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A modification of the standard recursive Green’s function method for quantum transport through micro-
structures is presented which is based on the decomposition into separable substructures. The Green'’s functions
for these modules are joined by discretized Dyson equations. Nonseparable structures can thereby be calculated
with the help of a few recursions with high accuracy. We apply this method to the calculation of ballistic
quantum transport through a circular and stadium-shaped quantum dot for high mode numbers to test semi-
classical predictions in detail. Among other results we find the breakdown of the semiclassical approximation
for long path lengths which is due to the spreading of wave packets in the cavity.

I. INTRODUCTION divided into two groups: basis expansion and discretization
on a grid. The former approach, as with the mode-matching
Billiards have long served as prototype systems in themethod’ or the expansion in plane and spherical wate4°
field of classical and quantum chabdnvestigations on is of high numerical precision for low mode numbers but
closed billiards have revealed information on the statistics obecomes unstable for high energies and suffers from break-
energy level$and pronounced enhancements of wave funcdown of unitarity. Methods employing discretization on a
tions near unstable periodic orbftsRecently, the study of grid, like in the finite elemeft or recursive Green’s function
quantum transport through open billiards has received conmethod? % are stable, preserve unitarity to a high degree,
siderable attention due to advances in the fabrication oput become numerically inefficient for lardg . This is be-
semiconductor structures which led to the experimental realcause for smalk, the density of grid points required to sub-
ization of phase coherent scattering devites. tend the quantum dot and the attached quantum wires be-
The transport properties of these microstructures argomes prohibitively large. In the standard recursive Green’s
dominated by quantum interference in the ballistic regimefunction method RGM) the Green’s function is propagated
resulting in strong conductance fluctuations. The interferencghrough the scattering region from one transverse strip to the
pattern depends on the shape of the cavity, the opening of thesxt through repeated solution of a matrix Dyson equation.
attached wave guide, and the wavelength of the incidentowever, in the semiclassical limitp>1, D/d> 1, the high
electron. In order to delineate signatures of classically chanumber of large matrix inversions makes this method im-
otic dynamics in ballistic quantum transport, semiclassicapractical. A hybrid method combining the RGM with the
descriptions based on MillePsaind Berry and Mount"srep- C|ose-ooup|ing approach has been recent|y proposed by Zo-
resentation of the scattering amplitude have beegulenkoet al?®
developed®~*® Since these are asymptotic expansions for |n the following, we propose a variant of the RGM fol-
small wavelength\, classical-quantum correspondence canowing an earlier suggestion by Sasal?’?8which appears
be explored only for large quantum numbers, i.e., large transsuitable for extending quantum transport calculations to
verse mode numbers of the incoming and outgoing wave |arger mode numbers towards the semiclassical regime. The

in the quantum wires with wave numbers underlying idea is to build up two-dimensional nonseparable
open quantum dots out of simpler separable substructures.
_mm Important examples which we will treat in detail are the
ki_T’ (1.9 circle and the Bunimovich staditffhattached to two quan-

tum wires. The latter geometry can be assembled from two

whered is the width of the wire(or lead width. The latter  semi-infinite rectangular quantum wirg¢eads, two semi-
poses however a major challenge, in particular for small leadircles, and one rectangle in the centEig. 1). Because of
width d/D<1, whereD is the typical linear dimension of the the separability of the Helmholtz equation in each of these
guantum dot. substructures, in the following referred to as modules, the

The motion of an electron in a restricted open two-wave function and hence the Green'’s function can be calcu-
dimensional domain appears to be a standard problem déted either analytically or by one-dimensional quadrature
quantum scattering theory. However, for large mode numessentially exactly. For joining the modules we employ the
bersm>1, or equivalently, large Fermi wave numbdgs, technique of the RGM by representing the coupling between
the problem becomes increasingly difficult to handle. Conthe modules in terms of the hopping matrix elements of a
ventional close-coupling schemes are computationally unfeaight-binding Hamiltonian and by solving a matrix Dyson
sible, primarily due to the numerical instability introduced by equation at each junction between the modules. The number
closed channel¥ Existing techniques for quantum transport of recursions required is thereby reduced to the number of
calculations through open quantum dots can be roughly submodules needed to reconstruct the quantum dot. At junctions
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FIG. 1. Schematic illustration of the modular recursive Green’s N e Tky nX1
function method as applied to the stadium with opposite leads. + 2 rnm—X[n](yl)’ 23
n=1 ‘/kxlﬁ
we employ link modules which facilitate the tight-binding
coupling between different symmetry-adapted grids in the N elkx, %2
substructures. Due to the modular structure of the Green’s ¢[2m](X2,Y2'EF)=nZl thm xm(y2). (2.2

functions employed in our approach, we refer to this exten- szJ‘

sion of the standard RGM as the modular recursive Green’qrhetnm(rnno are the quantum transmissiéreflection) am-
function method MRGM). This technique is applicable to a iy des from moden into moden. The indexn runs over all

large number of open quantum dots that can be constructgghssible transverse modes which are determined by the hard-
from a moderate number of modules for each of which thg, boundary conditions ay=+d/2. In the longitudinal

two-dimensional Helmholtz equation is separaaﬂleThe direction the plane wave motion is characterized by the wave

two-dimensional areas of each module have boundaries thggctor

correspond to the nodal lines of Cartesian, polar, elliptic, or

hyperbolic coordinates. Our method can be extended to a na\ 2

class of locally varying potentials in the dot which preserve Ky n= kF—( ) )

