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Liouvillian approach to the integer quantum Hall effect transition
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We present an approach to the localization-delocalization transition in the integer quantum Hall effect. The
Hamiltonian projected onto the lowest Landau level can be written in terms of the projected density operators
alone. This and the closed set of commutation relations between the projected densities leads to simple
equations for the time evolution of the density operators. These equations can be used to map the problem of
calculating the disorder-averaged and energetically unconstrained density-density correlation function to the
problem of calculating the one-particle density of states of a dynamical system. At the self-consistent mean-
field level, this approach yields normal diffusion and a finite longitudinal conductivity. While we have not been
able to go beyond the saddle point approximation analytically, we show numerically that the critical localiza-
tion exponent can be extracted from the energetically integrated correlation function, yieldingn52.3360.05,
in excellent agreement with previous finite-size scaling studies.
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I. INTRODUCTION

The metal-insulator transition in the integer quantum H
effect ~IQHE! is a reentrant zero-temperature quantum ph
transition in which the sample goes from an insulating ph
with longitudinal conductivitysxx50 to another insulating
phase by crossing a conducting critical point (sxxÞ0) as the
magnetic field is varied. The critical point occurs betwe
the plateaus of the Hall conductivitysxy and corresponds to
the instance when the Fermi energy is at a critical ene
located in the middle of one of the disorder-broadened L
dau levels.1,2

In general, the disorder-induced metal-insulator transit
is a transition in the nature of the states~whether they are
localized or delocalized! at the Fermi energy and it does n
manifest itself in the density of states which remains smo
across the mobility edge. According to the one-parame
theory of scaling, the states of a two-dimensional nonin
acting electron gas are all localized in the presence of a
trary weak disorder.3 In the IQHE, however, the presence
a strong magnetic field pointing perpendicular to the pla
drastically changes the nature of the states near the midd
the Landau bands. In the noninteracting picture of the IQ
these states are characterized by a localization length

j~E!;j0UE2Ec
i

E0
U2n

, ~1!

which determines the extent to which the eigenstates of
ergy E are delocalized. Herej0 denotes a characteristi
length scale of the system, e.g., the magnetic lengthl ~see
below! and E0 a characteristic energy scale, e.g., the ba
width or disorder strength. The critical energyEc

i is located
in the middle of thei th Landau band and, in an infinite-siz
system, it is the only energy at which the one-particle eig
states are delocalized within this Landau band. As the Fe
energy~or magnetic field! is varied, the conductivitysxx will
PRB 620163-1829/2000/62~3!/2008~8!/$15.00
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change according to the nature of the states at that en
and sharp peaks in the longitudinal conductivity will be o
served.

When studying the IQHE the interaction between
electrons is usually ignored and only the disorder is con
ered to be responsible for the localization of the sing
particle states. This assumption must be checked by com
ing the predictions of the noninteracting theory
experimental results1,2,4 and the outcome of numerical calc
lations which include the interactions.5–7 The universal local
ization exponentn52.3460.04 numerically obtained withi
a noninteracting theory8–10 is in excellent agreement wit
experimental measurements ofn,1,2,4 but it remains a mys
tery why the strong interactions, which do affect the dyna
cal exponentz, do not seem to affectn.5–7,11Here we adop
the noninteracting picture. We furthermore assume a st
magnetic field and a Zeeman splitting, which is much lar
than the width of each disorder-broadened Landau level
can then focus on the transition within the lowest Lan
level ~LLL ! and neglect the spin degree of freedom of
electrons.

It has been shown numerically that for a finite syst
delocalized one-particle wave functions nearEc show multi-
fractal properties characterized by a set of generalized fr
dimensionsDq .1,12,13 Also, dynamical studies have show
anomalous slow diffusion of wave packets constructed f
these multifractal states.14 Diffusion can be studied using th
spectral function of the disorder-averaged retarded den
density correlation function.15 For the problem considere
here the spectral function is given by~after dividing by
p\v! ~Ref. 12!

S̄~r ,v;E![K K (
i , j

d~E2\v/22Ei !d~E1\v/22Ej !

