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Boundary condition for the interface between silicon and silicon oxide
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A boundary condition is formulated for the interface of a quantum well embedded in a material of large
energy barrier. Distinct differences are pointed out between a free-standing film and the quantum well. The
boundary condition for the effective-mass and envelope-function approach includes the property of the tran-
sition layer between the well and the barrier in the form of an adjustable parameter. A fulkzpmeethod
is used along with the boundary condition to calculate the energy gap of the quantum well as a function of the
well thickness. The model fits well the experimental data on multiple Sy/g§i@ntum wells.

I. INTRODUCTION result in the literature for the dependence of the PL band on
the film thickness.
The observanceof room-temperature photoluminescence
(PL) of porous silicon has attracted a great deal of theoretical
and experimental studie®n this material since its discov-

ery. The experimental studies usually involve the silicon  The infinite barrier boundary condition has usually been
quantum well embedded in silicon dioxiti@ or silicon  ysed for calculating the energy gap of a quantum structure
nitride® Lu, Lockwood, and Baribedureported that the ori- that is confined by vacuum or by a large-energy-gap
gin of the PL is quantum confinement. They also found thaimaterial’ The infinite boundary condition, however, neglects
the maximum PL peak is related to the quantum-well thick-the effect of the environment in which the quantum film is
ness by an inverse square power law, i, — Eg"*cd "2, confined.
whereEg“”‘ is the bulk energy gap. But othér§ found that There are a number of distinct differences between the
there is a size-insensitive PL band. Theoretical studies infree-standing film surrounded by vacuum and the embedded
clude the effective-mass appro&éh(EMA) and first-  film as shown in Fig. 1. First, vacuum has no electrons. The
principle calculatior?:’® among otherd! The first-principle ~ Vacuum is described in terms of vacuum state, whereas the
large-energy-gap material surrounding the quantum film is
escribed in terms of the ground stateThe vacuum state
the quantum film thickness by a different power law, i.e.,mVOlVeS only electrons but the ground state inv_olve_s not
E «d-13 Kim and Le& suggested a boundary condition only equtron; but also holes. As for the confined film, it can
thgat can explain this dependence of the energy gap on th%e desgnbgd in terms of the ground state or the vacuum state.
. ; Continuity of the envelope functions of electrons and
film th!ckness. : . . . _holes is used in the EMA. In the vacuum state, however,
While theoretical studies deal with the free-stz_indmghO'es cannot be defined and thus the continuity condition for
quantum  structure surrounded by vacuum, experimentghe nole cannot be used. Therefore, the continuity condition
studies are based on the quantum structure embedded inyg the electron must be used both in the conduction and
material with a large band gap such as silicon dioxide. It is gjence bands. The total wave-function approach used in this

not yet fully explained what effect this difference in the me-\york requires relationships between electron and holes for
dium surrounding the silicon quantum structure has on thgne \wave vector and the enerlfy:

energy gap. Furthermore, an interfacial transition layer exists
between silicon and silicon dioxide because of the interme-
diate oxidation states at the interfa@eThis transition layer conduction
has not been taken into account so far in determining the
band gap.

In this article, differences between the experiment and th€ conguction conduction
theory are examined and a boundary condition appropriatg

Il. FREE-STANDING FILM VERSUS EMBEDDED FILM

calculation for the free-standing quantum film that is sur-
rounded by vacuum shows that the energy gap is related

vacuum vacuum

conduction

for the embedded quantum structure is derived with the oxide oxide
EMA and the envelope-function approadFA). In Sec. I, valence valence valence

the differences between the free-standing quantum fiiman¢ | | 1. I
the quantum well embedded in a large-energy-gap materia valence

are discussed. In Sec. Ill, a boundary condition for the im-
bedded quantum structure is derived for the sharp interface
as well as for the interface with a transition layer. In Sec. IV,  FIG. 1. Band diagrams fofa) an infinite energy barrier(b) a
the boundary condition is applied to the silicon quantum wellfree-standing film surrounded by vacuum, aieiia quantum well
and the present model is compared with the experimentambedded in a large-energy-gap material.
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transition  confined transition column vector of envelope functions. The total wave func-
layer material layer tion of electron in them state in the confined matertélbe-
comes
, W)= FPrul(r), (5)
conduction ]
large gap large gap whereu}“(r) is the periodic function at the zone center in the
material valence material full-zone k- p perturbation scheme arfg"(r) is the element

of F™(r) corresponding tcm}“(r).

