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We present an approach to the localization-delocalization transition in the integer quantum Hall effect. The
Hamiltonian projected onto the lowest Landau level can be written in terms of the projected density operators
alone. This and the closed set of commutation relations between the projected densities leads to simple
equations for the time evolution of the density operators. These equations can be used to map the problem of
calculating the disorder-averaged and energetically unconstrained density-density correlation function to the
problem of calculating the one-particle density of states of a dynamical system. At the self-consistent mean-
field level, this approach yields normal diffusion and a finite longitudinal conductivity. While we have not been
able to go beyond the saddle point approximation analytically, we show numerically that the critical localiza-
tion exponent can be extracted from the energetically integrated correlation function, yietd3+ 0.05,
in excellent agreement with previous finite-size scaling studies.

I. INTRODUCTION change according to the nature of the states at that energy
and sharp peaks in the longitudinal conductivity will be ob-
The metal-insulator transition in the integer quantum Hallserved.
effec;(.IQI-.lE) is_a reentrant zero-temperature quantum phase When studying the IQHE the interaction between the
transition in which the sample goes from an insulating phaselectrons is usually ignored and only the disorder is consid-
with longitudinal conductivityo,,=0 to another insulating ered to be responsible for the localization of the single-
phase by crossing a conducting critical poiot(#0) as the  particle states. This assumption must be checked by compar-
magnetic field is varied. The critical point occurs betweening the predictions of the noninteracting theory to
the plateaus of the Hall conductivity,, and corresponds 10 experimental result$and the outcome of numerical calcu-
the instance when the Fermi energy is at a critical energyations which include the interactiofis’ The universal local-
located in the middle of one of the disorder-broadened Lanization exponeni=2.34+ 0.04 numerically obtained within
2 . . ‘"8 10 . - .
dau levels! _ _ _ _a noninteracting theofy' is in excellent agreement with
In general, the disorder-induced metal-insulator transitionsy perimental measurements of-2* but it remains a mys-
is a transition in the nature of the stateghether they are tery why the strong interactions, which do affect the dynami-
localized or delocalizedat the Fermi energy and it does not .4 exponent, do not seem to affeat.> 1 Here we adopt
manifest itself |n.t_he density of states which remains smoothpe noninteracting picture. We furthermore assume a strong
across the mobility edge. According to the one-parametefagnetic field and a Zeeman splitting, which is much larger
theory of scaling, the states of a two-dimensional noninterihap the width of each disorder-broadened Landau level. We
acting electron gas are all localized in the presence of arbigan then focus on the transition within the lowest Landau

trary weak disord_e?.ln the IQHE, however, the presence of |oye| (LLL) and neglect the spin degree of freedom of the
a strong magnetic field pointing perpendicular to the plangectrons.

drastically changes the nature of the states near the middle of ; has peen shown numerically that for a finite system
the Landau bands. In the noninteracting picture of the IQHEyelocalized one-particle wave functions n&arshow multi-

these states are characterized by a localization length  fractal properties characterized by a set of generalized fractal
dimensionsD,.*#* Also, dynamical studies have shown

E-E/ 7 anomalous slow diffusion of wave packets constructed from
§(E)~&o E, : (1)  these multifractal staté$.Diffusion can be studied using the

spectral function of the disorder-averaged retarded density-

. . . , density correlation functiolt For the problem considered
which determines the extent to which the eigenstates of e the spectral function is given Hgfter dividing by

ergy E are delocalized. Her&, denotes a characteristic

length scale of the system, e.g., the magnetic lehgtee mhw) (Ref. 13

below) andE, a characteristic energy scale, e.g., the band-

width or disorder strength. The critical energy is located o

in the middle of thath Landau band and, in an infinite-size S(r,w;E)E< < 2 HE—-hwl2—E) 6(E+hwl2—E;)
system, it is the only energy at which the one-particle eigen- .l