3c i~0!c i* ~r !c j~r !c j* ~0!L L . ~2!
2008 ©2000 The American Physical Society
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PRB 62 2009LIOUVILLIAN APPROACH TO THE INTEGER QUANTUM . . .
Here thec i(r ) denote one-particle eigenfunctions andEi the
respective eigenenergies for an electron of a tw
dimensional spinless electron gas which is subject to a
pendicular magnetic field and a disorder potential.^^•••&&
indicates the ensemble average over the disorder. After
ing the disorder average, translational invariance is resto
andS̄ only depends on the distancer[ur u from the origin of
the plane. Assuming that the eigenstates which contribut
Eq. ~2! for E'Ec are of multifractal character, it has bee
argued thatS̄ decays algebraically,1,16

S̄~r ,v→0;E→Ec!;S r

j~E! D
2h

, ~3!

for j0!r !j(E). The anomalous diffusion exponenth is
related to the generalized fractal dimension v
D2522h.1,13

Assuming a generalized nonlocal~in time and space! re-
lation between the current and the gradient of the density
using the continuity equation, the spectral function in m
mentum spaceS(q,v;E) at smallq[uqu and v can be re-
written in terms of a generalized diffusion ‘‘coefficient
D(q,v) for E'Ec ,15

S~q,v;E!5
r~E!

p

\q2D~q,v!

@\v#21@\q2D~q,v!#2
, ~4!

wherer(E) is the density of states per unit area. In the lim
of v,q→0 and for large enough system sizes,D(q,v) is
only a function ofqLv , where12

Lv[@r~Ec!\v#21/2. ~5!

Through numerical diagonalization and using Eq.~4!,
Chalker and Daniell12 have shown thatD(q,v) approaches a
constantD0 for small qLv . The precise value ofD0 is im-
portant since the longitudinal conductivity at the critic
point is given by the Einstein relationsxx5e2r(Ec)D0 and
is expected to be universal. TheqLv→0 limit of D(q,v)
was later reinvestigated in an extended numerical stud17

For qLv@1, but still in the limit ofq,v→0, D(q,v) decays
as12

D~q,v!}D0~qLv!2h. ~6!

For the anomalous diffusion exponenth, Chalker and
Daniell obtain the numerical valueh50.3860.04, indicating
that the delocalized states near the critical energy ind
have multifractal properties. This value forh was later con-
firmed in other numerical studies.14,18 For energiesE away
from Ec , S(q,v;E) vanishes in the smallq and v limit
independent of the order in which the limits are taken due
exponential localization of the states.

Most of the progress in the theoretical understanding
the localization-delocalization transition considered here
been through numerical calculations.2,12,14 Although a field
theory was proposed some time ago by Pruisken,19 up to now
no quantitative results such as the critical exponents of
transition have been obtained within this description. Mo
recent studies20,21 have introduced alternative field theorie
Within the framework of these theories it might in the futu
be possible to analytically determine critical exponents
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has been recently successfully achieved for the SU~2! ver-
sion of the network model.22 In this paper we present a
approach to the transition which may prove more tractab
Although thus far we have not been able to analytically c
culate the spectral function, Eq.~2!, beyond the self-
consistent Born approximation, we have numerically verifi
the possibility of obtaining the critical exponentn using this
approach.

We start by defining the density correlation function
zero temperature as

P̃~q,t;E![2
iu~ t !

N\ l 2
^^Tr$r̄q~ t !r̄2q~0!d~E2H !%&&, ~7!

with the one-particle HamiltonianH5H01HD . Here H0
denotes the kinetic energy of a spinless electron moving
the plane in the presence of a perpendicular magnetic fi
andHD is the potential energy for a fixed realization of th
disorder potentialV(r ). l is the magnetic length given b
l 25\c/(eB), whereB is the strength of the magnetic field
and N5L2/(2p l 2) is the number of states in the LLL. W
consider a square sample of areaL2. By projecting the one-
particle density operatorrq[exp(2iq•r ) onto the LLL, de-
noting the projected density byr̄q ~see Sec. II!, and taking
the one-particle trace Tr over the states in the LLL, we
strict our considerations to the transition in the LLL. It wi
turn out that the equation of motion for the density operat
restricted to the LLL can be solved formally in this case.
the smallv limit we have

S~q,v;E!52
1

2p2
Im P~q,v;E!. ~8!