The condition that the continuftyvith respect to the total
wave function be satisfied everywhere within the unit cell
gives

\I,(r:n(ril(J):\Pb(rL!Q)! \I,(r:rjz(riiq):‘yb,z(rliq)v ( )
6

b - 4 b wherez denotes the differentiation with respectzoandq
FIG. 2. General band scheme of the quantum well embedded iFEPrésSents the points within the outermost unit cell of the
an oxide. confined material. For the transverse direction in the inter-
face plane, the connection rules of the wave function are
g=—k, EM=_ge 1) accomplished. Equatio(2) and the connection rules of the

total wave function along with the condition that the total
whereg andk are the wave vectors for the hole and electronwave function vanishes at infinity lead to the following
respectively, ancE"" and E® are the energies. This total Poundary condition:

wave-function approach leads to the same result as with the " "
typical EMA® Ve (rp,a)+x¥e(r,,q)=0 atz=q, (7)

IIl. BOUNDARY CONDITION Ve (r ,—q)—«k¥(r,,—q)=0 atz=—qg. (8

The quantum-well structure being considered consists of a Consider now the case where the transition layer is taken
confined material, a large-energy-gap material and a transinto consideration. The total wave function in the transition
tion layer, as depicted in Fig. 2. Consider first the case whergayer may be written as follows:
there is no transition layer such that q in Fig. 2. The total
wave function of electron in the large-energy-gap material, W (r)=Ae'kr 1 (2)+ B 1y (2), 9
henceforth referred to as the barrier material, in the energy
range of interest may be written as follows: wheref,(z) andfy(z) represent the functions for the state in

the confined material to propagate in the transition layer and

Po(r)=Anek e+ B ekt e, (2)  todecay, respectively. These functions are linearly indepen-

dent. Since the electron has the properties of both the propa-
wherek, andr, , respectively, are the wave vector and thegation state and the evanescent state in the energy range of
coordinate perpendicular to the quantum well ané the interest in the transition layer, the total wave function in the
imaginary wave vector longitudinal to the quantum well. Thelayer may be of an Airy function.
confinement here is in thedirection. The equation suggests  Combining Egs.(5) and (9), the connection rules at the
that the state in the barrier layer decays in the energy rangaterface between the silicon and the transition layer in the
of interest. longitudinal direction become

The Schrdinger equation for the confined material is _ _

W(r,,q)=Ae L (q)+Be T fy(q), (108

[—VZ+Vp(n)+U(n)]P(r)=EW(r), ()
. : . AN 4 of L ofy
where W (r) is the total wave function of electron in the :Atelkgu_p + Bk i—
confined materialy,(r) andU(r), respectively, are the pe- 9z ) 0z z=q oz z=q
riodic potential and the perturbation potential, a@ads the (10b

energy. Here atomic units are used throughout, i.e., the ryd- o .
berg for energy and the Bohr radius for length. With theHere, Eqs(10a and(10b) are satisfied in the outermost unit

EMA and the EFA Eq(3) is rewritten as cell of the confined material. Combining E¢8) and(9) and
using the condition that the total wave function vanishes at
[H™(—iV)+1U(r)]F™(r)=EFM(r), (4)  infinity yields the connection rules at the interface between

