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Modular recursive Green’s function method for ballistic quantum transport
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Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10, A-1040 Wien, Austria

and Department of Physics, University of Tennessee, Knoxville, Tennessee 37996-1200
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A modification of the standard recursive Green’s function method for quantum transport through micro-
structures is presented which is based on the decomposition into separable substructures. The Green’s functions
for these modules are joined by discretized Dyson equations. Nonseparable structures can thereby be calculated
with the help of a few recursions with high accuracy. We apply this method to the calculation of ballistic
quantum transport through a circular and stadium-shaped quantum dot for high mode numbers to test semi-
classical predictions in detail. Among other results we find the breakdown of the semiclassical approximation
for long path lengths which is due to the spreading of wave packets in the cavity.
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I. INTRODUCTION

Billiards have long served as prototype systems in
field of classical and quantum chaos.1 Investigations on
closed billiards have revealed information on the statistics
energy levels2 and pronounced enhancements of wave fu
tions near unstable periodic orbits.3 Recently, the study of
quantum transport through open billiards has received c
siderable attention due to advances in the fabrication
semiconductor structures which led to the experimental r
ization of phase coherent scattering devices.4–7

The transport properties of these microstructures
dominated by quantum interference in the ballistic regim
resulting in strong conductance fluctuations. The interfere
pattern depends on the shape of the cavity, the opening o
attached wave guide, and the wavelength of the incid
electron. In order to delineate signatures of classically c
otic dynamics in ballistic quantum transport, semiclassi
descriptions based on Miller’s8 and Berry and Mount’s9 rep-
resentation of the scattering amplitude have be
developed.10–15 Since these are asymptotic expansions
small wavelengthl, classical-quantum correspondence c
be explored only for large quantum numbers, i.e., large tra
verse mode numbersm of the incoming and outgoing wav
in the quantum wires with wave numbers

k'5
mp

d
, ~1.1!

whered is the width of the wire~or lead width!. The latter
poses however a major challenge, in particular for small l
width d/D!1, whereD is the typical linear dimension of th
quantum dot.

The motion of an electron in a restricted open tw
dimensional domain appears to be a standard problem
quantum scattering theory. However, for large mode nu
bersm@1, or equivalently, large Fermi wave numberskF ,
the problem becomes increasingly difficult to handle. Co
ventional close-coupling schemes are computationally un
sible, primarily due to the numerical instability introduced
closed channels.16 Existing techniques for quantum transpo
calculations through open quantum dots can be roughly s
PRB 620163-1829/2000/62~3!/1950~11!/$15.00
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divided into two groups: basis expansion and discretizat
on a grid. The former approach, as with the mode-match
method17 or the expansion in plane and spherical waves,18–20

is of high numerical precision for low mode numbers b
becomes unstable for high energies and suffers from bre
down of unitarity. Methods employing discretization on
grid, like in the finite element21 or recursive Green’s function
method22–25 are stable, preserve unitarity to a high degr
but become numerically inefficient for largekF . This is be-
cause for smalll, the density of grid points required to sub
tend the quantum dot and the attached quantum wires
comes prohibitively large. In the standard recursive Gree
function method~RGM! the Green’s function is propagate
through the scattering region from one transverse strip to
next through repeated solution of a matrix Dyson equati
However, in the semiclassical limit,m@1, D/d@1, the high
number of large matrix inversions makes this method i
practical. A hybrid method combining the RGM with th
close-coupling approach has been recently proposed by
zoulenkoet al.26

In the following, we propose a variant of the RGM fo
lowing an earlier suggestion by Solset al.27,28which appears
suitable for extending quantum transport calculations
larger mode numbers towards the semiclassical regime.
underlying idea is to build up two-dimensional nonsepara
open quantum dots out of simpler separable substructu
Important examples which we will treat in detail are th
circle and the Bunimovich stadium29 attached to two quan
tum wires. The latter geometry can be assembled from
semi-infinite rectangular quantum wires~leads!, two semi-
circles, and one rectangle in the center~Fig. 1!. Because of
the separability of the Helmholtz equation in each of the
substructures, in the following referred to as modules,
wave function and hence the Green’s function can be ca
lated either analytically or by one-dimensional quadrat
essentially exactly. For joining the modules we employ t
technique of the RGM by representing the coupling betwe
the modules in terms of the hopping matrix elements o
tight-binding Hamiltonian and by solving a matrix Dyso
equation at each junction between the modules. The num
of recursions required is thereby reduced to the numbe
modules needed to reconstruct the quantum dot. At juncti
1950 ©2000 The American Physical Society
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PRB 62 1951MODULAR RECURSIVE GREEN’S FUNCTION METHOD . . .
we employ link modules which facilitate the tight-bindin
coupling between different symmetry-adapted grids in
substructures. Due to the modular structure of the Gree
functions employed in our approach, we refer to this ext
sion of the standard RGM as the modular recursive Gree
function method~MRGM!. This technique is applicable to
large number of open quantum dots that can be constru
from a moderate number of modules for each of which
two-dimensional Helmholtz equation is separable.30 The
two-dimensional areas of each module have boundaries
correspond to the nodal lines of Cartesian, polar, elliptic,
hyperbolic coordinates. Our method can be extended
class of locally varying potentials in the dot which preser
the separability of the Schro¨dinger equation within each
module. Furthermore, inclusion of a constant magnetic fi
is straightforward and will be the subject of a future pub
cation.

