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Mean-field potential approach to thermodynamic properties of metal: Al as a prototype
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We propose a classical mean-field potendFP) model for evaluating the vibrational contribution of the
lattice ion to the total free-energy, where the mean-field potegfiaVV) seen by the lattice ion is entirely and
yet simply derived from the 0-K total-energy volume curve. The physical basis of the MFP is supported by the
fact that, as a second-order approximation of the MFP, the three commonly used expressions fongfseGru
parameter, i.e., that due to Slater, that due to Dugdale and MacDonald, and that for the free-volume theory, can
be explicitly deduced. Furthermore, a first-principles scheme for calculating thermodynamic properties of a
metal is developed. The present scheme permits efficient computation and allows us to investigate almost all
kinds of thermodynamic parameters, since it only needs the 0-K total-energy curve and electronic density of
states as the inputs. Taking alumin@Al) as a prototype, we demonstrate that our scheme correctly describes
most of the thermodynamic properties, such as static compression, shockwave compression, thermal expan-
sion, bulk modulus, and anharmonic effect.

[. INTRODUCTION thermal excitation of electrons with one-dimensional numeri-
cal integration. Coupled further with the treatment of the
The thermodynamic property study of materials is of im-contribution from the magnetic disorder to the free energy by
portance to extend our knowledge on their specific behaviorgeneralizing the Hund’s rule, the well-knowy « isostruc-
when undergoing severe constraints such as high-pressui@al transition, the experimental Hugoniot steghock-wave
and high-temperature environment. This is particularly truecompressed stateand the 300-K static equation of state
since the coming of modern technologiggophysics, astro- (EOS for metal Ce had been well described. The MFP
physics, particles accelerator, fission and fusion reactoy, etc.model had been also applied for the five reference metals Al,
from which we always expect new advances and innovation§U, Ta, Mo, and W, indicating that both the calculated
in materials science to reach higher performances. From Hugoniot states and 293-K isotherms fell well in the experi-
fundamental point of view, there are needs for refinements omental uncertaintiet’
theoretical models for the computation of a more accurate [n this paper, the MFP model is expanded to more general
equation of statéEOS of the material? cases where as a second-order approximation of the mean-
The study of the temperature dependence of the propertidigld potential(MFP), the three commonly used expressions
of materials requires a proper account of nuclear motions ant¢r the Grineisen parameter, i.e., that due to Slafethat
thermal excitation of electrons. While a high accuracy can b&lue to Dugdale and MacDonald,and that for the free-
obtained in the 0-Kab initio calculation®* the ab initio ther-  volume theory’, can all be explicitly deduced on the common
modynamic calculation still remains a great challenge to usphysical basis while the MFg(r,V), seen by the lattice ion,
The basic difficulty in the systematic theoretical calculationis still constructed in terms of the 0-K total energy. Taking
of the thermodynamic properties of a substance by means @uminum (Al) as a prototype, we demonstrate that our
statistical physics is how to incorporate correctly the strucScheme correctly describes most of the thermodynamic prop-
turally complicated interparticle interaction of the many- erties.
body problem. In this regard, some theoretical methods have The rest of this work is organized as follows. In Sec. Il we
been deve|oped, such as the Debyé{@i’gen theory by present the construction of the MFP. The details of the 0-K
Moruzzi, Janak, and Schwatzthe elaborate generalized LAPW-GGA total-energy calculations for aluminum are
pseudopotential theoryGPT) by Moriarty® the delicate given in Sec. Ill. In Sec. IV we present our calculated ther-
tight-binding total-energy classical cell model by Wasser-modynamic properties. Finally, Sec. V contains our sum-
man, Stixrude, and Coh€rand the well-known free-volume mary.
theory by Kirkwood and by Vashchenko and Zubarev.
In previous work® we briefly reported a classical mean- Il. MEAN-FIELD POTENTIAL APPROACH
field potentiallin this paper, we change mean-field potential
(MFP) for CMF used in Ref. 1papproach for evaluating the
vibrational contribution of the lattice ion to the total free
energy. Anab initio scheme for calculating thermodynamic
properties of a substance was furthermore developed in co
junction yvith(i) the accurate ca_lcula@ions of 0-K total-energy F(V,T)=Ey(V)+Fion(V,T)+Fo(V,T), 1)
curve with the full-potential linearized augmented plane-
wave (LAPW) method! within the generalized gradient ap- where E. represents the static 0-K total enerdy,, the
proximation(GGA),*? and(ii) the accurate calculation of the vibrational free energy of the lattice ion, arfd, the free

