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Boundary condition for the interface between silicon and silicon oxide

J. U. Kim and Hong H. Lee*
School of Chemical Engineering, Seoul National University, Seoul 151-742, Korea

~Received 15 February 2000!

A boundary condition is formulated for the interface of a quantum well embedded in a material of large
energy barrier. Distinct differences are pointed out between a free-standing film and the quantum well. The
boundary condition for the effective-mass and envelope-function approach includes the property of the tran-
sition layer between the well and the barrier in the form of an adjustable parameter. A full-zonek•p method
is used along with the boundary condition to calculate the energy gap of the quantum well as a function of the
well thickness. The model fits well the experimental data on multiple Si/SiO2 quantum wells.
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I. INTRODUCTION

The observance1 of room-temperature photoluminescen
~PL! of porous silicon has attracted a great deal of theoret
and experimental studies2 on this material since its discov
ery. The experimental studies usually involve the silic
quantum well embedded in silicon dioxide3–5 or silicon
nitride.6 Lu, Lockwood, and Baribeau3 reported that the ori-
gin of the PL is quantum confinement. They also found t
the maximum PL peak is related to the quantum-well thi
ness by an inverse square power law, i.e.,EPL2Eg

bulk}d22,
whereEg

bulk is the bulk energy gap. But others4–6 found that
there is a size-insensitive PL band. Theoretical studies
clude the effective-mass approach7,8 ~EMA! and first-
principle calculation,9,10 among others.11 The first-principle
calculation for the free-standing quantum film that is s
rounded by vacuum shows that the energy gap is relate
the quantum film thickness by a different power law, i.
Eg}d21.39. Kim and Lee8 suggested a boundary conditio
that can explain this dependence of the energy gap on
film thickness.

While theoretical studies deal with the free-standi
quantum structure surrounded by vacuum, experime
studies are based on the quantum structure embedded
material with a large band gap such as silicon dioxide. I
not yet fully explained what effect this difference in the m
dium surrounding the silicon quantum structure has on
energy gap. Furthermore, an interfacial transition layer ex
between silicon and silicon dioxide because of the interm
diate oxidation states at the interface.12 This transition layer
has not been taken into account so far in determining
band gap.

In this article, differences between the experiment and
theory are examined and a boundary condition appropr
for the embedded quantum structure is derived with
EMA and the envelope-function approach~EFA!. In Sec. II,
the differences between the free-standing quantum film
the quantum well embedded in a large-energy-gap mate
are discussed. In Sec. III, a boundary condition for the
bedded quantum structure is derived for the sharp inter
as well as for the interface with a transition layer. In Sec.
the boundary condition is applied to the silicon quantum w
and the present model is compared with the experime
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result in the literature for the dependence of the PL band
the film thickness.

II. FREE-STANDING FILM VERSUS EMBEDDED FILM

The infinite barrier boundary condition has usually be
used for calculating the energy gap of a quantum struc
that is confined by vacuum or by a large-energy-g
material.7 The infinite boundary condition, however, neglec
the effect of the environment in which the quantum film
confined.

There are a number of distinct differences between
free-standing film surrounded by vacuum and the embed
film as shown in Fig. 1. First, vacuum has no electrons. T
vacuum is described in terms of vacuum state, whereas
large-energy-gap material surrounding the quantum film
described in terms of the ground state.13 The vacuum state
involves only electrons but the ground state involves
only electrons but also holes. As for the confined film, it c
be described in terms of the ground state or the vacuum s

Continuity of the envelope functions of electrons a
holes is used in the EMA. In the vacuum state, howev
holes cannot be defined and thus the continuity condition
the hole cannot be used. Therefore, the continuity condi
on the electron must be used both in the conduction
valence bands. The total wave-function approach used in
work requires relationships between electron and holes
the wave vector and the energy:14

FIG. 1. Band diagrams for~a! an infinite energy barrier,~b! a
free-standing film surrounded by vacuum, and~c! a quantum well
embedded in a large-energy-gap material.
1929 ©2000 The American Physical Society
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g52k, Ehh52Eel, ~1!

whereg andk are the wave vectors for the hole and electro
respectively, andEhh and Eel are the energies. This tota
wave-function approach leads to the same result as with
typical EMA.15