Instead of dealing withP̃(q,t;E'Ec) directly, we will inte-
grateP̃(q,t;E) over all energiesE and focus our attention
on

P̃~q,t ![2 i
u~ t !

N\ l 2
^^Tr$r̄q~ t !r̄2q~0!%&&. ~9!

Since the localization length only diverges atEc , the ener-
getically unconstrained diffusion problem considered by
vestigating ImP(q,v) still contains useful information
about critical exponents. For instance, let us suppose th
time t50 we create a wave packet localized at the orig
constructed fromall the states of the system~localized as
well as delocalized states!. For larget only ‘‘delocalized’’
states withj(E)/r .1 can contribute to the probability am
plitude of the wave packet at a distancer /j0@1 far away
from the origin. This implies that in the limit of smallqj0
only states withqj(E).1 and thusuE2Ecu,E0(qj0)1/n

contribute to the right hand side of Eq.~9!. Hence forqj0
→0 only a fraction;(qj0)1/n of the states in the LLL con-
tributes and we expect from Eq.~4! that for smallqLv

2\v l 2 Im P~q,v!}~qj0!1/n
~D0q2/v!

11~D0q2/v!2
, ~10!

where the diffusion parameter is a constantD0. The above
argument, which we confirm numerically in Sec. V, giv
strong indication that some useful information about t
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2010 PRB 62JAIRO SINOVA, V. MEDEN, AND S. M. GIRVIN
quantum phase transition can be extracted fromP(q,v). We
again emphasize that this is so because delocalization
occurs at a single critical energy, a characteristic unique
the IQHE where the extended states have zero measure i
energy spectrum. We also point out the importance of
order of limits in obtaining Eq.~10!. The limit of q,v→0 is
taken by havingq approach zero faster thanv so as to obtain
a finite diffusion constant. In contrast to the usu
approach,12 in which information about theanomalous diffu-
sion exponenth is extracted from the spectral functio
S(q,v;E'Ec), we will be able to extract information abou
the localization exponentn using the same spectral functio
but integrated over all energiesE.

We will show that P(q,v), which is an inherent
fermionic-disorder-averaged two-particle correlation fun
tion, can be reexpressed as thesingle-particle correlation
function of an interacting~after the disorder average ha
been performed! dynamical system with an unusual actio
Therefore, in order to extract the dynamical behavior of
original problem, one simply has to study the disord
averaged density of states of this new action.

The rest of this paper is organized as follows. In Sec
we introduce the model and mapping of the problem to
new ‘‘Hamiltonian.’’ In Sec. III we calculateP(q,v) within
the self-consistent Born approximation. It displays norm
diffusion at this level of approximation. In Sec. IV we intro
duce the field theoretical approach to the disorder averag
In Sec. V we will demonstrate numerically the validity of th
scaling hypothesis stated in Eq.~10!, and finally in Sec. VI
we present our conclusions.

II. MODEL AND MAPPING

We consider the two-dimensional spinless electron
lying in the x-y plane which is subject to a perpendicul
magnetic fieldB5Bẑ and an external potentialV(r ). ẑ de-
notes the unit vector in thez direction. In the symmetric
gauge the vector potential is given byA52 1

2 r3B and the
one-particle Hamiltonian reads

H5H01HD5
1

2m Fp1
e

c
AG2

1V~r !. ~11!

We restrict our investigations to the LLL and thus project t
Hamiltonian onto the states in the LLL. The kinetic ener
of all the LLL states is the same and after projecting lead
a constant which we will neglect in what follows. Writin
the potential energy in Fourier space the Hamiltonian sim
fies to

H5(
q

v~2q!r̄q , ~12!

wherev(q) is the Fourier transform of the disorder potenti
The projected density operator is given by

r̄q[e2 l 2q2/4tq , ~13!

with tq being the unitary magnetic translation opera
which translates the electron a distance (q3 ẑ) l 2. The for-
malism needed to project the density operatorrq5e2 iq•r

onto the LLL was developed elsewhere.23
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The magnetic translation operators have the follow
special property:

tqtp5expS i l 2

2
q`pD tq1p , ~14!

where q`p[(q3p)• ẑ. Hence their commutation relatio
defines a closed Lie algebra:

@tq ,tp#52i sinS l 2

2
q`pD tq1p . ~15!

