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We study transport through two quantum dots in series. Electron-electron interactions are taken into account
in the capacitive model with an additional interdot capacitance. The tunneling rates between the dots and the
outside reservoirs are assumed to be weak, therefore we treat it perturbatively and derive a master equation.
The interdot tunneling is treated in two limits: weak interdot tunneling is included perturbatively, whereas in
the opposite limit we assume that there is only one level in the dot in the relevant energy range such that the
Hamiltonian of the dots can be diagonalized exactly. We calculate the current through the structure as a
function of the two gate voltages. The well-known Coulomb oscillations of a single dot are changed into a
characteristic structure of boomerang-like shape. The transport and gate voltages can be time-dependent, and in
this case we find that the dependence of the Coulomb oscillations on the two gate voltages allows us to identify
which level dominates the transport.

[. INTRODUCTION the Fermi energy, transport will occur for pseudorandom val-
ues of the gate voltage. This phenomenon was caited
Semiconductor heterostructures have proven to be not jushastic Coulomb blockadeMatveevet al.” investigated the
the basis for very powerful and versatile devices, but theycase in which tunneling between the dots is much stronger
have also stimulated condensed-matter physics by providinthan tunneling to the outside reservoirs. They were able to
us with a model system with unique properties: the two-map the double dot onto an effective single dot and to apply
dimensional electron gd@DEG). In GaAs: Al Ga, _,As het-  earlier work on the electron box to this case.
erostructures, the difference in the band gaps of GaAs and In this work, we will study transport through double quan-
Al,Ga, _,As is used to create a one-dimensional potentiatlum dots under Coulomb-blockade conditions for both low
well (say, in thez direction, which leads to quantization of and high transparency between the dots. The transparency of
the z component of the wave vector. If the density of chargethe junctions coupling the dots to the left and right reservoirs
carriers and the temperature are arranged such that only tle always assumed to be low. Consequently, we perform an
lowest of these quantized levels is occupied, there are nexpansion in the tunneling rate and derive a master equation
degrees of freedom connected to motion in thdirection  for the occupation probabilities of the levels in the two dots.
any more, and in that sense we have a truly two-dimensionalVe also take into account time-dependent gate and transport
situation(notwithstanding the fact that the electron layer hasvoltages leading to photon-assisted tunneling. This has be-
a finite extension in the direction. Many important appli- come a very active area recenfsee Refs. 15-32 and Refs.
cations have been made possible by structuring the 2DEG b33 and 34 for reviews
gate electrodes. Applying a negative potential to a gate elec- The paper is organized as follows. In Sec. Il we introduce
trode put on top of a GaAs: 4Ga _,As heterostructure will  the Hamiltonian of two quantum dots connected by a tunnel
deplete the 2DEG below, which leads to the possibility tojunction and coupled capacitively. We discuss the model and
form narrow constrictions, quantum dots, and leads in whictihe new features produced by the second dot. In the follow-
the number of channelsnodes that contribute to transport ing section, we assume the dots to be weakly coupled such
can be tailored. that higher-order tunneling processes can be neglected. Both
Transport through ultrasmall islands of a 2DEguantum  the tunnel junctions to the reservoirs and the junction be-
dots has created a lot of interest in the past decade because@een the dots are treated in lowest-order perturbation theory
of interaction(Coulomb-blockade effects. Recently, trans- in the tunneling, i.e., we consider sequential tunneling. The
port through systems of double or multiple quantum dotsmaster equation derived in this section allows us to treat
under Coulomb-blockade conditions has been studied botarbitrarily many levels in each of the dots. In Sec. IV we
theoretically® and experimentally’*® Related experi- treat the case of strong coupling between the two dots. For
ments are described in Ref. 14, which investigates transpothe case of a single level within each dot, we can diagonalize
through one dot coupled to a second transverséwdoich is  the resulting 42 matrix which amounts to including tun-
not connected to the two reservoirs neling processes between the dots of all orders. We discuss
In two early theoretical papefstransport through a the width of the resonances at high transport voltage and
double dot was studied for the case in which both dots arshow that it is independent of temperates already dis-
coupled to a single gate voltage and the charging energies ofissed in van der Vaart al!'). We also include time-
the two dots are incommensurate. Since transport is onlgependent gate voltages, which allows us to discuss new
possible if rungs of both “Coulomb ladders” are situated atspectroscopic features of the double dot, viz., the shape of
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FIG. 1. System of a double quantum dot coupled to left and
right reservoirs by tunnel junctions.