states are delocalized within this Landau band. As the Fermi

energy(or magnetic fieldis varied, the conductivity,, will X i (0) (r)dfj(r)(//]-* (O)> > . (2
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Here they;(r) denote one-particle eigenfunctions dadthe  has been recently successfully achieved for thé2gWer-
respective eigenenergies for an electron of a twosion of the network modéf In this paper we present an
dimensional spinless electron gas which is subject to a pepproach to the transition which may prove more tractable.
pendicular magnetic field and a disorder potentfél.- - }) Although thus far we have not been able to analytically cal-
indicates the ensemble average over the disorder. After talculate the spectral function, Eg2), beyond the self-
ing the disorder average, translational invariance is restoreconsistent Born approximation, we have numerically verified
andS only depends on the distance:|r| from the origin of  the possibility of obtaining the critical exponentusing this
the plane. Assuming that the eigenstates which contribute igPProach.

Eq. (2) for E~E, are of multifractal character, it has been ~We start by defining the density correlation function at

argued tha decays algebraically/:® zero temperature as
= r) (B =— 2 Trpa(tp (0)5(E—H 7
S(r,w_>o;E_>EC)~(ﬁ) , 3) (q,tE)= Nhl2<< pg(t)p—q(0)8( . (@)
for §O<r<§(E) The anomalous diffusion exponem is with the One'Part-icle Hamiltoniam‘I.:Ho'f‘HD. Here HO )
related to the generalized fractal dimension viadenotes the kinetic energy of a spinless electron moving in
D,=2— .11 the plane in the presence of a perpendicular magnetic field
Assuming a genera"zed non'od;ah “me and Spa@ere_ andHD iS the potential energy f0r a fiXed I’ealization Of the
lation between the current and the gradient of the density andisorder potential(r). | is the magnetic length given by
using the continuity equation, the spectral function in mo-l“=%c/(eB), whereB is the strength of the magnetic field,
mentum space(q,»;E) at smallg=|q| and w can be re- andN=L2?/(271?) is the number of states in the LLL. We
written in terms of a generalized diffusion “coefficient” consider a square sample of aiea By projecting the one-

D(q,w) for E~E,*® particle density operatqrqzexp_(—iq- r) onto the LLL, de-
noting the projected density by, (see Sec. )| and taking
_ p(E) 79°D(q,w) the one-particle trace Tr over the states in the LLL, we re-
S(q,w;E)= (4)  strict our considerations to the transition in the LLL. It will

2 2 2’
T el +[AQD(G,w)] turn out that the equation of motion for the density operators
wherep(E) is the density of states per unit area. In the limit restricted to the LLL can be solved formally in this case. In
of w,g—0 and for large enough system siz&q,w) is the smallw limit we have
only a function ofqL,,, wheré?

1
L,=[p(Ec)hw] 2 (5) S(a,0;E) =~ - ImII(qwiE). ®)

Through numerical diagonalization and using E@), . e . -
Chalkgr and Danielf havegshown thad (g, w) appr%acr%)s a Insteaij of dealing withil(q,t;E~E,) directly, we will inte-
constantD, for smallqL,,. The precise value db, is im- ~ 9ratell(q,t;E) overall energiesE and focus our attention
portant since the longitudinal conductivity at the critical ON

point is given by the Einstein relatiom,,=e’p(E,)D, and

is expected to be universal. Thik ,—0 limit of D(q,w) fi(q,t)=—i ﬂ
was later reinvestigated in an extended numerical stfidy. ' N7#% 12

