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Generalization of k-p theory for periodic perturbations
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We extend standarkl- p theory to take into account periodic perturbations which are rapidly oscillating with
a wavelength of a few lattice constants. Our general formalism allows us to explicitly consider the Bragg
reflections due to the perturbation-induced periodicity. As an example we calculate the effective masses in the
lowest two conduction bands of spontaneously ordered GahsPa function of the degree of ordering.
Comparison of our results for the lowest conduction band to available experimental data and to first principle
calculations shows good agreement.

. INTRODUCTION gated theoreticalf*'* and experimentall§*?*3In addition

For many yeark- p theory? has been very successful in to the changes in the energies, the effective masses are also
describing a wide variety of crystal band structures, an im-altered. Raikh and Tsip¥r calculated the conduction-band
portant merit being that it allows one to derive simple, ana-£ffective mass of ordered GalpRsing a two-band model,
lytical formulas which capture the essential physics. In thevhich accounts only for the mixing of conduction-bahd
presence of perturbing potentials it becomes the envelop@ndL states. They found that the effective mass parallel to
function approximatiofEFA),® which has been successfully the ordering directiom and the effective mass perpendicu-
applied to such different problems as impurifiesd semi- lar to the orderlng_dlrectloml increase with increasing or-
conductor heterostructurésdowever, the EFA requires the dering, and tham, is larger thamm, . This model, however,
perturbation potentiaV4(r) to be slowly varying on the does not take into account the change of the interaction be-
length scale of the lattice constant, i.e., the nonzero Fourigeen conduction- and valence-band states due to the band-
components of the potentid (r) must be restricted to wave 9@P reduction and valence-band splitting. These changes
vectors which are small compared to the dimensions of th¥/éré investigated by Zhang and Maxareﬁﬁamth an
Brillouin zone. Some authdt reported problems with the €ight-bandk-p model, which included zinc-blende states
EFA for systems where this requirement is not fulfilled, no-rom both the conduction and valence bands. They fimd
tably in artificial and natural short-period superlattices suctRndm, to decrease with increasing ordering, with being
as spontaneously ordered GajnPhese superlattices can be 1arger thanm, . A third investigation was done by France-
viewed as systems with a periodic perturbation, where th&chetti, Wei, and Zungérwho performed first-principle cal-
smallest Fourier components of the perturbation are compzulations using the local-density approximation. They find
rable to the dimensions of the Brillouin zone of the unper-Mj to increase, whereas, decreases with increasing order-
turbed problem. These Fourier components result in interadd- This result agrees qualitatively with the only measur-
tions between states with very different wave vectors, whicHnent that mvestlglgted the anisotropy of the effective masses
are crucial for the properties of these short-period superlath ordered Galnp In Ref. 7 the conclusion was drawn that
tices. However, the interactions cannot be accurately dehe conduction-band effective masses in ordered GatieP
scribed within standarl- p theory? In this paper we present Pend on a “delicate balance” df-L mixing and increased
a general method which allows us to treat perturbing poteninteraction between conduction and valence band. However,

tials which are rapidly oscillating but commensurate to thethe I'-L mixing and the increase of the interaction between
periodicity of the potential of the unperturbed problem. Toconduction and valence bands have a common source in the

illustrate the method, we apply it to the natural superlatticeordering inducedl'-L interactions. The conduction-band
of spontaneously ordered GalnP masses in partially ordered Galnpresent an excellent test
The Galn,_,P alloy for x~0.51 can be lattice matched for our theory, which should be able to describe that “deli-

grown on a GaAs(001) substrate. Under proper growth concate balance.” ) )
ditions, long-range order of the CuPt type is obse¥®d.  This paper is organized as follows. In Sec. Il we derive a

This type of ordering is characterized by11) layers alter- general scheme applicable to periodic perturbgtions within
natingly rich in Ga or In. In the ordered material the symme-K-p theory. In Sec. Il we use this theory to derive a model
try of the lattice is reduced frofiy to Cs, , and the Brillouin ~ for the conduction band of spontaneously ordered GalnP
zone becomes smaller than the zinc-blende Brillouin zone! he results are discussed in Sec. IV. A summary and a short
which leads to a backfolding of states. The change in théutlook are presented in Sec. V.