FIG. 2. Potential landscape of a double quantum dot at finite

the resonance peaks as a functions of both gate voltages. transport voltagénonlinear case
Some of the algebraic details of Secs. Ill and IV have
been shifted to the appendixes. tunneling if the gate voltages are adjusted appropriately, that
is, if the following three conditions are satisfied: at the left

Il. MODEL junction,

The system we have in mind is shown in Fig. 1. Asusual, |, ¢ +E(Np,+1Npr)—Ee(NpL ,Npr); (5)
we describe the reservoirs by free fermions at temperdature pL
and chemical potentigk,, a«=L,R. The quantum dots are at the middle junction,
modeled by(zero-dimensionalsites coupled to the reser-
voirs and to each other by tunnel junctions. The Coulomb
interaction is taken into account using the capacitive model,
i.e., the tunnel junctions of the left, right, and middle junc-and at the right junction,
tion are supposed to have capacitan€gs Cg, andCy, .
The chemical potential of the two dots can be modified by
two gate voltage sources; andVyg coupled to the dots by )
gate capacitanceS,, andCyg. Our formalism can also be S€€ Fig. 2. _ _
used for time-dependent voltages, i.e., we start with a general Since the levels in the two dots are discrete, energy con-

Hamiltonian of the formH (t) = H o{t) + Hp(t) + H, where servation leads to the equality sign in E®). This is an
important difference from the case of a single dot for which

tunneling out of the dot is always into a continuum of states.
Higher-order tunneling processes will lead to a broadening
of these discrete states. We assume the coupling to the res-
describes the two reservoirs. Hekg,(t) = e, + A ,(t). ervoi_rs to be weak, i.e., the Iifgtime of the dot states.is de-
The interaction effects on the two dots are described bytermined mostly by the transmission through the barrier be-
tween the dots. The tunneling matrix element of this barrier
will therefore provide a new energy scale; if the transport
voltage u, — ug is Iarge,evtrans>|T,L,R|, the width of the

resonance peaks will be determined not by the temperature,
but by the matrix elemerif, | | itself.**

The ground state of the two dots as a function of the gate
voltages is illustrated in Fig. 3. Inside each hexagon, the

€, +Eei(Np +1Npr) = €_+Ecy(Np ,Npr+1); (6)

1r= € +E(NpL Npr+1) —Ecy(Np ,Npr),  (7)

Hres<t>=a;R 2k €ra(D) Al kq (1)

Hp(t)= =2LR lZ ?Ia(t)cracla"'Hch(NDLaNDR)y (2
where
Hen(NpL . Npr) = % NpL(NpL = 1) + yrNpr(Npr—1)

+ ymNp L Npr. ©)

Here,Np,, are the particle number operators of the left and -

right dot. The parametery, are functions of the capaci-
tances and are derived in Appendix A. The one-particle lev-

€
SR R B 7 (Y,

else can be shifted by a time-dependent gate voltage lead- ) 2.0 (1,0) /4 Ein
a J— ; H 0,1 i
ing to effective levels, (t)=¢ +Ap,(t), see Appendix A. 14
« o - 3,0,/ — (0.1 '
The dots are coupled to the reservoirs and to each other 0.2,/
by the tunneling Hamiltonian (2,1) ’ (I
(1,2) 3

HT:E 2| (Tk|aalaC|a+ H.C.)+I2I (T|L|RC|TLC|R+ HC)
a K, LR
4

a
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FIG. 3. Ground-state occupation numbefdp( ,Npg) of the