We apply the MRGM to a comparative study of transp
coefficients for a circle as a prototype of a classically regu
system and the Bunimovich stadium as a paradigm fo
classically chaotic cavity. Calculations have been perform
for mode numbers up tom530 andm515, respectively, to
our knowledge the highest ones available to date. We pre
a detailed comparison with the semiclassical theory of tra
port through open quantum structures.13–15 Among the find-
ings is the identification of signatures of regular and chao
dynamics in the quantum path-length spectrum and the
servation of the breakdown of the semiclassical approxim
tion for very long path lengths.

II. METHOD

In this section, we formulate the quantum scattering pr
lem for conductance through ballistic microstructures. Ins
the hard-wall boundary of the cavity we assume a cons
potential which is infinitely high outside. For the shape of t
quantum dot we choose the circle and the stadium as
‘‘typical’’ examples for regular and chaotic motion~see in-
sets of Figs. 5,6!. Two semi-infinite waveguides are attach
to the open cavity which are connected to different elec
chemical potentials (m1 ,m2) and can thus transport electron
through the microstructure. We choose a narrow opening
the cavity withd/D5d/AA50.0935, whereA541p is the
area of the enclosed quantum dot kept fixed for all geo
etries studied. In the asymptotic regime, i.e., far away fr
the scattering region, we impose scattering boundary co
tions: the wave function can be factorized into a longitudi
propagating part and a transverse standing sine w
x [m] (yi), with mode numberm. We choose a local coordi
nate system in which the variablexi always denotes the lon
gitudinal andyi the transverse direction in thei th lead. For
an electron at the Fermi energyEF , approaching the cavity
in the mth mode, the flux normalized wave functions in th
asymptotic regions of lead 1~entrance lead! and lead 2~exit
lead! are given by

FIG. 1. Schematic illustration of the modular recursive Gree
function method as applied to the stadium with opposite leads.
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c [m]
1 ~x1 ,y1 ,EF!5

eikx1 ,mx1

Akx1 ,m

x [m]~y1!

1 (
n51

N

r nm

e2 ikx1 ,nx1

Akx1 ,n

x [n]~y1!, ~2.1!

c [m]
2 ~x2 ,y2 ,EF!5 (

n51

N

tnm

eikx2 ,nx2

Akx2 ,n

x [n]~y2!. ~2.2!

The tnm(r nm) are the quantum transmission~reflection! am-
plitudes from modem into moden. The indexn runs over all
possible transverse modes which are determined by the h
wall boundary conditions aty56d/2. In the longitudinal
direction the plane wave motion is characterized by the w
vector

kxi ,n5AkF
22S np

d D 2

, ~2.3!

which is real fornp/d,kF ~open channel! and purely imagi-
nary for np/d.kF ~closed channel!.

Current conservation is expressed through the unitarity
theSmatrix which consists of the transmission and reflect
amplitudes

(
n51

N

~ utnmu21ur nmu2!51. ~2.4!

For a phase-coherent system, the transmission through a
ity is directly related to the conductanceg by the Landauer
formula31

g5
2e2

h (
m,n51

N

Tnm , ~2.5!

whereTnm5utnmu2 is the transmission coefficient. A conve
nient way of calculating the transmission~reflection! ampli-
tudes is by means of the Green’s function which descri
the propagation inside the cavity. Projecting this const
energy propagator onto the transverse wave functions in
leads, the transmission amplitudes are given by32,33

tnm~EF!52 i\Avx2 ,nvx1 ,m

3E
2d/2

d/2

dy2E
2d/2

d/2

dy1x@n#
* ~y2!

3G~y2 ,y1 ,EF!x [m]~y1!, ~2.6!

and a similar relation holds for the reflection amplitudes. T
factorsvxi ,m5\kxi ,m /meff are the longitudinal velocities o

the electron in themth mode. Atomic units (\5ueu5meff
51) will be used from now on, unless explicitly stated ot
erwise.

A. Tight-binding Green’s functions

Calculating the Green’s function for an arbitrarily shap
quantum dot is a nontrivial problem. For many geometri
however, the structure can be decomposed into substruc
~modules! that are separable. For these modules, the Gre

s
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function is either known analytically or can be determin
numerically by one-dimensional quadrature. In the follo
ing, we will briefly discuss how to construct the Green
function for the separate modules. We then connect th
with each other to construct the Green’s function of t
whole system. Expressing the Green’s function at the ene
E by means of the eigenvectorsuEm& and the eigenvaluesEm

of the HamiltonianĤ, we have

G~r ,r 8,E!5 lim
e→01

(
m

^r uEm&^Emur 8&
E1 i e2Em

. ~2.7!

For simplicity of notation we omit the limit (lime→01), im-
posing outgoing boundary conditions in the following.

We illustrate the calculation of the tight-binding~TB!
Green’s function for a non-Cartesian grid by the case of
lar coordinates@right side of Fig. 2~a!#. Generalizations to
other coordinate systems are straightforward. In terms of
separable energy eigenstatesuEm&5uEkn

r & ^ uEk
w&, the Green’s

function can be written as

G~r ,r 8,E!5(
k

^wuEk
w&^Ek

wuw8&(
n

^%uEkn
% &^Ekn

% u%8&
E1 i e2Ekn

.

~2.8!

The discretization of the Schro¨dinger equation~and hence of
G) in a non-Cartesian grid proceeds through a derivat
from a discrete variational principle, using a discretized L
grangian, to ensure the Hermitian representation of
Hamiltonian on the grid.34

This leads to the finite-difference Schro¨dinger equation

EF i , j52
1

2% iD%2
~% i 21/2F i 21,j22% iF i , j1% i 11/2F i 11,j !