Our analysis will be confined to the classical regime. For
a system with a given averaged atomic voluvhand a given
temperatureT, the Helmholtz free energi#(V,T) per ion
can be written &8
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energy due to the thermal excitation of electrons. Yion(V)=—2dIn v/dInV, wherev stands for the phonon fre-

Generally, the static 0-K total enerd. in Eq. (1) can be  quency. Sincer=[k(V)/m]*? we obtain

evaluated very accurately by the modern first-principles tech- e
A+1

nigue, such as the LAPW method. Therefore the major issue 1 V #(PV ) IV?

is how to treat the thermal vibration of the lattice ion. In this Yion(V) = —()\ 1)-— PRI , (6
paper, we take the mean-field approximation as the starting 2 9(PV ) oV

point.

whereP (V)= —dE.(V)/dV is the so-called cold pressure.
One can now read the physical significance\ofin par-
ticular, if \=—1, Eq. (6) is reduced to the expression of
It is known that the vibrational contribution to the parti- Gruneisen parameter by Slatérif A=0, Eq.(6) is reduced
tion function takes the fornZ;,,=exp(—NF;,,/ksT), where  to the expression of Gneisen parameter due to Dugdale and
N is the total number of lattice ions. Under the mean-fieldMacDonald®® and if A=1, Eq.(6) is reduced to the expres-
apprOX|mat|on the classical form &, can be expressed sion of Grineisen parameter for the free-volume thedry.

A. Construction of the mean-field potential

as® Up to now we have derived the three commonly used
a2 expressions of Gneisen parameter on the common base of

mkgT N MFP in Eq.(3). However, it should be mentioned that Egs.
ion:(ﬁ> [ f exd —g(r,V)/kgTldr( ., (2)  (4)—(6) are just used to demonstrate the physical basis of the

MFP. In the realistic calculations, E(f) is never used since
wherem is the weight of the lattice ion. Notice thg(r,V) Fion In EQ. (1) can be easily evaluated employing the MFP,
in Eq. (2) is referred as the mean-field potentiMFP). which is more general, via one-dimensional numerical inte-
The central issue of the mean-field theory is how to cal-gration(see the next subsectipn
culate the MFPg(r,V). In this regard, the free-volume
theory’ was chosen to calculate the MERr,V) by the av- B. Free-energy due to the lattice ion
erage of the empirically derived pairwise potentials, while
the tight-binding total-energy classical cell modefas cho-
sen to calculate the MFB(r,V) by the tight-binding total-
energy method for which the parameters were determined by Fion(V,T)=— kBT( §|n—m il +Inve(V,T) |,
the first-principles LAPW calculation.
Inspired by the three commonly used expressions for the
Grineisen parametéi®!®we find a rather different way, "WHere
For a crystal with the inversion symmetry, one can imagine
that the vibration of the lattice ion is symmetrical with re- vi(V,T)= 4Wf exr{ ) 8
spect to its equilibrium position, i.e., the MFP seen by the kBT
lattice ion should be invariant under the inversion operation.
Based on these physical consideration, we have simply coriE
structed the MFP in terms of theb initio 0-K total energy q-

E. as follows E.(R)=0, if R>b; =, if R<b, 9

Back to Eq.(2), Fi,, can be formulated as

()

Now, we can check the asymptotic behaviomg¢f,V) in
(3). If E¢(R) is a type of hard-sphere potential as

01 V)= SIER+1) +E(R-1)~2E,(R)] thus

g(r,V)=0, if r<R—b; o, if r=R—-b, (10

r
+ Eﬁ[EC(R+r)—EC(R—r)], (3)  then,v; in Eq. (8) equals R—b)34#/3. Straightforwardly,

by P=—(dF/dV)1, we have the EOS for the hard-sphere

wherer is the distance that the lattice ion deviates from itsmodef

equilibrium position,R is the lattice constant with respect to

V, and\ is an integer and its physical significance is dem- P ikB_T

onstrated below. " R-b V

Let us make a Taylor expansion of E§); we have

(11)

