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Transport through double quantum dots
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We study transport through two quantum dots in series. Electron-electron interactions are taken into account
in the capacitive model with an additional interdot capacitance. The tunneling rates between the dots and the
outside reservoirs are assumed to be weak, therefore we treat it perturbatively and derive a master equation.
The interdot tunneling is treated in two limits: weak interdot tunneling is included perturbatively, whereas in
the opposite limit we assume that there is only one level in the dot in the relevant energy range such that the
Hamiltonian of the dots can be diagonalized exactly. We calculate the current through the structure as a
function of the two gate voltages. The well-known Coulomb oscillations of a single dot are changed into a
characteristic structure of boomerang-like shape. The transport and gate voltages can be time-dependent, and in
this case we find that the dependence of the Coulomb oscillations on the two gate voltages allows us to identify
which level dominates the transport.
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I. INTRODUCTION

Semiconductor heterostructures have proven to be not
the basis for very powerful and versatile devices, but th
have also stimulated condensed-matter physics by provi
us with a model system with unique properties: the tw
dimensional electron gas~2DEG!. In GaAs:AlxGa12xAs het-
erostructures, the difference in the band gaps of GaAs
Al xGa12xAs is used to create a one-dimensional poten
well ~say, in thez direction!, which leads to quantization o
thez component of the wave vector. If the density of char
carriers and the temperature are arranged such that onl
lowest of these quantized levels is occupied, there are
degrees of freedom connected to motion in thez direction
any more, and in that sense we have a truly two-dimensio
situation~notwithstanding the fact that the electron layer h
a finite extension in thez direction!. Many important appli-
cations have been made possible by structuring the 2DEG
gate electrodes. Applying a negative potential to a gate e
trode put on top of a GaAs:AlxGa12xAs heterostructure will
deplete the 2DEG below, which leads to the possibility
form narrow constrictions, quantum dots, and leads in wh
the number of channels~modes! that contribute to transpor
can be tailored.1

Transport through ultrasmall islands of a 2DEG~quantum
dots! has created a lot of interest in the past decade bec
of interaction~Coulomb-blockade! effects. Recently, trans
port through systems of double or multiple quantum d
under Coulomb-blockade conditions has been studied b
theoretically2–9 and experimentally.10–13 Related experi-
ments are described in Ref. 14, which investigates trans
through one dot coupled to a second transverse dot~which is
not connected to the two reservoirs!.

In two early theoretical papers,3 transport through a
double dot was studied for the case in which both dots
coupled to a single gate voltage and the charging energie
the two dots are incommensurate. Since transport is o
possible if rungs of both ‘‘Coulomb ladders’’ are situated
PRB 620163-1829/2000/62~3!/1961~10!/$15.00
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the Fermi energy, transport will occur for pseudorandom v
ues of the gate voltage. This phenomenon was calledsto-
chastic Coulomb blockade.3 Matveevet al.7 investigated the
case in which tunneling between the dots is much stron
than tunneling to the outside reservoirs. They were able
map the double dot onto an effective single dot and to ap
earlier work on the electron box to this case.

In this work, we will study transport through double qua
tum dots under Coulomb-blockade conditions for both lo
and high transparency between the dots. The transparen
the junctions coupling the dots to the left and right reservo
is always assumed to be low. Consequently, we perform
expansion in the tunneling rate and derive a master equa
for the occupation probabilities of the levels in the two do
We also take into account time-dependent gate and trans
voltages leading to photon-assisted tunneling. This has
come a very active area recently~see Refs. 15–32 and Ref
33 and 34 for reviews!.

The paper is organized as follows. In Sec. II we introdu
the Hamiltonian of two quantum dots connected by a tun
junction and coupled capacitively. We discuss the model
the new features produced by the second dot. In the follo
ing section, we assume the dots to be weakly coupled s
that higher-order tunneling processes can be neglected.
the tunnel junctions to the reservoirs and the junction
tween the dots are treated in lowest-order perturbation the
in the tunneling, i.e., we consider sequential tunneling. T
master equation derived in this section allows us to tr
arbitrarily many levels in each of the dots. In Sec. IV w
treat the case of strong coupling between the two dots.
the case of a single level within each dot, we can diagona
the resulting 232 matrix which amounts to including tun
neling processes between the dots of all orders. We dis
the width of the resonances at high transport voltage
show that it is independent of temperature~as already dis-
cussed in van der Vaartet al.11!. We also include time-
dependent gate voltages, which allows us to discuss
spectroscopic features of the double dot, viz., the shap
1961 ©2000 The American Physical Society
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1962 PRB 62R. ZIEGLER, C. BRUDER, AND HERBERT SCHOELLER
the resonance peaks as a functions of both gate voltage
Some of the algebraic details of Secs. III and IV ha

been shifted to the appendixes.