The basic phenomenon that we are interested in is thgystem as a function of the two gate voltages. Transport is only
Coulomb blockade. As in the case of one dot, transporpossible in points where three regions meet, whereas within each

through the system is possible orfp lowest order in the hexagon electron numbers are fixed.
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particle numbers on each dot are well-defined and fixed, i.e., The result is in qualitatively %ood agreement with the ex-

no transport is possible in linear respon@ad to lowest periments of van der Vaagt al*

order in the tunneling At the corners of each hexagon, three

states are energetically degenerate, e.g., the system can go IV. COHERENT TUNNELING

from state(1,1) via (2,1) and (1,2) to state(1,1), which Now we would like to address strong tunneling through

means that one electron has passed through both dots.  the barrier between the dots. In this case, it is not sufficient
In the following two sections, we will calculate this cur- to consider only lowest-order processes. For the simplest

rent first in the sequentidincoherenklimit which is realized  situation of only one level in each dot, we obtain an effective

if the tunneling between the dots is weak. We will also treat2x 2 problem and a significantly simplified charging part of

the coherent case if there is only one level in each dot in théhe Hamiltonian:

relevant energy range. In this case, we can diagonalize the

. ) - TN TR L
effective (2<2) matrix and take into account tunnel pro- Hen(NpL ,Npr) = YMCLCLCRCR - (13
cesses to all orders. We shift the part of the tunneling operator describing the

barrier between the dots in the operatdp(t). Writing

1. SEQUENTIAL TUNNELING Hp(t) in the occupation number basjs)=|n_,ng), i.e.,

In order to examine the transport properties of the systenﬂm: 00, 12)=11.1. 13)=10.1). |4)=[1.0}, we obtain
for sequential tunneling, we calculate the current through the 0O O 0 0
system as a function of the transport voltagg,,s and the 0 = 0 0

) - = ] €
gate voltages/y, ,Vyg or alternativelye;, ,e;r (which are Hp () = LR (14)
linear functions of the gate voltageShe current from res- 0O O €Rr =l
ervoir « to dote («=L,R) is given by 0 0 T.a ?L
d R J— __ J—
|t = _Eama)e(t) _ (8)  Wheree g=e_+eg+ yy . Only the state$l,0) and|0,1) are

coupled by the middle barrier, therefore Eti4) will split up

The tunneling part of the Hamiltonian introduced in Sec. Il isi" @ diagonal part and a2 matrixHp re{t), which has to

: ; ; be diagonalized.
treated as a small perturbation. After changing to the inter= .
b ging We assume the time dependence to be of the form

action picture[ Hr—Hty(t)] we perform an expansion in _ - .
H1w(t) and obtain for the current Ap()=Ap () =Apg(t) leading to

R TiR
10 =-e3 |1 Lo s (C)INGS) - NPt HD’feit):H%vfed“D“):(TLR e | TR0
ss’ ) (15
where |s) are eigenstates of the unperturbed peg(t) vr;r;(tarrii the time-dependent part is proportional to the unit
=Ht) +Hp(t) of the Hamiltonian and wherePy(t) The time-independent matrix is then trivially diagonal-
=_<s|g(t)|s) indicates dlggona}l elements of _the d_ensny Masized, leading to the eigenvalues
trix. The number of particles in the reservairis given by . .
N,=(s|N,|s) and the transition rate frofs) to |s') is de- €e;=€ te and e_=er—e, (16)
noted byl's g (t,t'): where
2 -1 2 2
Po-o(1)= Rel(sHruD]s') (' [Hrult)[9)} e=pller e lenme) " ATAT 7

(10) With this convention,e, <e_. The (orthonormal eigen-
) . _ states have the form
The occupation probabilitieB,(t) are calculated by using

the master equation with the rates given in Ed)): Tir

Iny=1n_=0)= ———=[n.=1ng=0)
Ve +|Tirl?

€

] t
PS('[)ZZ fﬁxrs—s/(t:t,)[Ps’(t’)_ Ps(t,)]dt,-

+ = |nL OrnR 1>1
The stategs) can be factorized in a paft) describing the Ve +|T Rl
reservoirs and a paft) for the two dots. R
Since we assume weak coupling between reservoirs and €
dots, we can factorize In,=0n_=1)= —\/Ai In.=1ng=0)
2 2
€+ [TLrl
Ps(t)=<S|Q(t)|S>=<¢,I’|Q(t)ll’,¢>=P(/,’eqpr(t) (12 .
i ilibri i TLR
in an equilibrium partP, o4 for the reservoirs and a part _ In,=0ng=1),

P.(t) for the system of the two dots. The derivation of the [~ 5
Fourier-transformed master equation and the Fourier coeffi- €+ [Tl
cients of the current is given in Appendix B. (18
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FIG. 5. Transport via the effective state obtained by diago-
nalizing the matrix given in Eq14).