2
1

2% i
2Dw2

~F i , j 2122F i , j1F i , j 11!. ~2.9!

The wave functionF i , j in Eq. ~2.9! is defined on radial grid-
points% i5u i 21/2uD% and on angular sitesw j5 j Dw, where
D% andDw are the spacings in the radial and angular co
dinates. Mapping this expression onto a cylindrical tig
binding Hamiltonian of the form

Ĥ tb5(
i 51

N%

(
j 51

Nw

@~« i
%1« j

w!u i , j &^ i , j u1Vi ,i 21
% u i , j &^ i 21,j u

1Vi ,i 11
% u i , j &^ i 11,j u1Vj , j 21

w u i , j &^ i , j 21u

1Vj , j 11
w u i , j &^ i , j 11u#, ~2.10!

we can directly read off the hopping matrix elements and
site energies for the cylindrical grid

Vi ,i 61
% 52

% i 61/2

2% iD%2
, « i

%52Vi ,i 11
% 2Vi ,i 21

% 5
1

D%2
,

~2.11!

Vj , j 61
w 52

1

2% i
2Dw2

, « j
w52Vj , j 11

w 2Vj , j 21
w 5

1

% i
2Dw2

.

~2.12!
-
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For both the circle and the circle segment, we can incor
rate the Dirichlet boundary conditions into the Hamiltoni
~2.10! through the requirementVN%,N%11

%
50. For the seg-

ment we have in additionV1,0
w 5VNw,Nw11

w
50. After separa-

tion of the radial and angular partF i , j5Ri•L j and the sub-
stitution gi5RiA% i , Eq. ~2.9! is transformed into a
tridiagonal and symmetric eigenproblem of the sizeN%

3N%, which is computationally easy to handle,

E~j!g[ j], i52
j

% i
2

g[ j], i1
1

2D%2 S 2
% i 21/2

A% i 21A% i

3g[ j], i 2112g[ j], i2
% i 11/2

A% iA% i 11

g[ j], i 11D .

~2.13!

The separation constant, the effective squared angular
mentum of the discretized problem is defined throughj
5(1/2Dw2)@(L j 2122L j1L j 11)/L j #. For a full circle with
Nw angular grid spacings the angular eigenfunctions and
genvalues read

L [k], j5F 1

NwDw
G 1/2

eik2p j /Nw
, jk5

1

Dw2 FcosS 2kp

Nw D 21G ,

~2.14!
while for a segment of a circle withNw angular sites we have

L [k], j5F 2

~Nw11!Dw
G 1/2

sin@kp j /~Nw11!#,

jk5
1

Dw2 FcosS kp

Nw11
D 21G . ~2.15!

The radial eigenvectorsg[ j,n] , nP$1, . . . ,N%% are subject to
Dirichlet boundary conditions (g[ j],N%1150) and normal-

FIG. 2. ~a! Diagrammatic representation of the joining of mo
ules by recursion. As an example we show the connection of a
to a semicircle. The open disks indicate the hard wall bound
conditions. ~b! Diagrammatic illustration of the correspondin
Dyson equation.
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PRB 62 1953MODULAR RECURSIVE GREEN’S FUNCTION METHOD . . .
ized by weighting them with the size of the unit cells of t
cylindrical grid (DR5% iD%Dw),

dn,n85(
i 51

N%

~R[ j,n], iR[ j,n8], i !% iD%5(
i 51

N%

~g[ j,n], ig[ j,n8], i !D%.

~2.16!

With these expressions we can solve the matrix eigenp
lem ~2.13!. For eachkP$1, . . . ,Nw% we obtainN% different
eigenvaluesEjk ,n and eigenvectorsg[ jk ,n]5R[ jk ,n]A% i . The

results forL [k] , R[ jk ,n] , andEjk ,n are then inserted in Eq
~2.8! to calculate the Green’s function for modules which a
separable in polar coordinates. Analogous expressions ca
determined for other curvilinear grids.

Joining different modules proceeds by solving a Dys
equation which we illustrate by the example depicted in F
2. Consider the Green’s function describing the propaga
from the radial sliceL to the Cartesian sliceJ,

~2.17!

with V̄K11,K5VK11,KDR . In Eq. ~2.17!, GL,J
0 stands for the

Green’s function of the disconnected modules whileG is the
Green’s function of the connected, enlarged system. The
dicesK and K11 refer to the slices of grid points on bot
sides of the border between the modules to be connec
Note that the hopping matrix is weighted with the area of
unit cell at the junction of two tight-binding grids. Each mu
tiplication in Eq. ~2.17! stands for a matrix multiplication
where the dimension is given by the number of sites wit
the slice. In order to close the system of matrix equatio
two more Dyson equations are needed@see Fig. 2~b!#

GK,J5GK,J
0 1GK,K

0 V̄K,K11GK11,J , ~2.18!

and finally

~2.19!

From the coupled equations above and the boundary co
tions at the borders we obtain

GL,J5GL,K11
0 V̄K11,K~12GK,K

0 V̄K,K11

3GK11,K11
0 V̄K11,K!21GK,J

0 . ~2.20!

This recursion method has the advantage that it involves o
one inversion of a matrix for connecting two entire modul
Furthermore, for connections performed at lead mouths,
dimension of the involved matrices along the border is sm
due to the small number of grid points required.