II. MODEL

The system we have in mind is shown in Fig. 1. As usu
we describe the reservoirs by free fermions at temperatuT
and chemical potentialma , a5L,R. The quantum dots are
modeled by~zero-dimensional! sites coupled to the rese
voirs and to each other by tunnel junctions. The Coulo
interaction is taken into account using the capacitive mo
i.e., the tunnel junctions of the left, right, and middle jun
tion are supposed to have capacitancesCL , CR , and CM .
The chemical potential of the two dots can be modified
two gate voltage sourcesVgL andVgR coupled to the dots by
gate capacitancesCgL andCgR . Our formalism can also be
used for time-dependent voltages, i.e., we start with a gen
Hamiltonian of the formH(t)5H res(t)1HD(t)1HT , where

Hres~ t !5 (
a5L,R

(
k

eka~ t !aka
† aka ~1!

describes the two reservoirs. Here,eka(t)5eka
0 1Da(t).

The interaction effects on the two dots are described

HD~ t !5 (
a5L,R

(
l a

ē l a
~ t !cl a

† cl a
1Hch~N̂DL ,N̂DR!, ~2!

where

Hch~N̂DL ,N̂DR!5gLN̂DL~N̂DL21!1gRN̂DR~N̂DR21!

1gMN̂DLN̂DR . ~3!

Here,N̂Da are the particle number operators of the left a
right dot. The parametersga are functions of the capaci
tances and are derived in Appendix A. The one-particle l
else l a

can be shifted by a time-dependent gate voltage le

ing to effective levelsē l a
(t)5e l a

1DDa(t), see Appendix A.
The dots are coupled to the reservoirs and to each o

by the tunneling Hamiltonian

HT5(
a

(
k,l a

~Tkla
aka

† cl a
1H.c.!1 (

l L ,l R
~Tl Ll R

cl L
† cl R

1H.c.!.

~4!

The basic phenomenon that we are interested in is
Coulomb blockade. As in the case of one dot, transp
through the system is possible only~to lowest order in the

FIG. 1. System of a double quantum dot coupled to left a
right reservoirs by tunnel junctions.
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tunneling! if the gate voltages are adjusted appropriately, t
is, if the following three conditions are satisfied: at the le
junction,

mL>ēNDL111Ech~NDL11,NDR!2Ech~NDL ,NDR!; ~5!

at the middle junction,

ē l L
1Ech~NDL11,NDR!5 ē l R

1Ech~NDL ,NDR11!; ~6!

and at the right junction,

mR<ē l R
1Ech~NDL ,NDR11!2Ech~NDL ,NDR!, ~7!

see Fig. 2.
Since the levels in the two dots are discrete, energy c

servation leads to the equality sign in Eq.~6!. This is an
important difference from the case of a single dot for whi
tunneling out of the dot is always into a continuum of stat
Higher-order tunneling processes will lead to a broaden
of these discrete states. We assume the coupling to the
ervoirs to be weak, i.e., the lifetime of the dot states is
termined mostly by the transmission through the barrier
tween the dots. The tunneling matrix element of this barr
will therefore provide a new energy scale; if the transp
voltage mL2mR is large, eVtrans@uTl Ll R

u, the width of the
resonance peaks will be determined not by the temperat
but by the matrix elementuTl Ll R

u itself.11

The ground state of the two dots as a function of the g
voltages is illustrated in Fig. 3. Inside each hexagon,

d

FIG. 2. Potential landscape of a double quantum dot at fin
transport voltage~nonlinear case!.

FIG. 3. Ground-state occupation numbers (NDL ,NDR) of the
system as a function of the two gate voltages. Transport is o
possible in points where three regions meet, whereas within e
hexagon electron numbers are fixed.
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PRB 62 1963TRANSPORT THROUGH DOUBLE QUANTUM DOTS
particle numbers on each dot are well-defined and fixed,
no transport is possible in linear response~and to lowest
order in the tunneling!. At the corners of each hexagon, thr
states are energetically degenerate, e.g., the system ca
from state ~1,1! via ~2,1! and ~1,2! to state ~1,1!, which
means that one electron has passed through both dots.

In the following two sections, we will calculate this cu
rent first in the sequential~incoherent! limit which is realized
if the tunneling between the dots is weak. We will also tre
the coherent case if there is only one level in each dot in
relevant energy range. In this case, we can diagonalize
effective (232) matrix and take into account tunnel pr
cesses to all orders.