crystal potential induced through the ordering is a short-
period potential that mixes electronic states of an “aver-
aged” zinc-blende structure. In particular, the interactions We consider a system with the one-partic]e Hamiltonian
betweerl” andL states lead to energy shifts of the band-edge
states in the ordered alloy, which cause band-gap reduction
and valence-band splitting. These effects have been investi-
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wherep is the momentum operatan the free-electron mass,
andV(r) the periodic potential of the crystal. In the case of
the GalnB alloy, Vy(r) is an averaged potential of the dis-
ordered material. The eigenfunctions of the Hamiltortén
are Bloch functionsy, (r)=e'*"u,(r), with eigenvalues

en(K):

Hotnk=&n(K) trnk - (2

Herek is a wave vector in the first Brillouin zone (BE
which corresponds to the periodicity ®f(r).
In conventionak - p theory, basis functions

K (1) =€ Tel o Tuy (1),

)

are introduced, wherk belongs to BZ. As shown by Lut-
tinger and Kohrt, the functionsXE?( provide a complete and
orthonormal basis set for arly being an element of BZ
Thus any eigenfunction dfl; can be expanded in terms of

Ko
Xnk’

Xnk(r) e

bu(r)=2,

n’

d3k’ Cn”n (k )X /k/(r)
BZ,

(4)

which yields the well-knowrk - p equation for expansion co-
efficientsc,,(k) and energy ,»(ko+k),

EHnn,<k>cn~n,<k)=sn~<ko+k)cnlrn<k>, (5)
with
h? h
HI® (k)= ( n<ko>+ﬁk2) St kP2, (6)
The momentum matrix elemepﬁa, is defined as
o OO o g, 0
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The total potentialVy+V, is characterized by a larger
unit cell, and hence a smaller Brillouin zone (BZDue to
commensurability, the reciprocal-lattice vectors associated
with the original potentiaV, can be expressed as an integer
linear combination of the reciprocal-lattice vectors associated
with the perturbing potential. In particular we haseveral
wave vectors in the larger Brillouin zone B#hich become
reciprocal-lattice vectors of the perturbed problem, i.e., these
wave vectors become equivalent to thepoint. This set of
wave vectors will be called/C}. For ordered GalnPthis
consists of thd™ andL points of BZ,.

The main difference from standaid- p theory is that
eigenfunctions oH, belonging to wave vectors of theet
{KC} are used to form basis functions of the form

®

Any function having the periodicity of the perturbed system
can be expanded in terms of the functiofsc(r) as the set
{IC} is folded onto thd" point of BZ;. Therefore, wheiK is
taken from BZ the functions X (r) form a complete and
orthonormalbasis(cf. also Refs. 3 and 17The eigenfunc-
tions of H=H,+V, are expanded in terms of'X:

XK (N =X Ty c(r)=eCTe™ru o (r).

&K’ CK (KX (r).
BZ,

D)= 2

K'.n'

(€)

This yields the Schinger equation for the expansion coef-
ficientsC’, (K),

|

h? X
Sn(’C)+ ﬁKZ Cnrrn

>

n’

/(K)

nn’

h
Bon + - —K.Pf

Here the integration extends over the unit cell with volume

Qq. Equation(5) is diagonal with respect t& due to the
periodicity of Vy(r), i.e., k is a good quantum number, and
the eigenstate&n can be written as a superposition of basis
functionsy o for different bands but the same wave vector

k. Because of the completeness of the basis funcwﬁﬁﬁ)
an arbitrary potentiaV/;(r) can be taken into account in Eq.
(5), even ifV, does not have the periodicity df,. However,
this results in eigenstates,(r) which are superpositions of
functionsx':]ﬁ for differentk. In practical calculations one is
usually restricted to wave vectokstk, close tok,, since

the k-p term is treated as a perturbation. Therefore, thismatrix e|ementg/nn,

method will fail if the additional potentiaM,(r) is not
smooth.

Here we will generalize the above approach to perturbing

potentialsV,(r) which are rapidly oscillating, but periodic
and commensurate to the periodicity \8f. In the case of
GalnP;,, V4(r) corresponds to the ordering potential.

