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The collective modes of striped phases in a quantum Hall system are computed using the time-dependent
Hartree-Fock approximation. Uniform stripe phases are shown to be unstable to the formation of modulations
along the stripes, so that within the Hartree-Fock approximation the ground state is acefsfs Such
crystalline states are generically gapped at any finite wave vector; however, in the quantum Hall system the
interactions of modulations among different stripes is found to be remarkably weak, leading to an infinite
collection of collective modes with immeasurably small gaps. The resulting long wavelength behavior is
derivable from an elastic theory for smectic liquid crystals. Collective modes for the phonon branch are
computed throughout the Brillouin zone, as are spin-wave and magnetoplasmon modes. A soft mode in the
phonon spectrum is identified for partial filling factors sufficiently far from 1/2, indicating a second-order
phase transition. The modes contain several other signatures that should be experimentally observable.

I. INTRODUCTION AND SUMMARY OF RESULTS thermat? fluctuations, or bot.Finite temperature studis
of a model representing the nematic phase yield impressive

Recently, it has been discoveftéahat high-quality two- agreement with experiment of the resistance anisotropy at
dimensional electron systems in the quantum Hall regimeemperatures that are not too low. Effects of in-plane mag-
(strong perpendicular magnetic field, low temperaturest  netic field$*'* have been studied and have provided some
states with highly anisotropic transport properties. These oaanderstanding of the interchange of the high/low resistance
cur when the filling factow=2mnl? (n is the electron den- directions, although the different experimental behavior for
sity, | = VA c/eB is the magnetic length arlis the magnetic »=13/2,17/2. .. isstill unexplained.
field) is close to half-integer with numerator not too small.  Beyond transport studies, low-dimensional electron sys-
The strongest effects seem to occur for9/2, with similar  tems may be probed by coupling to their collective modes,
phenomena present at 11/2, 13/2. etc. Near these filling for example via inelastic light scatteritipr surface acoustic
factors a large asymmetry is observed in the diagonal comwaves'® These collective modes for quantum Hall stripes are
ponents of the resistivity tensek, andp,, that sets in be- the subject of this paper. Our method will be the time-
low approximately 100 mK in GaAs systems. The resistivitydependent Hartree-Fock approximation in the form devel-
ratios p,«/pyy, May be as large as 3508@lIthough the effect oped by Cte and MacDonald! The method requires a static
is exaggerated by system geométifhe directions of high/ Hartree-Fock ground state around which we can compute
low resistance are clearly correlated with the GaAs crystaexcitations. The simplest fofhfor such a state is to treat the
axes, although the precise mechanism by which they are chaompletely filedN—1 Landau levels as inert, and form a
sen is at present unknown. The high/low resistance directionsne-dimensional array of alternating filled and empty guid-
may be rotated by an in-plane magnetic field at all half-oddng center states in the partially fillddth Landau level. In
integer filling from »=9/2 to v=21/2 if the parallel mag- this approximation, the low-energy Hamiltonian for the par-
netic field is oriented along th€110) direction of the tially filled level may be mapped to the lowest Landau level,
crystal®® with a modified electron-electron interaction. This modifica-

States leading to this anisotropic transport are likely to bdion is responsible for the low energy of stripe ordering in
related to striped states that were found in mean-field this systenf.
studie§’ of systems in which several Landau levels are We find, however, that uniform stripe states are unstable
filled, and the highest occupied Landau level has a partiaithin the Hartree-Fock approximation to formation of
filling », in the range 0.35v,=<0.65. Such ordering has modulations along the stripes. The resulting state is essen-
been shown to occur in exact diagonalization studies ofially an ordered array of one-dimensional crystals, i.e., a
finite-size system&In a seminal theoretical work, the stabil- “stripe crystal.” Figure 1 illustrates the charge density for a
ity of this state to thermal and quantum fluctuations wasstripe crystal phase. The amplitude of the density modulation
investigated by Fradkin and KivelsSnwho pointed out a along the stripe is small, nevertheless, the energy gained in
powerful analogy between liquid crystals and quantum Hallgoing from uniform stripes to the stripe crystal is consider-
stripes. The analogy allows a classification of states accordable. For example, for,=0.5 in theN=3 Landau level, the
ing to symmetries; these include stripe crystal, smectic, andtriped phase is found to have energy per particle of
nematic phases. As will be shown below, at zero tempera—0.279 691 in units o&?/ k| (here« is the dielectric con-
ture, mean-field theory predicts that the stripe crystal is lowstant; this will be our unit of energy throughout this paper
est in energy among these. However, it has been argued thahile the stripe crystal has energy0.281 465. For the pa-
the smectic state may be stabilized by quarfuror  rameters of Ref. 3, the energy difference between these two
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FIG. 1. Electron density for a stripe state with=6.45. The
separation between the stripesas-7.18 and the period of the
modulations along the stripeslis=1.99. The modulations on two
adjacent stripes are displaced 2. This pattern can be described
by a primitive unit cell with lattice vectorR,=(a,b/2) andR,
=(0,b).

states is 112 mK, well above the temperatures for which
anisotropic transport is observed. Similar results are found at
other values of botiN and v, . Notice that the modulations
observed in the Hartree-Fock calculations are much larger
than what is found in exact diagonalizatigRef. 8. We
believe this is largely a finite-size effect. FIG. 2. Phonon dispersion relation of the stripe phase with

The energy lowering in forming modulations along the =6.45. Left inset: phonon dispersion along the stripes for different
stripes is largely an intrastripe effect. For example, one mayalues of the wave vectds, . The local minimum has a frequency
compute the energy of a stripe crystal with a rectangular unibf v~0.02 €% «l) and becomes soft as the filling factor is de-
cell rather than the oblique one illustrated in Fig. 1. Thecreased. Right inset: Brillouin zone for the primitive unit cell de-
modulations of the stripes in this state are “in-phase,” re-scribed in Fig. 1.
quiring an additional Hartree energy. However, due to the
weakness of the modulations and the long-range nature @frises because in these collective modes the motion of the
the Coulomb interaction, the quantitative value of this energyelectrons is parallel to the stripe directidithis can be seen
cost is minuscule, of the order 182/xI~10"% K. Thus, from the eigenvector of the phonon mode from which one
the chains may easily slide past one another. Certainly, atan compute the motion of the stripes in real space. See Ref.
any experimentally attainable temperature, the crystal willl8 for details. The gap is then controlled by interactions of
melt into a series of thermally and quantum disordered onethe modulations in different stripes, which is very weak in
dimensional crystal¥’ this system.

In principle, at zero temperature, Hartree-Fock theory pre- (2) For larger values ok, the modes become indepen-
dicts the system locks into a stripe crystal. The collectivedent ofk, . Physically, this arises because the phonon modes
modes around this state may be characterized by wave veare nearly longitudinal for largky, involving motion of the
torsk= (K ,k,), wherek is the wave vector component par- stripe modulations but no significant motion of the positions
allel to the stripes and, is the perpendicular component. of the stripes relative to one anoth&rSince the stripe
The low-energy collective modes are phonons, and in prinmodulations communicate so weakly, the relative phase of
ciple are gapped everywhere excepkatO. In practice, be- motion between stripes has practically no effect on the en-
cause of the small energy scale associated with locking, wergy of the mode—hence, g dependence.
find nearly gapless modes whenekgr-0, independent of (3) As might be expected, a gap opens up né&ar
k, ; the gaps are barely resolved by our numerical techniques = w/b, whereb is the distance between modulations of a
and are far below currently experimentally attainable tem=stripe. This leads to a local maximum in the phonon disper-
perature scales. The low-energy collective modes are thusion. In light of (2) above, and as may be seen explicitly in
highly reminiscent of what is expected for a smectic state. Fig. 2, the maximum is extremely flat along tke direction.