ForgL,>1, but still in the limit ofg,w— 0, D(q,w) decays ) L )
ad? Since the localization length only divergeskt, the ener-
getically unconstrained diffusion problem considered by in-
D(q,w)*Dgy(qL,) " ". (6) vestigating InI(q,w) still contains useful information
about critical exponents. For instance, let us suppose that at
For the anomalous diffusion exponenj, Chalker and time t=0 we create a wave packet localized at the origin
Daniell obtain the numerical valug=0.38+0.04, indicating  constructed fromall the states of the systefiocalized as
that the delocalized states near the critical energy indeege|l as delocalized statesFor larget only “delocalized”
have multifractal properties. This value fgrwas later con-  states with&(E)/r>1 can contribute to the probability am-
firmed in other numerical studié$.® For energiesE away  piitude of the wave packet at a distanck,>1 far away
from E;, S(q,w;E) vanishes in the smalll and @ limit  from the origin. This implies that in the limit of smatj&,
independent of the order in which the limits are taken due tnly states withq&(E)>1 and thus|E—E¢|<Eq(qé&o)”
exponential localization of the states. contribute to the right hand side of E€). Hence forqé,
Most of the progress in the theoretical understanding of., o only a fraction~ (q&,)*"” of the states in the LLL con-
the localization-delocalization transition considered here hagipytes and we expect from E¢) that for smallqL
been through numerical calculatioh®* Although a field ¢
theory was proposed some time ago by PruisRem to now ) 1 (Do0? w)
no guantitative results such as the critical exponents of the ~hol®ImII(q,»)><(qéo) VW'
transition have been obtained within this description. More (Dog™/e)
recent studied'?! have introduced alternative field theories. where the diffusion parameter is a constént The above
Within the framework of these theories it might in the future argument, which we confirm numerically in Sec. V, gives
be possible to analytically determine critical exponents astrong indication that some useful information about the

{Trpg(Dp—a(O})). 9

(10



2010 JAIRO SINOVA, V. MEDEN, AND S. M. GIRVIN PRB 62

guantum phase transition can be extracted ffbq,w). We The magnetic translation operators have the following
again emphasize that this is so because delocalization onkpecial property:
occurs at a single critical energy, a characteristic unique to s
the IQHE where the extended states have zero measure in the oy =ex;{i A ) - (14)
energy spectrum. We also point out the importance of the ase 2 9P| Tqep:
order of limits in obtaining Eq(10). The limit of q,w—0 is - i i )
taken by havingy approach zero faster thanso as to obtain Where a/\p=(gxp)-z. Hence their commutation relation
a finite diffusion constant. In contrast to the usuald€fines a closed Lie algebra:
approach? in which information about thanomalous diffu- |2
sion exponenty is extracted from the spectral function [7q,7p]=2i sin _q/\p)q-qw_ (15)
S(q,w;E~E.), we will be able to extract information about 2
the localization exponent using the same spectral function Also we have
but integrated over all energiés

We will show that I1(q,w), which is an inherent Tr{7g} =Ndy0. (16)
fermionic-disorder-averaged two-particle correlation func-
tion, can be reexpressed as thimgle-particle correlation
function of an interacting(after the disorder average has
been performeddynamical system with an unusual action.
Therefore, in order to extract the dynamical behavior of the?nd We have
original problem, one simply has to study the disorder- — i
averaged density of states of this new action. Tripgt=Trie" """}, (17

The rest of this paper is organized as follows. In Sec. llwhich vanishes unlesg=0.
we introduce the model and mapping of the problem to the |f there areN states in the Hilbert space, there a¥é
new “Hamiltonian.” In Sec. Ill we calculatél(q,») within  independent operators on the space. However there are ex-
the self-consistent Born approximation. It displays normalactly N? different wave vectors on the torus, so the set of

diffusion at this level _of approximation. In Sec. IV we intrq— operators; is “complete”; it spans the set of all operators.
duce the field theoretical approach to the disorder averaglngl_he HamiI?onian can be exoressed in terms ofghand the
In Sec. V we will demonstrate numerically the validity of the P - A

scaling hypothesis stated in E.0), and finally in Sec. VI Heisenberg equation of motion of thg is closed. This al-
we present our conclusions. lows us to define the quantum “Liouvillian” matrix by

The latter can be proved by noting that the left hand side is

proportional to the one-particle traceﬁ{. Since the trace is
taken over states in the LLL, the projection is unnecessary