III. SEQUENTIAL TUNNELING

In order to examine the transport properties of the sys
for sequential tunneling, we calculate the current through
system as a function of the transport voltageVtrans and the
gate voltagesVgL ,VgR or alternativelyē1L ,ē1R ~which are
linear functions of the gate voltages!. The current from res-
ervoir a to dot a (a5L,R) is given by

I a
tun~ t !52e

d

dt
^N̂a&%(t) . ~8!

The tunneling part of the Hamiltonian introduced in Sec. II
treated as a small perturbation. After changing to the in
action picture@HT→HTW(t)# we perform an expansion in
HTW(t) and obtain for the current

I a
tun~ t !52e(

s,s8
E

2`

t

Gs2s8~ t,t8!@Na~s8!2Na~s!#Ps~ t8!dt8,

~9!

where us& are eigenstates of the unperturbed partH0(t)
5H res(t)1HD(t) of the Hamiltonian and wherePs(t)
5^su%(t)us& indicates diagonal elements of the density m
trix. The number of particles in the reservoira is given by
Na5^suN̂aus& and the transition rate fromus& to us8& is de-
noted byGs2s8(t,t8):

Gs2s8~ t,t8!5
2

\2
Re$^suHTW~ t !us8&^s8uHTW~ t8!us&%.

~10!

The occupation probabilitiesPs(t) are calculated by using
the master equation with the rates given in Eq.~10!:

Ṗs~ t !5(
s8

E
2`

t

Gs2s8~ t,t8!@Ps8~ t8!2Ps~ t8!#dt8.

~11!

The statesus& can be factorized in a partuf& describing the
reservoirs and a partur & for the two dots.

Since we assume weak coupling between reservoirs
dots, we can factorize

Ps~ t !5^su%~ t !us&5^f,r u%~ t !ur ,f&5Pf,eqPr~ t ! ~12!

in an equilibrium partPf,eq for the reservoirs and a pa
Pr(t) for the system of the two dots. The derivation of t
Fourier-transformed master equation and the Fourier co
cients of the current is given in Appendix B
.,
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The result is in qualitatively good agreement with the e
periments of van der Vaartet al.11

IV. COHERENT TUNNELING

Now we would like to address strong tunneling throu
the barrier between the dots. In this case, it is not suffici
to consider only lowest-order processes. For the simp
situation of only one level in each dot, we obtain an effect
232 problem and a significantly simplified charging part
the Hamiltonian:

Hch~N̂DL ,N̂DR!5gMcL
†cLcR

†cR . ~13!

We shift the part of the tunneling operator describing t
barrier between the dots in the operatorHD(t). Writing
HD(t) in the occupation number basisur &5unL ,nR&, i.e.,
$u1&5u0,0&, u2&5u1,1&, u3&5u0,1&, u4&5u1,0&%, we obtain

HD~ t !5S 0 0 0 0

0 ēLR 0 0

0 0 ēR TLR*

0 0 TLR ēL

D , ~14!

whereēLR[ēL1 ēR1gM . Only the statesu1,0& andu0,1& are
coupled by the middle barrier, therefore Eq.~14! will split up
in a diagonal part and a 232 matrixHD,red(t), which has to
be diagonalized.

We assume the time dependence to be of the fo
DD(t)[DDL(t)5DDR(t) leading to

HD,red~ t !5HD,red
0 1DD~ t !5S eR TLR*

TLR eL
D 1DD~ t !,

~15!

where the time-dependent part is proportional to the u
matrix.

The time-independent matrix is then trivially diagona
ized, leading to the eigenvalues

e15eL1 ê and e25eR2 ê, ~16!

where

ê5
1

2
@~eR2eL!2A~eR2eL!214uTLRu2#. ~17!

With this convention,e1,e2 . The ~orthonormal! eigen-
states have the form

un151,n250&5
TLR

Aê21uTLRu2
unL51,nR50&

1
ê

Aê21uTLRu2
unL50,nR51&,

un150,n251&5
ê

Aê21uTLRu2
unL51,nR50&

2
TLR*

Aê21uTLRu2
unL50,nR51&,

~18!
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1964 PRB 62R. ZIEGLER, C. BRUDER, AND HERBERT SCHOELLER
wheren1 (n2) are the occupation numbers of the effecti
levels with the energye1 (e2). In order to write the Hamil-
tonian in the new basis, we define creation and annihila
operators (c1

† ,c1 ,c2
† ,c2) for the eigenstates in Eq.~18!,

c1
† 5

TLR

Aê21uTLRu2
cL

†1
ê

Aê21uTLRu2
cR

† , ~19!

c15
TLR*

Aê21uTLRu2
cL1

ê

Aê21uTLRu2
cR ,

c2
† 5

ê

Aê21uTLRu2
cL

†2
TLR*

Aê21uTLRu2
cR

† ,

c25
ê

Aê21uTLRu2
cL2

TLR

Aê21uTLRu2
cR .