Also we have

Tr$tq%5Ndq,0 . ~16!

The latter can be proved by noting that the left hand side
proportional to the one-particle trace ofr̄q . Since the trace is
taken over states in the LLL, the projection is unnecess
and we have

Tr$r̄q%5Tr$e2 iq•r%, ~17!

which vanishes unlessq50.
If there areN states in the Hilbert space, there areN2

independent operators on the space. However there are
actly N2 different wave vectors on the torus, so the set
operatorsr̄q is ‘‘complete’’; it spans the set of all operators
The Hamiltonian can be expressed in terms of ther̄q and the
Heisenberg equation of motion of ther̄q is closed. This al-
lows us to define the quantum ‘‘Liouvillian’’ matrix by

ṫq~ t !52 i(
q8

Lqq8tq8~ t !. ~18!

From the simple commutation properties, Eq.~15!, of thetq
it readily follows that

Lqq8[2
2i

\
v~q2q8!e2 l 2uq82qu2/4 sinS l 2

2
q8`qD . ~19!

Using the Liouvillian matrix we can immediately write dow
the formal solution of the equation of motion~18! for tq(t):

tq~ t !5(
q8

~e2 iLt!qq8tq8~0!. ~20!

This leads to a simple expression for the density-density c
relation function defined in Eq.~9!:

P̃~q,t !52 i
u~ t !

\ l 2
e2 l 2q2/2^^~e2 iLt!qq&&. ~21!

We can define anN2 element operator ‘‘superspace’’ an
view L as the ‘‘Hamiltonian.’’ From this point of view, find-
ing ImP(q,v) is the same as finding theone-particle den-
sity of statesfor a system with HamiltonianL:

P~q,v!52
i

\ l 2
e2 l 2q2/2E

0

`

dtei (v1 id)t^^ ^que2 iLtuq& &&

5
1

\ l 2
e2 l 2q2/2K K ^qu

1

v1 id2L uq& L L , ~22!
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where we have introduced statesuq& with ^quLuq8&[Lqq8
andd is an infinitesimal small positive number.

This remarkable formula is our central result. Let us n
try to understand its import. In a crude sense it represen
kind of bosonization of the problem. Ordinarily in an inte
acting many-body system the equations of motion for
density are not closed but rather involve a hierarchy of
ditional operators. However, for the special case of one
mension and a linear dispersion relation~the Tomonaga-
Luttinger model! the equations of motionare closed and the
density fluctuations become free bosons24 even though the
underlying particles are interacting. In the present probl
~without electron-electron interactions! the equations for the
density operators close after projection onto a single Lan
level ~which for simplicity we have taken to be the lowes!.
This has several advantages. First we do not have to w
separately with retarded and advanced one-particle Gre
functions and their products. Second, we note that there
no problems with gauge invariance and conserving appr
mations. This is because the Liouvillian matrix eleme
Lqq8 vanish if eitherq or q8 vanish. Thus the total charge i
the system is automatically conserved. Finally this repres
tation allows us to establish a hierarchy of length and ti
scales which should be suitable for renormalization gro
~RG! analysis. Because the kinetic energy has b
quenched, the high momentum of a particle is not associ
with high energy. Since the Liouvillian vanishes at sm
wave vectors, it naturally organizes the decay rates of den
fluctuations into short time scales at large wave vectors
long time scales at small wave vectors. As we comment
ther below, however, there are technical obstacles to be o
come before this RG can be carried out.

We take the disorder to be Gaussian distributed, but
necessarily white noise, i.e., possibly smoothed. We t
have

^^v~q!&&50 ~23!

and

^^v~q!v~q8!&&5
2pa2v2

L2
e2 l 2q2(a221)/2dq1q8,0 , ~24!

which in real space translates into

^^V~r !V~r 8!&&5
a2v2

l 2~a221!
expF2

ur2r 8u2

2l 2~a221!
G . ~25!

Herev denotes the strength of the disorder potential anda is
a dimensionless smoothness parameter. In the limit of a
tribution which is extremely smooth (a→`), the one-
particle electronic density of states approaches a Gauss25

ra5`~E!5
1

~2p!3/2l 2v
expF2

1

2v2
~E2Ec!