Il. MODEL AND MAPPING Tq()=—i E Laq7qr(1). (18
q

We consider the two-dimensional spinless electron ga
lying in the x-y plane which is subject to a perpendicular
magnetic fieldB=Bz and an external potentiai(r). z de-
notes the unit vector in the direction. In the symmetric 2i ot o |2
gauge the vector potential is given By=—irxB and the Log=— ?v(q—q’)e" "l ’4sin(5q’/\q). (19
one-particle Hamiltonian reads

ls—'rom the simple commutation properties, Etp), of the 7,
it readily follows that

Using the Liouvillian matrix we can immediately write down

2 the formal solution of the equation of motig¢h8) for 74(t):

+V(r). (11)

H=Ho+ Hp=—| p+ SA

~HotHo=on Pe
- —iL

We restrict our investigations to the LLL and thus project the 7o(t) = 2 (€M) gq 7q'(0). (20

Hamiltonian onto the states in the LLL. The kinetic energy . q _ . _

of all the LLL states is the same and after projecting leads td his leads to a simple expression for the density-density cor-

a constant which we will neglect in what follows. Writing relation function defined in Eq9):

the potential energy in Fourier space the Hamiltonian simpli-

fies to ~ _6(1)
I[I(gt)y=—i—
(a0=-i—3

H:% v(=Q)pg, (12 \we can define amN? element operator ‘“superspace” and
view L as the “Hamiltonian.” From this point of view, find-
wherev (q) is the Fourier transform of the disorder potential. ing ImII(q,w) is the same as finding thene-particle den-
The projected density operator is given by sity of statefor a system with Hamiltoniart:

e7I2q2/2<<(e7i£t)qq>>_ (21)

pg=e "y (13

with 7, being the unitary magnetic translation operator

which translates the electron a distanccp<(2)l2. The for- 1

. . . . 1
malism needed to project the density operagige=e '9" :_e|2q2/2<< —_— >> 22
onto the LLL was developed elsewhére. ks <Q|w+|5_£|q> ’ (22

i © ,
H(g.0)=— e J dte @ (( (gle”“q) )
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where we have introduced statgp with (q|£[q")=Lqq 0

and ¢ is an infinitesimal small positive number. - 9/
This remarkable formula is our central result. Let us now - * *

try to understand its import. In a crude sense it represents a 0 O/éo

kind of bosonization of the problem. Ordinarily in an inter- AR NN /é i/

acting many-body system the equations of motion for the
density are not closed but rather involve a hierarchy of ad-
ditional operators. However, for the special case of one di-
mension and a linear dispersion relatidihe Tomonaga- FIG. 1. Partial sum of all noncrossing diagrams of the propaga-
Luttinger mode) the equations of motioare closed and the . fl(q, ). For details see the text.
density fluctuations become free bostneven though the
underlying particles are interacting. In the present problem 2
(without electron-electron interactionthe equations for the poci(Eo)= _ (27)
density operators close after projection onto a single Landau “ ¢ 212
level (which for simplicity we have taken to be the lowest
This has several advantages. First we do not have to work
separately with retarded and advanced one-particle Green’s
functions and their products. Second, we note that there are We next calculatél(q,w), Eq.(22), in the self-consistent
no problems with gauge invariance and conserving approxiBorn approximation. We define the complex self-energy
mations. This is because the Liouvillian matrix elementss (q,w)=3x(q,w)+i3(q,w) for the propagator
Lqq vanish if eitherg or q" vanish. Thus the total charge in
the system is automatically conserved. Finally this represen- ﬂ(q,w)zﬁlze'zqz’zﬂ(q,w) (28)
tation allows us to establish a hierarchy of length and time
scales which should be suitable for renormalization grougy setting
(RG) analysis. Because the kinetic energy has been
guenched, the high momentum of a particle is not associated . 1
with high energy. Since the Liouvillian vanishes at small H(q'w):m- (29
wave vectors, it naturally organizes the decay rates of density ’
fluctuations into short time scales at large wave vectors anWithin the self-consistent Born approximation the self-
long time scales at small wave vectors. As we comment furenergy is given by the expression
ther below, however, there are technical obstacles to be over-
come before this RG can be carried out. 8 ~B