We note that Eq(11) will be exactly reduced to that of ideal

g(r,V)=k(V)r2+0(r#, (4  gas wherb equals zero.
where
C. Free-energy due to thermal electrons
1 0/ . JE(R) When the magnetic contribution and the electron-phonon
k(V)= R? JR R JR |’ ) interactions are neglected, the electronic contribution to the

free energyFo =E¢—TS,, where the bare electronic en-
and O(r*), which represents the term higher than the thirdtropy S,, takes the forr®’
order, may in part account for the so-called softening of pho-
non. We note that Eq4) does not contain the thirtbr the _
odd) order term. Furthermore, the Greisen parameter Sel(V.T)=—kg | n(e,V)[fInf+(1-f)In(1-1)]de,
Yion(V) from Debye-Grumeisen theorycan be estimated by (12
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25 -6-68 I TABLE I. The calculated and experimental atomic voluiWg
LAPW -+ (in A%), bulk modulusB (in GPa, and the volume thermal-
2 F 012 F expansion coefficiens (in 107® 1/K) under ambient conditions for
fcc Al
—_ -0.16
Z 15 F
EB 02k Method Vo B B
g 1 Theory 16.81 70.2 74.9
s 024 B ' ' :
3 Al Expt. 16.6% 72.2 69.3
= 05 F 2028 B Liceiiiies Loveiinn PPN [ Leverinees
6 7 8 9 10 11 1p #From Ref. 19.
0 W bFrom Ref. 20.

5 10 15 20 energyE. as a function of the fcc lattice constant by means
of LAPW method. The calculated 0-K equilibrium lattice
constant is 7.63 a.u., which is in 0.3% agreement with that of
FIG. 1. The calculated 0-K total energies as a function of latticethe experimental room-temperature value of 7.65'3Al.is
constant for fcc Al. The crosses indicate the numerical points by théndeed a good prototype for theoretical modeling, as that if
LAPW calculation. The solid line between 4.5 and 16.0 a.u. iswe fit the calculated 0-K total energies with Morse function,
derived by cubic spline interpolation, and that smaller than 4.5 a.uywe obtain a cohesive energy of 3.53 eV, which only deviates

and that greater than 16.0 a.u. are extrapolations by Morse functiofrom the experimental valdeof 3.39 eV by 4%.
The inset shows the region near the equilibrium.

Lattice constant (a.u.)

wheren(e,V) is the electronic density of staté®0S) andf B. Properties at ambient condition

is the Fermi distribution. With respect to E3d.2), the energy To check amb initio thermodynamic model, the calcula-
E¢  due to the electron excitations can be expressed as  tions of the ground-state properties might be an important
step. Knowing that we have calculated the Helmholtz free

Eo(V T):f n(e,V)fede— fEFn(e V)ede, (13) energyF(V,T) as an explicit function of atomic volumé

e ’ ' ’ and temperaturd, we can easily calculate the equilibrium

whereer is the Fermi energy. \_/(T) at a givenT by solving 9F/9V=0. With the _equilib- _

By now we have presented a classical mean-field potentidfum V(T) in hand, the volume thermal-expansion coeffi-

(MFP) technique to evaluate the various kinds of contribu-Ci€NtBe can be calculated by
tions to the total free energy of a metal. In the following

sections, we take aluminum as a prototype to demonstrate Be(V,T)= 1(ov(M) (14)
the accuracy and applicability of the present MFP approach. P Vi dT
Ill. CALCULATIONAL DETAILS The isothermal bulk modulus can be calculated by
To calculate the 0-K total energi (V) in Eq. (1), we 5
employ the full-potential LAPW methdd within the B(V,T)= 1[FV.T) (15)
GGA*? Constant muffin-tin radii R, of 1.6 a.u. is used. A R\VE:

. . T
The plane-wave cutofK.,; is determined byR, XK.t

=9.0. 4096k points in the full zone are used for reciprocal-
space integrations.