Figure 2 illustrates the phonon modes for several value#\s a result, there is a large phonon density-of-sta3S)
of k, as a function ofk;, computed using the time- at this energy, as illustrated in Fig. 3. Other minima and
dependent Hartree-Fock approximatigfhDHFA) as de- maxima appear in the phonon dispersion, which also contrib-
scribed below. Several important features are worth noting.ute to structure in the DOS, most notably a double peak at

(1) The modes disperse linearly except kor=0, which  approximately half the energy of the/b peak. Such struc-
disperses more slowly. As shown below, this is consistentures may be observable in inelastic light scattefihgnd
with a harmonic theory of a charged smectic system in aheir detection would yield optical evidence of stripe order-
magnetic field. The apparent absence of a gapkfo# 0 ing in this system.




PRB 62 COLLECTIVE MODES OF QUANTUM HALL STRIPES 1995

5 1.20
liquid
— . stripes (from x,,)
2 4
=
=
f’ . 0.80 —
=
2 3— _
= 2 .
5 H
&
2 2 0.40 —
=
ed
=
- ,
e -
=
2 1
=9
. 0.00 —
0 i i i ‘ | ' | \ ‘ \
0.00 0.02 0.04 0.06 0.08 0.00 0.10 0'2&_[ 0.30 0.40
w(e?/xl)

FIG. 4. Dispersion relatiom — . of the three branches of the

FIG. 3. Phonon density-of-statgdhe small oscillations are nu- magnetoplasmon mode in the stripe phase along the direction per-

merical artifacts. pendicular to the stripes in the density pattern of Fig. 1. The corre-
sponding dispersions in the liquid phaéee Fig. 5 have been

(4) A very low-energy mode appears along the Brillouin- folded in the first Brillouin zone and are represented by full lines
zone boundary ak, = *=m/a (a is the separation between with the heavy lines indicating parts of these dispersions that lie in
the stripey near k= =+ 7/2b. As |v,—0.§ increases, this the first Brillouin zone. The filled circles represent frequencies ob-
mode becomes softvanishing in energy just above|v, tained fromy,, while the empty squares represent frequencies ob-
—0.5=0.1. This indicates a second-order phase transitiotained fromy,, .
and increased structure in the stripe state as one moves suf-
ficiently away from half-filling!® This may indicate a directional periodic modulation.
second-order phase transition into a “bubble ph&set The remainder of this paper is organized as follows. In
some precursor of this phase. Alternatively, it may represen®ec. Il, the Hartree-Fock method used to generate mean-field
a buckling instability, in which neighboring maxima within a states is briefly discussed, and some more details of the re-
stripe displace perpendicular to the stripe and antiparallel tsults are provided. Section Il briefly outlines the method
one another(Such instabilities are known to occur at Wigner used to obtain collective modes, and presents the remainder
crystal edge$®) The precise motion of the charge in the soft of our results for collective modes, both in the stripe state
mode is quite comple¥ Work is currently underway to de- and, for comparison, in the liquid state. We conclude with a
termine the precise nature of the ground state after the instsummary(Sec. IV). There are three Appendices. Appendix A
bility has occurred. provides some details of the proper formulation for TDHFA

In addition to the low-energy phonon modes, the stripein high Landau levels in general and striped states in particu-
phases support magnetoplasmon modes and spin-wal@. Analytic expressions for collective modes of liquid states
modes, and we have explicitly computed them in TDHFA.for partially filled Landau levels are presented in Appendix
Figure 4 illustrates an example of the magnetoplasmoiB. Appendix C describes a simple elastic theory demonstrat-
modes appearing as poles of the density response function ing that the results of the TDHFA can be described at long
the first Brillouin zone. The several apparent branches mawavelengths by a system with smectic order.
be understood when the structure is compared to analogous
modes for a liquid _stateno stripes of the same partially Il. HARTREE-FOCK APPROXIMATION
filled Landau level, illustrated by the solid lines in the same
figure. One may see that folding higher order Brillouin zones In this section we briefly review the Hartree-Fock ap-
into the first roughly generates the modes captured by thproximation (HFA) as developed in Ref. 17; some further
TDHFA. One may thus treat the effect of stripe ordering ondetails are presented in Appendix A. The fundamental quan-
these high-energy modes to a first approximation as that of @ties in this approach are the operators
periodic potential on an electron gas. A similar effect occurs
for the spin-wave modes. This doest occur for the phonon wp o L . . 20t
modes because no such modes exist in the liquid state. ~ Pnm(® =~ ; ex —i09,X—=i0x8y!"1Cn 4, xCm g x+ a2,

The presence of several branches of modes near small g (1)
values ofk in principle may be detected by optical or surface
acoustic wave methods. Such an observation would constiwheren,m denote Landau level indiced|, is the Landau
tute a relatively direct demonstration of striped orderinglevel degeneracyX are guiding center coordinate quantum
since it indicates zone-folding effects associated with a uninumbers andv, 3=+ are spin indices. In the HFA, these
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guantities are evaluated for a single Slater determinant state, e? o )
which is accomplished by solving the HFA equation-of- pr(G):(H) \/Ef dxe ™ [LS(XZ)]ZJo(ﬁxGI). (7)
motion for the Green’s functidn 0
with Jo(x) the Bessel function of order zero and(q)
G&8(G,7)=— i z (Tc ( )CT (0)) =2me?/q the Fourier transform of the electron-electron in-
nm 2 TETND & na Xt T %m g x-6,)12 teraction, for which we use the unscreened Coulomb form.
) ) ) The functionsL['(x) are generalized Laguerre polynomials.
Xexg —iGX+i1G,Gy /2], 2 To solve the Hartree-Fock equations, some guess is nec-
with {G} the ensemble of reciprocal lattice vectors of some€ssary for the crystal structure of the ground state to specify
assumed crystal structure. The HFA to the ground state exhe se{G}. The simplest structure for the stripes is a one-
pectation values Of)ﬁ,’ﬁ(Q) are nonzero only foqg on the dimensional array with lattice constaat Writing ¢, , x

reciprocal lattice, and are readily obtained frdm =cy, for a=+ such states are characterized by order pa-
rameters
(Ph(G)) =GR (G, 7=07). 3 .
Hartree-Fock energies, electron densities, and response func- (clex)= > O[X—(n—w,2)a]
tions may be computed fror{(pﬁﬁ(G»}. =
For filling factors v=2N+7, a further simplification/ XO[(n+ v /2)a—X]dx x - (8)

approximation is to project the Hamiltonian into the single
Nth Landau level, which is formally appropriate when the
electron-electron interaction scakf/x| is much smaller
than the cyclotron energy. (we takes =1 throughout this 1 _
papej. While in experimental situations these energy scales (n(r)y= — > (pﬁ(G))Fp,p(G)e*'G", (9)
are comparable, calculatidiigetaining several Landau lev- 2ml® G

els show that, for magnetic fields and electron densities re'wherer,p(G) is a form factor for electrons in level (see
evant to Ref. 1, Landau level miXing lowers the Hartree-Appendix AQ One can also Compute a “density” prof“e