III. BOUNDARY CONDITION

The quantum-well structure being considered consists
confined material, a large-energy-gap material and a tra
tion layer, as depicted in Fig. 2. Consider first the case wh
there is no transition layer such thatb5q in Fig. 2. The total
wave function of electron in the large-energy-gap mater
henceforth referred to as the barrier material, in the ene
range of interest may be written as follows:

Cb~r !5Abeik'•r'ekz1Bbeik'•r'e2kz, ~2!

wherek' and r' , respectively, are the wave vector and t
coordinate perpendicular to the quantum well andk is the
imaginary wave vector longitudinal to the quantum well. T
confinement here is in thez direction. The equation sugges
that the state in the barrier layer decays in the energy ra
of interest.

The Schro¨dinger equation for the confined material is

@2¹21Vp~r !1U~r !#Cc~r !5ECc~r !, ~3!

where Cc(r ) is the total wave function of electron in th
confined material,Vp(r ) andU(r ), respectively, are the pe
riodic potential and the perturbation potential, andE is the
energy. Here atomic units are used throughout, i.e., the
berg for energy and the Bohr radius for length. With t
EMA and the EFA Eq.~3! is rewritten as

@Hm~2 i¹!1IU~r !#Fm~r !5EFm~r !, ~4!

whereHm(k) is ann3n Hamiltonian matrix for them state,
i.e., the conduction band, etc, in thek•p perturbation
scheme,I is ann3n identity matrix, andFm(r ) is ann31

FIG. 2. General band scheme of the quantum well embedde
an oxide.
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column vector of envelope functions. The total wave fun
tion of electron in them state in the confined material16 be-
comes

Cc
m~r !5(

j
F j

m~r !uj
m~r !, ~5!

whereuj
m(r ) is the periodic function at the zone center in t

full-zone k•p perturbation scheme andF j
m(r ) is the element

of Fm(r ) corresponding touj
m(r ).

The condition that the continuity8 with respect to the tota
wave function be satisfied everywhere within the unit c
gives

Cc
m~r' ,q!5Cb~r' ,q!, Cc,z

m ~r' ,q!5Cb,z~r' ,q!,
~6!

wherez denotes the differentiation with respect toz, andq
represents the points within the outermost unit cell of
confined material. For the transverse direction in the int
face plane, the connection rules of the wave function
accomplished. Equation~2! and the connection rules of th
total wave function along with the condition that the tot
wave function vanishes at infinity lead to the followin
boundary condition:

Cc,z
m ~r' ,q!1kCc

m~r' ,q!50 at z5q, ~7!

Cc,z
m ~r' ,2q!2kCc

m~r' ,2q!50 at z52q. ~8!

Consider now the case where the transition layer is ta
into consideration. The total wave function in the transiti
layer may be written as follows:

C t~r !5Ate
ik'•r' f p~z!1Bte

ik'•r' f d~z!, ~9!

wheref p(z) and f d(z) represent the functions for the state
the confined material to propagate in the transition layer
to decay, respectively. These functions are linearly indep
dent. Since the electron has the properties of both the pro
gation state and the evanescent state in the energy rang
interest in the transition layer, the total wave function in t
layer may be of an Airy function.

Combining Eqs.~5! and ~9!, the connection rules at th
interface between the silicon and the transition layer in
longitudinal direction become

Cc
m~r' ,q!5Ate

ik'•r' f p~q!1Bte
ik'•r' f d~q!, ~10a!

]Cc
m

]z
U

~r' ,q!

5Ate
ik'•r'

] f p

]z U
z5q

1Bte
ik'•r'

] f d

]z U
z5q

.

~10b!

Here, Eqs.~10a! and~10b! are satisfied in the outermost un
cell of the confined material. Combining Eqs.~2! and~9! and
using the condition that the total wave function vanishes
infinity yields the connection rules at the interface betwe
the transition layer and the barrier material:

Ate
ik'•r' f p~b!1Bte

ik'•r' f d~b!5Abeik'•r'e2kb
,

~11a!

in
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Ate
ik'•r'

] f p

]z U
z5b

1Bte
ik'•r'

] f d

]z U
z5b

52Abkeik'•r'e2kb
.