The MFP in our previous wofR*3 corresponded to the
special case oh=0 in Eqg. (3). In this work, we usex
=—1. Choosing\ reminds us of the choices among the
three expressions*!® of the Grineisen parametefseen
from Eq. (6) and the associated discussiprBy comparing
present calculation with our previous calculafidone can
find that the different choices of do not have too much ) _ _
impact on theP-V curve. The similar results had also been C. Thermal expansion and isothermal bulk moduli

derived by Moriarty(meaning different choices of the ex- Figure 2 shows the calculated and meastfradlume
pression of Groeisen parameter, see Ref. 18 and referencegiermal expansions as functions of temperature at zero pres-

therein. The reason why we use=—1 in this paper is that sure. The agreement between the theory and the experiment
it can give better thermal expansion of ambient pressure fois also good.

Collected in Table | are our calculated equilibrium atomic
volume (V), isothermal bulk modulusH7), and the volume
thermal-expansion coefficienfB] under ambient conditions
for fcc Al together with the dafd?° measured at room tem-
perature. Inspecting of Table I, one can note that the calcu-
lated results are very good as compared with the experimen-
tal values.

the specific case of Al. As a further test of the present approach to the zero-
pressure properties, the calculated curve of isothermal bulk
IV. RESULTS AND DISCUSSIONS modulus versus temperature is compared with the experi-

mental valueg-?2in Fig. 3. Note that the agreement between
the theory and the experiment falls to 10% for this second-
Figure 1 shows a plot of the calculated curve of the coldderivative quantity of energy to volume.

A. Cold energy
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FIG. 2. The calculatedsolid line) and measurefopen circles,
from Ref. 20 relative atomic volume\(/V,) as a function of tem-
perature under ambient pressure.

D. Temperature dependence of enthalpy and anharmonic effect

By dint of Eqgs.(7) and(13), the internal energyenthalpy
at zero pressujecan be written as

E(V,T)=E.(V)+ &V, T)kgT+Eq(V,T), (16)
where
EV.T)= 2+ ( oL D) a7
\Y

The calculated enthalpy from the room temperature up to

melting point is compared with experim&hin Fig. 4. The
agreement between the calculation and the experiment
very good.

By £(V,T), the specific heatheat capacity due to the
lattice ion at constant volume is then given by

IE(V,T)

C¥"(V.T)=ke T

(18)

§(V,T)+T(

\%

Since the classical harmonic value of constant-volume heat

capacity due to lattice ionG{i\?”) is just Kg, it follows that
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FIG. 3. The the calculated isothermal bulk modulsslid line)
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FIG. 4. Enthalpy as a function of temperature. The filled circles
indicate the recommended experimental data by Déssfl 23 and
the solid curve represents the calculated value of the present work.

the so-called anharmonic ten@y"™*"" may be extracted
from the present calculation as simplg2™a"=CP"

—3kg. The calculatedC\?™?"" as a function of temperature
for aluminum is displayed in Fig. 5, which is also compared
with the experimental values of Schmidt, Vollmer, and
Kohlhaas? It is very interesting to note from Fig. 5 that the
present MFP approach can, on the whole, describe the so-
called anharmonic effects.

E. Hugoniot state

Hugoniot states, which are derived by the conventional
shock-wave techniqu®, are characterized using measure-
Fents of shock velocityD) and particle velocity(u) with
Vy/Vo=(D—u)/D and Py=poDu where Py is the pres-
sure andpg is the initial density. Through the Rankine-
Hugoniot relations, these data define a compression curve
[volume (V) versus pressureP(y)] as a function of known
Hugoniot energy E,,).

1
EPH(VO*VH):EH*EO, (19)

Theory
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Anhomonic heat capacity (J mol ! K'l)
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FIG. 5. The calculated anharmonic heat capa@f}/*"" com-

as a function of temperature under ambient pressure. The opguared with experiment. The filled circles indicate the experimental

circles indicate the experimental values of Ho and Ru@gf. 21
and filled circles those of Tallon and Wolfendé&ref. 22.

values of Schmidt, Vollmer, and Kohlhaadef. 24. The solid
curve represents the calculated values.
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LASL  + vyith a_ugmented plane-wave method, or with .Iinear muffin-

Mitchell  © tin orbital (LMTO) method employing the atomic-sphere ap-

Al'tshuler proximation (ASA), to which a so-called combined correc-

Sommer 7 tion was applied(ii) the ion-thermal component,,,, were

Trunin & obtained from first-principles GPT, where the many-body
- Ragan v potentials were expanded in terms of central-force and two-,
E » three-, and four-ion interactions, using quasiharmonic lattice
. i dynamics in the solid and variational perturbation theory