Fock energy by~10"“e?/«l for the striped state. This is corresponding to the guiding centers instead of the real den-
sufficiently small to be neglected for our present study, andity by using

we effectively retain only a single Landau level in our static
HFA calculations. Assuming also that there is no spin _ @ —iG-r
texturé? in the ground state, and denoting by the ingetke <n(r)>GC_% {Pp(G)re ™. (10

partially filled Landau level, we have far<1,

The density profile of the crystal phase is obtained from the
relation

Such states have been studied for a number of

(pE(G))= b0 if m<p purpose$’111314and provide a good first approximation to
N N ~ . the Hartree-Fock ground state at the filling factors of interest.
(pm(G))#0{pp(0))=v» if m=p (49  However, within the HFA, this state is not stable and cannot
(pm(G))=0 if m=p be used as a starting point for collective mode calculations:
" ) the resulting response functions are unphysical. That this
(Pm(G))=0 i m>p, uniform stripe state is not a minimum of the energy within

the space of single Slater determinants may be understood as

while for »>1, follows. The interaction energyEqg. (6)] for uniform stripes

(pm(G))=6c0 if m<p may be written as
+ _ . _ L
™ B =5 % ox
(p(G)Y#0(p(0))=p—1 if m=p
(p%(G))=0 it m>p where ey are the eigenvalues of the Hartree-Fock Hamil-
m - .

tonian, and the prime indicates a sum over Mg lowest

We have defineg?(G)=p2%(G) to simplify the notation. ~ statesN, being the number of particles in the partially filled
With our approximations, the filled levels are inert andlevel. The single-particle spectrumy has a well-defined

cause only a shift of the ground-state energy. Up to an unEFermi energyEg with eigenvalues arbitrarily close to it. By

important constant, the interaction energy per particle of théntroducing a one-dimensional modulatiatong the stripes,

Hartree-Fock state is then a gap is opened at the Fermi energy, the eigenvalyes
below Er are pushed down, and the total energy is lowered.
we L " ) The resulting state is an array of one-dimensional crystals;
Eint :2_,,X % [pr(G)(l_56,0)_pr(6)]|<pp(e)>| ’ i.e., a stripe crystal. The collective modes presented below
(6) are all for such stripe crystal states.
o _ ~ We conclude this section with some remarks about the
wherea=+(-) andv,=v (v—1) if v<1 (»>1), and results of the HFA. An example of the density modulation
21 12 (n(r)) in a stripe crystal state is presented in Fig. 1. Results
Lg(i) for other Landau level indicea=2 and patrtial fillingsv,
2

~0.5 are qualitatively similar to this. Two points are worth

2
e’\ 1 2,2
_ ~-GA22
pr(G) (K')Gle
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mentioning.(1) The amplitude of the density modulations in 1.20
real space are relatively weak, across the stripes and eve

more so along them. Nevertheless, we will see in the collec- _
tive mode spectra, clear signatures of both periodicities. It is
interesting to note that the weakness of the intrastripe modu
lations is due mostly to the form factors of thith Landau
level; if one views the “guiding center density” as defined
in Eq. (10) the intrastripe modulations are quite pronounced < .
(cf. Ref. 18. (2) The stripe crystal states studied here breaks;
particle-hole symmetry; there are separate electron and holy g 49 —
stripe crystal solutions to the HFA, which at=1/2 are
degenerate. For,<(>) 1/2, the electror(hole) crystal is
lower in energy.

0.80 —

lIl. COLLECTIVE MODES IN THE TDHFA 0.00 —

To obtain the dispersion relation of the collective excita-

tions we compute the matrix of response functions b ' T
0.00 2.00 4.00 6.00 8.00  10.00

qf

Xnhrh n (k+ G k+G',7)
_ ~ FIG. 5. Dispersion relationss—w, of the three magneto-
=— N‘P<Tp§',‘fn2(k+ G, T)pr}{;’sn‘l( -k—=G',0), plasmon modes of the liquid phase with- 6.45.

1D {5 zero® Many, but not all, of the results we find may be

heres B _ dk i tor in the first understood in terms liquidlike collective modes, whose fea-
wherep(q,7)=p(q,7)~{p(q)) andk is a vector in the first .o have bheen folded into the first Brillouin zone by the
Brillouin zone of the lattice. The collective excitations ap-

ear as poles of the dynamical response functions and theﬁ)reriOdiCity of the striped state.
3. > P lation i ybt ined b Ft) King th les f There are five types of modes that we considej: n

ISpersion relation 1S obtamned by tracking these poles 1oL . 1y phonon modépresent in the stripe crystal phase
several values df in the first Brillouin zone. Since the order only) appears as a pole of..=x: -t while the spin-
parameters of Eq4) were obtained in the Hartree-Fock ap- y) app P nn™ Xp.p.p.p by P
proximation, a conserving approximation for the responsd?@ve modewsu(k) is a pole ofx, =xppp,"  Which,
functions is obtained in the TDHFA. In Ref. 17, it was according to Larmor's theorem, should hawesy(0)
shown that the equation-of-motion of this matrix of response=9* #gB. (b) n=1: There are three magnetoplasmon modes
functions, in the TDHFA, can be written schematically asin  xan that also appear inx,=(x""""—x"""~
[I(w+i8)—Alx=B, whereA and B are matrices that de- —y~ " *"+y~~"7)/4 but with different weight. These
pend on matrix elements of the direct and exchange interathree magnetoplasmon modes originate from the fact that
tions and on the order parametdk,,(G))} only. All re-  there are three possible transitions with pole arowgdi.e.,
sponse functions can then be obtained by solvingd2,+)—(3,+),(2,-)—(3,—-), and (3+)—(4,+). The
numerically an eigenvalue equation. In the simplest ¢ese  Coulomb interaction mixes these three modes, with the re-
the intra-Landau level excitation, for examplg consists of  sulting dispersion branches being quite complex even in the
only one response function and accurate results are easy liguid phase. A spin-flip mode witdS,= +1 appears as a
obtain. In other cases such as for the magnetoplasmon exgole of XJ+EX7++7- The only possible transition is (2,

tations, response functions involving transitions to different_y_,(3 +) and there is correspondingly only a single

Landau levels are coupled and the mafyibecomes rapidly  pranch in the dispersion. We will refer to this mode as the
very large. Our method is thus limited by the size of thewSF+ mode. Finally, a pair of spin-flip modes withS,=
matricesy that we can handle numerically. Details of the _1 appear as poles of, =x*~~*. These descend from
calculation are given in Appendix A; here we present o.nly ransitions of the form (721;)%(3,—),(3#)%(4,—). We
the results. For _concreteness, We_ focus on _a Earually ﬁlleéviII refer to these two modes as thes. modes.
Landau level of indelN=3 and spina= +, with »=0.45.
Results for other partial fillings, Landau level indices, and
spins are qualitatively similar.