0
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case with time-dependent gate or transport voltages. In both
cases we assume the transport voltage and the temperature to

FIG. 4. Current(in units of el') at intermediate coupling be small compared with the charging energy and the matrix
(|T.rI=0.072yy) between the two dots. Here, gate and transportelement| T, g|. As shown in Fig. 3, transport through the
voltages are time-independeikgT=0.035y), ,€ Virans=0.023yy; , system(in the lowest orderis only possible in those points
with T=T Tr/(T' +TR)]. where three hexagons meet, i.€0,0), (1,0), and (0,1) or

) (0,1, (1,1, and(1,0. Varying €, and eg [which are linear

Wheren+_ (n_) are the occupation numbers_ of the eﬂe?t'vefunctions of the gate voitages, see EAS5)] we expect to
levels with the energy . (e_). In order to write the Hamil-  ,pserve two peaks along the diagonal of Fig. 4. One of them
tonian in the new basis, we define creation and annihilationy.-,rs when the levet, is equal to the Fermi energy, see

operators C* Cicl .c-) for the eigenstates in Eq18), Fig. 5. The other one shows up wh?n and?R is shifted
- down by 2T x|+ yum - Now, an electron at the Fermi energy

1 2

C1;: Tir CIJF € C;r{, (19) can occupy the Ieyed_ because its energy is .high enough to
/;zJr T Rl2 /;2+ T a2 provide the charging energy necessary to bring in the second

electron.
- Having diagonalized the system of the two levels in two
dots, we have taken into account tunnel processes of all or-

LR €
= + .
C+ o~ 12 20'- 5 1~ 12 ZCR’ ders between them. One important consequence of the
€ +|Tgl €+ (TRl

*

higher-order terms is the shoulders of the peaks shown in
Fig. 4 leading to a boomerang-like shape. This can be easily

when we start withe, = eg and shift eitheEL or:R to higher
energies, see E@16). The shoulders get less pronounced on

T € T TR 1 understood considering transport through legeland not-
C-=—r CLm¢ Cr» ing that the energy of this level will not change substantially
Ve + [T gl? Ve +|Tgl? e —

T . . . — .
increasing eitheg, or eg because the coupling of the level

€ LR
c_= CL— Cr.
Ve2+ [T, o2 ) Va2 1T, of2 R e, to the reservoirs gets weaker. If we consider transport
€+ (TRl €+ |Trl . . .
through the levek_ , we get the same situation on lowering

This leads to the following Hamiltoniatwhich is diagonal — gne of the levelse,. This means that the boomerang-like
in the occupation number bagidescribing the two dots and  stryctures in Fig. 4 are opened towards higtewer) values

the barrier between them: of €, for the level ate, (e_). Increasing the couplingl g|

Ho(t)= A~ DIct e 4Te +An(D e o of the dots to each othe_r produces more pronounced shoul-
o(t)=Lex+Ap(t)]ercy +le p(t)]e ders and enlarges the distance of the peaks.
+ymchc.clc_. (20) Time-dependent transport voltages or gate voltages lead

to side bands of the levels, ande_ at distancenf w. Now
Whereas the reservoir Hamiltonian is unchanged, the tuntransport is also possible through these side bands, which
neling part in the new basis reads leads to satellite peakgFig. 6), i.e., copies of the
boomerang-like structures shifted by w. In Fig. 7 we
. show a contour plot of this situation and in Fig. 8 the dc
Hi=—= 2> {Tu(Tiral C, +eaj Cc ) current for the same parameters.
Ve +|Trl? &
+Tir(€alre s — Tiralre )+ H.Cl. (21) i

trans

Now we perform an expansion i+ and write down a mas-
ter equation for the effective statés, ,n_) as in Sec. Ill.
Further details of the calculation and the system of linear
equations for the occupation probabilities are given in Ap-
pendix C.

In the following, we want to discuss the results first for  FIG. 6. Transport through a side band af giving rise to the
the simple casé@ime-independent voltageand then for the satellite peaks shown in the following two figures.
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1 s FIG. 9. Although the state_ is occupied, there is a finite prob-

4 -2 ability for the states, to be empty because of tunneling out of the
side bande’, above the Fermi energy. Therefore, peaks are observ-
able which are hidden when gate and transport voltages are time-
independent.