We take the disorder to be Gaussian distributed, but not ~ >2(0,@)=2 ((Lq.q+pLarp.a)T1B(a+pl,0). (30
necessarily white noise, i.e., possibly smoothed. We then P

+

Ill. SELF-CONSISTENT BORN APPROXIMATION

have In contrast to standard many-body perturbation theory the
right hand side of this expression does not contain an energy
((v(@)))=0 (23 sum. In this approximation all noncrossing diagrams for the
and propagatofil(qg,w) are summed, as shown in Fig. 1. In this

figure a thick solid line stands fdi®(q,w) and a thin solid
line indicates the “noninteracting” propagatdi®(q, ),
which is given by Eq(29) with 3(q,)=0. I1° is indepen-
o ) dent ofg. The consequences of this for a perturbative treat-
which in real space translates into ment will be discussed in the next section. In Fig. 1 the
- o vertex w_ith an incoming and_an outgoing solid Ii_ne z_;md a
V(N7 = a’v exdl — r—r’| (25) dashed line stands for a matrix elemehy, of the Liouvil-
12(a?—1) 212(a?—1)] lian. The disorder average introduces “contractions,” i.e.,
connections, between the dashed lines. In general the Hartree
Herev denotes the strength of the disorder potential arisl  terms are included in the partial sum, but as indicated in Fig.
a dimensionless smoothness parameter. In the limit of a dist, they vanish because of tlig\p term in the matrix ele-
tribution which is extremely smoothao(—=), the one- ments of the Liouvillian.
particle electronic density of states approaches a Gadssian Using the distribution introduced in the last sectisee
Eq. (24)] and the definition of the Liouvillian matrix E¢19)
we obtain the self-consistency equation

2mav?

Z1202(a2—
L2 € ot l)/25q-¢—q’,0a (24)

(v(av(a'))=

. (26

(E) L r{ * (E—E,)?

Pa==(E)= expg — —Ec

2 3/2'2 2 2

(2m)™ % v 2ma?v? o e @laPl*24 Sir?[(12/2) g\ p]

An integration over all energies gives the number of states 25(q,0)= B2 2 5 wti6—38(p,w)
in the LLL divided by the sample aredl/L? which is P
1/(271?). For a=1 the disorder distribution goes over to the

uncorrelated white noise distribution for which Wegner hasThe strength of the disordercan be scaled out of this equa-
determined the density of stat€sAt E=E, it is given by tion by replacing®8—#438/v andw—hwl/v.

(31
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1.00 - ' If one is interested in the large limit, it might be tempting
to expand the sine in Eq31), as only smalp contribute to
the sum due to the exponential function. Anticipating that for
small g the self-energy is quadratic iy the ansatz

\ 38(q,w)=—iq?D, seems to be plausible. Then the self-
090 | 1 consistency equation can be solved analytically, leading to
N Do=(11\2)v|?/~0.70%1%/%. A comparison withD§~~
085 | e ] discussed above shows that this procedioes notive the
correct largea value forDg. This is due to the fact that in
the exact solution of Eq(31) the range ofq values over
0.801 , : which 3B(qg,w) can be approximated by a purely quadratic
o function inq shrinks as 1&. Thus in the limita— < it would
be necessary to include higher-order terms in the expansion
FIG. 2. Diffusion constanD, as a function of the smoothness of of ZB(q,w) in order to reproduce the numerical result in Eq
the disorderar. (34). Note thate! obtained above is independent of the
) . . o _correlation parameter as it should in the limita>1. Since
As explained in the Introduction the diffusive properties the exact conductivity is universal, the present result is a
can be read off from the smajlandw limit of the imaginary  considerable improvement over the traditional self-consistent
part of I1. Forq— 0 we havel(q,w)—#I%II1(q,w) and can  Born approximation result for which the conductivity van-

