
PHYSICAL REVIEW B 15 JULY 2000-IVOLUME 62, NUMBER 3
Collective modes of quantum Hall stripes

R. Côté1 and H. A. Fertig2
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~Received 12 January 2000!

The collective modes of striped phases in a quantum Hall system are computed using the time-dependent
Hartree-Fock approximation. Uniform stripe phases are shown to be unstable to the formation of modulations
along the stripes, so that within the Hartree-Fock approximation the ground state is a stripecrystal. Such
crystalline states are generically gapped at any finite wave vector; however, in the quantum Hall system the
interactions of modulations among different stripes is found to be remarkably weak, leading to an infinite
collection of collective modes with immeasurably small gaps. The resulting long wavelength behavior is
derivable from an elastic theory for smectic liquid crystals. Collective modes for the phonon branch are
computed throughout the Brillouin zone, as are spin-wave and magnetoplasmon modes. A soft mode in the
phonon spectrum is identified for partial filling factors sufficiently far from 1/2, indicating a second-order
phase transition. The modes contain several other signatures that should be experimentally observable.
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I. INTRODUCTION AND SUMMARY OF RESULTS

Recently, it has been discovered1,2 that high-quality two-
dimensional electron systems in the quantum Hall reg
~strong perpendicular magnetic field, low temperature! host
states with highly anisotropic transport properties. These
cur when the filling factorn52pnl2 (n is the electron den-
sity, l 5A\c/eB is the magnetic length andB is the magnetic
field! is close to half-integer with numerator not too sma
The strongest effects seem to occur forn;9/2, with similar
phenomena present at 11/2, 13/2, . . . etc. Near these filling
factors a large asymmetry is observed in the diagonal c
ponents of the resistivity tensorrxx andryy that sets in be-
low approximately 100 mK in GaAs systems. The resistiv
ratiosrxx /ryy may be as large as 3500,3 although the effect
is exaggerated by system geometry.4 The directions of high/
low resistance are clearly correlated with the GaAs cry
axes, although the precise mechanism by which they are
sen is at present unknown. The high/low resistance direct
may be rotated by an in-plane magnetic field at all half-o
integer filling from n59/2 to n521/2 if the parallel mag-
netic field is oriented along thê110& direction of the
crystal.3,5

States leading to this anisotropic transport are likely to
related to striped states that were found in mean-fie
studies6,7 of systems in which several Landau levels a
filled, and the highest occupied Landau level has a pa
filling nx in the range 0.35&nx&0.65. Such ordering ha
been shown to occur in exact diagonalization studies
finite-size systems.8 In a seminal theoretical work, the stabi
ity of this state to thermal and quantum fluctuations w
investigated by Fradkin and Kivelson,9 who pointed out a
powerful analogy between liquid crystals and quantum H
stripes. The analogy allows a classification of states acc
ing to symmetries; these include stripe crystal, smectic,
nematic phases. As will be shown below, at zero tempe
ture, mean-field theory predicts that the stripe crystal is lo
est in energy among these. However, it has been argued
the smectic state may be stabilized by quantum10 or
PRB 620163-1829/2000/62~3!/1993~15!/$15.00
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thermal11 fluctuations, or both.9 Finite temperature studies12

of a model representing the nematic phase yield impres
agreement with experiment of the resistance anisotrop
temperatures that are not too low. Effects of in-plane m
netic fields13,14 have been studied and have provided so
understanding of the interchange of the high/low resista
directions, although the different experimental behavior
n513/2,17/2, . . . is still unexplained.

Beyond transport studies, low-dimensional electron s
tems may be probed by coupling to their collective mod
for example via inelastic light scattering15 or surface acoustic
waves.16 These collective modes for quantum Hall stripes a
the subject of this paper. Our method will be the tim
dependent Hartree-Fock approximation in the form dev
oped by Coˆté and MacDonald.17 The method requires a stati
Hartree-Fock ground state around which we can comp
excitations. The simplest form6 for such a state is to treat th
completely filledN21 Landau levels as inert, and form
one-dimensional array of alternating filled and empty gu
ing center states in the partially filledNth Landau level. In
this approximation, the low-energy Hamiltonian for the pa
tially filled level may be mapped to the lowest Landau lev
with a modified electron-electron interaction. This modific
tion is responsible for the low energy of stripe ordering
this system.6

We find, however, that uniform stripe states are unsta
within the Hartree-Fock approximation to formation
modulations along the stripes. The resulting state is es
tially an ordered array of one-dimensional crystals, i.e.
‘‘stripe crystal.’’9 Figure 1 illustrates the charge density for
stripe crystal phase. The amplitude of the density modula
along the stripe is small, nevertheless, the energy gaine
going from uniform stripes to the stripe crystal is consid
able. For example, fornx50.5 in theN53 Landau level, the
striped phase is found to have energy per particle
20.279 691 in units ofe2/k l ~herek is the dielectric con-
stant; this will be our unit of energy throughout this pape!,
while the stripe crystal has energy20.281 465. For the pa
rameters of Ref. 3, the energy difference between these
1993 ©2000 The American Physical Society
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1994 PRB 62R. CÔTÉ AND H. A. FERTIG
states is 112 mK, well above the temperatures for wh
anisotropic transport is observed. Similar results are foun
other values of bothN andnx . Notice that the modulations
observed in the Hartree-Fock calculations are much la
than what is found in exact diagonalization~Ref. 8!. We
believe this is largely a finite-size effect.

The energy lowering in forming modulations along t
stripes is largely an intrastripe effect. For example, one m
compute the energy of a stripe crystal with a rectangular
cell rather than the oblique one illustrated in Fig. 1. T
modulations of the stripes in this state are ‘‘in-phase,’’
quiring an additional Hartree energy. However, due to
weakness of the modulations and the long-range natur
the Coulomb interaction, the quantitative value of this ene
cost is minuscule, of the order 1028e2/k l;1026 K. Thus,
the chains may easily slide past one another. Certainly
any experimentally attainable temperature, the crystal
melt into a series of thermally and quantum disordered o
dimensional crystals.10

In principle, at zero temperature, Hartree-Fock theory p
dicts the system locks into a stripe crystal. The collect
modes around this state may be characterized by wave
torsk5(ki ,k'), whereki is the wave vector component pa
allel to the stripes andk' is the perpendicular componen
The low-energy collective modes are phonons, and in p
ciple are gapped everywhere except atk50. In practice, be-
cause of the small energy scale associated with locking,
find nearly gapless modes wheneverki50, independent of
k' ; the gaps are barely resolved by our numerical techniq
and are far below currently experimentally attainable te
perature scales. The low-energy collective modes are
highly reminiscent of what is expected for a smectic stat9

Figure 2 illustrates the phonon modes for several val
of k' as a function of ki , computed using the time
dependent Hartree-Fock approximation~TDHFA! as de-
scribed below. Several important features are worth noti

~1! The modes disperse linearly except fork'50, which
disperses more slowly. As shown below, this is consist
with a harmonic theory of a charged smectic system i
magnetic field. The apparent absence of a gap fork'Þ0

FIG. 1. Electron density for a stripe state withn56.45. The
separation between the stripes isa57.16l and the period of the
modulations along the stripes isb51.95l . The modulations on two
adjacent stripes are displaced byb/2. This pattern can be describe
by a primitive unit cell with lattice vectorsR15(a,b/2) and R2

5(0,b).
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arises because in these collective modes the motion of
electrons is parallel to the stripe direction.~This can be seen
from the eigenvector of the phonon mode from which o
can compute the motion of the stripes in real space. See
18 for details.! The gap is then controlled by interactions
the modulations in different stripes, which is very weak
this system.

~2! For larger values ofki , the modes become indepen
dent ofk' . Physically, this arises because the phonon mo
are nearly longitudinal for largeki , involving motion of the
stripe modulations but no significant motion of the positio
of the stripes relative to one another.18 Since the stripe
modulations communicate so weakly, the relative phase
motion between stripes has practically no effect on the
ergy of the mode—hence, nok' dependence.