the separability of the Schdinger equation within each

module. Furthermore, inclusion of a constant magnetic fieldvhich is real fom#/d<kg (open channgland purely imagi-

is straightforward and will be the subject of a future publi- nary forn#/d>kg (closed channgl

cation. Current conservation is expressed through the unitarity of
We apply the MRGM to a comparative study of transportthe Smatrix which consists of the transmission and reflection

coefficients for a circle as a prototype of a classically regulammplitudes

system and the Bunimovich stadium as a paradigm for a N

classically chaotic cavity. Calculations have been performed 5 oy

for mode numbers up t;m=30 andm= 15, respectively, to nzl ([taml“+[ram®)=1. 2.9

our knowledge the highest ones available to date. We present o

a detailed comparison with the semiclassical theory of transEOr @ phase-coherent system, the transmission through a cav-

port through open quantum structufés'® Among the find- 1ty IS d'“fCt'y related to the conductangeby the Landauer

ings is the identification of signatures of regular and chaotidormula’

dynamics in the quantum path-length spectrum and the ob- )

servation of the breakdown of the semiclassical approxima- _ Zi z T (2.5

tion for very long path lengths. 9= nm: '

(2.3

mn=1

whereT,m=|t.m? is the transmission coefficient. A conve-
nient way of calculating the transmissi@reflection ampli-

In this section, we formulate the quantum scattering probtudes is by means of the Green’s function which describes
lem for conductance through ballistic microstructures. Insidgéhe propagation inside the cavity. Projecting this constant
the hard-wall boundary of the cavity we assume a constargnergy propagator onto the transverse wave functions in the
potential which is infinitely high outside. For the shape of theleads, the transmission amplitudes are give? By
guantum dot we choose the circle and the stadium as two

Il. METHOD

“typical” examples for regular and chaotic motidsee in- thm(Ep) = —ifi\Juy, nUx,,m
sets of Figs. 5,6 Two semi-infinite waveguides are attached o o
to the open cavity which are connected to different electro- « d dvi v
. . Y2 Yixpni(Y2)
chemical potentialsg1,1,) and can thus transport electrons —di2 —di2

through the microstructure. We choose a narrow opening of
the cavity withd/D = d/ VA= 0.0935, whered= 4+ r is the XG(Y2,Y1,Ee) X (m (Y1), (2.6

area of the enclosed quantum dot kept fixed for all geomand a similar relation holds for the reflection amplitudes. The
ter:ries s:;Jdi_ed. In the asymptotic regirPte,_i.e.,bfar gway fror(;\_‘actorSUXi m=1iKy m/Meg are the longitudinal velocities of

e scattering region, we impose scattering boundary con ; ; te 7 — | —
tions: the wave function can be factorized into a Iongitudinal&i)e\llsiﬁt[ooenu'geghz?)tr: r:r:)c\:/\(lj((e).nAlt;rlrggsuen):ts”fitT |2|t;tg]5ﬁoth-
propagating part and a transverse standing sine wave, oo ’ plcity
Xim(Yi), with- mode numbem. We choose a local coordi- '
nate system in which the variabe always denotes the lon-
gitudinal andy; the transverse direction in théh lead. For
an electron at the Fermi ener@g, approaching the cavity Calculating the Green'’s function for an arbitrarily shaped
in the mth mode, the flux normalized wave functions in the quantum dot is a nontrivial problem. For many geometries,
asymptotic regions of lead (entrance leadand lead 2exit ~ however, the structure can be decomposed into substructures
lead are given by (modules that are separable. For these modules, the Green’s

A. Tight-binding Green'’s functions
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function is either known analytically or can be determined
numerically by one-dimensional quadrature. In the follow- (@)
ing, we will briefly discuss how to construct the Green'’s
function for the separate modules. We then connect these

with each other to construct the Green'’s function of the

whole system. Expressing the Green'’s function at the energy 00000000
E by means of the eigenvectdis,,,) and the eigenvalues,,
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of the HamiltonianA, we have I Ky
® : j+7 V<] -
, . (r|Em)}Emlr") | ‘
G(r.r *E)_G'LT%: Etie—E, 27 B = :

For simplicity of notation we omit the limit (ling+), im- PR | — G
posing outgoing boundary conditions in the following. Eq. 2.18) ‘;W -~ G,

We llustrate the calculation of the tight-binding B) ! RN
Green'’s function for a non-Cartesian grid by the case of po- —
lar coordinateqright side of Fig. 2a)]. Generalizations to B @I L 2 et
other coordinate systems are straightforward. In terms of the ’
separable energy eigenstatgs,) =|EL,) ® |Ef), the Green’s FIG. 2. (a) Diagrammatic representation of the joining of mod-

ules by recursion. As an example we show the connection of a lead

to a semicircle. The open disks indicate the hard wall boundary
(Q|E§n><E§n|Q’> conditions. (b) Diagrammatic illustration of the corresponding
Dyson equation.