This leads to the following Hamiltonian~which is diagonal
in the occupation number basis! describing the two dots an
the barrier between them:

HD~ t !5@e11DD~ t !#c1
† c11@e21DD~ t !#c2

† c2

1gMc1
† c1c2

† c2 . ~20!

Whereas the reservoir Hamiltonian is unchanged, the
neling part in the new basis reads

HT5
1

Aê21uTLRu2
(

k
$TkL~TLRakL

† c11 êakL
† c2!

1TkR~ êakR
† c12TLR* akR

† c2!1H.c.%. ~21!

Now we perform an expansion inHT and write down a mas
ter equation for the effective statesun1 ,n2& as in Sec. III.
Further details of the calculation and the system of lin
equations for the occupation probabilities are given in A
pendix C.

In the following, we want to discuss the results first f
the simple case~time-independent voltages! and then for the

FIG. 4. Current ~in units of eG) at intermediate coupling
(uTLRu50.072gM) between the two dots. Here, gate and transp
voltages are time-independent@kBT50.035gM ,eVtrans50.023gM ,
with G[GLGR /(GL1GR)].
n

n-

r
-

case with time-dependent gate or transport voltages. In b
cases we assume the transport voltage and the temperatu
be small compared with the charging energy and the ma
element uTLRu. As shown in Fig. 3, transport through th
system~in the lowest order! is only possible in those point
where three hexagons meet, i.e.,~0,0!, ~1,0!, and ~0,1! or
~0,1!, ~1,1!, and ~1,0!. Varying ēL and ēR @which are linear
functions of the gate voltages, see Eq.~A5!# we expect to
observe two peaks along the diagonal of Fig. 4. One of th
occurs when the levele1 is equal to the Fermi energy, se
Fig. 5. The other one shows up whenēL and ēR is shifted
down by 2uTLRu1gM . Now, an electron at the Fermi energ
can occupy the levele2 because its energy is high enough
provide the charging energy necessary to bring in the sec
electron.

Having diagonalized the system of the two levels in tw
dots, we have taken into account tunnel processes of al
ders between them. One important consequence of
higher-order terms is the shoulders of the peaks shown
Fig. 4 leading to a boomerang-like shape. This can be ea
understood considering transport through levele1 and not-
ing that the energy of this level will not change substantia
when we start withēL5 ēR and shift eitherēL or ēR to higher
energies, see Eq.~16!. The shoulders get less pronounced
increasing eitherēL or ēR because the coupling of the leve
e1 to the reservoirs gets weaker. If we consider transp
through the levele2 , we get the same situation on lowerin
one of the levelsēa . This means that the boomerang-lik
structures in Fig. 4 are opened towards higher~lower! values
of ēa for the level ate1 (e2). Increasing the couplinguTLRu
of the dots to each other produces more pronounced sh
ders and enlarges the distance of the peaks.

Time-dependent transport voltages or gate voltages
to side bands of the levelse1 ande2 at distancen\v. Now
transport is also possible through these side bands, w
leads to satellite peaks~Fig. 6!, i.e., copies of the
boomerang-like structures shifted by6\v. In Fig. 7 we
show a contour plot of this situation and in Fig. 8 the
current for the same parameters.

rt

FIG. 5. Transport via the effective statee1 obtained by diago-
nalizing the matrix given in Eq.~14!.

FIG. 6. Transport through a side band ofe1 giving rise to the
satellite peaks shown in the following two figures.
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PRB 62 1965TRANSPORT THROUGH DOUBLE QUANTUM DOTS
Another effect of time-dependent voltages is that the
cupation probability is finite for the state in which the lev
e2 is occupied ande1 is empty. Therefore, it is possible t
observe peaks which are hidden in the time-independ
case,19 see Fig. 9

The height of these peaks depends strongly on the r
between\v and couplinguTLRu ~remember that the differ
encee22e1 is given by 2uTLRu). The contribution of the
side bands is modulated by Bessel functions, i.e., only th
side bands with energiese66\v contribute significantly.
For 2uTLRu.\v, the peaks hidden in the time-independe
case are small, because the first side band ofe1 is at lower
energy thane2 and therefore the probability for the state
which e2 is occupied ande1 is empty becomes nearly neg
ligible. For the opposite case (2uTLRu,\v) these peaks are
pronounced. The boomerang-like shoulders are much sh
for peaks that are hidden in the time-independent case
for satellite peaks which belong to them for the same rea
~see Fig. 7!. They disappear when eitherēL or ēR is shifted
far enough thate1 (e2) passes the first side band ofe2