To limit the size of the matrixy we study the collective Figures 5 and 6 show the dispersion relation of the five

excitations withw(k=0) aroundnw.+mg*ugB with m,n  modes for filling facton = 0.45 in theN=3 Landau level, in

=0 or 1. We assume thai, is sufficiently large that cou- the liquid phase. The complex dispersion relations are due in
pling among excitations neaw. andn’w. may be ignored part to the generalized Laguerre polynomial entering in the
if n#n’. For comparison, we compute the same dispersiomatrix elements of the Hartree-Fock interaction, which is
relations(when they existin the liquid phase, i.e., in @ ho- responsible for the three minima appearing in all these
mogeneous phase with the same filling factor. The dispercurves. In these figurggnd all others that folloyy we have
sions in that case are simply obtained by replacing @. substracted the constant temw.=mg* ugB. Note that two
with (p§(G=0)>=7/ and setting all other order parameters of the magnetoplasmon modes disperse fiognias expected

A. Dispersion relation in the liquid phase



1998 R. COTE AND H. A. FERTIG PRB 62

0.80 perimentally accessible temperature. Physically, this indi-
cates the stripes are free to slide past one another due to

= = = Spinwave (85,= 0)

— - Spinflip (88, +1) thermal fluctuations.
0.60 | | — SPnfpE8s In the inset of Fig. 2, we show the dispersion relation

Spin flip (8,= -1)

alongk| for several values df, . One sees that the phonons
disperse linearly except fd, =0 where they disperse more
slowly. In Appendix C, we show that this is consistent with
a harmonic theory of a charged smectic system in a magnetic
field. Another point worth mentioning is that for larger val-
ues ofk; the dispersion ik, becomes almost independent of
k, . By direct examination of the charge motion in several
such collective modes, we have found that this arises because
the phonon modes are nearly longitudinal for lakge they
. do not involve significant motion of the positions of the
o/ stripes relative to one another. Since the stripe modulations
i communicate so weakly, the relative phase of motion be-
-0.20 L I R R S I T tween stripes has practically no effect on the energy of the
0.00 2.00 4.00 6.00 8.00 10.00 mode. As discussed in the Introduction, this results in reso-
q¢ nances in the collective mode density-of-states that might be
_ _ _ ) .. observed in inelastic light scattering. A particularly strong
FIG. 6. Dispersion relations of the spin-wave and spin-flip g, resonance occurs due to the additional flatness of the
modes for v=6.45 in the liquid phase. The dispersionsy GEispersion near the Brillouin-zone boundary along the direc-
—g* ugB of the !ntra-Landa}u Ievgl spin wave mo*de is represente ion of the stripegsee Fig. 2where a gap opens up separat-
by the dashed line. The dispersioage_ — (w:.+9* ugB) of the . o e R
two branches of the inter-Landau level spin-flip mode wé8, Ing t.he aCOUSt.IC from t.he optical ques'
Finally, as discussed in the Introduction, a soft mode ap-

=—1 are represented by the full lines. The dispersio N . - .
_(wc_g*/-LBBp) of the int)(/er-Landau level spin flippmodfFJvith pears that indicates an instability of the modulated stripe

5S,= +1 is represented by the dot-dashed line. state studied here far just below 0.40, suggesting at these
lower fillings that the correct ground state will have more
structure. We note that this instability indicates a second-

f Kohn’s th hile the thi [ . Th L : L
k:i%r;:er-gngrz; rr?g&eeﬁt]h\,;t Ideisz)e?steslr\(jecr); ?alpid?; Epsegongeer iqrder transition, in contrast to the first-order transition found

the density response functi%n, Wh||e the |0west_energy nearv~0.36 betWeen St“pe and “bubble” states Studied in
mode is stronger iy, . The middle mode becomes very Ref. 6. The result may indicate that a precursor of the bubble
weak in both responsez functions las>0 phase develops within the stripe pha}se, perha}ps in wh|ch.the
From Fig. 6, we see that the spin-wave mode disperse ubbles are elongated rather _thar_1 cwcu_lgr. I_t is also poss_lble
from g* ugB as expected from Larmor’s theorem. The inter-t 1at the stripes have_ a buckling |nstab_|l|ty in analogy with
Landau level excitationsssg, and wse. , however, have similar behavior prewously noted for Wigner crys.tal eddes
their gaps s, (0)=we—-g* 1B and wse (0)=w, or that another phaggossibly rglated to bubbl}eem'stS 'FrLat
+g* ugB strongly renormalized by the self-energy and ver-has lower energy _than the stripe phase for partle_1l filling
tex corrections. greater than the filling where we see the softening of the
mode. We are presently studying this possibility.

w/(e%/xl)

0.20

B. Phonons

For the stripe phase, we consider the configuration of Fig. C. Higher-energy modes

1 where the electrons on one stripe are displaced with respect Unlike the phonon mode, the four other excitations that
to the electrons on the other stripes. This stripe crystal can bae consider also exist in the liquid phase. To understand the
described by an oblique unit cell with one electron or alter-effect of the stripes, we plot the dispersion relations obtained
natively by a rectangular unit cell with two electrons. In the in the stripes and liquid phases together. A few comments on
inset of Fig. 2, we show the Brillouin zone of the oblique these results are in order before we present them. For the
unit cell that extend t&, | = *=0.44 and tok| = +1.64. liquid, we fold the modes in the first Brillouin zone of the
Unlike the homogeneous liquid phase, the stripe crystastripe crystal and keep the lowest-energy brancheék
phase can sustain a phonon mode. The dispersion relation fG)}. Along the direction perpendicular to the stripes, the
this mode is presented in Fig. 2. As discussed in the introlowest-energy branches correspond mostly to the functions
duction, the most striking feature of the result is the line ofw(k, +nG, ,k=0) withn=0,=1,£2, ... In thedirection
nearly gapless modes alokg= 0. Generically, for a crystal of the stripes, they correspond mostly to the curud&,
one expects phonon modes to be gapped everywhere excephG, ,k|). In this case, however, the curves with= = 1,
atk=0. A careful examination of the smakj limit is con- ~ +2,=3,... have the same energies in the liquid, i.e., are
sistent with this, although a precise determination of the gaplegenerate(The thick lines in the figures represemt0,
is difficult because the mode weights become very small irwhich is not degenerafeThis degeneracy is sometimes
this limit. We estimate the gaps along theline to be in the lifted in the stripe phase. Note that this Brillouin-zone fold-
range 107—10 8e? kI, which is far smaller than any ex- ing of the liquid dispersions introduces a large number of
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FIG. 7. Dispersion relatiorwsy—g*ugB of the spin-wave FIG. 8. Dispersion relatiorwsy—g* ugB of the spin-wave

mode in the stripe phase along the direction perpendicular to théhode in the stripe phase along the direction parallel to the stripes in
stripes in the density pattern of Fig. 1. The corresponding dispersiothe density pattern of Fig. 1. The corresponding dispersion in the
in the liquid phasésee Fig. 6 has been folded in the first Brillouin  |iquid phase(see Fig. 6 has been folded in the first Brillouin zone
zone and is represented by full lines with the heavy line indicatingand is represented by full lines with the heavy line indicating parts
parts of these dispersions that lie in the first Brillouin zone. of these dispersions that lie in the first Brillouin zone.

branches. It is not possible to track all the corresponding 2. Magnetoplasmons

poles in the stripe phase. We thus sometimes show only a Figures 4 and 9 show the dispersion relation obtained in
small subset of these modes corresponding to low-energine stripe phase for the magnetoplasmon modes. To capture
excitations. Because we keep only the most intense poles ar@dl the three branches, we show poles obtained from both the
because the relative intensity changeskaspans the Bril-

louin zone, the dispersions sometimes appear discontinuou  1.20
for the stripe phase; this is because the mode weights fal

below our threshold for plotting them. Note that the zone-
folding effects lead to the presence of several branches nee

small values ofk. In principle, these excitations could be
detected by optical or surface acoustic wave methods ant 9.80 —
would thus represent a direct demonstration of the stripe or-
dering.

