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Mean-field potential approach to thermodynamic properties of metal: Al as a prototype
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We propose a classical mean-field potential~MFP! model for evaluating the vibrational contribution of the
lattice ion to the total free-energy, where the mean-field potentialg(r ,V) seen by the lattice ion is entirely and
yet simply derived from the 0-K total-energy volume curve. The physical basis of the MFP is supported by the
fact that, as a second-order approximation of the MFP, the three commonly used expressions for the Gru¨neisen
parameter, i.e., that due to Slater, that due to Dugdale and MacDonald, and that for the free-volume theory, can
be explicitly deduced. Furthermore, a first-principles scheme for calculating thermodynamic properties of a
metal is developed. The present scheme permits efficient computation and allows us to investigate almost all
kinds of thermodynamic parameters, since it only needs the 0-K total-energy curve and electronic density of
states as the inputs. Taking aluminum~Al ! as a prototype, we demonstrate that our scheme correctly describes
most of the thermodynamic properties, such as static compression, shockwave compression, thermal expan-
sion, bulk modulus, and anharmonic effect.
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I. INTRODUCTION

The thermodynamic property study of materials is of i
portance to extend our knowledge on their specific behav
when undergoing severe constraints such as high-pres
and high-temperature environment. This is particularly t
since the coming of modern technologies~geophysics, astro
physics, particles accelerator, fission and fusion reactor, e!,
from which we always expect new advances and innovati
in materials science to reach higher performances. Fro
fundamental point of view, there are needs for refinement
theoretical models for the computation of a more accur
equation of state~EOS! of the material.1,2

The study of the temperature dependence of the prope
of materials requires a proper account of nuclear motions
thermal excitation of electrons. While a high accuracy can
obtained in the 0-Kab initio calculation,3,4 theab initio ther-
modynamic calculation still remains a great challenge to
The basic difficulty in the systematic theoretical calculati
of the thermodynamic properties of a substance by mean
statistical physics is how to incorporate correctly the str
turally complicated interparticle interaction of the man
body problem. In this regard, some theoretical methods h
been developed, such as the Debye-Gru¨neisen theory by
Moruzzi, Janak, and Schwarz,5 the elaborate generalize
pseudopotential theory~GPT! by Moriarty,6 the delicate
tight-binding total-energy classical cell model by Wass
man, Stixrude, and Cohen,7 and the well-known free-volume
theory by Kirkwood8 and by Vashchenko and Zubarev.9

In previous work,10 we briefly reported a classical mea
field potential@in this paper, we change mean-field potent
~MFP! for CMF used in Ref. 10# approach for evaluating th
vibrational contribution of the lattice ion to the total fre
energy. Anab initio scheme for calculating thermodynam
properties of a substance was furthermore developed in
junction with~i! the accurate calculations of 0-K total-ener
curve with the full-potential linearized augmented plan
wave ~LAPW! method11 within the generalized gradient ap
proximation~GGA!,12 and~ii ! the accurate calculation of th
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thermal excitation of electrons with one-dimensional nume
cal integration. Coupled further with the treatment of t
contribution from the magnetic disorder to the free energy
generalizing the Hund’s rule, the well-knowng-a isostruc-
tural transition, the experimental Hugoniot state~shock-wave
compressed state!, and the 300-K static equation of sta
~EOS! for metal Ce had been well described. The MF
model had been also applied for the five reference metals
Cu, Ta, Mo, and W, indicating that both the calculat
Hugoniot states and 293-K isotherms fell well in the expe
mental uncertainties.13

In this paper, the MFP model is expanded to more gen
cases where as a second-order approximation of the m
field potential~MFP!, the three commonly used expressio
for the Grüneisen parameter, i.e., that due to Slater,14 that
due to Dugdale and MacDonald,15 and that for the free-
volume theory,9 can all be explicitly deduced on the commo
physical basis while the MFPg(r ,V), seen by the lattice ion
is still constructed in terms of the 0-K total energy. Takin
aluminum ~Al ! as a prototype, we demonstrate that o
scheme correctly describes most of the thermodynamic p
erties.

The rest of this work is organized as follows. In Sec. II w
present the construction of the MFP. The details of the 0
LAPW-GGA total-energy calculations for aluminum a
given in Sec. III. In Sec. IV we present our calculated th
modynamic properties. Finally, Sec. V contains our su
mary.