In the case of attaching a lead to a cylindrical module
can employ an additional approximation. Under the assu
tion, that the opening of the lead is small compared to
radius of the module, we can approximate the arc of
circle at the lead mouth to be a straight line@see Fig. 2~a!#.
This approximation is valid as long as the wavelength of
electron is large compared to the error in spacing induced
b-

be

n
.
n

n-

d.
e
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.
e
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e
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this assumption. For keeping the Hamiltonian at this junct
Hermitian, we have to make sure that the Cartesian hopp
potential in propagating direction is equal to the radial co
ponent of the cylindrical hopping potential (Vx521/2Dx2

5VN%,N%11
% ). We must also require that the Cartesian a

the cylindrical unit cells at the junction have the same s
(DxDy5%N%D%Dw).

B. Link modules

The nontrivial key feature of the present method is t
connection between modules of different symmetries wh
cannot be dealt with by the approximation mentioned abo
This task is performed by ‘‘link modules’’ that are plugge
in between the modules of different grid structure~Fig. 3!.
We illustrate this method explicitly for the link between
Cartesian and a cylindrical module. Two of such links a
required for the construction of a stadium which results fro
joining two semicircles~cylindrical module withw5p) and
a rectangle~Cartesian module!. This link module is referred
to in the following as a double wedge. Its construction
terms of a tight-binding Hamiltonian proceeds as follow
the double wedge is half a cylindrical wedge and half a C
tesian strip ~see Fig. 3!, consisting of three neighboring
chains. One corresponds to the ‘‘last’’ radial chain of t
cylindrical grid, the other is the ‘‘first’’ Cartesian chai
along they direction and the third one in the middle is th
‘‘hybrid’’ strip ( Dy5D%). The boundary conditions for the
wedge are such that the wave function vanishes at the o
two chains. The finite-difference Schro¨dinger equation for
the double wedge reads

E
D%

2
~ u% i uDw1Dx!F i5F iFD%Dw

2 S % i

D%2
1

1

% iDw2D
1

D%Dx

2 S 1

Dy2
1

1

Dx2D G
2

1

2
F i 11FDw% i 11/2

2D%
1

D%Dx

2Dy2 G
2

1

2
F i 21FDw% i 21/2

2D%
1

D%Dx

2Dy2 G ,

~2.21!

FIG. 3. Link module~‘‘double wedge’’! for connecting a cylin-
drical with a Cartesian grid.
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where the cell area of the hybrid strip isDR
5(D%/2)(u% i uDw1Dx).

The wave function is again zero on the bounda
(F2N%5FN%1150). Writing Eq. ~2.21! in matrix notation,
we obtain a generalized eigenproblem of the formEB̂uF&
5ĤuF&. The matrix Ĥ corresponds to the~symmetric!
Hamiltonian and the diagonal matrixB̂ determines the or-
thonormalization of the generalized eigenvectors ofĤ,

^FuB̂uF&5I⇔

dm,m85 (
i 52N%11

N%

F [m], iF [m8], i

D%

2
~% iDw1Dx!.

~2.22!

With the above expressions the Green’s function for
double wedgeGDW

0 can be calculated in the same way as
a one-dimensional finite chain.

It is instructive to visualize the coupling of the doub
wedge to the cylindrical and Cartesian modules with the h
of the one-dimensional~1D! problem of joining a semicircle
along thew direction, at fixed% i , with a straight line along
the x direction, at fixedy. With the abbreviations

Vw52
1

2% i
2Dw2

5̂n, 22Vw5̂«, ~2.23!

Vx52
1

2Dx2
5̂n8, 22Vx5̂«8, ~2.24!

the 1D TB-Hamiltonian for this composition is given by th
following symmetric tridiagonal matrix

~2.25!

We have boldfaced those hopping matrix elements wh
would be zero in the case of disconnected modules. Wi
this 1D Hamiltonian, the link consists of a single site ener
«L5@1/(2% i

2Dw2)11/(2Dx2)#. For the full ~2D! problem,
the double wedge consists of all sites along the wall betw
the Cartesian and the cylindrical grid withi 52N%

11, . . . ,N% ~note thatNy52N%). In the recursion the link
module is ‘‘attached’’ to the Cartesian~cylindrical! grid by
means of the hopping potentialV̄x(V̄w), respectively.
e
r

lp

h
in
y

n

C. Remarks on the efficiency of the MRGM

With the help of the Green’s function for the leadGL
0 , the

semicircleGSC
0 , the double wedgeGDW

0 , and the rectangle
GRA

0 , the Green’s functionG for the composite structure~the
stadium! can be determined. This requires a total of six
cursive solutions of the Dyson equation corresponding to
number of border slices in between the modules.~This num-
ber can be lowered by symmetry considerations.! By com-
parison, in the standard RGM the Green’s function is cal
lated recursively at every new slice in propagating directi
This amounts to a large number of recursions, i.e., ma
inversions, of the order ofni@1. Each of these recursion
requires the inversion of a matrix whose size is determin
by the number of grid points in transverse directions which
of the order ofn'@1. Therefore, for high mode numbers an
short wavelengths, a large number of grid points and of
versions are needed, which renders this method eventu
impractical. In the MRGM described above, the number
inversions is only given by the number of modules needed
build the structure, independent of the wavelength. Mo
over, the size of the matrices involved in joining the lea
with the structure is modest, such that the number of inv
sions of large matrices in the present case of the stadiu
reduced to 4. In the regular structures such as the circle
inversion of large matrices is required at all. The pres
method can be straightforwardly extended to other geo
etries and structures with the only limitation that these can
built up from a modest number of separable modules. F
thermore, inclusion of a homogeneous magnetic field is p
sible for structures that can be decomposed into modules
which the separability is preserved upon a suitable ga
transformation. Another advantage of the MRGM is th
changes in position and direction of the lead can be d
without any major effort. There are, however, several lim
tations to this approach.~1! When the scattering device ca
not be built up from separable modules our approach fa
~2! Random potentials for disordered systems that break
symmetry of the module cannot be treated. However,
smooth potential including those depending on random v
ables can be included as long as they preserve separabili
the substructure.~3! The MRGM is not suited for yielding
the wave function in the scattering region, although this
possible in principle.24