2 -15 -1 -05 0 05 1

€ [

FIG. 7. Contour plot of the dc currerfin units ofel’) in the  the assumption of no coupling to an external bath is justified
linear case at intermediate couplingT(g|=0.072y,,) and with  and foreVy,,&|T g, the width of the peaks is determined
periodic time dependence of the gate and transport voltiiges by | T g| even forkgT>|T g| (see Fig. 10
=0.011yy, €Vyane=0.023yy, Aw=0.3yy, AZ=0.23yy,, where
= FR/(TL+ TR ACKNOWLEDGMENTS

Another effect of time-dependent voltages is that the oc- We would like to thank R. H. Blick, Ph. Brune, J. Kig,
cupation probability is finite for the state in which the level L. P. Kouwenhoven, T. H. Oosterkamp, and G. Sclior
€_ is occupied andt ., is empty. Therefore, it is possible to useful discussions. The support of the Deutsche Forschungs-
observe peaks which are hidden in the time-independergemeinschaft through SFB 195 is gratefully acknowledged.
case'® see Fig. 9

The height of these peaks depends strongly on the ratio APPENDIX A: HAMILTONIAN
between’iw and coupling| T gl (remember that the differ- . . _ . .
encee_—e, is given by 2T g|). The contribution of the In this section we will describe the charging part

side bands is modulated by Bessel functions, i.e., only those (Np, ,Npgr) of the Hamiltonian more explicitly. We use

side bands with energies. =% w contribute significantly. the well-known capacitive model to calculate the charging

For 2|T r|>% w, the peaks hidden in the time-independentenergy. We will take into account the on-site interaction in

case are small, because the first side band,ofs at lower each of the two dots and also the interaction between the two

energy thare_ and therefore the probability for the state in dots. The relevant capacities and voltages are shown in Fig.

which e_ is occupied and . is empty becomes nearly neg- 11.

ligible. For the opposite case [P g| <% w) these peaks are After a systematic and straightforward calculation, we ob-

pronounced. The boomerang-like shoulders are much shortéain the following expression for the Hamiltonian describing

for peaks that are hidden in the time-independent case arttie two dots(charging plus one-particle energies; tunneling

for satellite peaks which belong to them for the same reasois excluded:

(see Fig. 7. They disappear when either or eg is shifted

Eii;anough thate, (e_) passes the first side band ef HD(t):a;R Iz fla(t)CITaCIa""Hch(NDLvNDR) (A1)
Another important effect visible in transport through two

coupled dots is that the peaks are not necessarily broaden®dth

by temperaturé! When we fix the levels in one dot and shift

the levels in the other one u@own), the energy scale of

a

Tl b important. F Il t t hich ke T=1 [Tyl
Lr| becomes important. For small temperatuf@swhic 06 } \
kg T=10 [| T 4l1
| [eT] 05 } \
" 04 keT=20 [[T;]
0.1 =
3,
0.05 - 03
0
02 KeT=50 [T,
0.1 ks T=100 [|T,4]]
0.0

-60 -50 -40 -30 -20
& [[Tiall

FIG. 8. dc currentin units ofel’) as a function of the two gate FIG. 10. For|T gl<kgT and|T, g|<eVians the width of the
voltages in the square region marked in Fig. 7. peaks becomes independent of temperataid, {,=80 T g|).
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Q J} @ equilibrium and a parfr) describing the system of the two
by 1 @ H dots. As a consequence, we obtain for the rates in the master
C, €, C, equation
Co—— Con —— 2m .
Fs_s(t,t")= 7 ZTRE |Tkla| 5¢'¢ka5r’r|a
N — X{Ax, 80, (Ekal L )Nke(P)[ 1=y (1)]
y v AN A (Bl ke ) 1=Nga(h)INy (1)}
L R
(| o [ 2m 2
1 1 + - |§R |T|L|R| 5¢,¢5r,,|L’IR
FIG. 11. Circuit diagram of the double quantum dot. X{AADL 'ADR(ElL ,|Rat.t')n|L(|’)[1— an(r)]
Hen(Now . Npgr) = % Np (Npp — 1) + veNpr(Npgr—1) +AADR'ADL(ElR'IL’t't,)[l_nlL(r)]an(r)}
+yuNp Npg. (A2) (B2)