II. MEAN-FIELD POTENTIAL APPROACH

Our analysis will be confined to the classical regime. F
a system with a given averaged atomic volumeV and a given
temperatureT, the Helmholtz free energyF(V,T) per ion
can be written as16

F~V,T!5Ec~V!1Fion~V,T!1Fel~V,T!, ~1!

where Ec represents the static 0-K total energy,Fion the
vibrational free energy of the lattice ion, andFel the free
196 ©2000 The American Physical Society
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PRB 62 197MEAN-FIELD POTENTIAL APPROACH TO . . .
energy due to the thermal excitation of electrons.
Generally, the static 0-K total energyEc in Eq. ~1! can be

evaluated very accurately by the modern first-principles te
nique, such as the LAPW method. Therefore the major is
is how to treat the thermal vibration of the lattice ion. In th
paper, we take the mean-field approximation as the star
point.

A. Construction of the mean-field potential

It is known that the vibrational contribution to the par
tion function takes the formZion5exp(2NFion /kBT), where
N is the total number of lattice ions. Under the mean-fie
approximation, the classical form ofZion can be expresse
as7–9

Zion5S mkBT

2p\2D 3N/2H E exp@2g~r ,V!/kBT#dr J N

, ~2!

wherem is the weight of the lattice ion. Notice thatg(r ,V)
in Eq. ~2! is referred as the mean-field potential~MFP!.

The central issue of the mean-field theory is how to c
culate the MFPg(r ,V). In this regard, the free-volum
theory9 was chosen to calculate the MFPg(r ,V) by the av-
erage of the empirically derived pairwise potentials, wh
the tight-binding total-energy classical cell model7 was cho-
sen to calculate the MFPg(r ,V) by the tight-binding total-
energy method for which the parameters were determine
the first-principles LAPW calculation.

Inspired by the three commonly used expressions for
Grüneisen parameter,9,14,15 we find a rather different way
For a crystal with the inversion symmetry, one can imag
that the vibration of the lattice ion is symmetrical with r
spect to its equilibrium position, i.e., the MFP seen by
lattice ion should be invariant under the inversion operati
Based on these physical consideration, we have simply c
structed the MFP in terms of theab initio 0-K total energy
Ec as follows

g~r ,V!5
1

2
@Ec~R1r !1Ec~R2r !22Ec~R!#

1
l

2

r

R
@Ec~R1r !2Ec~R2r !#, ~3!

wherer is the distance that the lattice ion deviates from
equilibrium position,R is the lattice constant with respect
V, andl is an integer and its physical significance is de
onstrated below.

Let us make a Taylor expansion of Eq.~3!; we have

g~r ,V!5k~V!r 21O~r 4!, ~4!

where

k~V!5
1

R2l

]

]R S R2l
]Ec~R!

]R D , ~5!

and O(r 4), which represents the term higher than the th
order, may in part account for the so-called softening of p
non. We note that Eq.~4! does not contain the third-~or the
odd-! order term. Furthermore, the Gru¨neisen paramete
g ion(V) from Debye-Gru¨neisen theory5 can be estimated by
-
e

g

l-

by

e

e

e
.
n-

-

-

g ion(V)52] ln n/]ln V, wheren stands for the phonon fre
quency. Sincen.@k(V)/m#1/2, we obtain

g ion~V!5
1

3
~l21!2

V

2

]2~PcV
~2/3!(l11)

!/]V2

]~PcV
~2/3!(l11)

!/]V
, ~6!

wherePc(V)52]Ec(V)/]V is the so-called cold pressure
One can now read the physical significance ofl. In par-

ticular, if l521, Eq. ~6! is reduced to the expression o
Grüneisen parameter by Slater,14 if l50, Eq.~6! is reduced
to the expression of Gru¨neisen parameter due to Dugdale a
MacDonald,15 and if l51, Eq.~6! is reduced to the expres
sion of Grüneisen parameter for the free-volume theory.9

Up to now we have derived the three commonly us
expressions of Gru¨neisen parameter on the common base
MFP in Eq.~3!. However, it should be mentioned that Eq
~4!–~6! are just used to demonstrate the physical basis of
MFP. In the realistic calculations, Eq.~6! is never used since
Fion in Eq. ~1! can be easily evaluated employing the MF
which is more general, via one-dimensional numerical in
gration ~see the next subsection!.