0.95 [,

RD,/(BF)

thus write ishes likea ™t in this limit.’
In a previous numerical studyit was found thato,y,
3B(q,0) =(0.54+0.04)?/h, independent of the smoothness of the
A2 Im11%(q,w) = disorder. The results fow,, obtained within our approach

_N\'B 2 B 2°
[0=2R(Q,0)["+[21(q,0)] 3y A€ of the same order of magnitude as the one calculated
(32) using purely numerical methotisbut in contrast to this one

Equation(31) can be solved numerically by iteration. Fol- OUr results depend om. This is due to the fact that we have
lowing Eq. (10) the best way to extract the diffusive proper- calculatedD, within the self-consistent Born approximation
ties is a “scaling” plot in which (for fixed v and @)  but included in the Einstein relation thexact density of
—hwl?ImIIB(q,0) is plotted as a function ofL,, for dif- ~ States at the critical energy. _ _

ferent smallq and w. Such an evaluation shows that on this USing our approach of calculating the disorder-averaged
level of approximation—#l2Im I18(q, ) is a function of one-patrticle correlation function for the dynamical system
qL,, only and thus does not display a sign of the prefactowdesc”bed by the Liouvillian, we obs_erve normal d|ffus_|on
(9€0)Y discussed in connection with E€LO). Furthermore already at the level of the self-consistent Born approxima-
ImT18(q,®) only showsnormal diffusionwith a diffusion tion. In the usual fermionic picture of noninteracting elec-
constan'ED which for g—0 and w—0 is independent of trons in the presence of disorder and a magnetic field, much
qL,. We I%US conclude thaas expectedthe occurrence of more elaborate techniques, such as, e.g., Borel resummation,
the critical exponents and 7 is a higher-order fluctuation nstanton methods, the replica trick, and the supersymmetry

effect For 0,38, oes to zero for alli. ThusD . is method, are g;ed to obtain similar' res_&lﬂsl' particular,_ in
w—0,33(q,0) g 4 0 the more traditional approaches, diffusion is not obtained at

given by the saddle point level and it is necessary to include Gaussian
. . fluctuations(i.e., sum ladder diagramso obtain diffusion.
- _ B 2
Do= J)ITO ;'TOE' (0, 0)/9 (33 Because we deal directly with the density itself, we obtain

diffusion even at the saddle point level.
Because of the scaling property discussed following Eg.
(31), Dy is proportional tov. As shown in Fig. 2D, also IV. FIELD THEORETICAL APPROACH
depends on the smoothneasof the disorder. Betweem . o
=1 (white nois¢ and @=2, D, changes by approximately To go beyond the self-consistent Born approximation it

10%. Fora>2, the a dependence is extremely weak, and might prove advantageous to bring our approach into a field
for a— o, D, saturates aD&~*~0.828v1%/%. Fora=1 we theoretical framework. This is what we will do in this sec-

find Dg=1~0.9650I2/ﬁ. tion. In reformulatingll(q,w) using field theoretical meth-

Using the Einstein relation for the conductivity and Eqs.OdS we use the Gaussian integral identity

(26) and (27) we obtain

= 1
o2 — (Yot =(al 5719 (36)
U;‘X:“~O.330H (39
where
and _ 1 _ _
9 <¢q¢q>52f D¢D¢e78¢¢q¢q (37)
e
a=1__
Oy ~0.869ﬁ. (35 and
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Sy=—12 dlw+io— Ll - (39)

k,k’
The ¢, denote complexbosonig fields andZ is given by

Z= J Dy Dipe™Sv. (39)
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discussed in the last section the noninteracting propagator
(v=0) is given by @+i6)"! and does not depend ap
Thus a perturbation theory or RG procedure can only be set
up after ag-dependent propagator has been generated by
self-consistently summing up aentire classof diagrams,
such as, e.g., the noncrossing diagrams in Sec. Ill. Further-
more, the interactiohin Eq. (46) has an unusual momentum

In order to ensemble average over the disorder we introduciePendence compared to standaftitheory of critical phe-

additional Grassmann variableso represent ¥ as a path
integral?