III. NUMERICAL RESULTS

In this section we will present the transmission and refl
tion amplitudes and probabilities for the circle and the Bu
movich stadium as prototypes for regular and chaotic qu
tum dots. The emphasis is laid on large values ofkF , or
equivalently, on high mode numbers which were not eas
accessible by previous calculation methods and which pe
detailed comparison with semiclassical predictions. We w
present results for different lead geometries that place dif
ent weights on the role of short and long paths.

A. Numerical tests

Apart from convergence checks as a function of the nu
ber of grid points, conservation of unitarity provides a se
sitive measure for the numerical accuracy. All data presen
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PRB 62 1955MODULAR RECURSIVE GREEN’S FUNCTION METHOD . . .
in the following display a violation of unitarity of less tha
1024. Within the accuracy of our calculations the error of t
transport coefficients~as a result of a variation of the gri
size! stays below 1%. In addition, for low values ofkF , a
direct comparison forTnm(kF) and Rnm(kF) with previous
methods can be made. As an example, Fig. 4 displays
comparison for the transmission coefficient in the first pro
gating mode,T11(kF) with the wave function matching
method of Nakamura and Ishio18 for ~a! the circle and~b! the
stadium. In both cases the rapid fluctuations in the transm
sion coefficient agree very well, despite the fact that for
stadium the violation of unitarity in the wave functio
matching method is already of the order of 20%.

B. Transmission coefficients and conductance fluctuations

The kF dependence of the total transmission is display
in Fig. 5 for the circle and in Fig. 6 for the stadium. W
calculated 200 points per mode number, up tommax530 for
the circle andmmax515 for the stadium. To our knowledge
this calculation encompasses the largest range of waven
bers available at present. In both figures, part~a! displays the
data for the geometry with opposite leads and part~b! for
perpendicular leads. In each case, the staircase function
resents the sum of transmission and reflection, which,
cording to the unitarity condition, is equal to the number
open channels in the quantum wires. The classical trans
sion and reflection are linear functions whose slope is de
mined by the fraction of trajectories that leave the cavity
exit or entrance lead. In order to illustrate the changes in
mean values of conductance^T& and resistancêR& we dis-
play smoothed curves averaged over the rapid conduct
fluctuations. For better visibility, the exact quantum resu
are only shown for conductance. Strong irregular fluctuati
are visible which are a realization of Ericson fluctuation
These are expected when the resonance overlap crite
^G&/^DE&*1 is satisfied, wherêG& is the mean width of
the resonance in the quantum dot and^DE& is the average
level spacing between resonances. The latter can be
mated from the Weyl formula for the semiclassical lev
density1 %

FIG. 4. Comparison between the present MRGM~solid line!
and the mode-matching method~Ref. 18! ~dotted line! for the first-
mode transmission probability@T115ut11(kF)u2# in a small window
of kF : ~a! circle with opposite leads,~b! stadium with opposite
leads.
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^DE&5%21'2p/A, ~3.1!

whereA is the area of the quantum dot. For chaotic syste
^G& can be assessed from the ‘‘universal’’ classical dw
time distributionP(t)5e2Gt. The magnitude ofG is deter-

FIG. 5. The total transmission probabilityTqm5(n,mutnmu2

~gray solid line! as a function of the wave vectorkF . The staircase
function,Tqm1Rqm ~gray dash-dotted line!, represents the quantum
current conservation condition. The straight solid~dashed! line is
the classical transmissionTcl ~reflectionRcl) with the corresponding
total classical current as a dash-dotted straight line. The continu
black ~dashed! curve is the mean quantum transmission~reflection!
as an average overDkF5p/d: ~a! for the circle with opposite leads
~b! for circle with perpendicular leads.

FIG. 6. As in Fig. 5 but for~a! the stadium with opposite lead
and ~b! the stadium with perpendicular leadsl /R52.
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mined by the path length~L! distribution, which displays an
exponential decay, however strongly modulated by nonu
versal classical fluctuations. We analyze this in detail be
@see Eq.~3.8!#. Our calculations give

^G&5^L&21vF.0.02233vF.0.0223mp/d, ~3.2!

thus leading to

^G&

^DE&
.0.0112mS A

d D . ~3.3!

In scaled units the geometry of the cavity is determined
the areaA541p. For both, the circle and the stadium, th
lead width is given byd50.0935AA. Consequently

^G&

^DE&
.0.119AAm.0.319m. ~3.4!

The regime of Ericson fluctuations is reached for modera
high mode numbers (m*3). Indeed, for the test case ofm
51 ~Fig. 4! several isolated resonances can still be ide
fied, but with increasingm this is no longer feasible~not
shown!. For regular structures, the universal estimate for
path length and dwell time distributions does not apply. N
ertheless, from the numerically determined mean value
^L& a similar estimate for the regime of overlapping res
nances can be made.

