521.07 eV,VCC521.07 eV, es

C5es
A526.415 eV:

the C atoms have the same properties as theA ones except
for their interaction withB atoms!. As expected, due to the
strongB-C interactions, smallB clusters are stabilized fori
;8, while the critical size withoutC atoms, for this super-
saturation and temperature, isi * .30 atoms. As a result, the
incubation and nucleation stages are almost skipped and
growth regime occurs much more rapidly: the beginning
the precipitation process is greatly enhanced. However, a
end of the growth regime, the microstructure present
higher density of smaller stableb clusters than withoutC
atoms. The late coarsening stage~for approximately
t* 3Cv.5310210 s) is then slowed down. This situation
illustrated on Fig. 12, which displays the microstructures o
served with and without C impurities near the end of t
growth stage, at a time corresponding to the crossover p
of Fig. 11, i.e., to the same average short range order~ap-
proximatelyaB.0.42).

V. CONCLUSION

The decomposition of anA-B metastable (A-rich! solid
solution, where diffusion occurs by vacancy jumps, is stu
ied by Monte Carlo simulations. A link is established b
tween the microscopic parameters which enter the jump
quencies of the simulations and the thermodynamic
kinetic quantities involved in the classical theory of nuc
ation. The nucleation rates and incubation times predicted
the CTN can then be compared to those measured in
simulation, with uncertainties of approximately one order
magnitude and without any adjustable parameter. Althoug
relies on several crude approximations, CTN predictions i
good general agreement with the simulations, for weakly
persaturated solutions and when diffusion occurs only

FIG. 11. Evolution of the Warren-Cowley parameter ofB atoms
at T50.4 V/2kb in a A97.5B2.5 alloy with ~full line! and without
~dotted line! an addition of 100 ppm of clusters stabilizing impur
ties ~see text!. Monte Carlo simulations with the first set of param
eters of Table I, 1283 lattice sites, 1 vacancy.
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migration of B monomers. The nucleation rate and incub
tion times have approximately the good evolution as a fu
tion of the supersaturation and the good orders of magnitu
However, at higher supersaturations the incubation t
measured in the Monte Carlo simulations decreases m
more rapidly than predicted by the CTN, despite the fact t
we are still in a nucleation regime~i.e., with DF* @kbT).

The relative mobility ofB monomers and smallB clusters
can be controlled by an appropriate choice of the mic
scopic parameters: when smallB clusters become mobile, th
direct coagulation between small precipitates leads to a g
eral acceleration of the precipitation, i.e., to an increase
the nucleation rate and a decrease of the incubation

FIG. 12. Microstructure of anA97.5B2.5 alloy ~a! without and~b!
with an addition of 10 ppm of nucleating impurities~see text! after
an aging oft* 3Cv;3.75310210 s at T50.4 V/2kb ~this time
corresponds to the crossover pointA on Fig. 11!. Only B atoms are
represented. Monte Carlo simulations with the first set of para
eters of Table I, 1283 lattice sites, 1 vacancy.
-
-
e.
e
ch
t

-

n-
f
e

~e.g., by one order of magnitude atT50.3 V/2kb

.0.375Tc).
The addition of a thirdC element can also be used

modify the kinetic pathways. Two kinds of such effects ha
been investigated with the Monte Carlo simulations: a ‘‘v
cancy trapping’’ effect which produces a general slowi
down of the decomposition and a stabilization of subcriti
clusters by theC impurities, which leads to an acceleratio
of the nucleation and growth regimes, but to a slowing do
of the late-stage coarsening.
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APPENDIX: DIFFUSION COEFFICIENTS

In the Monte Carlo simulationsA andB diffusion coeffi-
cients can be directly measured in solid solutions of vario
compositions~by measurements ofDi5^R2& i /6t* , whereR
is the displacement of somei tracer atoms!. However, for
very dilute alloys, analytic expressions can be obtained
the case of oneB atom in pureA, the corresponding impurity
diffusion coefficientDB

A depends on few particular exchang
frequencies:36,37 G0 for an A-V exchange in pureA ~i.e., far
from theB atom!, G2 for the B-V exchange,G3 for an A-V
exchange near aB atom which dissociates aB-V pair,G4 for
anA-V exchange near aB atom which associates aB-V pair.