~3! As might be expected, a gap opens up nearki
56p/b, whereb is the distance between modulations of
stripe. This leads to a local maximum in the phonon disp
sion. In light of ~2! above, and as may be seen explicitly
Fig. 2, the maximum is extremely flat along thek' direction.
As a result, there is a large phonon density-of-states~DOS!
at this energy, as illustrated in Fig. 3. Other minima a
maxima appear in the phonon dispersion, which also cont
ute to structure in the DOS, most notably a double peak
approximately half the energy of thep/b peak. Such struc-
tures may be observable in inelastic light scattering,15 and
their detection would yield optical evidence of stripe orde
ing in this system.

FIG. 2. Phonon dispersion relation of the stripe phase withn
56.45. Left inset: phonon dispersion along the stripes for differ
values of the wave vectork' . The local minimum has a frequenc
of v'0.02 (e2/k l ) and becomes soft as the filling factor is d
creased. Right inset: Brillouin zone for the primitive unit cell d
scribed in Fig. 1.
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PRB 62 1995COLLECTIVE MODES OF QUANTUM HALL STRIPES
~4! A very low-energy mode appears along the Brilloui
zone boundary atk'56p/a (a is the separation betwee
the stripes! near ki56p/2b. As unx20.5u increases, this
mode becomes soft~vanishing in energy! just aboveunx
20.5u50.1. This indicates a second-order phase transi
and increased structure in the stripe state as one moves
ficiently away from half-filling.19 This may indicate a
second-order phase transition into a ‘‘bubble phase’’6 or
some precursor of this phase. Alternatively, it may repres
a buckling instability, in which neighboring maxima within
stripe displace perpendicular to the stripe and antiparalle
one another.~Such instabilities are known to occur at Wign
crystal edges.20! The precise motion of the charge in the so
mode is quite complex.18 Work is currently underway to de
termine the precise nature of the ground state after the in
bility has occurred.

In addition to the low-energy phonon modes, the str
phases support magnetoplasmon modes and spin-w
modes, and we have explicitly computed them in TDHF
Figure 4 illustrates an example of the magnetoplasm
modes appearing as poles of the density response functio
the first Brillouin zone. The several apparent branches m
be understood when the structure is compared to analo
modes for a liquid state~no stripes! of the same partially
filled Landau level, illustrated by the solid lines in the sam
figure. One may see that folding higher order Brillouin zon
into the first roughly generates the modes captured by
TDHFA. One may thus treat the effect of stripe ordering
these high-energy modes to a first approximation as that
periodic potential on an electron gas. A similar effect occ
for the spin-wave modes. This doesnot occur for the phonon
modes because no such modes exist in the liquid state.

The presence of several branches of modes near s
values ofk in principle may be detected by optical or surfa
acoustic wave methods. Such an observation would con
tute a relatively direct demonstration of striped orderi
since it indicates zone-folding effects associated with a u

FIG. 3. Phonon density-of-states.~The small oscillations are nu
merical artifacts.!
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directional periodic modulation.
The remainder of this paper is organized as follows.

Sec. II, the Hartree-Fock method used to generate mean-
states is briefly discussed, and some more details of the
sults are provided. Section III briefly outlines the meth
used to obtain collective modes, and presents the remai
of our results for collective modes, both in the stripe st
and, for comparison, in the liquid state. We conclude with
summary~Sec. IV!. There are three Appendices. Appendix
provides some details of the proper formulation for TDHF
in high Landau levels in general and striped states in part
lar. Analytic expressions for collective modes of liquid stat
for partially filled Landau levels are presented in Append
B. Appendix C describes a simple elastic theory demonst
ing that the results of the TDHFA can be described at lo
wavelengths by a system with smectic order.

II. HARTREE-FOCK APPROXIMATION

In this section we briefly review the Hartree-Fock a
proximation ~HFA! as developed in Ref. 17; some furth
details are presented in Appendix A. The fundamental qu
tities in this approach are the operators

rn,m
a,b~q!5

1

Nw
(
X

exp@2 iqxX2 iqxqyl
2#cn,a,X

† cm,b,X1qyl 2,

~1!

wheren,m denote Landau level indices,Nw is the Landau
level degeneracy,X are guiding center coordinate quantu
numbers anda,b56 are spin indices. In the HFA, thes

FIG. 4. Dispersion relationv2vc of the three branches of th
magnetoplasmon mode in the stripe phase along the direction
pendicular to the stripes in the density pattern of Fig. 1. The co
sponding dispersions in the liquid phase~see Fig. 5! have been
folded in the first Brillouin zone and are represented by full lin
with the heavy lines indicating parts of these dispersions that lie
the first Brillouin zone. The filled circles represent frequencies
tained fromxnn while the empty squares represent frequencies
tained fromxsz

.
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1996 PRB 62R. CÔTÉ AND H. A. FERTIG
quantities are evaluated for a single Slater determinant s
which is accomplished by solving the HFA equation-o
motion for the Green’s function17

Gn,m
a,b~G,t![2

1

Nw
(
X

^Tcn,a,X~t!cm,b,X2Gyl 2
†

~0!&

3exp@2 iGxX1 iGxGyl
2/2#, ~2!

with $G% the ensemble of reciprocal lattice vectors of so
assumed crystal structure. The HFA to the ground state
pectation values ofrn,m

a,b(q) are nonzero only forq on the
reciprocal lattice, and are readily obtained from17

^rn,m
a,b~G!&5Gm,n

b,a~G,t502!. ~3!

Hartree-Fock energies, electron densities, and response
tions may be computed from$^rn,m

a,b(G)&%.
For filling factors n52N1 ñ, a further simplification/

approximation is to project the Hamiltonian into the sing
Nth Landau level, which is formally appropriate when t
electron-electron interaction scalee2/k l is much smaller
than the cyclotron energyvc ~we take\51 throughout this
paper!. While in experimental situations these energy sca
are comparable, calculations21 retaining several Landau lev
els show that, for magnetic fields and electron densities
evant to Ref. 1, Landau level mixing lowers the Hartre
Fock energy by;1024e2/k l for the striped state. This is
sufficiently small to be neglected for our present study, a
we effectively retain only a single Landau level in our sta
HFA calculations. Assuming also that there is no sp
texture22 in the ground state, and denoting by the indexp the
partially filled Landau level, we have forñ,1,

5
^rm

a ~G!&5dG,0 if m,p

^rm
1~G!&Þ0,̂ rm

1~0!&5 ñ if m5p

^rm
2~G!&50 if m5p

^rm
a ~G!&50 if m.p,

~4!

while for ñ.1,

5
^rm

a ~G!&5dG,0 if m,p

^rm
1~G!&5dG,0 if m5p

^rm
2~G!&Þ0,̂ rm

2~0!&5 ñ21 if m5p

^rm
a ~G!&50 if m.p.

~5!

We have definedrn
a(G)[rn,n

a,a(G) to simplify the notation.
With our approximations, the filled levels are inert a

cause only a shift of the ground-state energy. Up to an
important constant, the interaction energy per particle of
Hartree-Fock state is then

Eint
HF5

1

2nx
(
G

@Hpp~G!~12dG,0!2Xpp~G!#u^rp
a~G!&u2,

~6!

wherea51(2) andnx5 ñ ( ñ21) if ñ,1 (ñ.1), and

Hpp~G!5S e2

k l D 1

Gl
e2G2l 2/2FLp

0S G2l 2

2 D G2

,

te,

e
x-

nc-

s

l-
-

d

n-
e

Xpp~G!5S e2

k l DA2E
0

`

dxe2x2
@Lp

0~x2!#2J0~A2xGl!, ~7!

with J0(x) the Bessel function of order zero andV(q)
52pe2/q the Fourier transform of the electron-electron i
teraction, for which we use the unscreened Coulomb fo
The functionsLn

m(x) are generalized Laguerre polynomial
To solve the Hartree-Fock equations, some guess is

essary for the crystal structure of the ground state to spe
the set$G%. The simplest structure for the stripes is a on
dimensional array with lattice constanta. Writing cp,a,X
[cX , for a51 such states are characterized by order
rameters

^cX
†cX8&5 (

n52`

`

Q@X2~n2nx/2!a#

3Q@~n1nx/2!a2X#dX,X8 . ~8!

The density profile of the crystal phase is obtained from
relation

^n~r !&5
1

2p l 2 (
G

^rp
a~G!&Fp,p~G!e2 iG•r, ~9!

whereFp,p(G) is a form factor for electrons in levelp ~see
Appendix A!. One can also compute a ‘‘density’’ profil
corresponding to the guiding centers instead of the real d
sity by using

^n~r !&GC5(
G

^rp
a~G!&e2 iG•r. ~10!