+ Z Vnn’ n”/ ) En”(K)CnNn(K) (10)
n', K’
where
< (2m)° 3. iK% i
nn' Ql dre UpcP€ Un'xc (11)
and
K:K:’ (277)

nn’

fd3re"’cru*,cvlei’c"’un,,c,. (12

On the left- hand side of Eq10) the part diagonal ir1C is
|dent|cal toHnn, defined in Eq.(6), because we havl@nn,
= pnn, . [Note that in Eq(11) the larger normalizing volume
), is compensated for by the larger integration volufide
only effect of the perturbing potentidf,; are the coupling

and Eq.(10) can be written as

2 HE (K)CK, (K)+ > Ve

n 1K’

n”n (K)

=En(K)CK,(K (13
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Equation(10) represents our generalization of the standardion band, both thé - p interaction with the topmost valence

k-p equation(5). Like Eg. (5), this new equation depends band and remote bands contribute to the effective mass.

only explicitly on K.*8 However, the latter terms are rather small, and we neglect
As noted above, the s¢iC} is folded onto thd” point of  them here. Hencel!' reads as follows:

BZ,. Therefore, an expansion in terms of the basis functions

(8) is appropriate for the description of states near the center

L e 2
of the I_3r|lloum zone of the perturbed system. If one is inter- EL 4+ h_Kz iPTK, iPFKy iPTK,
ested in states nedf,#0, one has to replac&C by K ¢ 2m
+Kg in EqQ. (8). 72
It is straightforward to include spin-orbit coupling and —iPTK, 2—K2 0 0
strain-induced effect8 in Eq. (10). Likewise, we can easily . m
add a slowly varying perturbation, like the potential of an H (K)= - n2
impurity, as ansatz9) does not require periodicity. —IPTKy 0 ﬁK 0
: h?
—iP'K, 0 0 _—K?
lll. APPLICATION TO PARTIALLY ORDERED GalnP 2m
In this section we apply the above theory to the (14)

conduction-band effective masses at th@oint of partially

ordered GalnR The unperturbed potentiad, corresponds The energy reference in E€L4) is taken at the maximum of
to the disordered material. The perturbatibprepresents the ~ the valence band. Note theit is spherically symmetric, i.e.,
ordering potential which is defined in Ref. 10 as the differ-we can choose the coordinate system to dff 110],

ence petween Fhe_ potentials of the orde_red and di_sordereig”[llf], ande,)[111], which is convenient for describing
materials. In prlnCIple there are four eqU|Valent variants OftheL point_ The On|y parameters we need to know to Specify

CuPt ordering for Galng, corresponding to the fourlll)  gq. (14) are the band gaf. and Kane’s momentum matrix
directions. Due to substrate effects only two of them are;jement

observed in experiments, howeeSince we consider the
bulk system, the domain structure is not relevant to our cal-
culations. Hence we choose thel1] direction to be parallel

to the ordering direction.
Due to the periodicity of the ordering potenth}, zone-
center states of ordered Galn&re derived from zinc-blende

I'- and L-point states of the disordered system. Thus we

choose{I',L} as the wave-vector s¢fC}. We restrict our-

r_ _

h
PI——i -(PyclpT%,). (1

The situation at thé point is very similar, in that there is

only one reduced matrix element

selves to a seven-band model, containing the zinc-blende

', I's,, Ly, andLg, states(nomenclature according to
Kosteret al?%). Spin-orbit interaction is neglected, as it has

pL=

(16)

f
—i a(Llcle|L§v>'
only a minor influence on the conduction-band effective
masses. Due to time-reversal symmetry wave functions fronfy e neglect remote band contributions in the conduction
I' and L points can be chosen to be real. With this phasg,ang, Pt is responsible for the conduction-band transverse
convention all momentum.and potential matrix elements Car?nassmh . However, interactions betwedn, andLs, states
be defined as real quantities. cannot account for the conduction band longitudinal mass
m”L, and the longitudinal mass would be equal to the free-
electron massn without contributions from remote bands.
The HamiltonianH" describing thek - p interaction be- Therefore, in thel point k-p matrix we have to retain the
tweenl's, andl ;. is well known! We are only interested in parameteiG, which represents remote band contributions to
conduction-band effective masses, so we do not consider reéd[ . Neglecting remote band contributions in the valence
mote band contributions in the valence band. In the condudsand, the Hamiltonian matrik" takes the form

A. k-p Hamiltonian

h? : :
Ec+ 5 KP+GKE  iPEK, iP-K,
2
PLK L, 7 w2
HY(K)= ' X Ev+2mK 0 (17
hZ
—iP'K, 0 Eb+ -—K?