function can be written as

4 = (4 Pl ! _—

G(r,r',E) ; (o|EFNES| @ >; Erie B

(2.8 For both the circle and the circle segment, we can incorpo-

The discretization of the Schdger equatiorfand hence of rate the Dirichlet boundary conditions into the Hamiltonian
G) in a non-Cartesian grid proceeds through a derivation2.10 through the requiremen¥y, \0,,=0. For the seg-
from a discrete variational principle, using a discretized La-pent we have in additioV§ j= V¢ ' —0. After separa-

grangian, to ensure the Hermitian representation of thei, ot the radial and angular pgg’i'\;‘:a./\j and the sub-

Hamiltonian on the grid* - . .
. L - . stitution g;=R;Vo;, Eqg. (2.9 is transformed into a
This leads to the finite-difference Scllinger equation tridiagonal and symmetric eigenproblem of the si

X N¢, which is computationally easy to handle,

1
ED; i =———(0i—1pP_1.—20,D; i +0;112Pi 1
i,j ZQiAQ2(e| 1/2¥i -1, Qi i, Q|+l/2 I+1,j) E(‘f)g .:_ig . 1 (_ 01 1
. AT g " Vo,
—————(D; 120, i +D; . ). 2.9
ZQiZA‘PZ( ij—1 ij T Pije1) 2.9 o ae 0 - )
The wave functior; ; in Eq. (2.9) is defined on radial grid- (a1 (a1 \/Q_, 01 (A1)
pointsg;=|i —1/2|A¢ and on angular siteg;=jA ¢, where (213

Ap andA ¢ are the spacings in the radial and angular coor- _ _
dinates. Mapping this expression onto a cylindrical tight-The separation constant, the effective squared angular mo-

binding Hamiltonian of the form mentum of the discretized problem is defined through
=(1/2A<p2)[(AJ-_1—2Aj+Aj+1)/Aj]. For a full circle with
R N® N? N¢ angular grid spacings the angular eigenfunctions and ei-
th:zl 21 [(e2+eD)|i, )i+ VE_alii)i—1,] genvalues read
i=1j=
1/2
AVl DA+ L+ VE i) -1 A =]t k2milNe 1 eod 2T g
LU INTIN bk L? N® '
e o ¢ ¢
AVl i+ 1], (2.10

(2.19
we can directly read off the hopping matrix elements and thgyhile for a segment of a circle witN¢ angular sites we have
site energies for the cylindrical grid

1/2
i+ 1 Apgi=|—| siMkmj/(N?+1)],
Vo= TR el ve v = W17 (e nyag| ST
‘ 20;A0? ' T Ae?
(2.1 : 1 km (2.19
= co - )
1 1 K A(pz N¢+1
Viz1i== o5 5 &= Vi V1= . 0 -
20{A¢ 0iAg The radial eigenvectorg, ,;, ne{1, ... N¢} are subject to

(2.12 Dirichlet boundary conditions (s} ne+1=0) and normal-
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ized by weighting them with the size of the unit cells of the LT
cylindrical grid (Ag=p;AQA ), ::g
N©@ N©@ = O
- O
On,n! :21 (R[g,n],iR[g,n'],i)QiAQ:i:El (9ren),i9eni)A0. ——o
(2.16 o
With these expressions we can solve the matrix eigenprob- e O
lem (2.13). For eachke{1, ... N?} we obtainN¢ different w0
. . — - O
e|genvalue£§k,n and eigenvectorgg, n=R¢, n] Joi. The LT

results forAy;, Rig.nl s and E¢ nare then inserted in Eq.

(2.8 to calculate the Green'’s function for modules which are
separable in polar coordinates. Analogous expressions can E
determined for other curvilinear grids.

Joining different modules proceeds by solving a Dysonthis assumption. For keeping the Hamiltonian at this junction
equation which we illustrate by the example depicted in FigHermitian, we have to make sure that the Cartesian hopping
2. Consider the Green'’s function describing the propagatiofotential in propagating direction is equal to the radial com-

FIG. 3. Link module(*double wedge”) for connecting a cylin-
reical with a Cartesian grid.

from the radial slicel to the Cartesian slicé, ponent of the cylindrical hopping potential/{= — 1/2Ax?
=Vyo nes1)- We must also require that the Cartesian and
G =G} ;+G] ¢ \Vk1xGk s (217 the cylindrical unit cells at the junction have the same size
— (AxAy=gneAoAg).
with Vi1 1x=Vi+1xAr. In Eq.(2.17, G , stands for the B. Link modules
Green'’s function of the disconnected modules wiilés the The nontrivial key feature of the present method is the

Green’s function of the connected, enlarged system. The inconnection between modules of different symmetries which
dicesK andK +1 refer to the slices of grid points on both cannot be dealt with by the approximation mentioned above.
sides of the border between the modules to be connecteghis task is performed by “link modules” that are plugged
Note that the hopping matrix is weighted with the area of thein between the modules of different grid structufég. 3.