Such states have been studied for a number
purposes6,7,11,13,14and provide a good first approximation t
the Hartree-Fock ground state at the filling factors of intere
However, within the HFA, this state is not stable and can
be used as a starting point for collective mode calculatio
the resulting response functions are unphysical. That
uniform stripe state is not a minimum of the energy with
the space of single Slater determinants may be understoo
follows. The interaction energy@Eq. ~6!# for uniform stripes
may be written as

Eint
HF5

1

2 ( 8
X

«X ,

where «X are the eigenvalues of the Hartree-Fock Ham
tonian, and the prime indicates a sum over theNp lowest
states,Np being the number of particles in the partially fille
level. The single-particle spectrum«X has a well-defined
Fermi energyEF with eigenvalues arbitrarily close to it. By
introducing a one-dimensional modulationalong the stripes,
a gap is opened at the Fermi energy, the eigenvalues«X
below EF are pushed down, and the total energy is lower
The resulting state is an array of one-dimensional cryst
i.e., a stripe crystal. The collective modes presented be
are all for such stripe crystal states.

We conclude this section with some remarks about
results of the HFA. An example of the density modulati
^n(r )& in a stripe crystal state is presented in Fig. 1. Res
for other Landau level indicesn>2 and partial fillingsnx
;0.5 are qualitatively similar to this. Two points are wor
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PRB 62 1997COLLECTIVE MODES OF QUANTUM HALL STRIPES
mentioning.~1! The amplitude of the density modulations
real space are relatively weak, across the stripes and
more so along them. Nevertheless, we will see in the col
tive mode spectra, clear signatures of both periodicities.
interesting to note that the weakness of the intrastripe mo
lations is due mostly to the form factors of theNth Landau
level; if one views the ‘‘guiding center density’’ as define
in Eq. ~10! the intrastripe modulations are quite pronounc
~cf. Ref. 18!. ~2! The stripe crystal states studied here bre
particle-hole symmetry; there are separate electron and
stripe crystal solutions to the HFA, which atnx51/2 are
degenerate. Fornx,(.) 1/2, the electron~hole! crystal is
lower in energy.

III. COLLECTIVE MODES IN THE TDHFA

To obtain the dispersion relation of the collective exci
tions we compute the matrix of response functions

xn1 ,n2 ,n3 ,n4

a,b,g,d ~k1G,k1G8,t!

52Nw^Tr̃n1 ,n2

a,b ~k1G,t!r̃n3 ,n4

g,d ~2k2G8,0!&,

~11!

wherer̃(q,t)5r(q,t)2^r(q)& andk is a vector in the first
Brillouin zone of the lattice. The collective excitations a
pear as poles of the dynamical response functions and
dispersion relation is obtained by tracking these poles
several values ofk in the first Brillouin zone. Since the orde
parameters of Eq.~4! were obtained in the Hartree-Fock a
proximation, a conserving approximation for the respon
functions is obtained in the TDHFA. In Ref. 17, it wa
shown that the equation-of-motion of this matrix of respon
functions, in the TDHFA, can be written schematically
@ I (v1 id)2A#x5B, whereA and B are matrices that de
pend on matrix elements of the direct and exchange inte
tions and on the order parameters$^rm

a (G)&% only. All re-
sponse functions can then be obtained by solv
numerically an eigenvalue equation. In the simplest case~for
the intra-Landau level excitation, for example!, x consists of
only one response function and accurate results are ea
obtain. In other cases such as for the magnetoplasmon e
tations, response functions involving transitions to differe
Landau levels are coupled and the matrixx becomes rapidly
very large. Our method is thus limited by the size of t
matricesx that we can handle numerically. Details of th
calculation are given in Appendix A; here we present o
the results. For concreteness, we focus on a partially fi
Landau level of indexN53 and spina51, with ñ50.45.
Results for other partial fillings, Landau level indices, a
spins are qualitatively similar.

To limit the size of the matrixx we study the collective
excitations withv(k50) aroundnvc6mg* mBB with m,n
50 or 1. We assume thatvc is sufficiently large that cou-
pling among excitations nearnvc andn8vc may be ignored
if nÞn8. For comparison, we compute the same dispers
relations~when they exist! in the liquid phase, i.e., in a ho
mogeneous phase with the same filling factor. The disp
sions in that case are simply obtained by replacing Eq.~4!

with ^r3
1(G50)&5 ñ and setting all other order paramete
en
c-
is
u-

d
k
le

-

eir
r

e

e

c-

g

to
ci-
t

d

n

r-

to zero.23 Many, but not all, of the results we find may b
understood in terms liquidlike collective modes, whose fe
tures have been folded into the first Brillouin zone by t
periodicity of the striped state.

There are five types of modes that we consider:~a! n
50: The phonon mode~present in the stripe crystal phas
only! appears as a pole ofxnn5xp,p,p,p

1,1,1,1 while the spin-
wave modevSW(k) is a pole of xs2

5xp,p,p,p
1,2,2,1 , which,

according to Larmor’s theorem, should havevSW(0)
5g* mBB. ~b! n51: There are three magnetoplasmon mod
in xnn that also appear inxsz

[(x11112x1122

2x22111x2222)/4 but with different weight. These
three magnetoplasmon modes originate from the fact
there are three possible transitions with pole aroundvc , i.e.,
(2,1)→(3,1),(2,2)→(3,2), and (3,1)→(4,1). The
Coulomb interaction mixes these three modes, with the
sulting dispersion branches being quite complex even in
liquid phase. A spin-flip mode withdSz511 appears as a
pole of xs1

[x2112. The only possible transition is (2

2)→(3,1) and there is correspondingly only a sing
branch in the dispersion. We will refer to this mode as t
vSF1 mode. Finally, a pair of spin-flip modes withdSz5
21 appear as poles ofxs2

[x1221. These descend from

transitions of the form (2,1)→(3,2),(3,1)→(4,2). We
will refer to these two modes as thevSF2 modes.

A. Dispersion relation in the liquid phase

Figures 5 and 6 show the dispersion relation of the fi
modes for filling factorñ50.45 in theN53 Landau level, in
the liquid phase. The complex dispersion relations are du
part to the generalized Laguerre polynomial entering in
matrix elements of the Hartree-Fock interaction, which
responsible for the three minima appearing in all the
curves. In these figures~and all others that follow!, we have
substracted the constant termnvc6mg* mBB. Note that two
of the magnetoplasmon modes disperse fromvc ~as expected

FIG. 5. Dispersion relationsv2vc of the three magneto-
plasmon modes of the liquid phase withn56.45.
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1998 PRB 62R. CÔTÉ AND H. A. FERTIG
from Kohn’s theorem! while the third one is gapped. Th
higher-energy mode that disperses very rapidly is stronge
the density response functionxnn , while the lowest-energy
mode is stronger inxsz

. The middle mode becomes ver

weak in both response functions ask→0.
From Fig. 6, we see that the spin-wave mode dispe

from g* mBB as expected from Larmor’s theorem. The inte
Landau level excitationsvSF1 and vSF2 , however, have
their gaps vSF1(0)5vc2g* mBB and vSF2(0)5vc
1g* mBB strongly renormalized by the self-energy and v
tex corrections.

B. Phonons

For the stripe phase, we consider the configuration of F
1 where the electrons on one stripe are displaced with res
to the electrons on the other stripes. This stripe crystal ca
described by an oblique unit cell with one electron or alt
natively by a rectangular unit cell with two electrons. In t
inset of Fig. 2, we show the Brillouin zone of the obliqu
unit cell that extend tok'l 560.44 and tokil 561.64.