2m



1846 R. STUBNER, R. WINKLER, AND O. PANKRATOV PRB 62

TABLE |. Energies, effective masses, and momentum matrix
/Ll elements or remote bands contribution, respectivelyI'fqr, L.,
¢ andLg, . The energy zero is the valence-band maximitgp.
1:1\ 143! \
C/ ‘\‘ State Energy Effective mass Matrix element
! ‘; V) (m)
T )
P Vis ipL | El=2.024 m''=0.0899 P'=8.83 eVA
\ ; Lic EL=2.250 m-=0.1349 P-=8.88 eVA
/ v ! m=1699  G=-157eVR
T 3 / L EL=—-0.978
Sv , 3v v :
y
L3y C. Values of the matrix elements
FIG. 1. Schematic picture of the interactions described by the Two limiting cases are used to determine the numerical
momentum and potential matrix elements in ELp). values of the potential and momentum matrix elements in
Eq.(19. ForV,;=V5=V35=0 the model describes the dis-
B. Matrix elements of V; ordered material, and the unknown paramegrs P-, and

The potential of the ordered material can be modeled bf can be fittegl to the con.duction-band effectivg masses at
dividing the lattice into two sublattices which are rich in Ga he_F andL points, respectively. Such an ag?lyS'S using ex-
or In, respectively, and averaging separately over the tw@€limental data has been done for iheoint,” but not for
sublattices. Subtracting the averaged potential of the disort—hel‘ point. In order to obtain a consistent set of parameters,
dered material, one obtains a model for the ordering potential’® deduce the effective masses and band gaps from a band-
as used in Ref. 14. In principle, there are two different typesc,tructure_ Ca"’”'g‘“g’rl bas‘?d on an em_plrlcal _t|ght—b|r_1d|ng
of matrix elements of the ordering potential, those whichmodel with asp*d®s” basis, nearest-nelgrlzkz)or Interactions,
coupleI'- and L-point states, and those which lead to inter- an(_j W'th.OUt. spin-orbit Interaction. Jane a.l' showed that
actions withinI"- or L-point states, respectively. However, a tlght—blnd|_ng model with such a basis is capable of accu-
the latter matrix elements are exactly zero, if the orderin(_zf""tel.y descnbln'g the vale'nce bands an'd the two lowest con-
potential is modeled with the above outlined separate virtua/duction bands in many diamond and zinc-blende-type semi-
crystal approximations over the two sublattices. Therefore, i{:onductors. The tight-binding parameters we use are
can be expected that these matrix elements are small, aHaIerpolated_ from th? values for GaP and InP in Ref. 22, with
they are neglected here. The nonzero matrix elements of t Galn ratio of 51:49. .In OFder_ to correctly reprodgce _the
ordering potential/, can be derived using group theory, and undamental band gap in this virtual-crystal approximation,

we are left with only three real reduced matrix elements W€ _incorporate an —empirical bowing factob; m)
=1 (I1"'m)gap— (I 'm),,p] for the four (sso)-type two-

V= (T1lVi|L1o), (189 center |_ntegrals. Band gaps and effective anasses from this
calculation and the resulting values fBf, P‘, and G are
summarized in Table I. We use a phase convention for the

—/TX X \_/TY y
Vas= (s, [ Va|Ls,) = (T8, Va|L3,). (18D \ave functions, such that bof' and P are positive. The
, values forP" and P" are very close to each oth&so we
Vi5=(I'5,[Vi|L1c). (180 use the approximation

These equations illustrate that our generalized approach
shares the well-known and important feature of standard
k-p theory that by means of group theory the number of
independent parameters can be greatly reduced.