unit cell at the junction of two tight-binding grids. Each mul- We illustrate this method explicitly for the link between a
tiplication in Eq.(2.17) stands for a matrix multiplication Cartesian and a cylindrical module. Two of such links are
where the dimension is given by the number of sites withinrequired for the construction of a stadium which results from
the slice. In order to close the system of matrix equationsjoining two semicirclegcylindrical module withg=7) and

two more Dyson equations are needede Fig. 20)] a rectanglgCartesian module This link module is referred
0 0 — to in the following as a double wedge. Its construction in
Gik,3=Gk 31 Gk k Vi k+16k+135 (218  terms of a tight-binding Hamiltonian proceeds as follows:

the double wedge is half a cylindrical wedge and half a Car-
tesian strip(see Fig. 3 consisting of three neighboring
0 0 _ chains. One corresponds to the “last” radial chain of the
G170k 1+ Grrrpi1 Vi 16Gr - (2.19 cylindrical grid, the other is the “first” Cartesian chain
—0 along they direction and the third one in the middle is the
“hybrid” strip ( Ay=Ap). The boundary conditions for the
From the coupled equations above and the boundary condivedge are such that the wave function vanishes at the outer
tions at the borders we obtain two chains. The finite-difference Schiiager equation for

the double wedge reads

and finally

GL,J: GE,K+1VK+1,K(1_ G&,KVK,K-#l

0 v 10 .
XGgi1x+1Vk+1k) G- (2.20 EATQ(|Qi|A(p+AX)CDi=CDi A92A<p< Q'2+ ! 2)
This recursion method has the advantage that it involves only Ae” eide
one inversion of a matrix for connecting two entire modules. AoAx/[ 1 1
Furthermore, for connections performed at lead mouths, the + S T —
dimension of the involved matrices along the border is small 2 (Ayz AXZ)

due to the small number of grid points required.

In the case of attaching a lead to a cylindrical module we 1 ® A‘PQi+1/2+AQAX

can employ an additional approximation. Under the assump- 2 Y 2Ap 2Ay?
tion, that the opening of the lead is small compared to the
radius of the module, we can approximate the arc of the 1 Apoi_1p ApQAX

circle at the lead mouth to be a straight lirsee Fig. 29)]. - Eq’iq 2h0 DAV
This approximation is valid as long as the wavelength of the y
electron is large compared to the error in spacing induced by (2.2))
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where the cell area of the hybrid strip iAg C. Remarks on the efficiency of the MRGM

=(ae2)(eilre+Ax). . With the help of the Green’s function for the le&g , the

q)The_\gl)ave f_ugctl(\)/\r/l 't!s aEga|n2 Zzerp ont Fhe ?Otyndarysemicircleegc, the double wedg&?,,, and the rectangle

(P —ne=Pye1=0). Writing Eq. (2.21) in matrix notation, G2, the Green’s functiofs for the composite structurighe

we obtain a generalized eigenproblem of the fd&B|®)  giadium can be determined. This requires a total of six re-

=H|®). The matrix H corresponds to thésymmetri¢  cursive solutions of the Dyson equation corresponding to the

Hamiltonian and the diagonal matri determines the or- number of border slices in between the modu(@his num-

thonormalization of the generalized eigenvectorsiof ber can be lowered by symmetry consideratipi com-
parison, in the standard RGM the Green'’s function is calcu-
lated recursively at every new slice in propagating direction.

(|B]D)=1= This amounts to a large number of recursions, i.e., matrix
inversions, of the order of>1. Each of these recursions

N A requires the inversion of a matrix whose size is determined

S = Z D iPrmi - (QiA @+ AX). by the number of grid points in transverse directions which is
i=—N%+1 2 of the order ofn, >1. Therefore, for high mode numbers and

(2.22 short wavelengths, a large number of grid points and of in-
, i , versions are needed, which renders this method eventually
With the abovg expressions the Green's function for th§mnsractical. In the MRGM described above, the number of
double wedgésp,, can be calculated in the same way as forjnyersions is only given by the number of modules needed to
a one-dimensional finite chain. _ build the structure, independent of the wavelength. More-
It is instructive to visualize the coupling of the double gyer, the size of the matrices involved in joining the leads
wedge to the cylindrical and Cartesian modules with the helgyith the structure is modest, such that the number of inver-
of the one-dimensiondllD) problem of joining a semicircle = sjons of large matrices in the present case of the stadium is
along theg direction, at fixede; , with a straight line along  reduced to 4. In the regular structures such as the circle, no
the x direction, at fixedy. With the abbreviations inversion of large matrices is required at all. The present
method can be straightforwardly extended to other geom-
1 . ) etries and structures with the only limitation that these can be
Vé=———=v, —2V¥=g, (2.23  Duilt up from a modest number of separable modules. Fur-
207A¢ thermore, inclusion of a homogeneous magnetic field is pos-
sible for structures that can be decomposed into modules for
1 . A which the separability is preserved upon a suitable gauge
V= — =v', —2V'=¢’, (2.24  transformation. Another advantage of the MRGM is that
2A% changes in position and direction of the lead can be done
without any major effort. There are, however, several limi-
the 1D TB-Hamiltonian for this composition is given by the tations to this approactil) When the scattering device can
following symmetric tridiagonal matrix not be built up from separable modules our approach fails.
(2) Random potentials for disordered systems that break the
symmetry of the module cannot be treated. However, any
smooth potential including those depending on random vari-
v e v ables can be included as long as they preserve separability of
the substructure(3) The MRGM is not suited for yielding
v e v the wave function in the scattering region, although this is
A possible in principlé?

e v Ill. NUMERICAL RESULTS

Vo v In this section we will present the transmission and reflec-
tion amplitudes and probabilities for the circle and the Buni-
movich stadium as prototypes for regular and chaotic quan-
tum dots. The emphasis is laid on large valueskpf or

(2259 equivalently, on high mode numbers which were not easily
I,1':1ccessible by previous calculation methods and which permit
Igjetailed comparison with semiclassical predictions. We will
resent results for different lead geometries that place differ-
ent weights on the role of short and long paths.