the transition layer and the barrier material:
whereH™(k) is annXxn Hamiltonian matrix for them state,
i.e., the conduction band, etc, in tHe-p perturbation Ate‘kr’ifp(b)jtBteiki'rifd(b)=Abe‘ki"ie"‘b,
scheme] is annXn identity matrix, andF™(r) is annx 1 (118
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w0 v 0fg " b The properties of the transition layer, i.e., the functibp(s)
Ae' NLE +Bye' i'riE =—Apre e and f4(z), and the parametet are difficult to determine.
z=b z=b ThereforeA; andB; in Egs.(10) and(11) are eliminated to
(11b obtain
|
wi(r, ,q) fo(a) fa(q) fo(b) fa(b) 171 b
SRR K
A =A,| fp afq af, afg © " re b
- - - - — ke fiemx
Jz 0 9z|,_q 0zl Il 97|,y 97l
If \ is defined by
[ fgz(b)—fq(a)fp (D) ]~ [fq () fp(h)—fp (a)fe(b) ]
[fo(a)fq (b)) —=fa(a)fy Ab)]=[fa(a)fp(b) —Fo(a)fa(b) ]«
|
the above relationship can be simplified as follows: conduction and valence bands by the vacuum surrounding

the free-standing film. This difference leads to a large differ-
ence in the dependence of the energy gap on the film thick-
ness.

’\qu(rL vq) 1
AT TN 12

0z

(@) IV. APPLICATION TO SILICON QUANTUM WELL

The parametek is undoubtedly dependent on the energy  We now apply the boundary condition, Eq$3) and(14),
but is assumed to be constant. The lumped parameter cofy the calculation of the dependence of the photolumines-

tains in it the quality of the interface. Equati¢h?) essen- cence energy gap of silicon quantum well on the well thick-
tially states that the wave function in the confined materiahess. The Hamiltonian matritd”(k) for the electron in the

decays exponentially in the transition layer as well as in the/glence band is thd s bands'’
barrier material. This boundary condition written for the

guantum well 2y in length that is embedded in the barrier is E(Fizs )+ k2 Qk, 0
/ z
O, q)+FAVI(r, ,q)=0 atz=q. (13 Ag= Qk, E(T'15) +k? Q'k,
The value of\ can range from about 0.1 te depending on 0 Q’k, E(Iyg)+kZ
the type of barrier; its value being infinity for infinite barrier (15

height. Equation(13) is of the same form as E@7) except . ) ) )

that « is replaced withn. Therefore the boundary condition @ndH gk) for the electron in the conduction band is the
for the total wave function at the left-hand side of the quan-°ands;

tum well involving the transition layer can be written as

follows: E(I'19)+ K2 Tk, T'k,

A= Tk, ETH+K 0 (16)

q’?z("i:_Q)_)\‘P?(rl’_Q):O atz=—q. (14 | ) '
T'k, 0 E(I))+K2

This condition is deduced from the symmetry of the quantum
well and the similarity with the case of no transition layer, where E(T';) is the energy of th¢ state at the zone center
i.e., Eq.(8). and theQ’s and theT’s are the matrix elements of the linear

From theoretical point of view, the parametersn Eqs.  momentum. Here, the crystal momentum is neglected in the
(7) and(8) andX in Egs.(13) and(14) can be regarded as the transverse direction. Since the full-zokep perturbation
imaginary wave vector of electron. Therefore the boundaryscheme is used, the periodic functions for the wave function
condition of Eqs(13) and(14) can be considered applicable correspond to those at the zone center.

to both cases of a quantum well with and without the transi- The envelope functions of the electron in the valence

tion layer. bandF; become
The boundary condition is of the same form as that for the
free-standing filnf However, the confinement conditions re- FI=A§e”<Z+ Bze—ikz (173

sulting from the boundary condition are different as will be

seen in the next section. The difference lies in the fact that , U2

the hole in the valence band and the electron in the conduc-  v_ 1Q(East k%) FV = —ip'F?

tion band are confined by the barrier in the case of embedded 2 (E s+k?)(Ebs+k?)—Q'%k?" 1# 2" 1z
guantum well, whereas the electron is confined both in the (17b
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, QQ'k? . FS=iy,FS + v,FS, (239
F3= E.ot KO (E'+ K2 — O’ 2K2 Fi=mn3F", (170 ° liz ?
(Eqst k) (Ezst k) —Q where thez's and y's are defined by
where theE’'s are defined b
y = 7]%27751_ 77%17752 1= 77327731_ 77%17132
Eis=E(I'15) — Eel, 35: E(ng) —E°. ! Kq 7752_ Ko ’731 , ' K1 7732_ ko 7751 '
Since the preseiit- p perturbation scheme can expand the —Tky —Tk, . — Tk,