Combining Egs.(14), (17), and (18) we end up with a
Hamiltonian of the form

PL=pPl'=8.86 eVA. (21)

With nonzero potential matrix elements bkit=0, the
Hamiltonian matrix(19) describes the zone center states of
ordered Galnp These states have been studied previously,
both experimentalf{#3242% and theoretically®'? These

HO(K) Vit ) studies indicate that there is a certain correlation between

HI‘L(K):< VI HLK) (19) different ordering-induced changes of the band structure. In

particular, the crystal-field splittind\o¢, the band-gap re-
duction AEggr, and the change in the transition energy

with
AE_, for the ordering-induced transitionl5,(I's,)
V;; 0 O —T'1.(L1c) have a fixed ratio for all sampléé:
VIt = 0 Ve 0 (20) AE
0 0 Vil (=——R_2 66, (223
Acr

Vis 0 O

Figure 1 shows a schematic picture of the interactions de- = ABr-. =0.48. (220

scribed by the different matrix elements. AEgcr
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ExpressingAcr, AEggr, andAEr_,, as functions oV, change in energy of these states to second order. Fdarjthe
V15, andVss to second order in these matrix elements andstate this give&:+ |V,5%/EL , whereas for th&'Z, state the

using ratios(22), we obtain energetic position of the level B = —|V,J%EL . Neglect-
5 5 ing the mixing of wave functions, we decouple valence and
NEE Y 426|V11| (233 conduction bands with respect to the ordering potential by
ES EL—EL’ this procedure.
The problem thus reduces to two two-level systems,
V12 Ak which can/zbe solvec/j2 analytically, resulting in energy eigen-
—=+0.110——. (230 valuese{"? and E{M?, and expansion coefficients for the
c S zone-center states in the conduction band,
Equation(23) determines the relation betweév,,| and —
|V3¢, and betweenV,,| and|V,4. Different degrees of or- IT1c(T'16)) = @|T'1e) + BelL 1), (243
dering, i.e., different strengths of the ordering potential, can o
therefore be modeled by different values\gf,. The matrix IT1e(L10)) = BelT10) — e L1c), (24b)

elementV, itself is proportional to the degree of orderitg
as defined in Ref. 14, if the ordering potentig)(r) is de- and in the valence band,
scribed by separate virtual-crystal approximations over two

sublattl_ces descrlbe_d ab_ove. Note that th_ls method dpes not IT% (T )y =, [TX,)+ B, L5, (253
determine the relative signs of the matrix elements in Eq.
(18). _

T3 (L3,)) = Byl T'5,) — a, L5, ). (25b

D. Diagonalization In these equations a bar denotes states of the ordered mate-

The band-gap reduction in highly ordered samples igial. In addition, the main contributing state of the zinc-
about 150 me\t**213This corresponds t¥,;~200 meV in  blende crystal is given in parentheses. As sté2dsand(25)
our model. Thus, according to E@3b), the potential matrix are diagonal with respect to the ordering potential, this re-
elementV,s, which couplesL,;. and I'g, states, is small moves the potential matrix elements from the Hamiltonian
compared to the energy difference between these states. WE9), but at the price of introducing new:p interactions.
therefore use Lwdin perturbation theo® to calculate the The following four momentum matrix elements appear:

ho— - B .
PJ]::_iE<Flc(rlc)|px|rév(rév)>:_iE<F10(Llc)|px|rév(|-§u)>:(avac+:8uﬁc)PF- (263
P — B -
PJZ_: —i E<Flc(rlc)|px|r)5<’v(l-év)>: i E<F1C(L1C)|pX|F)3(U(F)5(U)>:(aUﬁC—BUaC)PF' (26b)
A -
Ph=—i (T1o(T10)|pT1,(T5,)) = acP" (269
A -
Pg:_lE<F1c(|—10)|pz|rlv(rév)>zﬁcpr’ (269

where we have already used relati@i). The momentum matrix element6) define a standark- p problem of the form of
Eq. (5) for ordered Galng

HF(F)(K) HF(F)F(L)(K)

F = — J— —
H (K) HF(F)F(L)T(K) HF(L)(K) (27)
with
ﬁZ
E(N+ 5K+ BIGK iPTKy iP1K, iPlK,
1 ﬁz
—i 1
. iP7K, E( MﬁKZ 0 0
H ( )(K): ﬁz y
—iP7K 0 EM+ —K? 0
y v 2m