(e1).
Another important effect visible in transport through tw

coupled dots is that the peaks are not necessarily broad
by temperature.11 When we fix the levels in one dot and sh
the levels in the other one up~down!, the energy scale o
uTLRu becomes important. For small temperatures~at which

FIG. 8. dc current~in units ofeG) as a function of the two gate
voltages in the square region marked in Fig. 7.

FIG. 7. Contour plot of the dc current~in units of eG) in the
linear case at intermediate coupling (uTLRu50.072gM) and with
periodic time dependence of the gate and transport voltages@kBT
50.011gM , eVtrans50.023gM , \v50.3gM , D0

a50.23gM , where
G[GLGR /(GL1GR)].
-

nt

io

se

t
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n

ed

the assumption of no coupling to an external bath is justifi!
and foreVtrans@uTLRu, the width of the peaks is determine
by uTLRu even forkBT@uTLRu ~see Fig. 10!.

ACKNOWLEDGMENTS

We would like to thank R. H. Blick, Ph. Brune, J. Ko¨nig,
L. P. Kouwenhoven, T. H. Oosterkamp, and G. Scho¨n for
useful discussions. The support of the Deutsche Forschu
gemeinschaft through SFB 195 is gratefully acknowledge

APPENDIX A: HAMILTONIAN

In this section we will describe the charging pa
Hch(N̂DL ,N̂DR) of the Hamiltonian more explicitly. We use
the well-known capacitive model to calculate the charg
energy. We will take into account the on-site interaction
each of the two dots and also the interaction between the
dots. The relevant capacities and voltages are shown in
11.

After a systematic and straightforward calculation, we o
tain the following expression for the Hamiltonian describi
the two dots~charging plus one-particle energies; tunneli
is excluded!:

HD~ t !5 (
a5L,R

(
l a

ē l a
~ t !cl a

† cl a
1Hch~N̂DL ,N̂DR! ~A1!

with

FIG. 9. Although the statee2 is occupied, there is a finite prob
ability for the statee1 to be empty because of tunneling out of th
side bande18 above the Fermi energy. Therefore, peaks are obs
able which are hidden when gate and transport voltages are t
independent.

FIG. 10. For uTLRu,kBT and uTLRu!eVtrans the width of the
peaks becomes independent of temperature (eVtrans580uTLRu).
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1966 PRB 62R. ZIEGLER, C. BRUDER, AND HERBERT SCHOELLER
Hch~N̂DL ,N̂DR!5gLN̂DL~N̂DL21!1gRN̂DR~N̂DR21!

1gMN̂DLN̂DR . ~A2!

Here, we have introduced the constantsgL ,gR ,gM which
depend on the capacitances as

ga5
CL,SCR,S

CL,SCR,S2CM
2

e2

2Ca,S
~A3!

for a5L,R, and

gM[
2e2CM

CL,SCR,S2CM
2

, ~A4!

whereCa,S[Ca1Cga1CM andqa[CaVa1CgaVga .
The time-dependent part of the charging energy is cau

by time-dependent gate voltages. It is linear in the part
number operators and therefore leads to a shift of the o
particle energies,

ē l L
~ t !5e l L

0 2
2

e FgLS qL~ t !2
e

2D1
1

4
gMqR~ t !G ,

~A5!

ē l R
~ t !5e l R

0 2
2

e FgRS qR~ t !2
e

2D1
1

4
gMqL~ t !G .

The shift of the level energy consists of a constant an
time-dependent part; since we are not interested in the
tailed dependences, we write the level energy asē l a

(t)

5e l a
1DDa(t).