. . . . Cc __ C — —
full-zone Bloch function in terms of Bloch functions associ- 721 —El.{_'_ki’ 722 —ETJFk%, 721 —T+k§'

ated withk=0, the total wave function of the electron in the
conduction band is Tk
c 2

N3~ T 2
WH(r) = FY(2)Ubg (1) + FY(2)ue(r) + F4(2)u (1) ZUE K

I . The wave function of electron in silicon is
= FI(Z)Uzg(f)—' 775 z,z(z)u15(r) + 775 I(Z)u;y(r)-

(18) WE(r)=Fi(2)usg(r) +F5(2)ui(r) +[i y1F{ (2)

|
According to the EFA, the value of the envelope function +¥2F3(2)Ju(r). (24)

is constant in the unit cell. Thus, the wave function in theBy the same procedure as for the electron in the valence
outermost unit cell of the confined material is written as band. the confinement condition of the electron in the con-
duction band is

2(45,— 37?)cog 2k~ q) + 44151\ sin(2k T )

W(r, ,q)=F¥(q)Ug (1) +F5(a)uss(r) +F5(q)uls (1)

= F1(0)Ups, (1)~ i p3F/ (A)ue(r)
+ 75F1(a) U (1), (19 —2(¢8— 3N cos 2k Q) — 4L sin(2k )
_ 2 2 _
and its partial derivative with respect s 872\ "+ MyaMay) (7220 "+ MyoMa) =0, (29
, , | , | where the's, k™, andm’s are defined by
‘P,z(ri,q) = Fl,z(q)u25f(r) + Fl(q)u25f12(r)

o oy {11=MypMp1— MyMaot (75~ 75N,
—inaF 1, (@) uss(r) —in3F1,(Q)Uss,(r)

= — MMy~ MyaMyo— (75,+ 752,
+n§FI,Z(q)UZ5,(r)+néFK(q)u;s/,z(r), I 12M21 11Moo— (7221 731)

(20) {12= Moo= Mg+ My 75— Myp75y,
where the subscripzrepresents the second-order partial de- £ 1= Mg— Myt— M1+ MayS
rivative with respect ta. Combining Eqs(5), (13), and(14), 127 2™ 1™ 77227 27721
and using the orthogonality between the periodic functions K — kK
and the matrix elements of the momenturyields: TR

2nkm” " _(1 ’71)k T+T'y, .
= 11— - 1 21
m tar(qu), (21 2 2
where m” is defined bym”=1+(Q#»3)/2. Here Eq.(21) 4 T v, ‘ T+T'y, .
must be rewritten in terms of the heavy hole: M= 1=~ Kt =5 7,
2 gm’ B ) 29 T T
~ g2(m")2—\? =tan2gq), (22) My =75+ 1K1, Mpp=—5+ MoKz

where Eg.(1) is used and the imaginary wave vector of the
heavy hole is negative of that of the electron. Equati2®)

is the confinement condition of the heavy hole in the valenc
band. Equation$21) and(22) show that the confinement of
the electron is different from that of the hole in the valence

The energy gap is calculated frofy=E""+E®, where

hh ; |
AE is the energy level of the heavy hole agf is that of
electron state including the bulk energy gap. The value of
EMis obtained for given film thicknessgand the parameter

band \ by iteration based on E@22). For the calculation, a value
’ ; hh ; ; ; el
The envelope functions of the electron in the conductior® aﬁsumed forEl (>0), which in tum givesg, as
band are (—E"™, where E, is the energy level of electron in the
_ _ _ _ valence band and Def5— Eﬁ'l]=0 is then solved fok and
FS=ASe 12+ BSe 12+ ASek2?+ BSe k22, (239  —k from which four spurious solutions are excluded. The
_ _ _ _ value ofg is |k|. The value ofy} is obtained from Eq(17b)
FS=n5Ale 12— 5S,Ble™ *aZ+ 55 ASelk?— 55 BSe k2, and that ofm” from its definition. These values are used in