2G . ~26!

An integration over all energiesE gives the number of state
in the LLL divided by the sample areaN/L2 which is
1/(2p l 2). Fora51 the disorder distribution goes over to th
uncorrelated white noise distribution for which Wegner h
determined the density of states.26 At E5Ec it is given by
a
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ra51~Ec!5
A2

p2l 2v
. ~27!

III. SELF-CONSISTENT BORN APPROXIMATION

We next calculateP(q,v), Eq.~22!, in the self-consistent
Born approximation. We define the complex self-ener
S(q,v)5SR(q,v)1 iS I(q,v) for the propagator

P̂~q,v![\ l 2el 2q2/2P~q,v! ~28!

by setting

P̂~q,v!5
1

v1 id2S~q,v!
. ~29!

Within the self-consistent Born approximation the se
energy is given by the expression

SB~q,v!5(
p

^^Lq,q1pLq1p,q&&P̂
B~ uq1pu,v!. ~30!

In contrast to standard many-body perturbation theory
right hand side of this expression does not contain an ene
sum. In this approximation all noncrossing diagrams for
propagatorP̂(q,v) are summed, as shown in Fig. 1. In th
figure a thick solid line stands forP̂B(q,v) and a thin solid
line indicates the ‘‘noninteracting’’ propagatorP̂0(q,v),
which is given by Eq.~29! with S(q,v)[0. P̂0 is indepen-
dent ofq. The consequences of this for a perturbative tre
ment will be discussed in the next section. In Fig. 1 t
vertex with an incoming and an outgoing solid line and
dashed line stands for a matrix elementLqq8 of the Liouvil-
lian. The disorder average introduces ‘‘contractions,’’ i.
connections, between the dashed lines. In general the Ha
terms are included in the partial sum, but as indicated in F
1, they vanish because of theq`p term in the matrix ele-
ments of the Liouvillian.

Using the distribution introduced in the last section@see
Eq. ~24!# and the definition of the Liouvillian matrix Eq.~19!
we obtain the self-consistency equation

SB~q,v!5
2pa2v2

\2L2 (
p

e2 l 2a2uq2pu2/24 sin2@~ l 2/2!q`p#

v1 id2SB~p,v!
.

~31!

The strength of the disorderv can be scaled out of this equa
tion by replacingSB→\SB/v andv→\v/v.

FIG. 1. Partial sum of all noncrossing diagrams of the propa

tor P̂(q,v). For details see the text.
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As explained in the Introduction the diffusive properti
can be read off from the smallq andv limit of the imaginary
part ofP. Forq→0 we haveP̂(q,v)→\ l 2P(q,v) and can
thus write

\ l 2 Im PB~q,v!5
S I

B~q,v!

@v2SR
B~q,v!#21@S I

B~q,v!#2
.

~32!

Equation~31! can be solved numerically by iteration. Fo
lowing Eq. ~10! the best way to extract the diffusive prope
ties is a ‘‘scaling’’ plot in which ~for fixed v and a)
2\v l 2 Im PB(q,v) is plotted as a function ofqLv for dif-
ferent smallq andv. Such an evaluation shows that on th
level of approximation2\v l 2 Im PB(q,v) is a function of
qLv only and thus does not display a sign of the prefac
(qj0)1/n discussed in connection with Eq.~10!. Furthermore,
Im PB(q,v) only showsnormal diffusionwith a diffusion
constantD0 which for q→0 and v→0 is independent of
qLv . We thus conclude that~as expected! the occurrence of
the critical exponentsn and h is a higher-order fluctuation
effect. Forv→0, SR

B(q,v) goes to zero for allq. ThusD0 is
given by

D052 lim
v→0

lim
q→0

S I
B~q,v!/q2. ~33!

Because of the scaling property discussed following
~31!, D0 is proportional tov. As shown in Fig. 2,D0 also
depends on the smoothnessa of the disorder. Betweena
51 ~white noise! and a52, D0 changes by approximatel
10%. Fora.2, the a dependence is extremely weak, a
for a→`, D0 saturates atD0

a5`'0.828v l 2/\. Fora51 we
find D0

a51'0.965v l 2/\.
Using the Einstein relation for the conductivity and Eq

~26! and ~27! we obtain

sxx
a5`'0.330

e2

h
~34!

and

sxx
a51'0.869

e2

h
. ~35!