Unlike the homogeneous liquid phase, the stripe cry
phase can sustain a phonon mode. The dispersion relatio
this mode is presented in Fig. 2. As discussed in the in
duction, the most striking feature of the result is the line
nearly gapless modes alongk'50. Generically, for a crysta
one expects phonon modes to be gapped everywhere e
at k50. A careful examination of the smallki limit is con-
sistent with this, although a precise determination of the
is difficult because the mode weights become very smal
this limit. We estimate the gaps along theki line to be in the
range 102721028e2/k l , which is far smaller than any ex

FIG. 6. Dispersion relations of the spin-wave and spin-fl
modes for n56.45 in the liquid phase. The dispersionvSW

2g* mBB of the intra-Landau level spin wave mode is represen
by the dashed line. The dispersionsvSF22(vc1g* mBB) of the
two branches of the inter-Landau level spin-flip mode withdSz

521 are represented by the full lines. The dispersionvSF1

2(vc2g* mBB) of the inter-Landau level spin flip mode wit
dSz511 is represented by the dot-dashed line.
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perimentally accessible temperature. Physically, this in
cates the stripes are free to slide past one another du
thermal fluctuations.

In the inset of Fig. 2, we show the dispersion relati
alongki for several values ofk' . One sees that the phonon
disperse linearly except fork'50 where they disperse mor
slowly. In Appendix C, we show that this is consistent wi
a harmonic theory of a charged smectic system in a magn
field. Another point worth mentioning is that for larger va
ues ofki the dispersion ink' becomes almost independent
k' . By direct examination of the charge motion in seve
such collective modes, we have found that this arises bec
the phonon modes are nearly longitudinal for largeki ; they
do not involve significant motion of the positions of th
stripes relative to one another. Since the stripe modulati
communicate so weakly, the relative phase of motion
tween stripes has practically no effect on the energy of
mode. As discussed in the Introduction, this results in re
nances in the collective mode density-of-states that migh
observed in inelastic light scattering. A particularly stro
such resonance occurs due to the additional flatness o
dispersion near the Brillouin-zone boundary along the dir
tion of the stripes~see Fig. 2! where a gap opens up separa
ing the ‘‘acoustic’’ from the ‘‘optical’’ modes.

Finally, as discussed in the Introduction, a soft mode
pears that indicates an instability of the modulated str
state studied here forñ just below 0.40, suggesting at thes
lower fillings that the correct ground state will have mo
structure. We note that this instability indicates a seco
order transition, in contrast to the first-order transition fou
nearñ;0.36 between stripe and ‘‘bubble’’ states studied
Ref. 6. The result may indicate that a precursor of the bub
phase develops within the stripe phase, perhaps in which
bubbles are elongated rather than circular. It is also poss
that the stripes have a buckling instability in analogy w
similar behavior previously noted for Wigner crystal edge20

or that another phase~possibly related to bubbles! exists that
has lower energy than the stripe phase for partial fillingñ
greater than the filling where we see the softening of
mode. We are presently studying this possibility.

C. Higher-energy modes

Unlike the phonon mode, the four other excitations th
we consider also exist in the liquid phase. To understand
effect of the stripes, we plot the dispersion relations obtain
in the stripes and liquid phases together. A few comments
these results are in order before we present them. For
liquid, we fold the modes in the first Brillouin zone of th
stripe crystal and keep the lowest-energy branches$v(k
1G)%. Along the direction perpendicular to the stripes, t
lowest-energy branches correspond mostly to the functi
v(k'1nG' ,ki50) with n50,61,62, . . . In thedirection
of the stripes, they correspond mostly to the curvesv(k'

5nG' ,ki). In this case, however, the curves withn561,
62,63, . . . have the same energies in the liquid, i.e., a
degenerate.~The thick lines in the figures representn50,
which is not degenerate.! This degeneracy is sometime
lifted in the stripe phase. Note that this Brillouin-zone fol
ing of the liquid dispersions introduces a large number

d



in
ly
r
a

o
fa
e

ne
e
a
o

ft
tio
c
s
g
th
e
ity
a

a
e

ng
at
od
w

in
ture
the

th
sio

in

s in
the

e
rts

e
par-
nd-

he
first
ed

ined

PRB 62 1999COLLECTIVE MODES OF QUANTUM HALL STRIPES
branches. It is not possible to track all the correspond
poles in the stripe phase. We thus sometimes show on
small subset of these modes corresponding to low-ene
excitations. Because we keep only the most intense poles
because the relative intensity changes ask spans the Bril-
louin zone, the dispersions sometimes appear discontinu
for the stripe phase; this is because the mode weights
below our threshold for plotting them. Note that the zon
folding effects lead to the presence of several branches
small values ofk. In principle, these excitations could b
detected by optical or surface acoustic wave methods
would thus represent a direct demonstration of the stripe
dering.

1. Spin waves

For GaAs systems, under most circumstancesg* mBB
!\vc , so that spin waves are the lowest-energy modes a
the phonons. Figures 7 and 8 show the dispersion rela
obtained for the spin waves. The most striking differen
between the zone-folded liquid results and the spin wave
the stripe state is a dramatic anisotropy in the gap openin
the Brillouin-zone boundary. This gap is much larger at
boundary for largek' than the corresponding one for larg
ki . Certainly, part of the explanation is that the dens
modulations responsible for the latter is much smaller th
that of the former. However, the gap at largek' is much
larger than, for example, the corresponding gap in the m
netoplasmons, discussed below. This strong many-body
fect may be related to electrons at the stripe edges havi
small local spin stiffness relative to those in the liquid st
or in the center of the stripes. In any case, this many-b
effect results in a branch of spin waves with surprisingly lo
energy.

FIG. 7. Dispersion relationvSW2g* mBB of the spin-wave
mode in the stripe phase along the direction perpendicular to
stripes in the density pattern of Fig. 1. The corresponding disper
in the liquid phase~see Fig. 6! has been folded in the first Brillouin
zone and is represented by full lines with the heavy line indicat
parts of these dispersions that lie in the first Brillouin zone.
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2. Magnetoplasmons

Figures 4 and 9 show the dispersion relation obtained
the stripe phase for the magnetoplasmon modes. To cap
all the three branches, we show poles obtained from both

e
n

g

FIG. 8. Dispersion relationvSW2g* mBB of the spin-wave
mode in the stripe phase along the direction parallel to the stripe
the density pattern of Fig. 1. The corresponding dispersion in
liquid phase~see Fig. 6! has been folded in the first Brillouin zon
and is represented by full lines with the heavy line indicating pa
of these dispersions that lie in the first Brillouin zone.

FIG. 9. Dispersion relationv2vc of the three branches of th
magnetoplasmon mode in the stripe phase along the direction
allel to the stripes in the density pattern of Fig. 1. The correspo
ing dispersions in the liquid phase~see Fig. 5! have been folded in
the first Brillouin zone and are represented by full lines with t
heavy lines indicating parts of these dispersions that lie in the
Brillouin zone. The filled circles represent frequencies obtain
from xnn while the empty squares represent frequencies obta
from xsz

.
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2000 PRB 62R. CÔTÉ AND H. A. FERTIG
density and spin response functionsxnn andxsz
. Because the

three corresponding branches in the liquid are almost fla
large wave vector, the folding of the modes in the fi
Brillouin-zone introduces many branches at small energy
is quite clear, however, that the dispersion obtained in
stripe phase follows closely that of the liquid, with sma
gaps at the Brillouin-zone edges and some lifting of deg
eracy in theki direction.

3. Spin flip excitations

Some of the spin-flip excitations seem to follow behav
reminiscent of our results for the magnetoplasmons, clos
following the liquid results, whereas others undergo stro
many-body renormalizations, as we found for spin wav
Figure 10 shows the dispersion for thevSF2 mode.~In these
figures, we show only the low-energy excitations because
liquid modes become very complicated at higher energi!
One can see the direct correspondence between the l
phase dispersions and those of the stripe states. As fo
magnetoplasmons, these differ by gap openings and the
ing of degeneracies. For thevSF1 mode, as for the spin
wave mode, the dispersion relation of the lowest-ene
branches are quite close to the corresponding liquid res
For higher branches, however, the stripes ordering lead
important changes as can be seen in Fig. 11. The differe
between the behaviors ofvSF1 andvSF2 is very likely re-
lated to the presence of two branches of the former in
liquid state, which may be mixed by the stripe orderin
whereas only a single branch exists in the latter.