Despite the fact that the present calculation of cond
tance fluctuations extends to higher values ofk than previous
investigations, we find that the semiclassical calculation
T(k) andR(k), performed in the primitive semiclassical a
proximation ~PSC! as well as by including diffractive
corrections13,14 fails to quantitatively account for the fluctua
tions. Moreover, unitarity is strongly violated.15 Even for
large kF , no improvement in the absolute amount of viol
tion was discernible. A more instructive quantitative co
parison with semiclassical calculations employing the pa
length spectrum will be presented below.

Another characteristic feature of the quantum mechan
results is the deviation of the mean values of transmiss
and reflection from the corresponding classical curves for
stadium with perpendicular leads and for the circle with b
lead orientations. These deviations are often referred to
weak localization~WL!.10 The most prominent contribution
to the WL effect for the structures with perpendicular leads
‘‘coherent backscattering’’~CB!:12 time reversal symmetry
of reflected paths leads to constructive interference
thereby to an average enhancement of thediagonalreflection
coefficientsur nn(kF)u2. For the stadium with opposite lead
no systematic WL effect is observed. This is due to the h
zontal symmetry axis of the structure. Every path has a
flection symmetric counterpart leading to constructive int
ference in both diagonal and off-diagonal parts
transmissionand reflection.~For the diagonal part of the re
flection, this symmetry coincides with time-reversal symm
try, and therefore the enhancement due to constructive in
ference coincides with the CB effect.! Since the stadium is a
chaotic structure where long trajectories are randomly
tributed, the enhancement effects for reflection and transm
sion cancel each other out and no overall WL effect is visi
in Fig. 6~a!, in agreement with the findings of Ref. 35.
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For the circle with opposite leads@Fig. 5~a!# which has
the same discrete symmetry properties as the stadium in
6~a!, one might also expect a cancellation of enhancem
effects. However, this structure is not chaotic and transpo
determined by nonrandomized path bundles. Therefore
enhancement effects do not necessarily cancel out. Ind
we observe a strong enhancement of the quantum reflec
compared to the classical value. This finding is in disagr
ment with the semiclassical investigation of Ref. 12, wher
was observed that CB for the diagonal part of the reflect
was cancelled out by an ‘‘anti-WL’’ effect for the off
diagonal contributions to the reflection. However, in Ref.
a much wider lead width is used and, possibly, the amoun
cancellation depends on the lead width, which in turn infl
ences the weight of longer trajectories. We also find that
offset of the quantum from the classical transmission~reflec-
tion! increases approximately linearly as a function ofk for
the integrable cavities whereas no systematic trend was
served in the chaotic case.

As a measure for the strength of the interference in qu
tum transport, we display in Fig. 7 the mean of the cond
tance fluctuationss(T)5^(T2^T&)2&1/2. Random matrix
theory ~RMT! predicts that in chaotic structures without
discrete symmetry, the mean fluctuation approaches the
ues 1/A8 for high mode numbers.36 Indeed, the mean fluc
tuation for the stadium with perpendicular leads follows th
prediction ~lower dotted curve!. The mean for the stadium
with opposite leads approaches a value close to 1/A2 ~upper
dotted curve! as predicted for chaotic structures with ho
zontal and vertical reflection symmetry.35 The deviation from
the RMT prediction is possibly due to the fact that our g
ometries allow direct~nonchaotic! trajectories connecting
entrance and exit lead. The analysis for the two circular
ometries shows strongly enhanced fluctuations relative to
RMT prediction, because transport is mediated by nonr
domized path bundles in these regular structures. Furt
more we find that the fluctuations are growing with increa
ing wave numberk. This is in agreement with recen
semiclassical work on conductance through another in
grable cavity, i.e., the rectangular billiard37 ~see also Ref.
10!.

C. Path-length spectra

In order to analyze the influence of regular and chao
classical dynamics in more detail and to perform a meani
ful comparison with semiclassical theory, we analyze
conductance and resistance in terms of the path length
tribution contributing to transport. The method consists o
Fourier transformation of the transmission~or reflection!
amplitude38

t̃ nm~L !5E
kmin

kmax
dkFtnm~kF!exp~2 ikFL !. ~3.5!

In the following, the variableL, conjugate tokF , will be
referred to as the path length. This identification is una
biguous within the semiclassical description where the a
plitude tnm(kF) is written in terms of a coherent superpos
tion of amplitudes of pathsq with a given lengthLq ,
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tnm~kF!5
2p

~2p i !3/2 (
q

uDqu1/2eikFLq2 i (p/2)mq. ~3.6!

We denote the weighting factor for each path~or bundle of
paths! by Dq and the Maslov index bymq . ~For details, see
Refs. 13–15!.