B. Free-energy due to the lattice ion

Back to Eq.~2!, Fion can be formulated as

Fion~V,T!52kBTS 3

2
ln

mkBT

2p\2
1 ln v f~V,T!D , ~7!

where

v f~V,T!54pE expS 2
g~r ,V!

kBT D r 2dr. ~8!

Now, we can check the asymptotic behavior ofg(r ,V) in
Eq. ~3!. If Ec(R) is a type of hard-sphere potential as

Ec~R!50, if R.b; `, if R<b, ~9!

thus

g~r ,V!50, if r ,R2b; `, if r>R2b, ~10!

then,v f in Eq. ~8! equals (R2b)34p/3. Straightforwardly,
by P52(]F/]V)T , we have the EOS for the hard-sphe
model8

P5
R

R2b

kBT

V
. ~11!

We note that Eq.~11! will be exactly reduced to that of idea
gas whenb equals zero.

C. Free-energy due to thermal electrons

When the magnetic contribution and the electron-phon
interactions are neglected, the electronic contribution to
free energyFel5Eel2TSel , where the bare electronic en
tropy Sel takes the form7,17

Sel~V,T!52kBE n~e,V!@ f ln f 1~12 f !ln~12 f !#de,

~12!
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198 PRB 62YI WANG AND LI LI
wheren(e,V) is the electronic density of states~DOS! andf
is the Fermi distribution. With respect to Eq.~12!, the energy
Eel due to the electron excitations can be expressed as

Eel~V,T!5E n~e,V! f ede2E eF
n~e,V!ede, ~13!

whereeF is the Fermi energy.
By now we have presented a classical mean-field poten

~MFP! technique to evaluate the various kinds of contrib
tions to the total free energy of a metal. In the followin
sections, we take aluminum as a prototype to demonst
the accuracy and applicability of the present MFP approa

III. CALCULATIONAL DETAILS

To calculate the 0-K total energyEc(V) in Eq. ~1!, we
employ the full-potential LAPW method11 within the
GGA.12 Constant muffin-tin radii (Rmt) of 1.6 a.u. is used
The plane-wave cutoffKcut is determined byRmt3Kcut
59.0. 4096k points in the full zone are used for reciproca
space integrations.

The MFP in our previous work10,13 corresponded to the
special case ofl50 in Eq. ~3!. In this work, we usel
521. Choosingl reminds us of the choices among th
three expressions9,14,15 of the Grüneisen parameter@seen
from Eq. ~6! and the associated discussions#. By comparing
present calculation with our previous calculation13 one can
find that the different choices ofl do not have too much
impact on theP-V curve. The similar results had also be
derived by Moriarty~meaning different choices of the ex
pression of Gru¨neisen parameter, see Ref. 18 and referen
therein!. The reason why we usel521 in this paper is that
it can give better thermal expansion of ambient pressure
the specific case of Al.

IV. RESULTS AND DISCUSSIONS

A. Cold energy

Figure 1 shows a plot of the calculated curve of the c

FIG. 1. The calculated 0-K total energies as a function of latt
constant for fcc Al. The crosses indicate the numerical points by
LAPW calculation. The solid line between 4.5 and 16.0 a.u.
derived by cubic spline interpolation, and that smaller than 4.5
and that greater than 16.0 a.u. are extrapolations by Morse func
The inset shows the region near the equilibrium.
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energyEc as a function of the fcc lattice constant by mea
of LAPW method. The calculated 0-K equilibrium lattic
constant is 7.63 a.u., which is in 0.3% agreement with tha
the experimental room-temperature value of 7.65 a.u.19 Al is
indeed a good prototype for theoretical modeling, as tha
we fit the calculated 0-K total energies with Morse functio
we obtain a cohesive energy of 3.53 eV, which only devia
from the experimental value19 of 3.39 eV by 4%.

B. Properties at ambient condition

To check anab initio thermodynamic model, the calcula
tions of the ground-state properties might be an import
step. Knowing that we have calculated the Helmholtz fr
energyF(V,T) as an explicit function of atomic volumeV
and temperatureT, we can easily calculate the equilibrium
V(T) at a givenT by solving ]F/]V50. With the equilib-
rium V(T) in hand, the volume thermal-expansion coef
cient bP can be calculated by

bP~V,T!5
1

V S ]V~T!

]T D
P

. ~14!