IV. SUMMARY

In this paper we have studied collective mode of str
states for quantum Hall systems. The lowest-energy st

FIG. 10. Dispersion relationsvSF22(vc1g* mBB) of the spin-
flip mode in the stripe phase along the direction perpendicular to
stripes in the density pattern of Fig. 1. The corresponding disper
in the liquid phase~Fig. 6! has been folded in the first Brillouin
zone and is represented by full lines with the heavy line indicat
parts of these dispersions that lie in the first Brillouin zone.
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are phonons, with a line in the Brillouin zone of extreme
low-energy states, making the resulting low-energy phys
of this system that of a charged, two-dimensional smectic
a magnetic field. We also found signatures in the phon
density-of-states indicative of stripe ordering that should
detectable in inelastic light scattering, and a soft mode t
indicates an instability of the stripe state for partial filling
sufficiently far from 1/2. Results for spin waves, magne
plasmon, and spin-flip excitations were also presented, wh
in a first approximation could be understood in terms of zo
folding of corresponding excitations for the liquid stat
Some of these, however, underwent strong renormalizat
due to electron-electron interactions; in particular, we fou
a surprisingly low-energy branch in the spin-wave spectr
due to this effect.

The form of the low-energy physics of this system h
important consequences for quantum fluctuation effects
the stripe crystal state, particularly the stability of the crys
as well as pinning by disorder. Some of this has been
cussed previously;10 a more detailed study will be presente
in future work.
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FIG. 11. Dispersion relationsvSF12(vc2g* mBB) of the spin-
flip mode in the stripe phase along the direction parallel to
stripes in the density pattern of Fig. 1. The corresponding disper
in the liquid phase~see Fig. 6! has been folded in the first Brillouin
zone and is represented by full lines with the heavy line indicat
parts of these dispersions that lie in the first Brillouin zone.
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APPENDIX A: DETAILS OF THE TDHFA

In this Appendix we discuss the proper formulation of t
TDHFA in high Landau levels. The basic approach follow
that of Ref. 17; however, there are important details involv
in computing inter-Landau level excitations that have be
treated incorrectly17,24 in the literature,25 leading to results
that do not correctly include the exchange self-energy c
rections to these excitations. We present here a correct
mulation of the TDHFA that avoids such errors and respe
Kohn’s theorem.26

1. Static Hartree-Fock Approximation

We begin by briefly reviewing the relevant equations
HFA that will be needed in our formulation of the TDHFA
details may be found in Ref. 17. Our model HF Hamiltoni
is

HHF5Nw(
n,a

«n,arn,a~0!1Nw(
n,a

(
G

Un
a~G!rn

a~G!,

~A1!

where

«n,a5~n11/2!vc2ag* mBB/2. ~A2!

The Hartree-Fock effective potentialUn
a(G) is given by

Un
a~G!5(

m
(
b

@H~m,m,n,n;G!2da,bX~m,n,n,m;G!#

3^rm
b ~2G!&

[(
m

(
b

@Hm,n~G!2da,bXm,n~G!#^rm
b ~2G!&.

~A3!

For completeness, we give here the form of the Hartree
Fock interactions that enter into the calculation of the s
energy corrections to the collective excitations:

Hm,n~q!5S e2

k l D 1

ql
e2q2l 2/2Lm

0 S q2l 2

2 DLn
0S q2l 2

2 D ,

Xm,n~q!5S e2

k l DA2S n!

m! D E0

`

dxx2(m2n)

3e2x2
@Ln

m2n~x2!#2J0~A2xql! ~ for n<m!.

~A4!

For n.m, we useXn,m(q)5Xm,n(q).
The effective interactions appearing in Eq.~A3! are a sub-

set of the more general form

H~n1 ,n2 ,n3 ,n4 ;q!5S e2

k l D S 1

2pe2l
D

3V~q!Fn1 ,n2
~q!Fn3 ,n4

~2q!,

~A5!
d
n

r-
r-

ts

r

d
-

X~n1 ,n2 ,n3 ,n4 ;q!5S e2

k l D S l

e2D E d2q8

~2p!2
V~q8!Fn1 ,n2

~q8!

3Fn3 ,n4
~2q8!e2 iq3q8 l 2, ~A6!

that we need to derive the TDHFA. We takeV(q)
52pe2/q. ~We use the two-dimensional cross product a
short form for q3G[qxGy2qyGx .) These interactions
contain the form factors

Fn,m~q!5S m!

n! D 1/2S ~2qy1 iqxl !

A2
D n2m

3expF2q2l 2

4 GLm
n2mS q2l 2

2 D ~A7!

for m<n, whereLn
a(x) is the generalized Laguerre polyno

mial. Note thatFn,m(q)5@Fm,n(2q)#* . We remark that the
effective potential in any Landau leveln,a depends on the
occupation of the other levels, as does the energy of
electrons in that level. This self-energy shift differs from o
level to another, and makes an important contribution to
energy of inter-Landau level excitations.

The single particle Green’s function of Eq.~2! obeys, un-
der the Hamiltonian of Eq.~A1!, the equation-of-motion

@ ivn2~«n
a2m!#Gn

a~G,ivn!2(
G8

Wn
a~G2G8!Gn

a~G8,ivn!

5dG,0 , ~A8!

wherem is the chemical potential and

Wn
a~G2G8![Un

a~G82G!eiG3G8 l 2/2. ~A9!

Equation ~A8! can be solved numerically to compute th
densitieŝ rn

s(G)& as explained in Ref. 17.

2. Time-dependent Hartree-Fock approximation

The two-particle Green’s functions are defined by E
~11!. In the TDHFA, they obey an equation-of-motion th
we write as17

@ iVn1~«n1 ,a2«n2 ,b!#xn1 ,n2 ,n3 ,n4

(0)a,b,g,d ~k1G,k1G8,Vn!

1(
G9

@gG,G9
* ~k!Un1

a ~G92G!2gG,G9~k!Un2

b

3~G92G!#xn1 ,n2 ,n3 ,n4

(0)a,b,g,d ~k1G9,k1G8,Vn!

5dn1 ,n4
dn2 ,n3

da,ddb,g@gG,G8* ~k!^rn1

a ~G2G8!&

2gG,G8~k!^rn2

b ~G2G8!&#, ~A10!
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x̃n1 ,n2 ,n3 ,n4

a,b,g,d ~k1G,k1G8,Vn!5xn1 ,n2 ,n3 ,n4

(0)a,b,g,d ~k1G,k1G8,Vn!2 (
n5 ,•••n8

(
hn

(
G9

xn1 ,n2 ,n5 ,n6

(0)a,b,h,n ~k1G,k1G9,Vn!

3X~n7 ,n6 ,n5 ,n8 ;k1G9!x̃n7 ,n8 ,n3 ,n4

n,h,g,d ~k1G9,k1G8,Vn!, ~A11!

and

xn1 ,n2 ,n3 ,n4

a,b,g,d ~k1G,k1G8,Vn!5x̃n1 ,n2 ,n3 ,n4

a,b,g,d ~k1G,k1G8,Vn!1 (
n5 ,•••n8

(
hn

(
G9

x̃n1 ,n2 ,n5 ,n6

a,b,n,n ~k1G,k1G9,Vn!

3H~n5 ,n6 ,n7 ,n8 ;k1G9!xn7 ,n8 ,n3 ,n4

h,h,g,d ~k1G9,k1G8,Vn!, ~A12!
-
sio
a

di
y b
w
a

cip-
la-
whereVn is a Boson Matsubara frequency and

gG,G8~k![ei (k1G)3(k1G8) l 2/2. ~A13!

Equations~A10!–~A12! are equivalent to the result of sum
ming ladder and bubble diagrams in a perturbative expan
of x. Note that the only information required in these equ
tions is the ground-state densitŷrn

a(G)&. The equations
couple together an infinite set of response functions; as
cussed in Ref. 17, when truncated appropriately they ma
cast in a matrix form for numerical solution. In the next fe
sections, we describe truncations and simplifications that
appropriate for computing various collective modes.

3. Equation-of-motion for x „0…

It follows from Eq.~A10! that the only nonzerox (0) must
be of the formxn,m,m,n

(0),a,b,b,a . Written in matrix notation~with
the reciprocal lattice vectorsG,G8 being the matrix indices!,
the equation-of-motion forx (0) is then
n
-

s-
e

re

@ iVnI 2Fn,m
a,b~k!#xn,m,m,n

(0),a,b,b,a~k,v!5Bn,m
a,b~k!, ~A14!

where

@Fn,m
a,b~k!#G,G8[~«m,b2«n,a!dG,G82Un

a~G82G!gG,G8* ~k!