We have boldfaced those hopping matrix elements whic
would be zero in the case of disconnected modules. Withi
this 1D Hamiltonian, the link consists of a single site energ
st[ll(ZQizAszH1/(2Ax2)]. For the full (2D) problem,
the double wedge consists of all sites along the wall between

the Cartesian and the cylindrical grid with=—N, A. Numerical tests

+1,... N, (note thatN,=2N,). In the recursion the link  Apart from convergence checks as a function of the num-
module is “attached” to the Cartesigeylindrical) grid by per of grid points, conservation of unitarity provides a sen-
means of the hopping potenti(V¥), respectively. sitive measure for the numerical accuracy. All data presented
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Circle

Stadium

H X ] bt
14 145 1.5 1.55 1.6
de/7T

FIG. 4. Comparison between the present MRG#6lid line)
and the mode-matching meth@gef. 18 (dotted ling for the first-
mode transmission probabilifyT 1= t11(kg)|%] in a small window
of kg: (@) circle with opposite leadsib) stadium with opposite
leads.

total transmission and reflection

in the following display a violation of unitarity of less than
10" 4. Within the accuracy of our calculations the error of the
transport coefficientg¢as a result of a variation of the grid

s!ze) stays bel_ow 1%. In addition, for low v:fllues bﬁ.’ a (gray solid ling as a function of the wave vect&g . The staircase
direct comparison foffym(kg) and Ron(Ke) v.wth previous function, T9+ R9™ (gray dash-dotted linerepresents the quantum
memOd.s can be made. A.S "?m exam_pl_e, F_Ig' 4 d_lsplays th rrent conservation condition. The straight sdlithshed line is
comparlson for the transm|SS|0n coefficient "_1 the first p_ropa-the classical transmissidff' (reflectionR®) with the corresponding
gating mode, T;y(kg) with the wave function matching tqa) classical current as a dash-dotted straight line. The continuous
method of Nakamura and |3Hﬁ]‘_°r (@) the circle andb) the  pjack (dashed curve is the mean quantum transmissiceflectior)
stadium. In both cases the rapid fluctuations in the transmisgs an average ovevk. = /d: (a) for the circle with opposite leads,
sion coefficient agree very well, despite the fact that for thep) for circle with perpendicular leads.

stadium the violation of unitarity in the wave function

matching method is already of the order of 20%. (AE)=p =~2m/A, (3.

FIG. 5. The total transmission probabilitfd™=X .|t,n?

whereA is the area of the quantum dot. For chaotic systems,
(I'y can be assessed from the “universal” classical dwell
The ke dependence of the total transmission is displayedime distributionP(t)=e~'". The magnitude of is deter-
in Fig. 5 for the circle and in Fig. 6 for the stadium. We
calculated 200 points per mode number, uprig,,= 30 for
the circle andn,,= 15 for the stadium. To our knowledge,
this calculation encompasses the largest range of wavenum-
bers available at present. In both figures, gardisplays the
data for the geometry with opposite leads and ghytfor
perpendicular leads. In each case, the staircase function rep-
resents the sum of transmission and reflection, which, ac-
cording to the unitarity condition, is equal to the number of
open channels in the quantum wires. The classical transmis-
sion and reflection are linear functions whose slope is deter-
mined by the fraction of trajectories that leave the cavity via
exit or entrance lead. In order to illustrate the changes in the
mean values of conductan¢€) and resistancéR) we dis-
play smoothed curves averaged over the rapid conductance
fluctuations. For better visibility, the exact quantum results
are only shown for conductance. Strong irregular fluctuations
are visible which are a realization of Ericson fluctuations.
These are expected when the resonance overlap criterion
(I')/{AE)=1 is satisfied, whergl') is the mean width of
the resonance in the quantum dot aiE) is the average
level spacing between resonances. The latter can be esti-
mated from the Weyl formula for the semiclassical level FIG. 6. As in Fig. 5 but for(a) the stadium with opposite leads
density o and (b) the stadium with perpendicular leadR=2.

B. Transmission coefficients and conductance fluctuations

total transmission and reflection
S = N W A AN 0O O = N WA WL 0O




1956 ROTTER, TANG, WIRTZ, TROST, AND BURGDAFER PRB 62

mined by the path lengtfL) distribution, which displays an For the circle with opposite lead€ig. 5a)] which has

exponential decay, however strongly modulated by nonunithe same discrete symmetry properties as the stadium in Fig.
versal classical fluctuations. We analyze this in detail belows(a), one might also expect a cancellation of enhancement
[see Eq(3.9)]. Our calculations give effects. However, this structure is not chaotic and transport is
determined by nonrandomized path bundles. Therefore the
(I)=(L) 'vg=0.0223<vr=0.0223n7/d, (3.2  enhancement effects do not necessarily cancel out. Indeed,
we observe a strong enhancement of the quantum reflection

compared to the classical value. This finding is in disagree-

) ment with the semiclassical investigation of Ref. 12, where it

thus leading to

(3.3)  was observed that CB for the diagonal part of the reflection
was cancelled out by an “anti-WL” effect for the off-

>piagonal contributions to the reflection. However, in Ref. 12
a much wider lead width is used and, possibly, the amount of
cancellation depends on the lead width, which in turn influ-
ences the weight of longer trajectories. We also find that the