FIG. 2. Diffusion constantD0 as a function of the smoothness
the disordera.
r

.

.

If one is interested in the largea limit, it might be tempting
to expand the sine in Eq.~31!, as only smallp contribute to
the sum due to the exponential function. Anticipating that
small q the self-energy is quadratic inq the ansatz
SB(q,v)52 iq2D̃0 seems to be plausible. Then the se
consistency equation can be solved analytically, leading
D̃05(1/A2)v l 2/\'0.707v l 2/\. A comparison withD0

a5`

discussed above shows that this proceduredoes notgive the
correct largea value forD0. This is due to the fact that in
the exact solution of Eq.~31! the range ofq values over
which SB(q,v) can be approximated by a purely quadra
function inq shrinks as 1/a. Thus in the limita→` it would
be necessary to include higher-order terms in the expan
of SB(q,v) in order to reproduce the numerical result in E
~34!. Note thatsxx

a@1 obtained above is independent of th
correlation parametera as it should in the limita@1. Since
the exact conductivity is universal, the present result i
considerable improvement over the traditional self-consis
Born approximation result for which the conductivity va
ishes likea21 in this limit.27

In a previous numerical study17 it was found thatsxx
5(0.5460.04)e2/h, independent of the smoothness of t
disorder. The results forsxx obtained within our approach
are of the same order of magnitude as the one calcul
using purely numerical methods17 but in contrast to this one
our results depend ona. This is due to the fact that we hav
calculatedD0 within the self-consistent Born approximatio
but included in the Einstein relation theexact density of
states at the critical energy.

Using our approach of calculating the disorder-averag
one-particle correlation function for the dynamical syste
described by the Liouvillian, we observe normal diffusio
already at the level of the self-consistent Born approxim
tion. In the usual fermionic picture of noninteracting ele
trons in the presence of disorder and a magnetic field, m
more elaborate techniques, such as, e.g., Borel resumma
instanton methods, the replica trick, and the supersymm
method, are used to obtain similar results.1 In particular, in
the more traditional approaches, diffusion is not obtained
the saddle point level and it is necessary to include Gaus
fluctuations~i.e., sum ladder diagrams! to obtain diffusion.
Because we deal directly with the density itself, we obta
diffusion even at the saddle point level.

IV. FIELD THEORETICAL APPROACH

To go beyond the self-consistent Born approximation
might prove advantageous to bring our approach into a fi
theoretical framework. This is what we will do in this se
tion. In reformulatingP(q,v) using field theoretical meth
ods we use the Gaussian integral identity

2 i ^c̄qcq&5^qu
1

v1 id2L uq&, ~36!

where

^c̄qcq&[
1

ZE Dc̄Dce2Scc̄qcq ~37!

and
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Sc[2 i (
k,k8

c̄k@v1 id2L#k,k8ck8 . ~38!

The cq denote complex~bosonic! fields andZ is given by

Z[E Dc̄Dce2Sc. ~39!

In order to ensemble average over the disorder we introd
additional Grassmann variablesto represent 1/Z as a path
integral,1

1

Z
5E Dj̄Dj e2Sj, ~40!

where

Sj[2 i (
k,k8

j̄k@v1 i d̃2L#k,k8jk8 . ~41!

One can then carry out the ensemble average over
Gaussian-distributed disorder and obtain the general
functional

Z̄~v!5E Dj̄DjE Dc̄Dce2F(v), ~42!

where

F~v![(
k

@~2 iv1dk!c̄kck1~2 iv1 d̃k!j̄kjk#

1(
k,k8

(
p,p8

^^Lkk8Lpp8&&@c̄kc̄pcp8ck8

12c̄kck8j̄pjp81 j̄kj̄pjp8jk8#. ~43!

Here we have letd→dk so that we can generate the corre
tion functions by

^j̄qjq&v5^c̄qcq&v52
] Z̄~v!

] d̃q

52
] Z̄~v!

] dq
. ~44!