~11b!
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The properties of the transition layer, i.e., the functionsf p(z)
and f d(z), and the parameterk are difficult to determine.
ThereforeAt andBt in Eqs.~10! and ~11! are eliminated to
obtain
F Cc
m~r' ,q!

]Cc
m

]z
U

~r',q!

G5AbF f p~q! f d~q!

] f p

]z U
z5q

] f d

]z U
z5q

GF f p~b! f d~b!

] f p

]z U
z5b

] f d

]z U
z5b

G21

F eik'•r'e2kb

2keik'•r'e2kbG .

If l is defined by

l52
@ f p,z~q! f d,z~b!2 f d,z~q! f p,z~b!#2@ f d,z~q! f p~b!2 f p,z~q! f d~b!#k

@ f p~q! f d,z~b!2 f d~q! f p,z~b!#2@ f d~q! f p~b!2 f p~q! f d~b!#k
,

ing
er-
ick-

es-
k-

r
r
the

ion

ce
the above relationship can be simplified as follows:

Cc
m~r' ,q!

]Cc
m

]z
U

~r',q!

52
1

l
. ~12!

The parameterl is undoubtedly dependent on the ener
but is assumed to be constant. The lumped parameter
tains in it the quality of the interface. Equation~12! essen-
tially states that the wave function in the confined mate
decays exponentially in the transition layer as well as in
barrier material. This boundary condition written for th
quantum well 2q in length that is embedded in the barrier

Cc,z
m ~r' ,q!1lCc

m~r' ,q!50 at z5q. ~13!

The value ofl can range from about 0.1 tò depending on
the type of barrier; its value being infinity for infinite barrie
height. Equation~13! is of the same form as Eq.~7! except
that k is replaced withl. Therefore the boundary conditio
for the total wave function at the left-hand side of the qua
tum well involving the transition layer can be written a
follows:

Cc,z
m ~r' ,2q!2lCc

m~r' ,2q!50 at z52q. ~14!

This condition is deduced from the symmetry of the quant
well and the similarity with the case of no transition laye
i.e., Eq.~8!.

From theoretical point of view, the parametersk in Eqs.
~7! and~8! andl in Eqs.~13! and~14! can be regarded as th
imaginary wave vector of electron. Therefore the bound
condition of Eqs.~13! and~14! can be considered applicab
to both cases of a quantum well with and without the tran
tion layer.

The boundary condition is of the same form as that for
free-standing film.8 However, the confinement conditions r
sulting from the boundary condition are different as will
seen in the next section. The difference lies in the fact t
the hole in the valence band and the electron in the cond
tion band are confined by the barrier in the case of embed
quantum well, whereas the electron is confined both in
n-

l
e

-

,

y

i-

e

at
c-
ed
e

conduction and valence bands by the vacuum surround
the free-standing film. This difference leads to a large diff
ence in the dependence of the energy gap on the film th
ness.

IV. APPLICATION TO SILICON QUANTUM WELL

We now apply the boundary condition, Eqs.~13! and~14!,
to the calculation of the dependence of the photolumin
cence energy gap of silicon quantum well on the well thic
ness. The Hamiltonian matrixHn(k) for the electron in the
valence band is theD5 bands,17

D55F E~G258
i

!1kz
2 Qkz 0

Qkz E~G15!1kz
2 Q8kz

0 Q8kz E~G258
u

!1kz
2
G

~15!

andHc(k) for the electron in the conduction band is theD1
bands,17

D15F E~G15!1kz
2 Tkz T8kz

Tkz E~G1
u!1kz

2 0

T8kz 0 E~G1
l !1kz

2
G , ~16!

whereE(G j ) is the energy of thej state at the zone cente
and theQ’s and theT’s are the matrix elements of the linea
momentum. Here, the crystal momentum is neglected in
transverse direction. Since the full-zonek•p perturbation
scheme is used, the periodic functions for the wave funct
correspond to those at the zone center.

The envelope functions of the electron in the valen
bandF j

n become

F1
n5A1

neikz1B1
ne2 ikz, ~17a!

F2
n5

iQ~E25
u 1k2!

~E151k2!~E25
u 1k2!2Q82k2 F1,z

n [2 ih2
nF1,z

n ,

~17b!
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F3
n5

QQ8k2

~E151k2!~E25
u 1k2!2Q82k2 F1

n[h3
nFn, ~17c!

where theE’s are defined by

E155E~G15!2Eel, E25
u 5E~G25

u !2Eel.