Here, we have introduced the constams,yg,yw Which ~ With
depend on the capacitances as

C sCrs e <¢|¢’>:1kl o Do) = Ot - (B3)
Lxbry™hm T The statespy,, differ from the ¢ in that the occupation of the
for «a=L,R, and level ke is inverted, i.e.,
2e*Cy {nkfaf(¢ka)=nk/a/(¢) for k'a’#ka
T 2 A4 a : ro
m C sCrs—Ch’ (A% K N (Bra) =1 N i (¢)  Tor K a’ =ka.

(B4)
whereC, y=C,+Cgy,+Cy andq,=C,V,+CyVy,- _ . _

The time-dependent part of the charging energy is causedn® states; andr, ,_are defined in the same way, i.e., the
by time-dependent gate voltages. It is linear in the particleoccupation of the level given in the index is inverted. In
number operators and therefore leads to a shift of the onedrder to write the rates more clearly, we also defined the
particle energies, function A, ,(E,t,t") by

1
+ 2 YmAr(t)

2 e
Y| au(t)— >

. ()=¢€ - e

1 i [t
) AX,y(E,t,t'):%Re{ex%%ﬁ[x(r)—y(r)]df
(AS5) i
. +%E(t—t’))]. (B5)

1
+ Z)’MQL(t)

— o 2 e
a(U=€ .~ 5| 7Rl G~ 5
The shift of the level energy consists of a constant and &ye divide the energy of the levéde and |, into a time-
time-dependent part; since we are not interested in the df?ndependent part and a time-dependent pagf(t)= el
tailed dependences, we write the level energy eagt) +A,(1), € ()=€ +Ap,(t), and denote the time-

=€ +Apa(t). independent energy differences for the various processes by

APPENDIX B: MASTER EQUATION Erat, = €ka— €1, — Ua(Npa(r),Npa(r))
In this section we show some details of the calculation of 0
the Fourier-transformed master equation and the expression Ei, ka=€1,~ €kat UaNpa(r) = 1Npu(r))
for the current. The unitary transformation of the Hamil- (B6)
tonian EIL*'R: E|L_€|R+ UL(NDL(r)_l,NDR(r))

Jitto= exp( B fli‘f:[Hres(rHHD(r)]dr (B1) ~ Ur(Nor(r):Nou () —1)
0

produces the part of the Hamiltonian describing the tunnel- Eigi =€~ € T UrNpr(r) —1Np (1))
ing in the interaction picture. To calculate the matrix ele- —U_(Np.(r),Npg(r)—1).
ments, we factorize the statgs)=|¢)|r) into a part|¢)

describing the reservoirs which are assumed to be in therm#lere
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U(Npo ,Npa) =Ech(Npe+1Npa) —Ecn(Npo ,Npy)

2me t
1(t) = = > > |Tk|a|2[f dt'Ax sy, (Bkai tit")
=279,Npa(r)+ yuNpy (B7) rokla -
t
is the charging energy which is needed to bring another elec- X Pr(t’)fa(ega)[l— n|u(r)]— f dt’AADH A,
tron to the dotx when there are aILeagyDa electrons on the *°°
dot « andNp, electrons on the dat («=R whena=L and
vice versa. Using these rates we can write the master equa- ><(E|a,ka,t,t’)P,(t’)[1— fa(eﬁa)]n,a(r)}. (B10)
tion in the following form:

In the following we Fourier-transform the master equation

o first for the sequential case and then for the coherent case.
P (t)=—— > T |2 We apply time-dependent gate or transport voltages with fre-
ho @ kT, e guencyw,
t o — — A Qi
X f dt'As, sy (Exal LE{PH(t) o (ef,) A% (1) =A (1)~ Apa(t) =Ag sin(wt+ 5,), -
. @D a B11

. AM(t)=ApL () — Apr(t) = Ag' sin(wt + dy),
—P, (t[1-f ()]} (1-n )
“ leading to probabilities and currents that are periodic with

e , the same frequency, i.eB,(t+T)=P,(t) with T=27/w.
+ f_wdt Aag, A, (Bl kaotith) Therefore, we can expand, e.g., the probabilities in a Fourier
series:

©

X{P(t)[1=f ol €)1 = Pr, (1) F o el

P()= > P (ne " (B12)
2’77 2 t , , n=-—w
T lLZ}R Tl [J'mdt Aag, bl B e tit!) and
xX{P.(t")—P t)tn (1—n, )+L<—R|, (B8 1(7 .
{P:(t") rlLlR( )y ( Ig) } (B8) Pr(n):Tf P.(H)envtdt. (B13)
0
taking into account Inserting Eq.(B11) and using the following identity for

Bessel functiond,(z)

o]

2 Mo )Py = falela), (B9) explizcosg)= > iMy(2)expimg)  (BL4)
¢ m=—«
and
wheref is the Fermi function. To get an expression for the _
current, we insert the rates E@®2) into Eq. (9) taking into In(=2)=J-n(2), (B19)
account Eq(B9) and obtain we can write the functiol\, ,(E,t,t") as

1 it i ,
AAa'ADa(Eka’la’t’t,):ﬁRe{ eX[{ %J;iASS'r(wT—F 5a)]d7-+%Eka,|a(t_t ))]

1 Al , i |
- zwhreﬂ{ ! %[Coiwt +6,)— cogwt+8,) ]+ gEka,la(t_t )

+cC.C.
o a a
:_1 > jmem'y ﬂ I, ﬁ gim=m")3,
2mh T Mhow) ™\ o
X[eiw(mt’7m’t)e(i/h)Eka’|u(t7t’)+eiw(mtfm’t’)ef(i/ﬁ)EkaJa(tf’(’)]_ (Bl6)

We include a finite lifetime for the quantum-mechanical levels in the dot described by an intrinsidyjdthow we are able
to perform the integration over and obtain
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t where we used the delta functigif{E — E(k)a) to exchangee
j mdtIAAa:Aoa(Eka,'a't't,)Pr(t/) and ega in the energy differencEkaJa.

. Now it is possible to perform the integration over the
_ 2 wim*m’ei(m*m’)ﬁa\]m continuum of energy states in the terms describing transi-

- 2 tions between a dot and a reservoir. We obtain
nmm’' =—o
o AD(
0 0 itm=—m' —
x| = | =2 | gi(m=—m"—n)at 1
(ﬁw)Jm (ﬁw)e E dEh(Eka,Ia)m’Jrn,n—mfa(E)
><h(Eka,Ia)m’-#n,n—m- (817)
Here we have introduced the function =t [iAly+fiw(m'+n)+E (Npa,Npg)+ 1]
h(E ! " ! B18 | [wlﬂ 2 heo(m' 1)+, (Noy Nop)
= s by - w y o
(B)rs Al'g—i(hor—E) Al'p—i(hws+E)’ (B19) 2w 2 2w o "Da> D
We insertfdES(E— eE ) in each contribution of the mas- L ) (1 B _
i L~ Kad T . il ]| —¢| 5 —i5=[ho(n—m)—E, (Np,,Np,
ter equation describing transitions between the discrete states o | =9 2 277[ @ ) 'a( pa:Noa)
of the dots and the continuum of states of the reservoirs and
substitute +ihT ] ] (B21)

: (B19)

(f dE)Zﬂ'E | Tk |25(E_52a)zrfy(f dE . . .
K « @ with the digamma functiony(x)=d InT'(x)/dx and the en-

This substitution is correct only if the tunneling matrix ele- ergy expressiof; (No,,Noa) =€, +Uo(Nou(r),Nou(r))
ments are independent of energy and if the density of states M« - o )
is constant, which is the case for energies close to the Fermi The definition of the functiorY,
energy.
These results lead to the following expression for the firstya (= .-
. K | ( Da Da)r,s
term S; of the master equation: a

:fa[iﬁrbr+hwr+ Ela(NDa YND;)JF/-La]

2 t
S=- % 2 2 'Tk'ff AUAS g, (Brag 0 i
B 277( v

1
—+i%[ﬁwr+E|a(NDa'NDZ)+iﬁFbr])

X P (1) (e0,)[ 11y ()] 2
1 B .
B N P(n) e —w(——|—[hws—E|a(NDa,ND;)+|thr])],
__EI r'“nmsz i el(momog, 2 2m
m (B22)