Once the disorder averaging is done we finally obtain

F~v!52 i(
q

@~v1 idq!c̄qcq1~v1 i d̃q!j̄qjq#

1 (
q1 ,q2 ,q3 ,q4

f ~1,2,3,4!@c̄q1
c̄q2

cq3
cq4

12c̄q1
cq4

j̄q2
jq3

1 j̄q1
j̄q2

jq3
jq4

#, ~45!

with

f ~1,2,3,4!52
pa2v2

\2L2
e2 l 2a2uq12q4u2/24 sinS l 2

2
q1`q4D

3sinS l 2

2
q2`q3D dq11q2 ,q31q4

. ~46!

In contrast to standard many-body theory the action,
~45!, doesnot contain a sum over the frequency.v only
enters this equation as anexternal parameter. As already
ce

he
d

-

.

discussed in the last section the noninteracting propag
(v50) is given by (v1 id)21 and does not depend onq.
Thus a perturbation theory or RG procedure can only be
up after aq-dependent propagator has been generated
self-consistently summing up anentire classof diagrams,
such as, e.g., the noncrossing diagrams in Sec. III. Furt
more, the interactionf in Eq. ~46! has an unusual momentum
dependence compared to standardf4 theory of critical phe-
nomena: Itvanishesif one of the qi goes to zero and is
periodic in the momenta.

Using the field theoretical approach we can reproduce
approximation discussed in Sec. III, which is usually call
self-consistent mean-field or saddle point approximation
the present context. In the absence of symmetry breaking
middle of the three quartic terms in the action cannot c
tribute to the saddle point solution since its coefficient va
ishes forq15q4 andq25q3. Hence we can deal separate
with the bosonic and the fermionic variables when discu
ing the saddle point solution. By performing the usual pa
ing of the fields in the quartic interaction term at the mea
field level we have

c̄q1
c̄q2

cq3
cq4

5 i P̂MF~q1 ,v!dq1 ,q3
c̄q2

cq4

1 i P̂MF~q2 ,v!dq2 ,q4
c̄q1

cq3
. ~47!

Thus we can write

FMF~v!5(
q

c̄q@2 iv1d1 iSMF~q,v!#cq , ~48!

and use this in calculating

i P̂MF~q,v![^c̄qcq&v
MF5

E Dc̄Dce2FMF(v)c̄qcq

E Dc̄Dce2FMF(v)

5
i

v1 id2SMF~q,v!
5 i P̂B~q,v!, ~49!

which reproduces the self-consistency, Eq.~31!, for the self-
energy.

At present we do not know how to evaluate the corre
tion function beyond the self-consistent mean-field appro
mation in a controlled way. However, we hope that in t
future it will be possible to analytically extend our results

V. NUMERICAL RESULTS

In this section we will numerically calculate ImP(q,v)
by exact diagonalization and verify the scaling hypothe
stated in Eq.~10!. We closely follow the procedure and no
tation used by Chalker and Daniell.12 Motivated by Eq.~8!
we define
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S̄~r ,v![2
1

2p2
Im P̄~r ,v!

5K K (
i , j

d~\v1Ei2Ej !c i~0!

3c i* ~r !c j~r !c j* ~0!L L . ~50!

The single-particle wave functionsc i(r ) can be expanded in
the basis of the ellipticalu functionsfm(r ):

c i~r !5 (
m51

N

ai~m!fm~r !, ~51!

where

fm~x,y!5
1

ALlp1/2 (
s52`

`

exp~ iXm,sy/ l 2!

3exp@2~x2Xm,s!
2/~2l 2!# ~52!

and

Xm,s5m
2p

L
l 21sL. ~53!

Then the Fourier transform of Eq.~50! can be written as

S~q,v!5
1

2p l 2N2
e2 l 2q2/2

3K K (
i , j

d~\v1Ei2Ej !Qi j ~k,l !L L , ~54!

where

Qi j ~k,l !5NU (
m51

N

ai~m!aj* ~@m2 l # !3expS i2pk
m

NDU2

,

~55!

andq5(2p/L)(k,l )5(A2p/l 2N)(k,l ), with k, l integer. In
Eq. ~55!, @m1 l # is defined as beingm1 l for 1<m1 l<N
andm1 l 6N, otherwise such that 1<um1 l 6Nu<N. In the
numerical calculation we replace the delta function in E
~54! by a sharply peaked Gaussiandg(x)}exp@2x2/g2# with
a broadening12 g50.64v/N which is of the order of the leve
spacing. We then have

S~q,v!5
1

2p l 2N2
e2 l 2q2/2K~q,v!, ~56!

with

K~q,v!5

K K (
iÞ j

dg~\v1Ei2Ej !Qi j ~k,l !L L
K K (

iÞ j
dg~\v1Ei2Ej !L L . ~57!