APPENDIX B: MASTER EQUATION

In this section we show some details of the calculation
the Fourier-transformed master equation and the expres
for the current. The unitary transformation of the Ham
tonian

U~ t,t0!5 expS 2
i

\Et0

t

@H res~t!1HD~t!#dt D ~B1!

produces the part of the Hamiltonian describing the tunn
ing in the interaction picture. To calculate the matrix e
ments, we factorize the statesus&5uf&ur & into a part uf&
describing the reservoirs which are assumed to be in the

FIG. 11. Circuit diagram of the double quantum dot.
ed
e
e-

a
e-

f
on

l-
-

al

equilibrium and a partur & describing the system of the tw
dots. As a consequence, we obtain for the rates in the ma
equation

Gs2s8~ t,t8!5
2p

\ (
a5L,R

(
k,l a

uTkla
u2df8fka

d r 8r l a

3$ADa ,DDa
~Eka,l a

,t,t8!nka~f!@12nl a
~r !#

1ADDa ,Da
~El a ,ka ,t,t8!@12nka~f!#nl a

~r !%

1
2p

\ (
l L ,l R

uTl Ll R
u2df8fd r 8r l L ,l R

3$ADDL ,DDR
~El L ,l R

,t,t8!nl L
~r !@12nl R

~r !#

1ADDR ,DDL
~El R ,l L

,t,t8!@12nl L
~r !#nl R

~r !%

~B2!

with

^fuf8&5)
ka

dnka(f)nka(f8)[dff8 . ~B3!

The statesfka differ from thef in that the occupation of the
level ka is inverted, i.e.,

fka :H nk8a8~fka!5nk8a8~f! for k8a8Þka

nk8a8~fka!512nk8a8~f! for k8a85ka.
~B4!

The statesr l a
andr l Ll R

are defined in the same way, i.e., th
occupation of the level given in the index is inverted.
order to write the rates more clearly, we also defined
function Ax,y(E,t,t8) by

Ax,y~E,t,t8!5
1

p\
ReH expS i

\Et8

t

@x~t!2y~t!#dt

1
i

\
E~ t2t8! D J . ~B5!

We divide the energy of the levelka and l a into a time-
independent part and a time-dependent parteka(t)5eka

0

1Da(t), ē l a
(t)5e l a

1DDa(t), and denote the time
independent energy differences for the various processe

Eka,l a
5eka

0 2e l a
2Ua„NDa~r !,NDā~r !…

El a ,ka5e l a
2eka

0 1Ua„NDa~r !21,NDā~r !…

~B6!
El L ,l R

5e l L
2e l R

1UL„NDL~r !21,NDR~r !…

2UR„NDR~r !,NDL~r !21…

El R ,l L
5e l R

2e l L
1UR„NDR~r !21,NDL~r !…

2UL„NDL~r !,NDR~r !21….

Here
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Ua~NDa ,NDā!5Ech~NDa11,NDā!2Ech~NDa ,NDā!

52gaNDa~r !1gMNDā ~B7!

is the charging energy which is needed to bring another e
tron to the dota when there are alreadyNDa electrons on the
dot a andNDā electrons on the dotā (ā5R whena5L and
vice versa!. Using these rates we can write the master eq
tion in the following form:

Ṗr~ t !52
2p

\ (
a

(
k,l a

uTkla
u2

3F E
2`

t

dt8ADa ,DDa
~Eka,l a

,t,t8!$Pr~ t8! f a~eka
0 !

2Pr l a
~ t8!@12 f a~eka

0 !#%~12nl a
!

1E
2`

t

dt8ADDa ,Da
~El a ,ka ,t,t8!

3$Pr~ t8!@12 f a~eka
0 !#2Pr l a

~ t8! f a~eka
0 !%nl aG

2
2p

\ (
l L ,l R

uTl Ll R
u2F E

2`

t

dt8ADDL ,DDR
~El L ,l R

,t,t8!

3$Pr~ t8!2Pr l Ll R
~ t8!%nl L

~12nl R
!1L↔RG , ~B8!

taking into account

(
f

nka~f!Pf,eq5 f a~eka
0 !, ~B9!

where f is the Fermi function. To get an expression for t
current, we insert the rates Eq.~B2! into Eq. ~9! taking into
account Eq.~B9! and obtain
c-

a-

I a
tun~ t !5

2pe

\ (
r

(
k,l a

uTkla
u2F E

2`

t

dt8ADa ,DDa
~Eka,l a

,t,t8!

3Pr~ t8! f a~eka
0 !@12nl a

~r !#2E
2`

t

dt8ADDa ,Da

3~El a ,ka ,t,t8!Pr~ t8!@12 f a~eka
0 !#nl a

~r !G . ~B10!

In the following we Fourier-transform the master equati
first for the sequential case and then for the coherent c
We apply time-dependent gate or transport voltages with
quencyv,

Da~ t !5Da~ t !2DDa~ t !5D0
a sin~vt1da!,

~B11!
DM~ t !5DDL~ t !2DDR~ t !5D0

M sin~vt1dM !,

leading to probabilities and currents that are periodic w
the same frequency, i.e.,Pr(t1T)5Pr(t) with T52p/v.
Therefore, we can expand, e.g., the probabilities in a Fou
series:

Pr~ t !5 (
n52`

`

Pr~n!e2 invt ~B12!

and

Pr~n!5
1

TE0

T

Pr~ t !einvtdt. ~B13!