The A self-diffusion coefficient isDA
A5a2Cv f 0G0 ~where

the correlation factorf 0 is a constant,f 0.0.72 for the bcc
lattice! and the expression ofDB

A is36

DB
A5a2Cv

G4

G3
f 2G2 , ~A1!

wherea is the lattice parameter,Cv is the vacancy concen
tration, andCvG4 /G3 can be interpreted as the local vacan
concentration near the soluteB atom. f 2 is the correlation
factor for B-V exchanges. It is due to the fact that ifG2
@G3 ~the vacancy jump frequency is much more higher w
B than withA atoms!, successiveB jumps are highly corre-
lated. In the frame of the so-called ‘‘model II’’ for the bc
structure,36 f 2 is given by f 257FG3 /(2G217FG3), where
7F is a function of theG4 /G0 ratio.

The G0 , G2 , G3, and G4 jump frequencies can be di
rectly computed from the sets of parameters of Table I
numerical expression of 7F38 gives 7F.4, with the first and
7F.5 with the second one. Moreover, in the first caseG2
@G3 ~then f 2.2G3 /G2!1) while with set 2:G25G3 ( f 2
.5/7, the successiveB jumps are almost uncorrelated!. Fi-
nally, one getsDB

A52a2CvG4 with set 1,DB
A55/7a2CvG2

with set 2, i.e., with the values of Table I, the same p
exponential factor and the same migration energy forB at-
oms in pureA: 0.905 eV. The migration energy forA in pure

-



it

he

n

by

214 PRB 62F. SOISSON AND G. MARTIN
A are 1.075 eV with the first set of parameters, 0.99 eV w
the second one.

In our Monte Carlo simulations we have to consider t
diffusion of B atoms in anA-B alloy rather than in pureA.
nd

s

-

-

lid
.

. B

o-
h,

ys
-

hHowever as long as theB concentration is small, one ca
expect that Eq.~A1! is still valid, i.e., DB

a5DB
A . This has

been directly checked in the Monte Carlo simulations
measurements ofDB5^R2&B/6t* .
.

TM
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28M. Athènes and P. Bellon, Philos. Mag.79, 2243~1999!.
29V. Yu Dobretsov and V.G. Vaks, J. Phys.: Condens. Matter10,

2261 ~1998!; 10, 2275~1998!.
30C. Frontera, E. Vives, T. Castan, and A. Planes, Phys. Rev. B53,

2886~1996!; P. Fratzl and O. Penrose,ibid. 53, 1890~1996!; 55,
6101 ~1998!; T.T. Rautiainen and A.P. Sutton,ibid. 59, 13 681
~1999!.

31M.E. Thompson, C.S. Su, and P.W. Voorhees, Acta Met
Mater.42, 2107~1994!.

32Phase Transformations and Evolution in Materials, edited by
P.E.A. Turchi and A. Gonis~TMS, Warrendale, 2000!.

33A. Finel, in Ref. 32, p. 371.
34J.K. Lee, Mater. Sci. Eng., A238, 1 ~1997!.
35P. Fratzl and O. Penrose, Acta Metall. Mater.43, 2921~1995!.
36J. Philibert,Atom Movements, Diffusion and Mass Transport

Solids~Editions de physique, Les Ulis, 1991!.
37A.R. Allnatt and A.B. Lidiard,Atomic Transport in Solids~Cam-

bridge University Press, Cambridge, 1993!.
38J.-L. Bocquet, G. Brebec, and Y. Limoge, inPhysical Metallurgy,

edited by R.W. Cahn and P. Haasen~North-Holland, Amster-
dam, 1996!, Chap. 7.