This function is suitable for a numerical investigation12

We restrict ourselves to a white noise disorder distribut
(a51). We calculateK(q,v) for values of 2<k21 l 2<25
.

n

and \v5gn, with 3<n<23, where the limits have bee
chosen such thatL21,q, l 21 and \v!v but \v greater
than the level spacing of the finite-size system. The sys
sizes range fromN5200 to N52000, and the number o
disorder realizations are 500 or 100 depending on the sys
size. All values ofK(q,v) were determined to an accurac
better than 1% in the disorder averaging.

For a fixed and small value ofqLv ~so that we are in the
range of normal diffusion! andq,v→0 we expect from Eq.
~10! that\vK(q,v) scales as (\v/v)1/2n}(ql)1/n. The scal-
ing hypothesis is illustrated in Fig. 3, where we pl
A(qLv)\vK(q,v) for fixed ratios of (qLv)2}(k21 l 2)/n as
a function ofnA11(k21 l 2)2/n2/N on a log-log scale. Here
each curve is multiplied by a constant factorA(qLv) @differ-
ent for each (k21 l 2)/n ratio# to make the comparison of th
different lines easier. Also the factorA11(k21 l 2)2/n2 mul-
tiplying n/N}v is used such that the curves line up horizo
tally. The fact that data calculated for different system siz
fall onto the same curve@for a fixed ratio of (k21 l 2)/n#
indicates that the limits chosen above fork, l, andn do avoid
large finite-size effects. On the log-log scale the differe
data sets fall onto straight lines and can be fitted by po
laws ~solid lines in Fig. 3!.

The localization exponentn extracted from the slope o
the lines in Fig. 3 is shown as a function of (k21 l 2)/n

FIG. 3. \vK(q,v) for different fixed (qLv)2}(k21 l 2)/n and
small q and v as a function ofn@11(k21 l 2)2/n2# (1/2)/N on a
log-log scale. For clear comparison each data set has been m
plied by a constant factorA(qLv) and is labeled by the ratio (k2

1 l 2)/n.

FIG. 4. Localization exponentn obtained from Fig. 3. The solid
line corresponds to the averagen.
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}(qLv)2 in Fig. 4. Within our error bars and for theqLv

considered,n is a constant. Its valuen52.3360.05 is in
excellent agreement with previous finite-size scal
studies1,2,8–10 and strongly supports the scaling hypothes
Eq. ~10!. The fact that the lowest (k21 l 2)/n points seem to
be moving upwards in Fig. 4 is an indication that there
still some finite-size effects for the low values of (k21 l 2). In
contrast to previous numerical studies we are able to ob
information about the critical exponentn from systems of
finite size without doing finite-size scaling.

VI. CONCLUSION

We have presented an analytical and numerical appro
to the localization-delocalization transition in the LLL of th
IQHE. By using the closed Lie algebra of the density ope
tors in the LLL we are able to write the equation of motio
for the densities in a closed form which can be solved f
mally. Using the solution of the equation of motion for th
projected densities we can express the integrated spe
function *dES(q,v;E) as the disorder-averaged density
states of a dynamical system with a different action. W
show analytically that the self-consistent mean-field appro
a

ys

n,

s

,

e

in

ch

-

-

ral

e
i-

mation of the integrated spectral function yields normal d
fusion but it misses the critical scaling. However, it is e
couraging to note that even at this level of approximation
longitudinal conductivity is in approximate agreement w
previous numerical studies.17 Finally, using exact diagonal
ization, we are able to extract the localization critical exp
nent n from the integrated spectral function by using t
scaling hypothesis, Eq.~10!, without having to do finite-size
scaling. We obtainn52.3360.05 in excellent agreemen
with previous studies.8–10 We hope that in the future it will
be possible to extend our approach beyond the s
consistent mean-field level and analytically extract inform
tion about the critical exponentn.
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