Inserting Eq. ~B11! and using the following identity for
Bessel functionsJk(z)

exp~ iz cosf!5 (
m52`

`

i mJm~z!exp~ imf! ~B14!

and

Jm~2z!5J2m~z!, ~B15!

we can write the functionAx,y(E,t,t8) as
ADa ,DDa
~Eka,l a

,t,t8!5
1

p\
ReH expS i

\Et8

t

@D0
a sin~vt1da!#dt1

i

\
Eka,l a

~ t2t8! D J
5

1

2p\ H expS i
D0

a

\v
@cos~vt81da!2 cos~vt1da!#1

i

\
Eka,l a

~ t2t8! D 1c.c.J
5

1

2p\ (
m,m852`

`

i m2m8JmS D0
a

\v D Jm8S D0
a

\v Dei (m2m8)da

3@eiv(mt82m8t)e( i /\)Eka,l a
(t2t8)1eiv(mt2m8t8)e2( i /\)Eka,l a

(t2t8)#. ~B16!

We include a finite lifetime for the quantum-mechanical levels in the dot described by an intrinsic widthGbr . Now we are able
to perform the integration overt8 and obtain
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E
2`

t

dt8ADa ,DDa
~Eka,l a

,t,t8!Pr~ t8!

5 (
n,m,m852`

`
Pr~n!

2p
i m2m8ei (m2m8)daJm

3S D0
a

\v D Jm8S D0
a

\v Dei (m2m82n)vt

3h~Eka,l a
!m81n,n2m . ~B17!

Here we have introduced the function

h~E!r ,s5
1

\Gbr2 i ~\vr 2E!
1

1

\Gbr2 i ~\vs1E!
. ~B18!

We insert*dEd(E2eka
0 ) in each contribution of the mas

ter equation describing transitions between the discrete s
of the dots and the continuum of states of the reservoirs
substitute

S E dED2p(
k

uTkla
u2d~E2eka

0 !5G l a
a S E dED . ~B19!

This substitution is correct only if the tunneling matrix el
ments are independent of energy and if the density of st
is constant, which is the case for energies close to the Fe
energy.

These results lead to the following expression for the fi
term S1 of the master equation:

S152
2p

\ (
a

(
k,l a

uTkla
u2E

2`

t

dt8ADa ,DDa
~Eka,l a

,t,t8!

3Pr~ t8! f a~eka
0 !@12nl a

~r !#

52(
a,l a

G l a
a (

n,m,m8

Pr~n!

\
i m2m8ei (m2m8)daJm

3S D0
a

\v D Jm8S D0
a

\v Dei (m2m82n)vt@12nł a
~r !#

3
1

2pE dEh~Eka,l a
!m81n,n2mf a~E!, ~B20!
tes
d

es
mi

t

where we used the delta functiond(E2eka
0 ) to exchangeE

andeka
0 in the energy differenceEka,l a

.
Now it is possible to perform the integration over th

continuum of energy states in the terms describing tra
tions between a dot and a reservoir. We obtain

1

2pE dEh~Eka,l a
!m81n,n2mf a~E!

5 f a@ i\Gbr1\v~m81n!1El a
~NDa ,NDā!1ma#

2
i

2p H cS 1

2
1 i

b

2p
@\v~m81n!1El a

~NDa ,NDā!

1 i\Gbr# D2cS 1

2
2 i

b

2p
@\v~n2m!2El a

~NDa ,NDā!

1 i\Gbr# D J , ~B21!

with the digamma functionc(x)5d ln G(x)/dx and the en-
ergy expressionEl a

(NDa ,NDā)5e l a
1Ua„NDa(r ),NDā(r )…

2ma .
The definition of the functionY,

Yl a
a ~NDa ,NDā!r ,s

5 f a@ i\Gbr1\vr 1El a
~NDa ,NDā!1ma#

2
i

2p H cS 1

2
1 i

b

2p
@\vr 1El a

~NDa ,NDā!1 i\Gbr# D
2cS 1

2
2 i

b

2p
@\vs2El a

~NDa ,NDā!1 i\Gbr# D J ,

~B22!

allows us to simplify the Fourier-transformed master eq
tion. We find a system of linear equations for the Four
coefficients of the occupation probabilities~all particle num-
bers refer to the stateur & of the two dots!:
S in8\v2(
a,l a

G l a
a nl aD Pr~n8!52(

a,l a
G l a

a ~12nl a
!Pr l a

~n8!1(
a,l a

G l a
a (

n,m
i n2n8ei (n2n8)daJmS D0

a

\v D Jm1n82n

3S D0
a

\v DYl a
a ~NDa2nl a

,NDā!m1n8,n2m~122nl a
!@Pr~n!1Pr l a

~n!#1 (
l L ,l R

uTl Ll R
u2

3(
n,m

i n2n8ei (n2n8)dMJmS D0
M

\v D Jm1n82nS D0
M

\v D $h~El L ,l R
!m1n8,n2m@Pr~n!nl L

~12nl R
!