%= f DEDEe™ S, (40)

where

Si=—i &lo+io—Llwée -
k,k’

One can then carry out the ensemble average over th
Gaussian-distributed disorder and obtain the generalize

functional
Z(w)= J DEDE J DyDye "), 42
where
F(w)E; [(—iw+ 8 bt (—io+8)Eé]
+Z E <<‘Ckk/£pp’>>[gk$p‘/’p/¢k’
k.,k" p,p’
+ 20t Epfpr + Exéptpr . 43

nomena: ltvanishesif one of the g; goes to zero and is
periodicin the momenta.

Using the field theoretical approach we can reproduce the
approximation discussed in Sec. Ill, which is usually called
self-consistent mean-field or saddle point approximation in
the present context. In the absence of symmetry breaking, the
middle of the three quartic terms in the action cannot con-
tribute to the saddle point solution since its coefficient van-
ishes forgq;=q, andg,=0q;. Hence we can deal separately
with the bosonic and the fermionic variables when discuss-
ing the saddle point solution. By performing the usual pair-
|ﬁg of the fields in the quartic interaction term at the mean-
ield level we have

quaf& "ZICI3 l//q4: i "F(g1,0) 5q1 ,qSquwq‘,

+illM(q,,w) 5q2,q4gqll'//q3' (47

Thus we can write

FMF(w)=% Y —iw+o+i3VF(q,0)]y,, (49

Here we have le6— 6, so that we can generate the correla-and use this in calculating

tion functions by

&Z(w) o r?Z(w)

= (44)
J 5q 0 5q

<Eq§q>w:<$q¢q>w: -

Once the disorder averaging is done we finally obtain

F(w)z—i}q: [(0+18) g+ (@+i8g) €qéql

+ >

d1,92,93,44

f(1,2,3,4[Eq1Eq2¢q3‘/’q4

+ 20 Yo, Eq, 0, + £0,Ea,Eankan) (45)
with
7TCE21)2 2 2 2 |2
— —1%aa -4l 124 gjnl —
f(1,2,3,94 a2 e 1% 4SIF< 5 ql/\q4)
(12
Xsin qu/\q?, O, + .05+ 0y (46)

f DyDye ™" g

iﬂMF(Qaw)E<EQ¢CI>xF: — MF
fD«//Dz//e*F (@)
i .
= :- B
oo S e i118(q, ),

(49)

which reproduces the self-consistency, E1), for the self-
energy.

At present we do not know how to evaluate the correla-
tion function beyond the self-consistent mean-field approxi-
mation in a controlled way. However, we hope that in the
future it will be possible to analytically extend our results.

V. NUMERICAL RESULTS

In this section we will numerically calculate Ihi(q,w)
by exact diagonalization and verify the scaling hypothesis

In contrast to standard many-body theory the action, Egstated in Eq(10). We closely follow the procedure and no-

(45), doesnot contain a sum over the frequency. only

tation used by Chalker and DaniéflMotivated by Eq.(8)

enters this equation as axternal parameterAs already we define



2014
S(r,w) L I(r,w)
row)=——IMII(r,w
22

=<<Ej S(fw+E;—E;);(0)

wa(f)wj(f)wf(0)>>- (50

The single-particle wave functiong(r) can be expanded in
the basis of the elliptica functions ¢, (r):

N
wi<r>=m§1 a;(m) gpm(r), (51)
where
1 . H 2
(XY= e X, X y/1?)
XeXF[—(X—Xm’S)Z/(2|2)] (52
and
2
Xms= mTI2+sL. (53

Then the Fourier transform of EGG0) can be written as

= —12g%12
R ENE
><<<2 5(ﬁw+Ei_Ej)Qij(k,|)>>, (54)
ni
where
N 2
Qij(k,I)=N 2—1 ai(m)a}‘([m—l])Xexp<i2wkN) ,

(59

andq=(27/L)(k,1)=(V27//7?N)(k,1), with k, | integer. In
Eqg. (65, [m+1] is defined as beingh+1 for 1I<=m+I<N
andm+1 =N, otherwise such that<g|m+I=N|<N. In the

numerical calculation we replace the delta function in Eqg.