—<F> 0.0112n A
(AE) d
In scaled units the geometry of the cavity is determined b
the areaA=4+ 7. For both, the circle and the stadium, the
lead width is given byd=0.0935/A. Consequently

(T) offset of the quantum from the classical transmissi@flec-
~—-=~0.119/Am=0.319n. (3.4  tion) increases approximately linearly as a functionkdbr
(AE) the integrable cavities whereas no systematic trend was ob-

The regime of Ericson fluctuations is reached for moderately€ved in the chaotic case. , ,
high mode numbersni=3). Indeed, for the test case of As a measure for the strength of the interference in quan-

=1 (Fig. 4 several isolated resonances can still be identifUm transport, we display in Fig. 72”‘1?2 mean of the conduc-
fied, but with increasingn this is no longer feasiblgnot  tance fluctuationso(T)=((T—(T))?)"*. Random matrix
shown. For regular structures, the universal estimate for thdn€0ry (RMT) predicts that in chaotic structures without a
path length and dwell time distributions does not apply. Nev-discréte symmetry, the mean fluctuation approaches the val-
ertheless, from the numerically determined mean value opes_lk/ﬁ for high- mode r_1umber°§. Indeed, the mean fluc--
(L) a similar estimate for the regime of overlapping reso_tuat|(_)n_for the stadium with perpendicular leads foIIow; this
nances can be made. prediction (lower dotted curve The mean for the stadium
Despite the fact that the present calculation of conducWith opposite leads approaches a value close @ ipper
tance fluctuations extends to higher valuek tfan previous ~dotted curve as predicted for chaotic structures with hori-
investigations, we find that the semiclassical calculation ofontal and vertical reflection symmetyThe deviation from
T(k) andR(k), performed in the primitive semiclassical ap- the RMT prediction is possibly due to the fact that our ge-
proximation (PSQ as well as by including diffractive ©Ometries allow Q|rect(noncha0t|¢ trajectories connecting
correction$®*fails to quantitatively account for the fluctua- €ntrance and exit lead. The analysis for the two circular ge-
tions. Moreover, unitarity is strongly violatéd.Even for ~ Ometries s_hows strongly enhanced ﬂgctuatpns relative to the
large ke, no improvement in the absolute amount of viola- RMT prediction, because transport is mediated by nonran-
tion was discernible. A more instructive quantitative com-domized path bundles in these regular structures. Further-
parison with semiclassical calculations employing the pathmore we find that the fluctuations are growing with increas-
length spectrum will be presented below. ing wave numberk. This is in agreement with recent
Another characteristic feature of the quantum mechanica$eémiclassical work on conductance through another inte-
results is the deviation of the mean values of transmissio§rable cavity, i.e., the rectangular billidfd(see also Ref.
and reflection from the corresponding classical curves for thd0)-
stadium with perpendicular leads and for the circle with both
lead orientations. These deviations are often referred to as
weak localization(WL).1° The most prominent contribution _ .
to the WL effect for the structures with perpendicular leads is N order to analyze the influence of regular and chaotic
“coherent backscattering’(CB):'? time reversal symmetry classical dynamw; in more deta_ul and to perform a meaning-
of reflected paths leads to constructive interference anéHl comparison with semiclassical theory, we analyze the
thereby to an average enhancement ofdiagonalreflection ~ conductance and resistance in terms of the path length dis-
coefficients|r ,n(ke)|%. For the stadium with opposite leads, tnbupon contnbutmg to transport. The _mgthod con5|§ts of a
no systematic WL effect is observed. This is due to the horifourier transformation of the transmissigor reflection
zontal symmetry axis of the structure. Every path has a re@mplitudé
flection symmetric counterpart leading to constructive inter-

C. Path-length spectra

ference in both diagonal and off-diagonal parts of _ Krmax
transmissiorand reflection.(For the diagonal part of the re- tnm(L)=f dketym(kp)exp(—ikgL). (3.5
flection, this symmetry coincides with time-reversal symme- Kmin

try, and therefore the enhancement due to constructive inter-

ference coincides with the CB effecBince the stadium is a In the following, the variablel, conjugate tokg, will be
chaotic structure where long trajectories are randomly disreferred to as the path length. This identification is unam-
tributed, the enhancement effects for reflection and transmisiguous within the semiclassical description where the am-
sion cancel each other out and no overall WL effect is visibleplitude t,,(kg) is written in terms of a coherent superposi-
in Fig. 6(a), in agreement with the findings of Ref. 35. tion of amplitudes of pathg with a given lengthL,
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dium geometry with perpendicular leads,agrees very well with
the results of random matrix theotRef. 3§ (lower dotted curve
For the stadium geometry with opposite leads, the RMT prediction
for cavities with fourfold symmetryRef. 35 (upper dotted curvye
is quite close to our results.

Length

FIG. 8. Power spectrurﬁll(L)|2 of the transmission amplitude

for a finite window ofkg ,1<kgr=<30, in units of7/d. Cavity area

A=4+ 7 and lead widthd=0.0935x \/A: (a) for the circle billiard

with opposite leadgb) for the circle with perpendicular leadthe

; i height of some peaks in the spectrum is off the gcdfeividual

tam(ke) = (27T—|)3/2 % Dy 2elrta™ (72, (3.6) peaks can be associated with classical bouncing patterns, which are
shown as insets.