1Um
b ~G82G!gG,G8~k! ~A15!

and

@Bn,m
a,b~k!#G,G8[gG,G8

* ~k!^rn
a~G2G8!&2gG,G8~k!

3^rm
b ~G2G8!&. ~A16!

The size of these matrices depends on the number of re
rocal lattice vectors that are kept in the numerical calcu
tion.

4. Equation-of-motion for x̃

Sincex (0) is of the formxn,m,m,n
(0),a,b,b,a , Eq. ~A11! for x̃ can

be simplified to
n

x̃n1 ,n2 ,n3 ,n4

a,b,g,d ~k,v!5xn1 ,n2 ,n2 ,n1

(0),a,b,b,a ~k,v!dn1 ,n4
dn3 ,n2

da,ddb,g2xn1 ,n2 ,n2 ,n1

(0),a,b,b,a ~k,v! (
n5 ,n6

@Xn5 ,n1 ,n2 ,n6
~k!x̃n5 ,n6 ,n3 ,n4

a,b,g,d ~k,v!#,

~A17!

where the matrix

@X
n1 ,n2 ,n3 ,n4

~k!#G,G8[X~n1 ,n2 ,n3 ,n4 ;k1G!dG,G8 . ~A18!

From Eq. ~A17!, it is clear that, in the spin indices,x̃ must be of the formx̃a,b,b,a and thatx̃n1 ,n2 ,n3 ,n4

a,b,g,d Þ0, only if

xn1 ,n2 ,n2 ,n1

(0) a,b,b,a Þ0. Since we are working in the strong magnetic field limit (vc@e2/k l ), we will assume that a response functio

with poles aroundnvc is only coupled to other response functions poles near the same frequency.24 Thus, we truncate our

equations by including coupling among response functions of the formx̃n11m,n21m,n3 ,n4
for different values of m. We remark

here that couplingall response functions with pole around the same frequency isessentialto recover Kohn’s theorem for the
cyclotron mode.

Equation~A17! is now simplified to

x̃n11m,n21m,n2 ,n1

a,b,b,a ~k,v!5xn1 ,n2 ,n2 ,n1

(0),a,b,b,a ~k,v!dm,02xn11m,n21m,n21m,n11m
(0),a,b,b,a ~k,v!

3(
m8

@Xn11m8,n11m,n21m,n21m8~k!x̃n11m8,n21m8,n2 ,n1

a,b,b,a
~k,v!#. ~A19!
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Because we consider only the special case where all Lan
levels belowp are completely filled andp is partially filled,
Eq. ~A16! implies that

H xp1m,p1m,p1m,p1m
(0),a,b,b,a Þ0 only if m50

xp1m,p1m11,p1m11,p1m
(0),a,b,b,a Þ0 only if m521,0

xp1m,p1m12,p1m12,p1m
(0),a,b,b,a Þ0 only if m522,21,0

~A20!

and so one.x̃ will thus be coupled to one, two, three or mo
otherx̃8s depending on the value ofm and also on the num
ber of levels filled belowp. For example, we only need t
consider the response functionx̃p,p,p,p

a,b,b,a for the intra-Landau
level excitation. Its equation-of-motion is thus simply

x̃p,p,p,p
a,b,b,a~k,v!5xp,p,p,p

(0),a,b,b,a~k,v!2xp,p,p,p
(0),a,b,b,a~k,v!

3Xp
(0)~k! x̃p,p,p,p

a,b,b,a~k,v!, ~A21!

where we have defined the diagonal matrix

@Xn
(0)~k!#G,G8[X~n,n,n,n;k1G!dG,G8 . ~A22!

With Eq. ~A14!, Eq. ~A21! becomes

@ iVnI 2Fp,p
a,b~k!1Bp,p

a,b~k!Xp
(0)~k!#x̃p,p,p,p

a,b,b,a~k,v!5Bp,p
a,b~k!.

~A23!

For m51 ~inter-Landau level excitations!, there are only
four nonzerox̃ with poles around1vc . To deal with this
case, it is helpful to define the block matrices~which we
denote by the symbolxD to distinguish it from the simple
matrix x̃)

xD[F x̃p,p11,p11,p
a,b,b,a x̃p,p11,p,p21

a,b,b,a

x̃p21,p,p11,p
a,b,b,a x̃p21,p,p,p21

a,b,b,a G ~A24!

and

Ī [F I 0

0 I G . ~A25!

In terms of these matrices, Eq.~A11! simplifies to

@ iVnĪ 2F̄a,b~k!1B̄a,b~k!X̄p~k!#xD a,b,b,a~k,v!5B̄a,b~k!,
~A26!

where

F̄a,b~k![FFp,p11
a,b ~k! 0

0 Fp21,p
a,b ~k!

G , ~A27!

B̄a,b~k![FBp,p11
a,b ~k! 0

0 Bp21,p
a,b ~k!

G , ~A28!

and

X̄n[FXn
(1) Xn

(4)

Xn
(2) Xn

(3)G ~A29!
auwith

@Xn
(1)~k!#G,G8[X~n,n,n11,n11;k1G!dG,G8 , ~A30!

@Xn
(2)~k!#G,G8[X~n,n21,n,n11;k1G!dG,G8 , ~A31!

@Xn
(3)~k!#G,G8[X~n21,n21,n,n;k1G!dG,G8 , ~A32!

@Xn
(4)~k!#G,G8[X~n21,n,n11,n;k1G!dG,G8 . ~A33!

The solutions to Eq.~A26! can be used to compute bot
density and spin-flip response functions~e.g.,xp,p11,p11,p

1221 ).
In principle, we can deal in the same manner with exci

tions around 2vc . These would involve solving a 333
block matrix in x̃ ~depending upon the number of filled lev
els belowp). Since each block in these matrices is itself
matrix whose size depends on the number of reciprocal
tice vectors that we keep in the calculation, solving f
higher-energy excitations becomes difficult numerically. W
will thus be satisfied here with the solution for intra an
inter-Landau level response functions with poles around z
or vc ~shifted, of course, by the Zeeman energy if spin-fl
excitations are considered!. This includes the important cas
of phonons and spin-wave excitations in the partially fill
level, as well as the cyclotron modes aroundvc and spin-flip
modes from or to the partially filled Landau level.

5. Equation-of-motion for x

The full response functionx is computed by including the
Hartree vertex corrections which, from Eq.~A12!, gives

xn1 ,n2 ,n3 ,n4

a,b,g,d ~k,v!5x̃n1 ,n2 ,n3 ,n4

a,b,b,a ~k,v!da,ddb,g

1da,b (
n5•••n8

(
h

x̃n1 ,n2 ,n5 ,n6

a,a,a,a ~k,v!

3Hn5 ,n6 ,n7 ,n8
~k!xn7 ,n8 ,n3 ,n4

h,h,g,d ~k,v!,

~A34!

where

@H
n1 ,n2 ,n3 ,n4

~k!#G,G[H~n1 ,n2 ,n3 ,n4 ;k1G!dG,G8 .

~A35!

To simplify this equation, we will again consider separate
the case of intra- and inter-Landau level excitations.

For intra-Landau level excitations, we write

xn,n,m,m
a,b,g,d ~k,v!5x̃n,n,m,m

a,b,b,ada,ddb,g1da,b (
n5•••n8

(
h

x̃n,n,n5 ,n6

a,a,a,a

3Hn5 ,n6 ,n7 ,n8
~k!xn7 ,n8 ,m,m

h,h,g,d ~k,v!. ~A36!

Using our approximation of no coupling between excitatio
of different nvc , one may show that

@ iVnI 2$Fp,p
s,s~k!1Bp,p

s,s~k!@Hp
(0)~k!

2Xp
(0)~k!#%#xp,p,p,p

s,s,s,s~k,v!5Bp,p
s,s~k!, ~A37!

wheres is the spin index of the partially filled level and



in
va

e
o
b

y
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@Hn
(0)~k!#G,G8[H~n,n,n,n;k1G!dG,G8 . ~A38!