100 150 ) based on a soft-sphere reference system in the liquid, and
(iii) the thermal excitations of electrons were calculated by
the low-temperature expansion in the form of E20).
v In our approach, we employ LAPW-GGA method to cal-
culateE; and both the cold and thermal parts of the Helm-
holtz free energy are derived entirely from the 0-K total en-
ergies and electronic density of states. With the introducing
FIG. 6. Hugoniot pressure versus relative volume for Al. Theof Eq. (3), in conjunction with Eqs(8), (12), and(13), the
solid and the dashed lines represent the cases that evaluate the th@Borious calculations of the many-body interactions have
mal electronic energy through Eq4.3) and(20), respectively, and been successfully circumvented. We mention again that all
the points are from the absolute measureméRefs. 25—-3Dand  the integrals involved in the present paper are one dimen-
relative measurementRefs. 31 and 3R The inset shows the lower sional. Such kinds of integrations can be easily evaluated
pressure regiofup to 200 GPa with the modern computer.

0 500 1000 1500 2000
Pressure (GPa)

where Vg and E, refer to the atomic volume and energy
under ambient condition, respectively. With tHg is cal-
culated through Eq(16) and Py is defined throughP . _
— —(9F/9V)1, solving Eq.(19) one can easily derive the Shown in Figs. 7-9 are t_he_other calcglated ther_mophy3|-
Hugoniot volumeV,, and Hugoniot temperaturg, . cal propert|es_, along the principal Hugoniot. Note in Fig. 7
Since we only calculate the electronic density of statghat for the highest pressure of 2000 GPa that we have cal-
(DOS) by a width of 4.0 Ry, two cases have been consideregulated, the temperature has approached to 112000 K.

in the following calculations(i) the energy due to the ther- Shown in Fig. gonly for the case that the thermal electronic
mal electron is accurately calculated with E43) (hereafter ~€nergy is accurately calculated with Hqifr)]igge the lattice
referred as AG, and (i) the energy due to the thermal elec- ion only constant-volume heat capacig," calculated
tron is approximated by the low-temperature expansiorihrough Eq(18), the total constant-volume heat capacity

(hereafter referred as AP by

F. Temperature, heat capacity, and Grineisen parameter
along the principal Hugoniot

2 aEe|(V,T)) | 2
\%

Eo(V,T)= %kén(fF V)T2. (20) Cu(V,T)= Ci\?“(V.T)+< -

lllustrated in Fig. 6 are the calculated curves of shock-waveand the total constant-pressure heat capaCitycalculated
pressure versus the reduced atomic voliwpéV,, where in by

the case of AC the calculation is proceeded to 1000 GPa and

where in the case of AP the calculation is proceeded to 2000 Cp(V, T)=Cy(V,T) +VTBT(V,T),8,23(V,T). (22
GPa. Also depicted in Fig. 6 are the shock-wave data of

absolute measuremefts® which are independent of any We note that the thermal electronic contributighe differ-
theoretical model, and of relative measurem&ntswhich ~ ence between the dashed line and dot-dashetittinthe heat
depend on the EOS of a reference material. Inspection of Figiapacity becomes comparable with that due to the lattice ion
6, one can observéi) for P<300 GPa, the two calculated at high compression. Another interesting result that can be
curves are almost coincidentdii) for 300<P<1000 GPa, seen from Fig. §see also Fig. 5 and the associated discus-
the curve of AP is lower than that of AC by about 0.01 in siong is that the calculated lattice ion only constant-volume
V4 /V,, and(iii) however, the two sets of calculated resultsheat capacityCy)" never exceeds the classical harmonic limit
all fall well in the experimental uncertainties. The agreemenof 3kg(24.94 Jmoi! K1) and somewhat decreases with
between the calculation and the experiment strongly supporthe increasing of the temperature. This result is similar to
the validity of Rankine-Hugoniot equation and the assertiorthat of Ref. 6 where metal molybdenufio) had been cal-
that the shock process can generate nearly hydrostatic highulated up to melting point under the ambient pressure and
pressure state. where the anharmonic effect was always negative.