Since the presentk•p perturbation scheme can expand t
full-zone Bloch function in terms of Bloch functions assoc
ated withk50, the total wave function of the electron in th
conduction band is

Cn~r !5F1
n~z!u258

l
~r !1F2

n~z!u15~r !1F3
n~z!u258

u
~r !

5F1
n~z!u258

l
~r !2 ih2

nF1,z
n ~z!u15~r !1h3

nF1
n~z!u258

u
~r !.

~18!

According to the EFA, the value of the envelope functi
is constant in the unit cell. Thus, the wave function in t
outermost unit cell of the confined material is written as

Cn~r' ,q!5F1
n~q!u258

l
~r !1F2

n~q!u15~r !1F3
n~q!u258

u
~r !

5F1
n~q!u258

l
~r !2 ih2

nFl ,z
n ~q!u15~r !

1h3
nF1

n~q!u258
u

~r !, ~19!

and its partial derivative with respect toz is

C ,z
n ~r',q!5F1,z

n ~q!u258
l

~r !1F1
n~q!u258,z

l
~r !

2 ih2
nF1,zz

n ~q!u15~r !2 ih2
nF1,z

n ~q!u15,z~r !

1h3
nF1,z

n ~q!u258
u

~r !1h3
nF1

n~q!u258,z
u

~r !,

~20!

where the subscriptzzrepresents the second-order partial d
rivative with respect toz. Combining Eqs.~5!, ~13!, and~14!,
and using the orthogonality between the periodic functio
and the matrix elements of the momentum17 yields:

2lkmn

k2~mn!22l2 5tan~2kq!, ~21!

where mn is defined bymn511(Qh2
n)/2. Here Eq.~21!

must be rewritten in terms of the heavy hole:

2
2lgmn

g2~mn!22l2 5tan~2gq!, ~22!

where Eq.~1! is used and the imaginary wave vector of t
heavy hole is negative of that of the electron. Equation~22!
is the confinement condition of the heavy hole in the vale
band. Equations~21! and ~22! show that the confinement o
the electron is different from that of the hole in the valen
band.

The envelope functions of the electron in the conduct
band are

F1
c5A1

ceik1z1B1
ce2 ik1z1A2

ceik2z1B2
ce2 ik2z, ~23a!

F2
c5h21

c A1
ceik1z2h21

c B1
ce2 ik1z1h22

c A2
ceikzz2h22

c B2
ce2 ik2z,

~23b!
-

s

e

n

F3
c5 ig1F1,z

c 1g2F2
c , ~23c!

where theh’s andg’s are defined by

g15
h32

c h21
c 2h31

c h22
c

k1h22
c 2k2h21

c , g15
h32

c h21
c 2h31

c h22
c

k1h22
c 2k2h21

c ,

h21
c 5

2Tk1

E1
u1k1

2 , h22
c 5

2Tk2

E1
u1k2

2 , h21
c 5

2Tk1

E1
u1k1

2 ,

h32
c 5

2T8k2

E1
l 1k2

2 .

The wave function of electron in silicon is

Cc~r !5F1
c~z!u15~r !1F2

c~z!u1
u~r !1@ ig1F1,z

c ~z!

1g2F2
c~z!#u1

l ~r !. ~24!

By the same procedure as for the electron in the vale
band, the confinement condition of the electron in the c
duction band is

2~z21
2 2z22

2 l2!cos~2k2q!14z11z12l sin~2k1q!

22~z11
2 2z12

2 l2!cos~2k1q!24z21z22l sin~2k2q!

28~h21
e l21m11m21!~h22

e l21m12m22!50, ~25!

where thez’s, k6, andm’s are defined by

z115m12m212m11m221~h22
c 2h21

c !l2,

z2152m12m212m11m222~h22
c 1h21

c !l2,

z125m222m211m11h22
c 2m12h21

c ,

z125m222m212m11h22
c 1m12h21

c ,

k65k16k2 ,

m115S 12
T8g1

2 D k11
T1T8g2

2
h21

c ,

m115S 12
T8g1

2 D k11
T1T8g2

2
h21

c ,

m215
T8

2
1h21

c k1, m225
T8

2
1h22

c k2 .