Studying the power spectrum derived from the quant
transmission amplitudesu t̃ nm(L)u2, we can gain information
about the underlying classical dynamics of the scatter
process.13–15,38High resolution of theL spectra requires dat
for a large interval of wave numbers@kmin ,kmax# such that
the resulting width of structures inL is not Fourier transform
limited but reveals information about the intrinsic peak wid
due to the spread ofL within the bundles of trajectories. In
all the data presented in this paper, the transform limi
length width isDLFT5p/(kmax2kmin)'0.054 for the circle
('0.11 for the stadium!. This results in path-length spectr
of unprecedented resolution, even for large values ofL. Fig-
ures 8 and 10 present the path-length spectra for the c
and the stadium~both lead geometries!. The path length
spectrum for regular structures~Fig. 8! consists of a se-
quence of isolated sharp peaks which can be unambiguo
associated with individual bundles of trajectories. Mo
prominent is the family of ‘‘asterisk’’ trajectories~shown as
insets! with a pattern of increasing number of bounces at
wall accompanied by a revolution within the structure befo
exiting. The near perfect agreement between the pre
quantum calculation and the semiclassical approximation
the position of the peaks reveals the close classical-quan
correspondence for this system. It illustrates that the p
length spectrum can provide detailed insights into the qu
tum dynamics. There are only few deviations where nonc
sical paths significantly contribute to the conductance, on
which is highlighted by an arrow@see Fig. 8~a!#. The peak at
L'9 originates from a ‘‘ghost’’ path and illustrates the im
portance of diffraction effects. The contributing trajectori
correspond to three straight-line traversals of the circle

FIG. 7. Mean of conductance fluctuationss5^(T2^T&)2&1/2 for
four different scattering geometries as a function ofkF . The vari-
ances is obtained by averaging over 100kF values in the total
transmission amplitude within the interval@kF6D#. For the sta-
dium geometry with perpendicular leads,s agrees very well with
the results of random matrix theory~Ref. 36! ~lower dotted curve!.
For the stadium geometry with opposite leads, the RMT predic
for cavities with fourfold symmetry~Ref. 35! ~upper dotted curve!
is quite close to our results.
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cluding two diffractive reflections from the lead mouths b
fore exiting on the third ‘‘try.’’ Ghost paths are absent in th
PSC approximation but can be incorporated within t
framework of diffractive corrections.13 In addition to such
individual nonclassical contributions, the present numeri
results reveal a systematic and increasing failure of the se
classical approximation at large path lengthL ~see Fig. 8!.
While the peak height, i.e., the weight of a given path bun
within the spectrum, is represented quite well by semicla
cal theory for small to moderateL, the semiclassical approxi
mation ~SCA! overestimates the contribution for long path
One consequence of the failure is the breakdown of the S
for the description of the conductance fluctuationsTnm(kF).
The conductance amplitude ink spacetnm(kF) consists of a
coherent superposition of all path amplitudes. The failure
properly represent the path amplitudes for largeL leads,
among other things, to a gross overestimate of the cond
tance fluctuation and hence to the violation of unitarity.

It is instructive to investigate the origin of the failure o
the SCA. In Fig. 9 we give the ratio of the semiclassical
the quantum peak height as a function of the path lengtL
where we have grouped trajectories according to their in
tion angle into the billiard. Small injection anglesu ~mea-
sured relative to thex1 axis in the lead! correspond to the
trajectories with low angular momental which come close to
the center of the circle. Large anglesu correspond to trajec-
tories with large angular momenta that stay mostly at
outer circumference. For both groups of trajectories the ra
of peak heights increases rapidly withL (;L4), alluding to
the influence of the spreading of the quantal wavepacket
yond the classical spread after many bounces.14 Surprisingly,
the lower l is the stronger the spreading is enhanced. T
indicates that the effect of wave packet spreading is m

n
FIG. 8. Power spectrumu t̃ 11(L)u2 of the transmission amplitude

for a finite window ofkF ,1<kF<30, in units ofp/d. Cavity area
A541p and lead widthd50.09353AA: ~a! for the circle billiard
with opposite leads~b! for the circle with perpendicular leads~the
height of some peaks in the spectrum is off the scale!. Individual
peaks can be associated with classical bouncing patterns, whic
shown as insets.
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pronounced at traversals of inner classical turning po
than at bounces with the cavity walls.39

These results raise interesting conceptual questions:
sical chaotic dynamics leaves clear, ‘‘universal,’’ imprin
only for long trajectories. Therefore, signatures of chao
dynamics in quantum transport, if existent, should origin
from trajectories for largeL. However, the present finding
suggest that precisely in this region of the path-length sp
trum, the classical-quantum correspondence breaks do
The question is then posed: how can quantum transport c
information of classical chaos?

A partial resolution to this puzzle is contained in the pa
length spectrum for the chaotic stadium with different le
orientations~see Fig. 10!. These spectra differ qualitativel
and quantitatively from the spectra for regular systems~Fig.
8!. Rather than sharp discrete peaks, the spectrum conta
strongly fluctuating quasicontinuum indicating a large nu
ber of overlapping path bundles. More precisely, the intrin
width DL of the bundles is larger than the spacing betwe
different bundles. This can be viewed as the analog to E
son fluctuations but inL rather than ink space. Notice tha
this observation is not an artifact produced by the width
the Fourier transform interval, since the corresponding tra
form limited width DLFT is generally smaller than the ave
age intrinsic width. The important point we note is that the
differences appear already at modest path lengths where
classical-quantum correspondence still holds and the s
classical approximation yields good agreement.