(54) by a sharply peaked Gaussian(x) «exg —x*/y*] with
a broadenintf y=0.64v/N which is of the order of the level
spacing. We then have

S(q,0) = e "I2K (g, ), (56)

271 2N?
with

<<2 8 (hw+ Ei—Ej)Qij(k,|)>>

1#]

K(d,w)=
<<Z 57(ﬁw+Ei—Ej)>>

1#]

(57)

This function is suitable for a numerical investigation.

We restrict ourselves to a white noise disorder distribution

(e=1). We calculateK (g, ) for values of 2<k?+12<25
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FIG. 3. AwK(q,w) for different fixed @L,)2<(k?+12)/n and
small q and w as a function ofn[1+ (k?+1%)%/n?]¥2/N on a
log-log scale. For clear comparison each data set has been multi-
plied by a constant factoA(qL,) and is labeled by the ratiok¢
+12)/n.

and o= yn, with 3=n=<23, where the limits have been
chosen such that *<q<|~! andAw<v buthw greater
than the level spacing of the finite-size system. The system
sizes range frorN=200 to N=2000, and the number of
disorder realizations are 500 or 100 depending on the system
size. All values ofK(qg,w) were determined to an accuracy
better than 1% in the disorder averaging.

For a fixed and small value @fL, (so that we are in the
range of normal diffusionandqg,w—0 we expect from Eq.
(10) that wK (g, ) scales asKw/v)*?=(ql)"”. The scal-
ing hypothesis is illustrated in Fig. 3, where we plot
A(gL,) % wK(q,w) for fixed ratios of gL,)?%x(k?>+12)/n as
a function ofn\/1+ (k?+1%)%/n?/N on a log-log scale. Here
each curve is multiplied by a constant fac&y(qL ) [differ-
ent for each k?+12)/n ratio] to make the comparison of the
different lines easier. Also the factqfl + (k?+1%)%/n? mul-
tiplying n/N« w is used such that the curves line up horizon-
tally. The fact that data calculated for different system sizes
fall onto the same curv§for a fixed ratio of k?+12)/n]
indicates that the limits chosen above kof, andn do avoid
large finite-size effects. On the log-log scale the different
data sets fall onto straight lines and can be fitted by power
laws (solid lines in Fig. 3.

The localization exponent extracted from the slope of
the lines in Fig. 3 is shown as a function ok?@12)/n

3.0
251 ¥
%HLH—#—I—I—i
> 20}
1.5 |
1'Oo.o 0.1 0.2 0.3

(K+P)/n

FIG. 4. Localization exponent obtained from Fig. 3. The solid
line corresponds to the average
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=(qL,)? in Fig. 4. Within our error bars and for thgL,, ~ mation of the integrated spectral function yields normal dif-
considered,v is a constant. Its value=2.33+0.05 is in  fusion but it misses the critical scaling. However, it is en-
excellent agreement with previous finite-size scalingcouraging to note that even at this level of approximation the
studie$?>®%and strongly supports the scaling hypothesis, longitudinal conductivity is in approximate agreement with
Eq. (10). The fact that the lowestké+12)/n points seem to previous numerical studiéd.Finally, using exact diagonal-
be moving upwards in Fig. 4 is an indication that there arezation, we are able to extract the localization critical expo-
still some finite-size effects for the low values &f@-12). In nent v from the integrated spectral function by using the
contrast to previous numerical studies we are able to obtaiacaling hypothesis, Eq10), without having to do finite-size
information about the critical exponent from systems of scaling. We obtainv=2.33+=0.05 in excellent agreement

finite size without doing finite-size scaling. with previous studie8-'°We hope that in the future it will
be possible to extend our approach beyond the self-
VI. CONCLUSION consistent mean-field level and analytically extract informa-

) . tion about the critical exponent
We have presented an analytical and numerical approach
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