liquid
. stripes (from x, )
\:‘ stripes (from x; )

w(et/xd)

1. Spin waves
0.40 — cogiupunuains

For GaAs systems, under most circumstangé&s.zB
<hw¢, SO that spin waves are the lowest-energy modes afte
the phonons. Figures 7 and 8 show the dispersion relatior
obtained for the spin waves. The most striking difference
between the zone-folded liquid results and the spin waves o

the stripe state is a dramatic anisotropy in the gap opening a  0-00 —jisetsssmnsagazs

the Brillouin-zone boundary. This gap is much larger at the | . i | . I I
boundary.for largek, than the corre;ponding one for Iarg'e 0.00 0.40 0.80 1.20 1.60
k. Certainly, part of the explanation is that the density k¢

modulations responsible for the latter is much smaller than FIG. 9. Dispersion relatiom— w, of the three branches of the

that of the former. However, the gap at large is much  ,5q06t0plasmon mode in the stripe phase along the direction par-
larger than, for example, the corresponding gap in the magge| to the stripes in the density pattern of Fig. 1. The correspond-
netoplasmons, discussed below. This strong many-body efng dispersions in the liquid phagsee Fig. 5 have been folded in
fect may be related to electrons at the stripe edges havingtfe first Brillouin zone and are represented by full lines with the
small local spin stiffness relative to those in the liquid stateneavy lines indicating parts of these dispersions that lie in the first
or in the center of the stripes. In any case, this many-bod¥rillouin zone. The filled circles represent frequencies obtained
effect results in a branch of spin waves with surprisingly lowfrom y,, while the empty squares represent frequencies obtained
energy. from x, .
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FIG. 11. Dispersion relationsgg, — (w.—g* ugB) of the spin-

FIG. 10. Dispersion relationsgr — (w.+g* ugB) of the spin- . ) ) . e
flip mode in the stripe phase along the direction perpendicular to théIIp mode in the stripe phase along the direction paraliel to the

. . . . . . ._stripes in the density pattern of Fig. 1. The corresponding dispersion
stripes in the density pattern of Fig. 1. The corresponding dispersioR . . . . L
in t?\e liquid phase?ll:i%. 6 has bgen folded in thF:e first gBriIIcF))uin in the liquid phasésee Fig. 6 has been folded in the first Brillouin

zone and is represented by full lines with the heavy line indicatingZone and is represented by full lines with the heavy line indicating

parts of these dispersions that lie in the first Brillouin zone. parts of these dispersions that lie in the first Brillouin zone.

density and spin response functions, andefz' Because the are phonons, with a line in the Brillouin zone of extremely
three corresponding branches in the liquid are almost flat gbw-energy states, making the resulting low-energy physics
large wave vector, the folding of the modes in the firstof this system that of a charged, two-dimensional smectic in
Brillouin-zone introduces many branches at small energy. I magnetic field. We also found signatures in the phonon
is quite clear, however, that the dispersion obtained in thejensity-of-states indicative of stripe ordering that should be
stripe phase f(.)"OV.VS closely that of the I|qu!d_, with small yetectaple in inelastic light scattering, and a soft mode that
9aps a_lt the Bnl!oum-zone edges and some lifting of degenygicates an instability of the stripe state for partial fillings
eracy in thek; direction. sufficiently far from 1/2. Results for spin waves, magneto-
3. Spin flip excitations plasmon, and spin-flip excitations were also presented, which

o o _in afirst approximation could be understood in terms of zone
Some of the spin-flip excitations seem to follow behaviorfo|ging of corresponding excitations for the liquid state.
reminiscent of our results for the magnetoplasmons, closelgome of these, however, underwent strong renormalizations
following the liquid results, whereas others undergo strongye to electron-electron interactions; in particular, we found
many-body renormalizations, as we found for spin wavesg gyrprisingly low-energy branch in the spin-wave spectrum
Figure 10 shows the dispersion for thgr_ mode.(Inthese  §ye to this effect.
figures, we show only the low-energy excitations because the The form of the low-energy physics of this system has
liquid modes become very complicated at higher energiesimportant consequences for quantum fluctuation effects on
One can see the direct correspondence between the liquifle stripe crystal state, particularly the stability of the crystal
phase dispersions and those of the stripe states. As for thg \ye|l as pinning by disorder. Some of this has been dis-

magnetoplasmons, these differ by gap openings and the lift;yssed previousli? a more detailed study will be presented
ing of degeneracies. For thesg, mode, as for the spin- i future work.

wave mode, the dispersion relation of the lowest-energy
branches are quite close to the corresponding liquid result.

For higher branches, however, the .stripes ordering _Ieads to ACKNOWLEDGMENTS
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APPENDIX A: DETAILS OF THE TDHFA e2 | dzq/
In this Appendix we discuss the proper formulation of the X(N1.N2,N3.N4;0) = K|>(_) f (27 )ZV(q )Fn;n,(A7)
TDHFA in high Landau levels. The basic approach follows
that of Ref. 17; however, there are important details involved X F
in computing inter-Landau level excitations that have been

. 24 ; 5 ;
treated incorrectf/?*in the literaturé® leading to results that we need to derive the TDHFA., We také(q)

that do not correctly include the exchange self-energy cor- 2me2/d. (W the two-di | duct
rections to these excitations. We present here a correct for- me“/q. (We use the two-dimensional cross product as a
hort form for gxG=q,G,—q,G,.) These interactions

mulation of the TDHFA that avoids such errors and respect§

(—q")eiaxa’t?) (AB)

N3,y

Kohn's theorent® contain the form factors
1. Static Hartree-Fock Approximation 12 (- qy+qul)
We begin by briefly reviewing the relevant equations for Fam(@)= T
HFA that will be needed in our formulation of the TDHFA;
details may be found in Ref. 17. Our model HF Hamiltonian —-q??l  [g??
is Xex;{ Ly m(— (A7)
4 2
Hie=N,2 €naPna(0)+ N, X UXG)pi(G), for m=<n, whereL%(x) is the generalized Laguerre polyno-
e na G mial. Note thatF, ,,(q) =[Fn.(—)]*. We remark that the
(A1) effective potential in any Landau levala depends on the
where occupation of the other levels, as does the energy of the
electrons in that level. This self-energy shift differs from one
eno=(N+1/2) w,— ag* ugB/2. (A2) level to another, and makes an important contribution to the
] - o energy of inter-Landau level excitations.
The Hartree-Fock effective potentidl’(G) is given by The single particle Green’s function of E@) obeys, un-

der the Hamiltonian of Eq(Al), the equation-of-motion
UXG)=2 > [H(mm,n,n;G)— &, ,X(mn,n,m;G)]
m B

< (pB(~G)) [iwg—(£2— 1) ]GX(Gliwy) — S WAH(G—G)GXG' iwp)
m Gr
=3 3 [Hna(G)= 30, Xmnl O ph( ~ ) = %0, (A8)