The isothermal bulk modulus can be calculated by

BT~V,T!5
1

V S ]2F~V,T!

]V2 D
T

. ~15!

Collected in Table I are our calculated equilibrium atom
volume (V0), isothermal bulk modulus (BT), and the volume
thermal-expansion coefficient (b) under ambient conditions
for fcc Al together with the data19,20 measured at room tem
perature. Inspecting of Table I, one can note that the ca
lated results are very good as compared with the experim
tal values.

C. Thermal expansion and isothermal bulk moduli

Figure 2 shows the calculated and measured20 volume
thermal expansions as functions of temperature at zero p
sure. The agreement between the theory and the experim
is also good.

As a further test of the present approach to the ze
pressure properties, the calculated curve of isothermal b
modulus versus temperature is compared with the exp
mental values21,22 in Fig. 3. Note that the agreement betwe
the theory and the experiment falls to 10% for this seco
derivative quantity of energy to volume.

e
e

s
u.
n.

TABLE I. The calculated and experimental atomic volumeV0

~in Å 3), bulk modulus B ~in GPa!, and the volume thermal-
expansion coefficientb ~in 1026 1/K! under ambient conditions fo
fcc Al.

Method V0 B b

Theory 16.81 70.2 74.9
Expt. 16.61a 72.2a 69.3b

aFrom Ref. 19.
bFrom Ref. 20.
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PRB 62 199MEAN-FIELD POTENTIAL APPROACH TO . . .
D. Temperature dependence of enthalpy and anharmonic effec

By dint of Eqs.~7! and~13!, the internal energy~enthalpy
at zero pressure! can be written as

E~V,T!5Ec~V!1j~V,T!kBT1Eel~V,T!, ~16!

where

j~V,T!5
3

2
1S ] ln v f~V,T!

] ln T D
V

. ~17!

The calculated enthalpy from the room temperature up
melting point is compared with experiment23 in Fig. 4. The
agreement between the calculation and the experimen
very good.

By j(V,T), the specific heat~heat capacity! due to the
lattice ion at constant volume is then given by

CV
ion~V,T!5kBF j~V,T!1TS ]j~V,T!

]T D
V
G . ~18!

Since the classical harmonic value of constant-volume h
capacity due to lattice ion (CV

ion) is just 3kB , it follows that

FIG. 2. The calculated~solid line! and measured~open circles,
from Ref. 20! relative atomic volume (V/V0) as a function of tem-
perature under ambient pressure.

FIG. 3. The the calculated isothermal bulk modulus~solid line!
as a function of temperature under ambient pressure. The o
circles indicate the experimental values of Ho and Ruoff,~Ref. 21!
and filled circles those of Tallon and Wolfenden~Ref. 22!.
o

is

at

the so-called anharmonic termCV
ion,anh may be extracted

from the present calculation as simplyCV
ion,anh5CV

ion

23kB . The calculatedCV
ion,anh as a function of temperatur

for aluminum is displayed in Fig. 5, which is also compar
with the experimental values of Schmidt, Vollmer, an
Kohlhaas.24 It is very interesting to note from Fig. 5 that th
present MFP approach can, on the whole, describe the
called anharmonic effects.

E. Hugoniot state

Hugoniot states, which are derived by the conventio
shock-wave technique,25 are characterized using measur
ments of shock velocity~D! and particle velocity~u! with
VH /V05(D2u)/D and PH5r0Du where PH is the pres-
sure andr0 is the initial density. Through the Rankine
Hugoniot relations, these data define a compression cu
@volume (VH) versus pressure (PH)# as a function of known
Hugoniot energy (EH).

1

2
PH~V02VH!5EH2E0 , ~19!

en

FIG. 4. Enthalpy as a function of temperature. The filled circ
indicate the recommended experimental data by Desai~Ref. 23! and
the solid curve represents the calculated value of the present w

FIG. 5. The calculated anharmonic heat capacityCV
ion,anh com-

pared with experiment. The filled circles indicate the experimen
values of Schmidt, Vollmer, and Kohlhaas.~Ref. 24!. The solid
curve represents the calculated values.
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200 PRB 62YI WANG AND LI LI
where V0 and E0 refer to the atomic volume and energ
under ambient condition, respectively. With thatEH is cal-
culated through Eq.~16! and PH is defined throughPH
52(]F/]V)T , solving Eq.~19! one can easily derive th
Hugoniot volumeVH and Hugoniot temperatureTH .