-iPlK, 0 0 ElZ4+ K2
m
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h? . :
E@+ > P+ alGKS iPTK, iPK,
_ N #2
FL(K)= —iP7K (24 K2 0
H (K) 1M EU 2mK )
1 hz
—iP7K 0 )4 k2
1 y EU + 2mK
and
0 —iP3K, —iP3K,
o —iP3K, 0 0
HIOTOK)=| 7
—iP;K, 0 0
—iPlK, 0 0
|
Without the approximation of Eq21) the form of Hamil- Up to now we have not considered the different possibili-

tonian(27) would correspond to the general case of a crystaties for the relative signs of the potential matrix elements.
with Cg, symmetry. The momentum matrix elemeRtsand  The sign ofVy5 does not matter since only,4? enters into

P, determine the effective masseslof,(I";.) andFlc(Llc) ?hseccl)rlq orqer p?\;turbago\? th?ﬁ“t/ .corriecuon. H/?/nce only
perpendicular to the ordering direction. The momentum ma: e relative sign oy, and Vss, that is o=sgn(Vy,/Vas),

) I I : : has to be determined. We will show that this can be done by
trix elementsP) and P% together withG determine the ef- : ! ith : | |
fective masses parallel to the ordering direction. A schematig1 ppropriate comparison with experimental results. .

icture for the interactions described by the mdmentum ma- The results for the squares of the four momentum matrix
Frix elements is shown in Fig. 2 y elements(26) are shown in Fig. @) for c<0 and in Fig.

9. 2 3(b) for ¢>0. The intensity of the optical transition

' (Is,)—T,.(T4.) is proportional to|P+|2, whereas the
IV. RESULTS AND DISCUSSION 30(T's) = Taellso) s prop IPz", whe;

intensity of the ordering-induced transition'5,(I's,)
Having set up our model, we can first calculfitgs and =

. : —T'1.(Lyc) is proportional to|P5|?. Experimental results
[Vl for different _values oly,, and t_hen derl\_/e_ the NE€W indicate that the latter transition is much weaker than the
band-edge energies and_the expansion coefflc_lents in E rmer, even for highly ordered sampf@sTherefore, we can
(24) and (25). The expansion cogfﬂments determlne the MO yle out the optiono>0, as this would result in approxi-
mentum matrix element®6), which, together with the new ately the same intensity for these two transitions
band-edge energies, yield the effective masses. The results . n I 0

; : The difference betweeR; andP’, and betweei?; and
for the momentum matrix elements and effective masses arlgH should influence the ontical anisotropy of ordered
plotted for a range ofV,,| up to 0.35 eV. This value results GglnP This effect has bpeen e Iectegy N Drevios
in a band gap reductiof Eggr of about 430 meV, which is 2 9 P
the theoretical value for the perfectly ordered CuPt

structuret! LoR0o<0 ®e>0 .,
2 J
_ i 029
2
H/ Ne(Lye) \/ 0.8 4+ Py Hos
R / 2
N ore, W - & ;
,/ J_: < L. Te) ! \/ 0.6 4 F - 0.6N
3 P2 : H \\\ I :’ Y :A e
H I| 1 \ P ‘l & &
| Vo \pt 1y B! S S
e i Y | 1t
‘ i ' - \ / 2
N SNUEIR W B e < F @)
\\ /I j— 2
RN / ,Tsy) / \ 0.2k 1+ @y 02
I Phy ]
S By g ki
a (b) 0.0 ] 1 1 111 gy

0 01 02 03 O 01 02 03

FIG. 2. Schematic picture of the interactions described by the v, V) Vv, V)

momentum matrix elements after diagonalization with respect to the

ordering potentialEq. (27)]. For clarity the picture is split int¢a) FIG. 3. Square of momentum matrix elements in &) for (a)
K perpendicular an¢b) K parallel to the ordering direction. o=sgn(V11/V35) <0 and(b) o>0.
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a)o<0 (b) >0
0.12(.),., I — —0.12
m,
0.10F -]
£
*
S
m
0.08 9 F —0.08 L L
0.14 -4 F -0.14
M EEPS TP | P IO BT g m =
0 01 02 03 0 01 02 03 % L . g
V. (eV V.. (eV » = .
1 &V) 0 &V) 0.12 ) 5<0 @ o6>0 0.12
i . M R BT | P PR R |
FIG. 4. Effective masses of the lowest conduction-band state 0 01 02 03 0 01 02 03
[1¢(Tyc) for (@ o=sgn(V1;/V35) <0 and(b) o>0. Vi V) Vi (V)

calculationg22° The mirror symmetry in Figs. (@ and 3b) FIG. 5. Effective masses of the second-lowest conduction-band

with respect to a horizontal line aP(P")2=0.5 is due to  statel';¢(L;c) for (@) and(b) o=sgn(V11/V3s) <0, and(c) and(d)
the normalization of the zone center stat2$ and(25). The  ¢>0.