At this stage we can make a comparison between our The reductions of shock data to isothermal or isotropic
calculations and those by other colleagues. Moridftty, states require specific heat and Geisen parametery val-
Mitchell et al,*! and Nelliset al.*® had calculated the EOS ues that are not well known. In the absence of experimental
for Al, Cu, Mo, and Pb at shock pressures up to 2400 GPa&onstraints, researchers often make the plausible assumption
based ori) the cold energie&,. in Eq. (1) were calculated of y/V=const. With the isothermal bulk modull;, the
within the framework of local-density approximatiohDA)  volume thermal-expansion coefficig@t, and the constant-
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FIG. 7. The calculated temperature along the principal Hugo- FIG. 9. The calculated;,V,/V as a function of Hugoniot pres-
niot. The solid and the dashed lines represent the cases that eVa'U%tﬁe[omy for the case that the thermal electronic energy is accu-
the thermal electronic energy through E¢s3) and (20), respec-  rately calculated with Eq(13)].
tively. The inset shows the curve @fP.

agreements among our calculation, Refs. 34, and 35 are very
volume heat capacit€y in hand, one can evaluate the ther- excellent. The agreements are also great for higher compres-
modynamic Graeisen gamma by sions between our calculation and Ref. 36. For the modest

pressure of from 20 to 180 GPa, however, the agreements

yin(T,V) = VBT(V'T)'BP(V’T)_ (23) _between our calculation and R_ef. 36 are not as go_od as that
Cu(V,T) in the case of lower compression. Boettger and Trickey had

calculated static EOS of Al with the linear combination of
Gaussian-type orbitaléLCGTO) method®” and our calcu
lated results are very similar to theirs. In the light of the
agreements of our previous calculatiiis with experi-
ments and particularly the agreements between the calcula-
tion and the experiment for the Hugoniot state for Al of this
paper, we prefer our calculation.

Plotted in Fig. Jonly for the case that the thermal electronic
energy is accurately calculated with E4.3)] is our calcu-
lated y,,Vo/Vy. Note that the conventional assumption
y/V=const for the reductions of shock-wave data is appli-
cable on the whole in the case of Al.

G. 300-K static EOS

Finally we will briefly talk about the static EOS of Al V. SUMMARY
under ambient temperature. 300-K static EOS is largely gov- ) ) ) . 13
erned by cold energy curve whereas the thermal energy does !N conjunction with our previous work:™*we have sug-
not play too much role. The calculated 300-K isotherm to-9ested a classical mean-field potentMFP) approach to the
gether with the measured data by Vaidya and Kenrity, first-principles (?alculathn of_ the_rmodynamlc pro_per'ues of a
Syassen and Holzapf&l,and by Greene, Luo, and Rutff metal. The major physics lies in the construction of MFP

are compared in Fig. 10. For the lower compression, th@(r,V) in Eq.(3) in terms of the O-K total energy. The major
time-consuming parts involved in the thermodynamic calcu-

lations of the present MFP approach are the three integra-

55
.50 1 1
'TM 0.98 F Theory
) Vaidya  +
e 09 0.96 F Syasson  ©
g 0.94 Greene o
= 40 08 092 £
g 09 F
Q .
§35 o 07 0.88 |
2 > 06
3 30 .
T
25 0.5
20 1 Il Il 1 04
0 200 400 600 800 1000
Pressure (GPa) 0.3
FIG. 8. The calculated heat capacities along the principal Hugo- Pressure (GPa)

niot [only for the case that the thermal electronic energy is accu-

rately calculated with Eq$13)]. The solid, dashed, and dot-dashed  FIG. 10. The calculated 300-K isotherfsolid line) together
curves represent the calculated constant-pressure specifi€peat with the measured data by Vaidya and Kennd&®ef. 34 by Syas-
constant-volume specific he@t,, and the lattice ion only constant- sen and HolzapfelRef. 35 and by Greene, Luo, and RudfRef.

ion

volume specific heaty;", respectively. 36). The inset shows the lower compression region.
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tions in Egs.(8), (12), and(13). However, since these inte- also be applied to other systems with the quasimonatomic

grations are all one dimensional, our approach permitgrystal types, such as NaCl, CsCl, and gaF

efficient computation of thermal properties. Taking alumi-

num (Al) as a .prototype, we demonstrate that_ our scheme ACKNOWLEDGMENTS
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