We denote the weighting factor for each p#tin bundle of

paths by D, and the Maslov index by.,. (For details, see cluding two diffractive reflections from the lead mouths be-
Refs. 13-1h fore exiting on the third “try.” Ghost paths are absent in the
Studying the power spectrum derived from the quantumpSC approximation but can be incorporated within the
transmission amplitudes,(L)|?, we can gain information framework of diffractive corrections’ In addition to such
about the underlying classical dynamics of the scatteringndividual nonclassical contributions, the present numerical
process>~1538High resolution of the spectra requires data results reveal a systematic and increasing failure of the semi-
for a large interval of wave numbef&in.Knax] Such that classical approximation at large path lengti{see Fig. 8.
the resulting width of structures inis not Fourier transform  While the peak height, i.e., the weight of a given path bundle
limited but reveals information about the intrinsic peak widthwithin the spectrum, is represented quite well by semiclassi-
due to the spread df within the bundles of trajectories. In cal theory for small to moderate the semiclassical approxi-
all the data presented in this paper, the transform limitednation (SCA) overestimates the contribution for long paths.
length width iSAL = 7/ (Kmax— Kmin) =0.054 for the circle  One consequence of the failure is the breakdown of the SCA
(=~0.11 for the stadium This results in path-length spectra for the description of the conductance fluctuatiding,(Kg).
of unprecedented resolution, even for large values.dfig-  The conductance amplitude knspacet,(kg) consists of a
ures 8 and 10 present the path-length spectra for the circleoherent superposition of all path amplitudes. The failure to
and the stadiumboth lead geometrigs The path length properly represent the path amplitudes for lalgdeads,
spectrum for regular structurg&ig. 8 consists of a se- among other things, to a gross overestimate of the conduc-
quence of isolated sharp peaks which can be unambiguoustgance fluctuation and hence to the violation of unitarity.
associated with individual bundles of trajectories. Most It is instructive to investigate the origin of the failure of
prominent is the family of “asterisk” trajectorieshown as the SCA. In Fig. 9 we give the ratio of the semiclassical to
inset9 with a pattern of increasing number of bounces at thehe quantum peak height as a function of the path lehgth
wall accompanied by a revolution within the structure beforewhere we have grouped trajectories according to their injec-
exiting. The near perfect agreement between the presetibn angle into the billiard. Small injection angles(mea-
quantum calculation and the semiclassical approximation fosured relative to the, axis in the lead correspond to the
the position of the peaks reveals the close classical-quantutrajectories with low angular momenitavhich come close to
correspondence for this system. It illustrates that the paththe center of the circle. Large angléscorrespond to trajec-
length spectrum can provide detailed insights into the quantories with large angular momenta that stay mostly at the
tum dynamics. There are only few deviations where nonclaseuter circumference. For both groups of trajectories the ratio
sical paths significantly contribute to the conductance, one obf peak heights increases rapidly with (~L#), alluding to
which is highlighted by an arrofsee Fig. §a)]. The peak at the influence of the spreading of the quantal wavepacket be-
L~9 originates from a “ghost” path and illustrates the im- yond the classical spread after many bourté&urprisingly,
portance of diffraction effects. The contributing trajectoriesthe lowerl is the stronger the spreading is enhanced. This
correspond to three straight-line traversals of the circle inindicates that the effect of wave packet spreading is more
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FIG. 10. Power spectrurﬁll(L)|2 of the transmission ampli-
pronounced at traversals of inner classical turning pointsude for a finite window ok , 1<kr=<15, in units ofs/d. Cavity
than at bounces with the cavity waffs. areaA=4+ 7 and lead widthd=0.0935x /A: (a) for the stadium

These results raise interesting conceptual questions: clasiliard with opposite leadgb) for the stadium with perpendicular
sical chaotic dynamics leaves clear, “universal,” imprints leads. Note the different vertical scales(@ and(b).
only for long trajectories. Therefore, signatures of chaotic

dynamiqs in quantum transport, if existent, should .originate)\ is the Lyapunov exponent. In the present context of direct
from trajectories for largé.. However, the present findings significance is the clustering and the exponential prolifera-