(A3) where u is the chemical potential and

For completeness, we give here the form of the Hartree and

Fock interactiqns that enter into. the ca_Icu!ation of the self- Wg(G_G/)Eug(Gr_G)etiG’Izlzl (A9)
energy corrections to the collective excitations:
02\ 1 212 o212 Equation (A8) can be solved numerically to compute the
Hmn(0) = ( ) Ie‘q2'2’2L° T)Lg(T) densities(p?(G)) as explained in Ref. 17.
q
2 n! 2. Time-dependent Hartree-Fock approximation
Xl @)= =]2| = dxx2<m " . _ _
m,n(d «l m! The two-particle Green’s functions are defined by Eq.
(11). In the TDHFA, they obey an equation-of-motion that
2 .
X e XILM"(x3)|235(V2xql)  (for n<m). we write as’
(A4)
For n>m, we useXp m(q) =Xm n(Q)- [iQn"'(Snl,a—8n2,5)]X$12),ﬁ’fh§,i4(k+ G.k+G',Qy)
The effective interactions appearing in £43) are a sub-
set of the more general form +z [vé,en(k)Uﬁl(G”—G)— VG,G"(k)UﬁZ
GI/
82 1 " (0)e,B,7,6 " ’
H(ny,ny,N3,Ny; q) X(G G)]Xn Ny.Ng.Ny (k+G",k+G ,Qn)
«l]\ 27e

= 5n1,n45n2,n35a,55,8,y[ ')’G,G’*(k)<prc1¥1(G_ G,)>

(A5) — 6.6/ (K)(pn,(G=G")], (A10)

XV(Q)Fnl,nZ(Q)Fn3,n4(_q)y
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X n (kG k+G Q) =xVebrs (k+Gk+G' Q) — 2n8 ; g XS (k+Gk+ G, )
XX(N7,N,Ns,Ng;K+G")xp 00 (K+ G k+G',Qy), (A11)

and

T a ﬁ v,0

Xn iy nyny (KT Gk +G! Q=X frt o (k+ Gkt G, Q)+ E > 2 xnhin n(k+Gk+G",Qp)

-Ng nv G”

X H(ns,Ng,N7,Ng;K+ G”)Xg;?,;ggﬁm(m G" k+G',Q,), (A12)
|
where(), is a Boson Matsubara frequency and [iQ,] —Fﬁ,’ﬁ(k)]xﬁ%ﬁﬁéﬁﬂ’“(k,w)= BrA(k), (Al4)
Yo G,(k)Eei(k+G)><(k+G’)I2/2_ (A13) where
Equations(A10)—(A12) are equivalent to the result of sum- [FEA(K) e =(emp—en.a)dc.c —Un(G'—G)yg g+ (K)
ming ladder and bubble diagrams in a perturbative expansion P
of x. Note that the only information required in these equa- +Un(G'=G)ve,6:(K) (A15)

tions is the ground-state density;(G)). The equations and

couple together an infinite set of response functions; as dis-

cussed in Ref. 17, when truncated appropriately they may be  [Bim(K)le.o' =76 o/ (K){(pa(G—G'))~ y5,6:(K)

cast in a matrix form for numerical solution. In the next few ,

sections, we describe truncations and simplifications that are X(ph(G—G)). (A16)

appropriate for computing various collective modes. The size of these matrices depends on the number of recip-

rocal lattice vectors that are kept in the numerical calcula-

3. Equation-of-motion for x© tion.

It follows from Eq.(A10) that the only nonzerg(®) must
be of the formy(°y:%%#* . Written in matrix notationwith
the reciprocal lattice vectorGs,G’ being the matrix indices

the equation-of-motion fog(®) is then

4. Equation-of-motion for y

Sincex(? is of the formy():@A:A« Eq (A11) for y can

n,m,m,n
be simplified to

X (K@) = X E B (K,0) 81, 0,60y 0,0, 505, X(n(i),}i”ﬁfﬁl(k,w)n;G [Xng iy g g (KD Xm0 g (K ) ],
(A17)
where the matrix
[X (k) ]g,cr=X(ny,ny,n3,n4k+G)dg g - (A18)

ny.Ny,Ng,N,

From Eq.(A17), it is clear that, in the spin indiceg, must be of the formy®##< and that)(ﬁ B,Jﬁ 70, only if
Xﬁfi)n“zﬁnf * 0. Since we are working in the strong magnetic field limit.& e?/ ), we will assume that a response function
with poles arounchw, is only coupled to other response functions poles near the same frecfdéfuys, we truncate our
equations by including coupling among response functions of the;qugmmﬁmna,n4 for different values of mWe remark

here that couplin@ll response functions with pole around the same frequenegdssentiakto recover Kohn’s theorem for the
cyclotron mode.
Equation(A17) is now simplified to

0),a,B.,8, 0
Xgﬁrﬁ ny+m,n,, nl(k!w)_Xgl),no;,ﬁnf,r?l(kaw) 5m,0_ X§11)+L:nﬁnf+am ny+m,n; +m(k o)

a,B,B,a

xZ [Xnysm g s mng+mng+m (O Xo i oo o (K @)1, (A19)
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Because we consider only the special case where all Landawith

levels belowp are completely filled ang is partially filled,
Eqg. (A16) implies that

0).,a,8.,8, ; —
Xélrﬁ,5+ﬁmc,(p+m,p+m¢0 onlyif m=0

0),a,8.8, ; —
Xé-zrg,g+ﬁmil,p+m+l,p+m¢o Only if m=-1,0

0),a,B8,8,a H —
Xfa-zm,g+ﬁm+2,p+m+2,p+m7&o Only if m=-2-1,0

(A20)

2003
[xgl)(k)]G’G,EX(n,n,n—l— 1n+1,k+G)dg g, (A30)
[XP(k)]g e =X(n,n—=1n,n+1;k+G)dsq (A31)
[XP(k)]e.e=X(n—1n—1n,nk+G)dg g (A32)
[X{M(K) e =X(n—1n,n+1nk+G)dg - (A33)

and so oney will thus be coupled to one, two, three or more The solutions to Eq(A26) can be used to compute both

othery’s depending on the value ofiand also on the num-
ber of levels filled belowp. For example, we only need to

consider the response functiﬁ«ﬁﬁ"fb" for the intra-Landau

level excitation. Its equation-of-motion is thus simply

}gg'fpa(k' w)= X(O),aﬁvﬁ,a(k, w)— X(O)’“’B’B‘“(k,w)

p.p.p.p p.p.p.p
XXSAK) Xpibibs(K,o), (A21)

where we have defined the diagonal matrix
[XO(Kk)]g.er=X(n,n,nnk+G)ds s . (A22)

With Eq. (Al4), Eq. (A21) becomes

[1Qn] = FBK) +Bak)XP(K) Ixafd(k,w) =B E(k).
(A23)
For m=1 (inter-Landau level excitationsthere are only

four nonzeroy with poles around+ w.. To deal with this
case, it is helpful to define the block matriceshich we

denote by the symbo} to distinguish it from the simple
matrix x)

BB« T a,B,B,a
= | Xpp+ip+1p Xpp+ipp-1 A24
X= T a,B,B,«a T a,B,B,a ( )
Xp=1p,p+1p Xp=1p,p,p-1
and
_ |1 0
= . A25
0 | (A25)

In terms of these matrices, EGA11) simplifies to

[1Q,] —F@A(k) +BYA(K)Xp(K) ] x PPk, ) =B*P(k),

(A26)
where
Fob (k) 0
Fobk)=| *P . . (A27)
0 Folp(k)
“B (k) 0
1
B“’B(k)—[ PP . . (A28)
0 B p(K)
and
_ XWX (A29)

density and spin-flip response functiofesg., x, p+1p-+1,p)-
In principle, we can deal in the same manner with excita-
tions around 2.. These would involve solving a >33

block matrix in’y (depending upon the number of filled lev-
els belowp). Since each block in these matrices is itself a
matrix whose size depends on the number of reciprocal lat-
tice vectors that we keep in the calculation, solving for
higher-energy excitations becomes difficult numerically. We
will thus be satisfied here with the solution for intra and
inter-Landau level response functions with poles around zero
or w. (shifted, of course, by the Zeeman energy if spin-flip
excitations are considergdrhis includes the important case
of phonons and spin-wave excitations in the partially filled
level, as well as the cyclotron modes aroundand spin-flip
modes from or to the partially filled Landau level.