The poles ofxp,p,p,p
s,s,s,s contain the phonon mode. For sp

waves, there is no Hartree vertex corrections and the rele
response function obeys

$ iVnI 2@Fp,p
1,2~k!2Bp,p

1,2~k!Xn
(0)~k!#%xp,p,p,p

1,2,2,1~k,v!

5Bp,p
1,2~k!. ~A39!

The most complex situation is that of inter-Landau lev
density modes~cyclotron modes!. In this case, we need t
consider the coupling between Landau levels as well as
tween spins. From Eqs.~A34! and ~A26!, we get

@ iVnĪ 2Fa,a~k!1Ba,a~k!V̄p~k!#x̄a,a,b,b~k,v!

5B̄a,a~k!da,b1B̄a,a~k!H̄n~k!F(
h

x̄h,h,b,b~k,v!G ,
~A40!

where
nt

l

e-

x̄a,a,b,b[Fxp,p11,p11,p
a,a,b,b xp,p11,p,p21

a,a,b,b

xp21,p,p11,p
a,a,b,b xp21,p,p,p21

a,a,b,b G ~A41!

and

H̄n[FHn
(1) Hn

(4)

Hn
(2) Hn

(3)G , ~A42!

with

@Hn
(1)~k!#G,G8[H~n11,n,n,n11;k1G!dG,G8 ,

@Hn
(2)~k!#G,G8[H~n,n21,n,n11;k1G!dG,G8 ,

@Hn
(3)~k!#G,G8[H~n,n21,n21,n;k1G!dG,G8 ,

@Hn
(4)~k!#G,G8[H~n11,n,n21,n;k1G!dG,G8 . ~A43!

Equation~A40! can be written in a more transparent form b
defining the block matrices
x̄[F x̄1,1,1,1 x̄1,1,2,2

x̄2,2,1,1 x̄2,2,2,2G5F xp,p11,p11,p
1,1,1,1 xp,p11,p,p21

1,1,1,1 xp,p11,p11,p
1,1,2,2 xp,p11,p,p21

1,1,2,2

xp21,p,p11,p
1,1,1,1 xp21,p,p,p21

1,1,1,1 xp21,p,p11,p
1,1,2,2 xp21,p,p,p21

1,1,2,2

xp,p11,p11,p
2,2,1,1 xp,p11,p,p21

2,2,1,1 xp,p11,p11,p
2,2,2,2 xp,p11,p,p21

2,2,2,2

xp21,p,p11,p
2,2,1,1 xp21,p,p,p21

2,2,1,1 xp21,p,p11,p
2,2,2,2 xp21,p,p,p21

2,2,2,2

G , ~A44!
se
ter-

ally
en

m-
the
B% [F B̄1,1 0̄

0̄ B̄2,2G
5F Bp,p11

1,1 0 0 0

0 Bp21,p
1,1 0 0

0 0 Bp,p11
2,2 0

0 0 0 Bp21,p
2,2

G , ~A45!

V% p[F H̄p2X̄p H̄p

H̄p H̄p2X̄p
G ~A46!

5F Hp
(1)2Xp

(1) Hp
(4)2Xp

(4) Hp
(1) Hp

(4)

Hp
(2)2Xp

(2) Hp
(3)2Xp

(3) Hp
(2) Hp

(3)

Hp
(1) Hp

(4) Hp
(1)2Xp

(1) Hp
(4)2Xp

(4)

Hp
(2) Hp

(3) Hp
(2)2Xp

(2) Hp
(3)2Xp

(3)

G ,

~A47!

I%[F Ī 0̄

0̄ Ī
G5F I 0 0 0

0 I 0 0

0 0 I 0

0 0 0 I

G , ~A48!
F% [F F̄11 0̄

0̄ F̄22G
5F Fp,p11

1,1 ~k! 0 0 0

0 Fp21,p
1,1 ~k! 0 0

0 0 Fp,p11
2,2 ~k! 0

0 0 0 Fp21,p
2,2 ~k!

G .

~A49!

The equation-of-motion then takes the form

@ iVnI%2F% ~k!2B% ~k!V% p~k!#x% ~k,v!5B% ~k!. ~A50!

We solve this matrix equation numerically to obtain respon
functions whose poles give the magnetoplasmon and in
Landau level spin-flip excitations.

APPENDIX B: DISPERSION RELATIONS IN THE LIQUID
PHASE

The equations of the previous section can be drastic
simplified in the homogeneous or liquid phase since th
^rn

a(G)&5nxdG,0 or ^rn
a(G)&50. For example, for 0<n

<2, the dispersion relations for various modes can be co
puted analytically, and one may show they reproduce
results of Kallin and Halperin.24 Larger filling factors are
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more complicated as they involve several different partic
hole excitations; the coupling among these has not b
treated correctly in previous studies.24 As concrete example
of the present method, we compute the collective modes
the liquid state at different filling factors and, in particula
for n56.45, which corresponds to the filling factor of th
stripe crystal considered in this paper.

Notice that, because of the degeneracy of the Lan
levels, the liquid phase defined bŷrn

1(G)&5nxdG,0

with nonintegral filling factor is simply not a solution o
our Hartree-Fock equation@Eq. ~A8!# at zero temperature
At finite temperature, however, a liquid phase can
defined for any filling factor. Equation~A8! then fixes
the chemical potential. The liquid phase discussed
this appendix should thus be thought as the limit
very small temperature of the finite-temperature Hartr
Fock solution. This liquid phase is stable~as can be seen
from the dispersion relations! but has higher energy than th
crystal phase.

1. Liquid phase with 0ÏnÏ1

As an application of the above formalism, we consid
here the simple case of 0<n<1. If the lowest Landau leve
is partially occupied with up spins, then̂r0

1(G)&5ndG,0 .
All matrices are diagonal and sok1G→q which is not re-
stricted to the first Brillouin zone.

SinceB0,0
1,1(q)50 it follows that there can be no phono

mode. Moreover, sinceB0,0
1,2(q)5n, we have from Eq.

~A39!:

vSW~q!5g* mBB1n@X0,0~0!2X0
(0)~q!#. ~B1!

Since X0
(0)(q50)5X0,0(0), it follows that vSW(0)

5g* mBB as required by Larmor’s theorem.
For the density modeB0,1

1,1(q)5n, and the dispersion
is

vnn~q!5vc1n@X0,0~0!2X1,0~0!1H1
(0)~q!2X1

(0)~q!#.
~B2!

In this equationnX0,0(0) is the self-energy lost by the elec
tron leaving leveln50 while nX1,0(0) is the self-energy
gained in the new leveln51. BecauseH1

(0)(0)50 and
X0,0(0)2X1,0(0)2X1

(0)(0)50, it follows thatvcyc.(0)5vc

as required by Kohn’s theorem. We remark that these
results are identical to those of Ref. 24.

For the inter-Landau-level spin-flip excitation,B0,1
1,2(q)

5n and the dispersion is

gSF~q!5vc1g* mBB1n@X0,0~0!2X1
(0)~q!#. ~B3!
-
n

or

u

e

n
f
-

r

o

Notice that @X0,0(0)2X1
(0)(0)#.0 so that the self-energy

and vertex correction introduce a positive shift in the disp
sion relation contrary to the result in Ref. 24. This was fi
noticed in Ref. 25. Similar problems with the inclusion of th
self-energy terms appear in the higher-energy modes as
in Ref. 24. Apart from this discrepancy, our results rep
duce correctly the dispersion relation of the higher-ene
modes of the liquid phase.

2. Liquid phase with 6ÏnÏ7

This is the case we consider in the stripe phase. It is t
interesting to compare the dispersion relations obtained th
with the corresponding ones in the liquid phase. We assu
that the partially filled level is (p53,1), so that^r3

1(G)&
5 ñdG,0 and ^rm

a (G)&5dG,0 for m,3. There is again, of
course, no phonon mode.