tsrﬂ%efrt] éhzfazrsg;i% ;r;ttSrﬁ rfgrlr%r;;;r:zin%a;hblgnagktg (Sj%(x;ﬁlon o.f trajectories at moderate path length. The first accu-
The question is then posed: how can quantum transport carfjulation atLq~2 clearly corresponds to a bundle of paths
information of classical chaos? which directly connects the entrance to the exit lead without
A partial resolution to this puzzle is contained in the path-€Xploring” the cavity. AtL~10 we find a large number of
length spectrum for the chaotic stadium with different leadtrajectories which have crossed the vertical symmetry axis of
orientations(see Fig. 10 These spectra differ qualitatively the(closed stadium exactly two times before exiting. Every
and quantitatively from the spectra for regular systéfig.  further accumulation of pathét L ~20,3Q...) implies
8). Rather than sharp discrete peaks, the spectrum containdwio more traversals of this axis. Also the other accumula-
strongly fluctuating quasicontinuum indicating a large num-tions in Fig. 11 can be explained by characteristic bouncing
ber of overlapping path bundles. More precisely, the intrinsigpatterns. The exponential proliferation of the number of or-
width AL of the bundles is larger than the spacing betweerbits is proportional th;locexp(AL) since the divergence is
different bundles. This can be viewed as the analog to Erica direct measure of the partitioning and folding of the phase
son fluctuations but i rather than ink space. Notice that space. Due to the high density of the trajectories, both the
this observation is not an artifact produced by the width ofclustering and the exponential proliferation can be clearly
the Fourier transform interval, since the corresponding transseen in the path length spectrum of the quantum conductance
form limited width AL 1 is generally smaller than the aver- as a quasicontinuous distributi¢Rig. 10. Each broad peak
age intrinsic width. The important point we note is that theseat L=nx10 (n=1,2,...) isassociated with 2 traversals
differences appear already at modest path lengths where tlé the vertical symmetry line of the closed stadium. Equally,
classical-quantum correspondence still holds and the semifer the stadium with opposite leads, broad peaks appear at
classical approximation yields good agreement. distances corresponding to two traversals of the vertical sym-
The appearance of a quasicontinuum is related to the exwetry axis. Since these signatures appear at moderate path
ponential proliferation of orbits in chaotic structures whichlengths, where the classical-quantum correspondence is well
is, in turn, closely related to the exponential divergence ofatisfied, the quasicontinuous path-length spectrum, modu-
nearby trajectories described by a positive Lyapunov expolated by the clustering of trajectories, is a generic feature of
nent. Figure 11 displays the classical deflection functiorchaotic transport through quantum dots. One salient feature
Dq(L) for a trajectoryq as a function of the length, in the  of the characterization of transport properties in terms of a
stadium with perpendicular leads. Both the entrance positiopath-length spectrum is that the presence of direct or “non-
y; as well as the entrance angle sinwere chosen ran- chaotic” paths can be clearly separated and does not influ-
domly. Since the deflection functiod, describing the sta- ence the analysis of generic properties of chaotic dynamics.
bility of the trajectoryq is inversely proportional to the di- The latter are indeed structurally identical for the stadium
vergence of neighboring paths, the absolute magnitude of theith opposite and perpendicular leads while the weight of
deflection factofD| roughly falls off as exptAL,) , where  direct paths is vastly different for both geometries. No such
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a function of the trajectory length, in the stadium billiard with per- . ) o
pendicular leads. Each point represents a randomly chosen trajec- F|G'I 12. Comparison between the classical path-length distribu-
tory, propagating from the entrance to the exit lead. tion P(L) (bNIack dashed lineand the total power spectrum
TINL) =320 [t0 m(L)|%, (10<ked/m=<15) (gray solid ling for the
clear separation can be achieved for kkdependent conduc- stadium billiard with perpendicular leadsA€ 4+ ,d=0.0935
tance T,n(k) due to the presence of quantum interferenceX VA). The straight solid line represents the exponential decay with
between directnongenerit paths and multibounce paths. & exponenk=0.0223(classical escape rateRef. 11.
The latter leads for the stadium with opposite leads to non-

universal mean qucFuatiqns comparable to regular structureg appears that the redistribution of amplitude among differ-
Moreover, the quasicontinuous, randomly fluctualinpec- ot haths for an exponentially growing number of trajectories

trum can be associated with universal conductance fluctugs g,e to wave packet spreading and cancels out in the sum
tions (Fig. 6) while a discretd. spectrum gives rise to larger, gyer all modes.

nonuniversal fluctuationg=ig. 5).

The degree of classical-quantum correspondence can be IV. SUMMARY
further highlighted when one analyzes the total path-length We h d hod of calculati
spectrum, summed over all modes e have presented a method of calculating transport co-

efficients through open quantum dots, the modular recursive
Green’s function methodMRGM) which is a variant of a

Tq”‘(L)=2 |T (L)|2 3.7 _standard recursiv_e_ Green'’s function method. Its kgy feature
o m : : is the decomposition of nonseparable structures into sepa-

rable substructures which are joined by recursive solutions of

In the classical limitn,m>1,T9"(L) should tend to the clas- the Dyson equation. With this method we were able to de-
sical path-length spectru®(L), i.e., the path length dis- termine the conductance and resistance amplitudes for high
tribution averaged over all injection and summed over allmode numbers, thereby approaching the semiclassical re-
ejection angles. Due to the fact that the present calculatiogime. We have analyzed the path-length spectrum of the
extends to high mode numbers, we can test this conjecturgonductance amplitude and have found the breakdown of the
directly. Figure 12 displays the remarkable agreement besemiclassical approximation for large path length. Further-
tweenP®(L) andT9™(L) for path lengths up th=100. The =~ more we .have identified unambjgous signatures of chaotic
direct paths, as well as the modulation due to the clusteringf@nsport in terms of a quasicontinuous path-length spectrum
of trajectories, are clearly visible. Moreover, for long path@S opposed to a discrete spectrum for regular structures.
length the modulation decays, leaving us with the universal N€Se signatures remain unaffected from the presence of di-
exponential path length distributibn rect paths, the breakdown of t_he _semlclassmal approximation
for long paths and the contributions of nonclassical paths.

o L Work on the inclusion of a magnetic field for the analysis of

PE(L)=«e (3.8 magnetoconductance is in progress.

with a decay constané=2d/Am=0.0223. The convergence
of the quantum path length distribution towards the classical

limit may be surprising at first glance considering the strong We thank Hiromu Ishio for putting his computer codes at
discrepancies for individual mode-selected pdsie® Fig. 9. our disposal. This work was supported by the NSF and FWF.
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