5. Equation-of-motion for y

The full response functioy is computed by including the
Hartree vertex corrections which, from E#12), gives

,B,v,6 _ T a,B,B,
ch;fnz,ns,nzt(k:w)_Xgll,gnf,ﬁ3,n4

(k,w)éa’(g&l&y

t0up 2 2 Xmen (K@)
Ns---Ng 7
XHn5,ne,n7,ng(k)Xr?ﬁﬁg’,ﬁB,nél(k,w),
(A34)
where
[Hnl,nz,n3,n4(k)]G'GEH(nl’nz’ng’n4;k+G)5G,G’ .
(A35)

To simplify this equation, we will again consider separately
the case of intra- and inter-Landau level excitations.
For intra-Landau level excitations, we write

,B,v,0 _~a,B,B, ~qaa
X ) =X 000 D S S Kifine
518

X Hig gy ng KOXT 00 (K, @), (A36)

Using our approximation of no coupling between excitations
of differentnw;, one may show that

[1Qn = {F75(k) + B35 (K [HP (k)

=X XG5 (k@) =BF 7K,

whereo is the spin index of the partially filled level and

(A37)
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[H()]s.e=H(nNNNk+G) e (A38) g PRI Xoplippal
The poles ofy7 7' contain the phonon mode. For spin X oy XRR g
waves, there is no Hartree vertex corrections and the relevant n
response function obeys
. - - — (1) (4)
Qo =[F} 5 (k=B (kXK K, Hy’' H
{I n [ p.p (k) p (k) ( )]}prpp (k,w) H,= H?z) HP3) , (A42)
=B, (k). (A39) no Hi
N . with
The most complex situation is that of inter-Landau level
density modegcyclotron modes In this case, we need to HD (K —H(n+1nnn+1k+G)s
consider the coupling between Landau levels as well as pdtn (Wlee=H(n+1lnnn+l; V96,6
tween spins. From Eq$A34) and (A26), we get
P G8A34) and (A26), we g [HA(K) ] o =H(n,n—1n,n+1:k+G)dg o,
[1Qn] —F(k)+B(k)V,(K) Ix P A (k,w)
[H3(k)]ge =H(n,n—1n—1n;k+G)dg o',
=B*%(k)4, +§“v“(k)ﬁ(k)[2 X7 BA(K, )|,
’ " [H9(K)lg.o=H(n+1n,n—1n;k+G)dg o - (A43)
(A40) Equation(A40) can be written in a more transparent form by
where defining the block matrices
|
+,+,+,+ +,+,+,+ +,+,—,— +,+,—,—
Xpp+1p+1p Xpp+ipp-1 Xpp+ip+ip Xpp+1pp-1
R S +,+,+,+ +,+,+,+ +,+,-,— +,+,—,—
— | X X | Xp~1pp+1p Xp-ippp-1 Xp-ipp+ip Xp-1ppp-1
X=|— — - — =+t -+ —— - (A44)
a4
X Xp.p+1p+1p Xpp+ipp-1 Xpp+ip+ip Xp,p+1p,p—1
- =+, + - =+, + - == - ==
Xp—1pp+ip AXp-1ppp-1 Xp-1pp+ip Xp-1ppp-1
|
B '§+,+ Ry B 'E++ 6
B=| _ _ F=| _ _
0 B~ 0 F~
[Bpps1 O [ Fppea(k) 0 0 0
B 0 B;;ip (Ad5) 0 F;,'*l,p(k) 0 0
0 0 Bpp+1 ’ 0 0 Fop+1(K) 0
| 0 0 0 p-1p | 0 0 0 p-1,p(K)
- o (A49)
- H,— H NP
V,= P T (A46) The equation-of-motion then takes the form
Hy Hp—X, - - - - ; =
[1Qpl =F(k) =B(K)Vy(K) Ix(k,w)=B(k). (A50)
[ Hfjl)—xﬁ,l) Hg‘)—xﬁf) Hﬁ,l) HE,A) We solve this matrix equation numerically to obtain response
H@ _x@) HE_xOG H® H® functions whose poles give the magnetoplasmon and inter-
. P PP P P . Landau level spin-flip excitations.
Hél) Hé4) Hél)—xf,l) HEJ4)_XEO4)
HE,Z’ HE,3) Hﬁ,z)—Xff) H§,3)—X§)3) APPENDIX B: DISPERSION RELATIONS IN THE LIQUID
B PHASE
(A47)
The equations of the previous section can be drastically
I 0 0 O simplified in the homogeneous or liquid phase since then
_|l1 ol o1 0o0 (Pn(G))=vybG Or (pn(G))=0. For example, for &wv
I=_ _|= 001 ol (A48) =<2, the dispersion relations for various modes can be com-
0 | puted analytically, and one may show they reproduce the
0 0 0 1 results of Kallin and Halperif? Larger filling factors are
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more complicated as they involve several different particleNotice that[Xoyo(O)—X(lo)(O)]>O so that the self-energy

hole excitations; the coupling among these has not beeand vertex correction introduce a positive shift in the disper-

treated correctly in previous studi&sAs concrete examples sion relation contrary to the result in Ref. 24. This was first

of the present method, we compute the collective modes fanoticed in Ref. 25. Similar problems with the inclusion of the

the liquid state at different filling factors and, in particular, self-energy terms appear in the higher-energy modes as well

for v=6.45, which corresponds to the filling factor of the in Ref. 24. Apart from this discrepancy, our results repro-

stripe crystal considered in this paper. duce correctly the dispersion relation of the higher-energy
Notice that, because of the degeneracy of the Landatnodes of the liquid phase.

levels, the liquid phase defined byp. (G))=,d¢0

with nonintegral filling factor is simply not a solution of 2. Liquid phase with 6<p<7

our Hartree-Fock equatiofEq. (A8)] at zero temperature. o ) . . .
At finite temperature, however, a liquid phase can be This is the case we consider in the stripe phase. It is thus

defined for any filling factor. EquatioA8) then fixes in_teresting to compare the dis_persior_1 re_lations obtained there
the chemical potential. The liquid phase discussed ifVith the corresponding ones in the liquid phase. We assume
this appendix should thus be thought as the limit ofthat the partially filled level is f=3,+), so that(p; (G))
very small temperature of the finite-temperature Hartree—:;ﬁe,o and (pm(G))= g for m<3. There is again, of
Fock solution. This liquid phase is stablas can be seen course, no phonon mode.

from the dispersion relationdut has higher energy than the  For the spin waveB; 5 (q)="7 and the dispersion, from
crystal phase. Eq. (A39) is simply ’

1. Liquid phase with O=»=<1

=g*ugB+ [ Xz 40— XM ()], (B4
As an application of the above formalism, we consider @swl ) =07 ueBF 1 X3 40) = X57(a)] B4)

here the simple case of<Ov<1. If the lowest Landau level

is partially occupied with up spins, theipg (G))=v35g . with wsw(0)=g* ugB as required.