(23b Eqg. (22) to check whether the equation is satisfied. This it-
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TABLE |. Parameters used for the calculatiGgnergy and ma- 20
trix elements of the momentum are in rydbergs and atomic units, |
respectively. ® size-sensitive band
194 A=0.15
Parameter Value Parameter Value
E(TS,) 0.00 Q 1.050 181 @
E(T}) 0.940 Q' —0.807 S ]
E(T 19 0.252 T 1.080 = 174
E(IY) 0.520 T 0.206 &
E(rl) ~0.950 \ 0.30 &6
&
eration is repeated until the equation is satisfied. The calcu- 157
lation procedure foE® is similar. The only difference is in 1
solving this time DdtA;—E®1]=0 for k;, k,, —k;, and 14
—k, from which two spurious solutions are removed that are

larger in absolute value than the wave vector corresponding ' / ) . j y

5 10 15 20
té)qth(;Sf;rst Brillouin zone. The iteration this time is based on Well Thickness (A)

The results in this section are used to compare the theo- FiG. 4. Dependence of the energy gap on the well thickness for
retical results with the experimental data by Lu, Lockwood,the silicon quantum well fabricated from a SIMOX wafer.
and Baribead. Their experimental data are based on six-

period, multiple quantum wells, each well being amorphous
silicon surrounded by SiO1 nm thick. The parameters used | qiis on a SIMOX wafer and found that both the size-

for the calculation are given in Table I. The usual energy gaRengitive and size-insensitive bands exist. Since our confine-
displacement of 0.32 eVA in Fig. 3 was used between on¢ conditions are for the size-sensitive band, the compari-
amorphous silicon and crystalline S|I|§:on. The comparnson yqn shown in Fig. 4 is only for this size-sensitive band. The
Fig. 3 shows that the present model fits the experimental datf?gure shows that the present model with=0.15 fits the
well. The best-fit value ok is 0.30. Also shown in Fig. 38s oy nerimental data well except when the well thickness is less
a dotted curve is the best-fit result based on the conﬂneme%an 10 A. This fact suggests that the bulk properties cannot

conditions for the free-standing film, which involves choos—represent the well that is less than 10 A in size and the EMA
ing the best-fit value of work functioV. It is apparent that fails.

the confinement conditions of the free-standing film cannot 1,4 parametex is the imaginary wave vector and a mea-

represent the experimental data. Furthermore, the thicknes, e of quality of the barrier material including the transition
depende_nce .Of the energy gap for the embedde_d f|Im IS Se%’yer. The higher the value, the larger the barrier height.
to be quite different from that for the free-standing film. Shown in Fig. 5 is the energy gap as a function of the well

The .theoretical results are also app“eq to the data b).’hickness withh as the parameter. For small values \of
Kanemistsu and OkamofoThey formed single quantum

24
24 4
‘\ ® Lu's experiment A values
\ ——2=030, A=0.32eV 1 0.20
\ - == W=20eV,A=0.32 eV
224 * E (amorphous)=E (crystal)}+A
2.0 4
3 O
o 2.0- o
) S
g g
& 184 5 164
1.6 4
T T T T T 1.2 T T T T ]
8 12 16 20 24 28 32 10 15 20 25 30 35
Film Thickness (A) Thickness (A)

FIG. 3. Dependence of the energy gap on the well thickness for FIG. 5. Effect of the parameter on the size dependence of the
the amorphous silicon quantum well. energy gap.
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even and odd solutions of electron are a significant factor In summary, a boundary condition has been derived for
and therefore steplike plateaus appear in Fig. 5, as in Fig. 4he interface between silicon and silicon dioxide that can be
As the value ofA increases, however, the hole energy shiftused with the effective-mass and envelope-function approxi-
dominates and smooth curves result. mations. The boundary condition takes into account the ef-

Our calculation results show that the powen the power  fects of the transition layer at the interface. The confinement
law for the thickness dependencesy-EJ")=d ", ap-  conditions for the quantum well resulting from the boundary
proaches 2 as the value dfincreases or as the barrier height condition lead to an entirely different dependence of the en-
increases. The powen decreases with decreasing the  ergy gap on the thickness compared with that for the free-

value approaching-1.2 as\ approaches 0.15. standing film.
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