Since we only calculate the electronic density of st
~DOS! by a width of 4.0 Ry, two cases have been conside
in the following calculations:~i! the energy due to the ther
mal electron is accurately calculated with Eq.~13! ~hereafter
referred as AC!, and~ii ! the energy due to the thermal ele
tron is approximated by the low-temperature expans
~hereafter referred as AP!

Eel~V,T!5
p2

6
kB

2n~eF ,V!T2. ~20!

Illustrated in Fig. 6 are the calculated curves of shock-wa
pressure versus the reduced atomic volumeVH /V0, where in
the case of AC the calculation is proceeded to 1000 GPa
where in the case of AP the calculation is proceeded to 2
GPa. Also depicted in Fig. 6 are the shock-wave data
absolute measurements25–30 which are independent of an
theoretical model, and of relative measurements31,32 which
depend on the EOS of a reference material. Inspection of
6, one can observe:~i! for P<300 GPa, the two calculate
curves are almost coincidental,~ii ! for 300<P<1000 GPa,
the curve of AP is lower than that of AC by about 0.01
VH /V0, and~iii ! however, the two sets of calculated resu
all fall well in the experimental uncertainties. The agreem
between the calculation and the experiment strongly supp
the validity of Rankine-Hugoniot equation and the assert
that the shock process can generate nearly hydrostatic h
pressure state.

At this stage we can make a comparison between
calculations and those by other colleagues. Moriarty18

Mitchell et al.,31 and Nelliset al.,33 had calculated the EOS
for Al, Cu, Mo, and Pb at shock pressures up to 2400 G
based on~i! the cold energiesEc in Eq. ~1! were calculated
within the framework of local-density approximation~LDA !

FIG. 6. Hugoniot pressure versus relative volume for Al. T
solid and the dashed lines represent the cases that evaluate the
mal electronic energy through Eqs.~13! and~20!, respectively, and
the points are from the absolute measurements~Refs. 25–30! and
relative measurements~Refs. 31 and 32!. The inset shows the lowe
pressure region~up to 200 GPa!.
e
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with augmented plane-wave method, or with linear muffi
tin orbital ~LMTO! method employing the atomic-sphere a
proximation ~ASA!, to which a so-called combined correc
tion was applied,~ii ! the ion-thermal componentsFion were
obtained from first-principles GPT, where the many-bo
potentials were expanded in terms of central-force and tw
three-, and four-ion interactions, using quasiharmonic lat
dynamics in the solid and variational perturbation theo
based on a soft-sphere reference system in the liquid,
~iii ! the thermal excitations of electrons were calculated
the low-temperature expansion in the form of Eq.~20!.

In our approach, we employ LAPW-GGA method to ca
culateEc and both the cold and thermal parts of the Hel
holtz free energy are derived entirely from the 0-K total e
ergies and electronic density of states. With the introduc
of Eq. ~3!, in conjunction with Eqs.~8!, ~12!, and ~13!, the
laborious calculations of the many-body interactions ha
been successfully circumvented. We mention again that
the integrals involved in the present paper are one dim
sional. Such kinds of integrations can be easily evalua
with the modern computer.

F. Temperature, heat capacity, and Grüneisen parameter
along the principal Hugoniot

Shown in Figs. 7–9 are the other calculated thermoph
cal properties along the principal Hugoniot. Note in Fig.
that for the highest pressure of 2000 GPa that we have
culated, the temperature has approached to 112 000
Shown in Fig. 8@only for the case that the thermal electron
energy is accurately calculated with Eq.~13!# are the lattice
ion only constant-volume heat capacityCV

ion calculated
through Eq.~18!, the total constant-volume heat capacityCV
by

CV~V,T!5CV
ion~V,T!1S ]Eel~V,T!

]T D
V

, ~21!

and the total constant-pressure heat capacityCP calculated
by

CP~V,T!5CV~V,T!1VTBT~V,T!bP
2 ~V,T!. ~22!