All matrices are diagonal and do+ G—q which is not re- For spin-flip excitations with5S,= + 1, we must look at

stricted to the first Brillouin zone. X>534' which, from Eq.(A26) is coupled toys 55"~
SinceBg " (g) =0 it follows that there can be no phonon Solving this system of equation, we rapidly obtain that

mode. Moreover, sincey; (q)=v», we have from Eq. X3443 =0 so that the dispersion relation is obtained from

(A39): X2532  only. This makes sense, since the transition

(2,—)—(3,+) is not coupled to any other in the situation we
wsw(9)=g* ugB+ [ X 0) —X©O(q)]. (B1)  consider. We find then

-+

Since X{(q=0)=Xy(0), it follows that 0 ~
A @3l ose (k) =0 g B+ 3 ~(1-9X(K), (©5)

=g* ugB as required by Larmor’s theorem.
For the density modeég ;" (q)=v, and the dispersion

is where
@nn(0) = e+ [ Xo o 0) = X1.40) + HP (@) = X () ].
(B2) X, =Xad0)+Xzx(0) + X, 40) = X5 0) = X3(0)
In this equationwX, o(0) is the self-energy lost by the elec- _
tron leaving leveln=0 while vX;(0) is the self-energy —X3A0)—vX340). (B6)

gained in the new leveh=1. BecauseH{”(0)=0 and

Xo,(0)—X1.(0)—X{?(0)=0, it follows that we(0)= w, o
as required by Kohn's theorem. We remark that these thhe exchange and vertex corrections introduce a downward

o i .
results are identical to those of Ref. 24. Sh'lf:to'? ;)Siﬁf(lﬁ)) gﬁ;ﬁ) ng \xﬁr?&gze—e Fig' teﬁ;e wransition
. s o - =1,
ZVFZ;éhti;néiesr I;?;giuislevel spin-flip excitatioB,; (q) (2,+)—(3,~) is coupled to (3+)—(4,—) and we must
P solve Eq.(A26) that couplesys;45' " t0 x2543 ' . There
) is correspondingly two such spin-flip modes, with dispersion
YsHd) = 0c+ 9" ugB+ [ Xo o 0) =X (a)].  (B3)  given by

wsr (K)= 0t g* B+ 3[AS5 (K+ AL (01 VAL (K+AL (2—4[A55 (AL (k)= X)X (K)]T,
(B7)
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where +.- 5
2, =X300)+X31(0) +X30)+ ¥X340) = X4/ 0)
ALy (K= —oxXP(K), BS |
25 (=2, —vX§(K) (B8) X (0= Xe0), 611
+’_
Agy (k)= ;1 —XQ(k), (B9 In this case, the shift is positive in both modsse Fig. 6.
' For the density modes, three excitations are coupled:
with (2,+)—(3,+),(2,-)—(3,-), and (3;+)—(4,+). Since
- B34 (K)=0, x3443" (k,0)=0 and the 44 block matrix
S =X, o(0)+ X 4(0)+ Xp A 0) + 7X, 40) — X5, 0) in Eq. (A44) reduces to a 83 block matrix. The three col-
23 ' ’ ' ' ’ lective modes are found from the determinanf @b +i 6!
_X3,1(0)_X3,2(0)1 (B10) —F(k)—B(k)Vp(k)] in Eq. (A50), i.e., from
|
(0=wg)=Agy" (k) —HPM-XPM] —vHEK)
—(1-DHPK) -XP ()] (0-w)=Azs" (k) —(1-»HP(K) || =0, (B12)
—HE(k) ~HE (k) (0= we)=Azs (K)
|
where the simplest long-wavelength harmonic potential one can
L write down might be
Tt (k)= TTHDO (k) — x (@)
Az (=2 +3HPMO-X W], (B13) " f B ( &ux)z &uy)z o
== rNel —| +try|—] |-
P 2 X\ ax Y\ ay

AdsT (=D +(1-p)[HP k) -xP(k)], (B14
25 (K) ;3 (1=w)H ) =Xk, (B14) In the above equationy is a displacement field for the

stripes, the first term represents an elastic contribution for
. longitudinal compression of the stripes, and the second arises

Azy (k)= 2, +[HP ) -XxP k)], (B19  from interstripe repulsion. Collective modes are most easily
23 computed in terms of the Fourier transformed displacements,

and
b - 1 2 igr
S =3 -0, 816) o=z | e, ©2
3,4 3,4
o, whereA is the area of the system. To compute the collective
= 2 _7,)(33(0), (B17) modes in a single Landau level, one may impose the com-
23 23 ’ mutation relation®  [u*(qy),u¥(dz)]1=i1%5g,, g, The
- equation-of-motion
2 =X2d0)+Xz1(0)+Xp40) — X3 ¢(0) ~ X34(0)
2.3 dugy
Mo ey
~X340). (B18) ar ~Lua VI
These collectives modes are represented in Fig. 5. where u=x,y, after Fourier transform with respect to time
may be written in the form
APPENDIX C: HARMONIC THEORY
As discussed in the text, to an excellent approximation the o[ Dy@) - Dyy(a) | [u*(@))  [u¥(g)
phpnon mode .frequenc.ies computed in the TDHFA for the ! —Dy(q) —Dyy(@)/ | u¥(q) - uw(q)/
stripe phase disperse linearly frokp=0, with a slope that (C3

vanishes ak, =0. In this Appendix we demonstrate that this

behavior is consistent with a harmonic theory for a two-for a system with inversion symmetBy,,(q) =Dy,(d), and
dimensional charged smectic system in a magnetic field. Dehe eigenvalues of EqC) (i.e., the collective mode fre-
fining the direction parallel to the stripe as tkedirection, quenciegtake the general form
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() =*12D,(q)Dy,(q) — [Dyy(a) |2 (c4)  This has the correct behavior that collective modes are
) ) gapped except fog,=0. A further refinement necessary to
For Eq.(C1), D, ,=k,d;,.Dxy=0, sow(q)=q,dy. This  correctly describe the long-wavelength physics of this sys-
has the correct behavior of linear dispersion with respect tgem is the addition of the Coulomb interaction. This may be
gy, with a slope that vanishes 6,§—>0 However, the model simply modeled by adding a term of the form
has the incorrect behavior of containing zero modes along
both the g, andq, axes?®
The key missing ingredient in E4CY) is that the restor- q
ing force for motion perpendicular to the stripes comes only __— o o
from interstripe repulsion. We expect, however, that indi-With «c=2me/xa;, where in this last expressior, is the
vidual stripes resist bending, as in a smectic system. Thuglielectric constant of the host material, aadis the area per
one should add a curvature term to the energy, which in thi§lectron in the ground state. Finally, symmetry also allows

lg-u(q)|?

1
VCouIZE Kc; (Co)

case we take to be the addition of a term of the form
1 du* duY
1 d2uY 2 _- f o [ UH MY
VbendZEbe d2r<F) ] (CS) ny 2 ny d ( dx dy ) (C7)
X

Taking our potential energy to b€+ Vyengt Veout Vyys
Adding this toV, the resultingDy,(q) is modified tokya;  one may easily comput®,, , and use Eq(C4) to show
+ Kbqi. The collective mode frequencies then take the formg(q)<q, for ay>0 ::mdw(q)ocqi”2 for gq,=0. The sublinear

behavior of the collective mode gt,=0 is consistent with

o(Q) G\ ay + (kp/ Ky) G- the results of the TDHFA.
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