matrix elements sz and (sz do not depend o, since which are rapidly oscillating on a length scale of a few lattice
the I';,(I'g,) state is not a mixture of two different zinc constants. We choose a suitable complete and orthonormal
blende states, and hence there are no “interference” terms ibasis that makes it possible to consider explicitly the inter-
Egs. (260 and (26d. In Fig. 3b) the relations P3)?  actions due to the perturbation. Our ansatz can be readily
%(p”l)Z and (pi)2%(pg)2 for V,;,=0.35 eV are purely ac- combined with other extensions lofp theory such as for the
cidental. inclusion of strain and spin-orbit interaction, thereby retain-

Figure 4a) shows the effective masses of the lowesting the simple analytic formulas df-p theory. When the

conduction-band statié;.(I";.) state foro<0. The effective pe.nod. of the perturbation Increases, .deepomts |n.the

: R ; Brillouin zone have to be considered in our ansatz, increas-
mass parallel to the ordering directiom increases with or- ) i !
dering, whereas the effective mass perpendicular to the oftd the number of potential matrix elemen{”" . How-
dering directionm, decreases. Within our model the anisot- €ver, the number of independent parameters can be signifi-
ropy of the effective masses isn(— m,)/m''=0.489 for cantly reduced using symmetry arguments, as illustrated in
|V14]=0.35 eV, i.e., for perfect ordering. This value is in our discussion of ordered GalpPif it is desirable to de-
good agreement with the results of Ref. 7. The general tren@rease the number of parameters further, one can in a pertur-
of the increase inm; and reduction ofn, agrees with both ~bative way restrict the calculation to a subghkt} containing
theoretical and experimentd! results. For completeness only extremal points of the energy dispersion, which usually
Fig. 4b) shows the effective masses fot>0. It illustrates ~ are most important. Alternatively, one can calculate the po-
how important it is to determine correctly. tential matrix elements according to their microscopic defi-

The predictions of our model for the effective masses ofition [Eq. (12)] using wave fuctions from, e.g., a pseudopo-

I . tential calculation for the unperturbed system.
thel'so(Ly) state are shown in F_|gs(:5 and gb), again for As an example, we calculate the effective masses in the
o< 0. The most striking feature is the decrease in the effec;

lowest two conduction bands of spontaneously ordered

tive mass parallel to the ordering direction from 1.7 to lessGaIn% as a function of the degree of ordering. For the low-

than 0.4. The effective mass perpendicular to the orderln%St conduction band we find qualitatively good agreement

direction shows_an increase, comparable in magnitude to tht?etween our results, first-principle calculations, and experi-

changes for thé';(I';) effective masses. To the best of our mental data. We also find the momentum matrix element
knowledge, the present work is the first investigation of thebetween conduction- and valence-band states to be aniso-
effective masses of this second lowest conduction band ifropic, which influences the optical anisotropy of ordered
the ordered material. For completeness Figs) &nd %d)  GalnR,. Although we have calculated the curvatures of the
shows the effective masses fer>0. Note thatm does not  conduction bands only, our approach can also be applied to
depend orv in Figs. 4 and 5. This can be easily understood,the valence band. To do this, a consistent set of band param-
as these masses are determined by the terms proportional égers is required, and spin-orbit interaction should be taken
Gin Eq.(27) and by 03”1)2 or (PQ)Z, respectively, which are into account. We expect, e.g., that the different signs of the
independent ofr. curvature of the valence band parallel to the ordering direc-
tion atI" andL points cause an increase in the heavy-hole
mass parallel to the ordering direction. Besides GglnP
which we have treated here, natural short-period superlattices
In conclusion, we have presented a general formalisnoccur in many different semiconductor alloy., e.g., Ref.

which extends standaid p theory to periodic perturbations, 14), and our method is well suited to describe these systems.

V. SUMMARY AND OUTLOOK
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