X 25 I 2o gm=m'=motry _n (r)] o .
hol "™\ o ta allows us to simplify the Fourier-transformed master equa-

tion. We find a system of linear equations for the Fourier

1 coefficients of the occupation probabilitiéal particle num-
Xﬂf dEN(Eyat, ) +nn-mfalB), (820 bers refer to the state) of the two dots:

VR Ag
(in’hw—El Ff’an,a)Pr(n’)=—2| T (1=n )Py (n)+ 2 T X inmelnn Wa%(%)Jmm,n

[23
@ a,l, n,m

Ag

X %)YQ<NDa—n|H,NDa>m+nf,nm<1—2n.a>[Pr<n>+Pr, (MI+ 3 [Ty, /7
« L'R

Ao

M M
.n—n’ _ifn—n’ A0
X;ﬂ jn—n e|(n n )5M‘]m hw)‘]m+n’—n(%){h(ElL,IR)m+n',n—m[Pr(n)nlL(1_nIR)

—Pr (M@= )N IHRE  Dn-mar+nl PN (=0 )0y

Py (M (1)1 (823

In the same way we Fourier-transform the expression for the currentB&q) and obtain
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15"(n )———E 2 TiPnn+ 7 2 2 Th2 Pmin e,

Ag

Ao
X %) Im+ns n(%) YIC:(NDa_ nlaa ND;)ern’,nfm- (B24)

The intrinsic widthI',, which we have included means that detailed balance may be violated leading to unphysical conse-
guences such as regimes in which the conductance is negative. In order to restore detailed balance at the barrier between the
dots, we assume the presence of an external bath coupled to the dots.

Consequently, we change the rates at the barrier between the dots such that transitions which absoEbcenefthe
external bath are exponentially suppressed by a factor-e2E). This is equivalent to modifying the master equation Eg.

(B23) by replacing the functionb(E), s by 'ﬁ(E),,S defined in the following way:

h(E)rs= [1-O(for —E)(1—efE-hen)] ¢

1
ATy —i(hor—E)" AT —i(hws+E)

X[1—0O(—fhws—E)(1—efEThos))], (B25)

APPENDIX C: COHERENT TUNNELING BETWEEN THE DOTS

After the system of the two dots containing one level each has been exactly diagonalized, the calculation of the occupation
probabilities and the current in the coherent case is performed as in Appendix B. We obtain the following system of linear
equations for the Fourier coefficients of the occupation probabilitiete that all of the particle numbers refer to the staf:

{in"hol €+ |T g2 1—[| TLrl T L+ €T rIn, — [T +| T Rl TrIN_}P,(n")

= —[|TRIPT + €TRI(1-n, )P, (n')~[ €T +|TRI*TRI(1—N_)P, (n')

e Ag Ag
+FL§1 inon e|(n " )ﬁLJm(%)Jm+n’—n(% {|TLR|2YI-_%—(n—)m+n’,n—m(1_2n+)[Pr(n)+Pr+(n)]

Ag
ho

~ . I —n’ Ag
+62YE(”+)m+n’,nfm(1_2”—)[Pr(n)+Pr?(n)]}"'FRnEm inTnelnTn wRJm(%)Jern’n(

X{EYR (N )minrn-m(1=2n )[P(n)+ P, (M]+|TRIPYR( Dminn-m(1=2n)[P(n)+P, (M1} (C1)

Here, we define

i
Yi(ni)r,s:fa(iﬁrbr'i_hwr + Ea,i+Ma)_ _( Wy

1 B . 1
o= —+|Z(hwr+Ea’i+|ﬁFbr) -l =

B :
5 2—|Z(ﬁws—Ea:+|th,)>]

(C2

whereE, . =€+ + yyn: —u,.
The Fourier coefficients of the tunneling current are given in the coherent caseebpnly give I{"" since current
conservation leads tdy"=—1"")

F P R |
3 PN TRl +en_ I+ 2 WE P.(n)i" e nIag
LR

e
|tun ——
D Tirl

Ag

Ag
X %)Jm+n’—n<%){|TLR|2Yi(n—)m+n’,n—m+ 62YE(”+)m+n’,n—m}- (C3)
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