We note that the thermal electronic contribution~the differ-
ence between the dashed line and dot-dashed line! to the heat
capacity becomes comparable with that due to the lattice
at high compression. Another interesting result that can
seen from Fig. 8~see also Fig. 5 and the associated disc
sions! is that the calculated lattice ion only constant-volum
heat capacityCV

ion never exceeds the classical harmonic lim
of 3kB(24.94 J mol21 K21) and somewhat decreases wi
the increasing of the temperature. This result is similar
that of Ref. 6 where metal molybdenum~Mo! had been cal-
culated up to melting point under the ambient pressure
where the anharmonic effect was always negative.

The reductions of shock data to isothermal or isotro
states require specific heat and Gru¨neisen parameter (g) val-
ues that are not well known. In the absence of experime
constraints, researchers often make the plausible assum
of g/V5const. With the isothermal bulk modulusBT , the
volume thermal-expansion coefficientbP , and the constant-

her-
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PRB 62 201MEAN-FIELD POTENTIAL APPROACH TO . . .
volume heat capacityCV in hand, one can evaluate the the
modynamic Gru¨neisen gamma by

g th~T,V!5
VBT~V,T!bP~V,T!

CV~V,T!
. ~23!

Plotted in Fig. 9@only for the case that the thermal electron
energy is accurately calculated with Eq.~13!# is our calcu-
lated g thV0 /VH . Note that the conventional assumptio
g/V5const for the reductions of shock-wave data is ap
cable on the whole in the case of Al.

G. 300-K static EOS

Finally we will briefly talk about the static EOS of A
under ambient temperature. 300-K static EOS is largely g
erned by cold energy curve whereas the thermal energy
not play too much role. The calculated 300-K isotherm
gether with the measured data by Vaidya and Kennedy,34 by
Syassen and Holzapfel,35 and by Greene, Luo, and Ruoff36

are compared in Fig. 10. For the lower compression,

FIG. 7. The calculated temperature along the principal Hu
niot. The solid and the dashed lines represent the cases that eva
the thermal electronic energy through Eqs.~13! and ~20!, respec-
tively. The inset shows the curve ofT-P.

FIG. 8. The calculated heat capacities along the principal Hu
niot @only for the case that the thermal electronic energy is ac
rately calculated with Eqs.~13!#. The solid, dashed, and dot-dash
curves represent the calculated constant-pressure specific heaCP ,
constant-volume specific heatCV , and the lattice ion only constant
volume specific heatCV

ion , respectively.
-

v-
es
-

e

agreements among our calculation, Refs. 34, and 35 are
excellent. The agreements are also great for higher comp
sions between our calculation and Ref. 36. For the mod
pressure of from 20 to 180 GPa, however, the agreem
between our calculation and Ref. 36 are not as good as
in the case of lower compression. Boettger and Trickey h
calculated static EOS of Al with the linear combination
Gaussian-type orbitals~LCGTO! method,37 and our calcu
lated results are very similar to theirs. In the light of th
agreements of our previous calculations10,13 with experi-
ments and particularly the agreements between the calc
tion and the experiment for the Hugoniot state for Al of th
paper, we prefer our calculation.

V. SUMMARY

In conjunction with our previous work,10,13 we have sug-
gested a classical mean-field potential~MFP! approach to the
first-principles calculation of thermodynamic properties o
metal. The major physics lies in the construction of MF
g(r ,V) in Eq. ~3! in terms of the 0-K total energy. The majo
time-consuming parts involved in the thermodynamic cal
lations of the present MFP approach are the three inte

-
ate

-
-

FIG. 9. The calculatedg thV0 /V as a function of Hugoniot pres
sure @only for the case that the thermal electronic energy is ac
rately calculated with Eq.~13!#.

FIG. 10. The calculated 300-K isotherm~solid line! together
with the measured data by Vaidya and Kennedy,~Ref. 34! by Syas-
sen and Holzapfel~Ref. 35! and by Greene, Luo, and Ruoff~Ref.
36!. The inset shows the lower compression region.
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tions in Eqs.~8!, ~12!, and ~13!. However, since these inte
grations are all one dimensional, our approach perm
efficient computation of thermal properties. Taking alum
num ~Al ! as a prototype, we demonstrate that our sche
correctly describes most of the thermodynamic propert
such as static compression, shock-wave compression,
mal expansion, bulk modulus, and anharmonic effect.

We expect that the present MFP approach is not just l
ited to the case of metal. It seems that the MFP approach
y

e
.
ut
ts
-
e
s,
er-

-
an

also be applied to other systems with the quasimonato
crystal types, such as NaCl, CsCl, and CaF2.
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