The appearance of a quasicontinuum is related to the
ponential proliferation of orbits in chaotic structures whi
is, in turn, closely related to the exponential divergence
nearby trajectories described by a positive Lyapunov ex
nent. Figure 11 displays the classical deflection funct
Dq(L) for a trajectoryq as a function of the lengthL, in the
stadium with perpendicular leads. Both the entrance posi
y1 as well as the entrance angle sinu1 were chosen ran
domly. Since the deflection functionDq describing the sta-
bility of the trajectoryq is inversely proportional to the di
vergence of neighboring paths, the absolute magnitude o
deflection factoruDqu roughly falls off as exp(2lLq) , where

FIG. 9. Ratio of semiclassical to quantum peak heights in

u t̃ 11(L)u2 andu r̃ 11(L)u2 power spectra for the two circle geometrie
as a function of the path length. The ratio is larger for peaks wit
small incident angleu ~measured relative to thex1 axis!. The solid
lines are fits to the values for small and large incident angle res
tively ~fit function: 11a3L4).
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l is the Lyapunov exponent. In the present context of dir
significance is the clustering and the exponential prolife
tion of trajectories at moderate path length. The first ac
mulation atLq'2 clearly corresponds to a bundle of pat
which directly connects the entrance to the exit lead with
‘‘exploring’’ the cavity. At Lq'10 we find a large number o
trajectories which have crossed the vertical symmetry axi
the ~closed! stadium exactly two times before exiting. Eve
further accumulation of paths~at Lq'20,30, . . . ) implies
two more traversals of this axis. Also the other accumu
tions in Fig. 11 can be explained by characteristic bounc
patterns. The exponential proliferation of the number of
bits is proportional toDq

21}exp(lL) since the divergence is
a direct measure of the partitioning and folding of the pha
space. Due to the high density of the trajectories, both
clustering and the exponential proliferation can be clea
seen in the path length spectrum of the quantum conducta
as a quasicontinuous distribution~Fig. 10!. Each broad peak
at L.n310 (n51,2, . . . ) isassociated with 2n traversals
of the vertical symmetry line of the closed stadium. Equa
for the stadium with opposite leads, broad peaks appea
distances corresponding to two traversals of the vertical s
metry axis. Since these signatures appear at moderate
lengths, where the classical-quantum correspondence is
satisfied, the quasicontinuous path-length spectrum, mo
lated by the clustering of trajectories, is a generic feature
chaotic transport through quantum dots. One salient fea
of the characterization of transport properties in terms o
path-length spectrum is that the presence of direct or ‘‘n
chaotic’’ paths can be clearly separated and does not in
ence the analysis of generic properties of chaotic dynam
The latter are indeed structurally identical for the stadiu
with opposite and perpendicular leads while the weight
direct paths is vastly different for both geometries. No su

e

a

c-

FIG. 10. Power spectrumu t̃ 11(L)u2 of the transmission ampli-
tude for a finite window ofkF ,1<kF<15, in units ofp/d. Cavity
areaA541p and lead widthd50.09353AA: ~a! for the stadium
billiard with opposite leads~b! for the stadium with perpendicula
leads. Note the different vertical scales in~a! and ~b!.
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clear separation can be achieved for thek-dependent conduc
tanceTnm(k) due to the presence of quantum interferen
between direct~nongeneric! paths and multibounce path
The latter leads for the stadium with opposite leads to n
universal mean fluctuations comparable to regular structu
Moreover, the quasicontinuous, randomly fluctuatingL spec-
trum can be associated with universal conductance fluc
tions ~Fig. 6! while a discreteL spectrum gives rise to large
nonuniversal fluctuations~Fig. 5!.

The degree of classical-quantum correspondence ca
further highlighted when one analyzes the total path-len
spectrum, summed over all modes

Tqm~L !5(
n,m

u t̃ nm~L !u2. ~3.7!

In the classical limit,n,m@1,Tqm(L) should tend to the clas
sical path-length spectrumPcl(L), i.e., the path length dis
tribution averaged over all injection and summed over
ejection angles. Due to the fact that the present calcula
extends to high mode numbers, we can test this conjec
directly. Figure 12 displays the remarkable agreement
tweenPcl(L) andTqm(L) for path lengths up toL.100. The
direct paths, as well as the modulation due to the cluste
of trajectories, are clearly visible. Moreover, for long pa
length the modulation decays, leaving us with the univer
exponential path length distribution11

Pcl~L !5ke2kL ~3.8!

with a decay constantk52d/Ap.0.0223. The convergenc
of the quantum path length distribution towards the class
limit may be surprising at first glance considering the stro
discrepancies for individual mode-selected paths~see Fig. 9!.

FIG. 11. The absolute value of the deflection factoruDq(L)u, as
a function of the trajectory length, in the stadium billiard with pe
pendicular leads. Each point represents a randomly chosen tr
tory, propagating from the entrance to the exit lead.
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It appears that the redistribution of amplitude among diff
ent paths for an exponentially growing number of trajector
is due to wave packet spreading and cancels out in the
over all modes.

IV. SUMMARY

We have presented a method of calculating transport
efficients through open quantum dots, the modular recurs
Green’s function method~MRGM! which is a variant of a
standard recursive Green’s function method. Its key feat
is the decomposition of nonseparable structures into se
rable substructures which are joined by recursive solution
the Dyson equation. With this method we were able to
termine the conductance and resistance amplitudes for
mode numbers, thereby approaching the semiclassica
gime. We have analyzed the path-length spectrum of
conductance amplitude and have found the breakdown of
semiclassical approximation for large path length. Furth
more we have identified unambigous signatures of cha
transport in terms of a quasicontinuous path-length spect
as opposed to a discrete spectrum for regular structu
These signatures remain unaffected from the presence o
rect paths, the breakdown of the semiclassical approxima
for long paths and the contributions of nonclassical pat
Work on the inclusion of a magnetic field for the analysis
magnetoconductance is in progress.
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ec- FIG. 12. Comparison between the classical path-length distr
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Tqm(L)5(n,m
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