For the spin waveB3,3
1,2(q)5 ñ and the dispersion, from

Eq. ~A39! is simply

vSW~q!5g* mBB1 ñ@X3,3~0!2X3
(0)~q!#, ~B4!

with vSW(0)5g* mBB as required.
For spin-flip excitations withdSz511, we must look at

x2,3,3,2
2,1,1,2 which, from Eq.~A26! is coupled tox3,4,3,2

2,1,1,2 .
Solving this system of equation, we rapidly obtain th
x3,4,4,3

2,1,1,250 so that the dispersion relation is obtained fro
x2,3,3,2

2,1,1,2 only. This makes sense, since the transiti
(2,2)→(3,1) is not coupled to any other in the situation w
consider. We find then

vSF1~k!5vc2g* mBB1 (
2,3

2,1

2~12 ñ !X3
(3)~k!, ~B5!

where

(
2,3

2,1

[X2,0~0!1X2,1~0!1X2,2~0!2X3,00)2X3,1~0!

2X3,2~0!2 ñX3,3~0!. ~B6!

The exchange and vertex corrections introduce a downw
shift in vSF1(0) from vc2g* mBB ~see Fig. 6!.

For spin-flip excitations withdSz521, the transition
(2,1)→(3,2) is coupled to (3,1)→(4,2) and we must
solve Eq.~A26! that couplesx3,4,4,3

1,2,2,1 to x2,3,4,3
1,2,2,1 . There

is correspondingly two such spin-flip modes, with dispers
given by
vSF2~k!5vc1g* mBB1 1
2 @L2,3

1,2~k!1L3,4
1,2~k!#6A@L2,3

1,2~k!1L3,4
1,2~k!#224@L2,3

1,2~k!L3,4
1,2~k!2 ñX3

(4)~k!X3
(2)~k!#,

~B7!
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where

L2,3
1,2~k![ (

2,3

1,2

2 ñX3
(1)~k!, ~B8!

L3,4
1,2~k![ (

3,4

1,2

2X3
(3)~k!, ~B9!

with

(
2,3

1,2

[X2,0~0!1X2,1~0!1X2,2~0!1 ñX2,3~0!2X3,0~0!

2X3,1~0!2X3,2~0!, ~B10!
th
th

is
o
D

(
3,4

1,2

[X3,0~0!1X3,1~0!1X3,2~0!1 ñX3,3~0!2X4,0~0!

2X4,1~0!2X4,2~0!. ~B11!

In this case, the shift is positive in both modes~see Fig. 6!.
For the density modes, three excitations are coup

(2,1)→(3,1),(2,2)→(3,2), and (3,1)→(4,1). Since
B3,4

2,2(k)50, x3,4,4,3
2,2,2,2(k,v)50 and the 434 block matrix

in Eq. ~A44! reduces to a 333 block matrix. The three col-
lective modes are found from the determinant of@(v1 id)I%

2F% (k)2B% (k)V% p(k)# in Eq. ~A50!, i.e., from
UF ~v2vc!2L3,4
1,1~k! 2 ñ@H3

(2)~k!2X3
(2)~k!# 2 ñH3

(2)~k!

2~12 ñ !@H3
(2)~k!2X3

(2)~k!# ~v2vc!2L2,3
1,1~k! 2~12 ñ !H3

(3)~k!

2H3
(2)~k! 2H3

(3)~k! ~v2vc!2L2,3
2,2~k!

GU50, ~B12!
an

for
ises
sily
nts,

ive
m-

e

where

L3,4
1,1~k![ (

3,4

1,1

1 ñ@H3
(1)~k!2X3

(1)~k!#, ~B13!

L2,3
1,1~k![ (

2,3

1,1

1~12 ñ !@H3
(3)~k!2X3

(3)~k!#, ~B14!

L2,3
2,2~k![ (

2,3

2,2

1@H3
(3)~k!2X3

(3)~k!#, ~B15!

and

(
3,4

1,1

[ (
3,4

1,2

2 ñX4,3~0!, ~B16!

(
2,3

1,1

[ (
2,3

1,2

2 ñX3,3~0!, ~B17!

(
2,3

2,2

[X2,0~0!1X2,1~0!1X2,2~0!2X3,0~0!2X3,1~0!

2X3,2~0!. ~B18!

These collectives modes are represented in Fig. 5.

APPENDIX C: HARMONIC THEORY

As discussed in the text, to an excellent approximation
phonon mode frequencies computed in the TDHFA for
stripe phase disperse linearly fromki50, with a slope that
vanishes atk'50. In this Appendix we demonstrate that th
behavior is consistent with a harmonic theory for a tw
dimensional charged smectic system in a magnetic field.
fining the direction parallel to the stripe as thex̂ direction,
e
e

-
e-

the simplest long-wavelength harmonic potential one c
write down might be

V5
1

2E d2r FkxS ]ux

]x D 2

1kyS ]uy

]y D 2G . ~C1!

In the above equation,u is a displacement field for the
stripes, the first term represents an elastic contribution
longitudinal compression of the stripes, and the second ar
from interstripe repulsion. Collective modes are most ea
computed in terms of the Fourier transformed displaceme

u~q!5
1

AA
E d2reiq•ru~r !, ~C2!

whereA is the area of the system. To compute the collect
modes in a single Landau level, one may impose the co
mutation relations27 @ux(q1),uy(q2)#5 i l 2dq1 ,2q2

. The
equation-of-motion

i
duq

m

dt
5@uq

m ,V#,

wherem5x,y, after Fourier transform with respect to tim
may be written in the form

2 i l 2S Dyx~q! Dyy~q!

2Dxx~q! 2Dxy~q!
D S ux~q!

uy~q!
D 5vS ux~q!

uy~q!
D .

~C3!

For a system with inversion symmetryDxy(q)5Dyx(q), and
the eigenvalues of Eq.~C3! ~i.e., the collective mode fre-
quencies! take the general form
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v~q!56 l 2ADxx~q!Dyy~q!2uDxy~q!u2. ~C4!

For Eq. ~C1!, Dm,m5kmqm
2 ,Dxy50, so v(q)}qyqx . This

has the correct behavior of linear dispersion with respec
qx , with a slope that vanishes asqy→0. However, the mode
has the incorrect behavior of containing zero modes al
both the qx andqy axes.28

The key missing ingredient in Eq.~C1! is that the restor-
ing force for motion perpendicular to the stripes comes o
from interstripe repulsion. We expect, however, that in
vidual stripes resist bending, as in a smectic system. T
one should add a curvature term to the energy, which in
case we take to be

Vbend5
1

2
kbE d2r S d2uy

dx2 D 2

. ~C5!

Adding this toV, the resultingDyy(q) is modified tokyqy
2

1kbqx
4 . The collective mode frequencies then take the fo

v~q!}qxAqy
21~kb /ky!qx

4.
.

-

.

.

.

tt

ev

n,

K

to

g

y
-
s,
is

This has the correct behavior that collective modes
gapped except forqx50. A further refinement necessary t
correctly describe the long-wavelength physics of this s
tem is the addition of the Coulomb interaction. This may
simply modeled by adding a term of the form

VCoul5
1

2
kc(

q

uq•u~q!u2

q
~C6!

with kc52pe2/kac
2 , where in this last expression,k is the

dielectric constant of the host material, andac is the area per
electron in the ground state. Finally, symmetry also allo
the addition of a term of the form

Vxy5
1

2
kxyE d2r S dux

dx

duy

dy D . ~C7!

Taking our potential energy to beV1Vbend1VCoul1Vxy ,
one may easily computeDm,n and use Eq.~C4! to show
v(q)}qx for qy.0 andv(q)}qx

5/2 for qy50. The sublinear
behavior of the collective mode atqy50 is consistent with
the results of the TDHFA.
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22 H. A. Fertig, L. Brey, R. Coˆté, and A. H. MacDonald, Phys. Rev

B 50, 11 018~1994!.
23Our results are consistent with those of Ref. 24, apart from so

exchange corrections terms that were missing in that work.
Ref. 25.

24C. Kallin and B. I. Halperin, Phys. Rev. B30, 5655~1984!.
25A. Pinczuk, B. S. Dennis, D. Heiman, C. Kallin, L. Brey, C

Tejedor, S. Schmitt-Rink, L. N. Pfeiffer, and K. W. West, Phy
Rev. Lett.68, 3623~1992!.

26W. Kohn, Phys. Rev.123, 1242~1961!.
27S. Conti and G. Vignale, J. Phys.: Condens. Matter10, L779

~1998!.
28This model was employed in Ref. 10, where only the behav

near qx50 was important. The extra line of zero modes ne
qy50 was not included in the analysis, nor should it have be
since this is only an artifact of Eq.~C1!.