2Pr l L ,l R
~n!~12nl L

!nl R
#1h~El R ,l L

!n2m,n81m@Pr~n!~12nl L
!nl R

2Pr l L ,l R
~n!nl L

~12nl R
!#%. ~B23!

In the same way we Fourier-transform the expression for the current Eq.~B10! and obtain
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I a
tun~n8!52

e

\ (
r

(
l a

G l a
a Pr~n8!nl a

1
e

\ (
r

(
l a

G l a
a (

n,m
Pr~n!i n2n8ei (n2n8)daJm

3S D0
a

\v D Jm1n82nS D0
a

\v DYl a
a ~NDa2nl a

,NDā!m1n8,n2m . ~B24!

The intrinsic widthGbr which we have included means that detailed balance may be violated leading to unphysical
quences such as regimes in which the conductance is negative. In order to restore detailed balance at the barrier be
dots, we assume the presence of an external bath coupled to the dots.

Consequently, we change the rates at the barrier between the dots such that transitions which absorb energyE out of the
external bath are exponentially suppressed by a factor exp(2bDE). This is equivalent to modifying the master equation E
~B23! by replacing the functionsh(E) r ,s by h̃(E) r ,s defined in the following way:

h̃~E!r ,s5
1

\Gbr2 i ~\vr 2E!
@12Q~\vr 2E!~12eb(E2\vr )!#1

1

\Gbr2 i ~\vs1E!

3@12Q~2\vs2E!~12eb(E1\vs)!#. ~B25!

APPENDIX C: COHERENT TUNNELING BETWEEN THE DOTS

After the system of the two dots containing one level each has been exactly diagonalized, the calculation of the oc
probabilities and the current in the coherent case is performed as in Appendix B. We obtain the following system o
equations for the Fourier coefficients of the occupation probabilities~note that all of the particle numbers refer to the stateur &):

$ in8\v@ê21uTLRu2#2@ uTLRu2GL1 ê2GR#n12@ ê2GL1uTLRu2GR#n2%Pr~n8!

52@ uTLRu2GL1 ê2GR#~12n1!Pr 1
~n8!2@ ê2GL1uTLRu2GR#~12n2!Pr 2

~n8!

1GL(
n,m

i n2n8ei (n2n8)dLJmS D0
L

\v D Jm1n82nS D0
L

\v D $uTLRu2Y1
L ~n2!m1n8,n2m~122n1!@Pr~n!1Pr 1

~n!#

1 ê2Y2
L ~n1!m1n8,n2m~122n2!@Pr~n!1Pr 2

~n!#%1GR(
n,m

i n2n8ei (n2n8)dRJmS D0
R

\v D Jm1n82nS D0
R

\v D
3$ê2Y1

R ~n2!m1n8,n2m~122n1!@Pr~n!1Pr 1
~n!#1uTLRu2Y2

R ~n1!m1n8,n2m~122n2!@Pr~n!1Pr 2
~n!#%. ~C1!

Here, we define

Y6
a ~n7!r ,s5 f a~ i\Gbr1\vr 1Ea,61ma!2

i

2p H cS 1

2
1 i

b

2p
~\vr 1Ea,61 i\Gbr! D2cS 1

2
2 i

b

2p
~\vs2Ea,61 i\Gbr! D J

~C2!

whereEa,65e61gMn72ma .
The Fourier coefficients of the tunneling current are given in the coherent case by~we only give I L

tun since current
conservation leads toI R

tun52I L
tun)

I L
tun~n8!52

e

\ (
r

GL

ê21uTLRu2
Pr~n8!@ uTLRu2n11 ê2n2#1

e

\ (
r

GL

ê21uTLRu2
(
n,m

Pr~n!i n2n8ei (n2n8)dLJm

3S D0
L

\v D Jm1n82nS D0
L

\v D $uTLRu2Y1
L ~n2!m1n8,n2m1 ê2Y2

L ~n1!m1n8,n2m%. ~C3!
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