The energy gap is calculated fromEg5Ehh1Eel, where
Ehh is the energy level of the heavy hole andEel is that of
electron state including the bulk energy gap. The value
Ehh is obtained for given film thickness 2q and the paramete
l by iteration based on Eq.~22!. For the calculation, a value
is assumed forEhh(.0), which in turn gives En

el as
(2Ehh), where En

el is the energy level of electron in th
valence band and Det@D52En

elI #50 is then solved fork and
2k from which four spurious solutions are excluded. T
value ofg is uku. The value ofh2

n is obtained from Eq.~17b!
and that ofmn from its definition. These values are used
Eq. ~22! to check whether the equation is satisfied. This
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eration is repeated until the equation is satisfied. The ca
lation procedure forEel is similar. The only difference is in
solving this time Det@D12EelI #50 for k1 , k2 , 2k1 , and
2k2 from which two spurious solutions are removed that
larger in absolute value than the wave vector correspond
to the first Brillouin zone. The iteration this time is based
Eq. ~25!.

The results in this section are used to compare the th
retical results with the experimental data by Lu, Lockwoo
and Baribeau.3 Their experimental data are based on s
period, multiple quantum wells, each well being amorpho
silicon surrounded by SiO2 1 nm thick. The parameters use
for the calculation are given in Table I. The usual energy g
displacement of 0.32 eV~D in Fig. 3! was used between
amorphous silicon and crystalline silicon. The comparison
Fig. 3 shows that the present model fits the experimental
well. The best-fit value ofl is 0.30. Also shown in Fig. 3 as
a dotted curve is the best-fit result based on the confinem
conditions for the free-standing film, which involves choo
ing the best-fit value of work functionW. It is apparent that
the confinement conditions of the free-standing film can
represent the experimental data. Furthermore, the thick
dependence of the energy gap for the embedded film is
to be quite different from that for the free-standing film.

The theoretical results are also applied to the data
Kanemistsu and Okamoto.4 They formed single quantum

TABLE I. Parameters used for the calculation~energy and ma-
trix elements of the momentum are in rydbergs and atomic un
respectively!.

Parameter Value Parameter Value

E(G258
c ) 0.00 Q 1.050

E(G258
u ) 0.940 Q8 20.807

E(G15) 0.252 T 1.080
E(G1

u) 0.520 T8 0.206
E(G1

l ) 20.950 l 0.30

FIG. 3. Dependence of the energy gap on the well thickness
the amorphous silicon quantum well.
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wells on a SIMOX wafer and found that both the siz
sensitive and size-insensitive bands exist. Since our confi
ment conditions are for the size-sensitive band, the comp
son shown in Fig. 4 is only for this size-sensitive band. T
figure shows that the present model withl50.15 fits the
experimental data well except when the well thickness is l
than 10 Å. This fact suggests that the bulk properties can
represent the well that is less than 10 Å in size and the E
fails.

The parameterl is the imaginary wave vector and a me
sure of quality of the barrier material including the transiti
layer. The higher the value, the larger the barrier heig
Shown in Fig. 5 is the energy gap as a function of the w
thickness withl as the parameter. For small values ofl,

FIG. 5. Effect of the parameterl on the size dependence of th
energy gap.

s,

or

FIG. 4. Dependence of the energy gap on the well thickness
the silicon quantum well fabricated from a SIMOX wafer.
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even and odd solutions of electron are a significant fac
and therefore steplike plateaus appear in Fig. 5, as in Fig
As the value ofl increases, however, the hole energy sh
dominates and smooth curves result.

Our calculation results show that the powern in the power
law for the thickness dependence, (Eg2Eg

bulk)}d2n, ap-
proaches 2 as the value ofl increases or as the barrier heig
increases. The powern decreases with decreasingl, the
value approaching21.2 asl approaches 0.15.
r
4.
t

In summary, a boundary condition has been derived
the interface between silicon and silicon dioxide that can
used with the effective-mass and envelope-function appr
mations. The boundary condition takes into account the
fects of the transition layer at the interface. The confinem
conditions for the quantum well resulting from the bounda
condition lead to an entirely different dependence of the
ergy gap on the thickness compared with that for the fr
standing film.
t.

-
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