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Generalization of k"p theory for periodic perturbations

R. Stubner,* R. Winkler, and O. Pankratov
Institut für Technische Physik III, Universita¨t Erlangen-Nu¨rnberg, Staudtstr. 7, D-91058 Erlangen, Germany

~Received 7 January 2000!

We extend standardk•p theory to take into account periodic perturbations which are rapidly oscillating with
a wavelength of a few lattice constants. Our general formalism allows us to explicitly consider the Bragg
reflections due to the perturbation-induced periodicity. As an example we calculate the effective masses in the
lowest two conduction bands of spontaneously ordered GaInP2 as a function of the degree of ordering.
Comparison of our results for the lowest conduction band to available experimental data and to first principle
calculations shows good agreement.
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I. INTRODUCTION
For many yearsk•p theory1,2 has been very successful

describing a wide variety of crystal band structures, an
portant merit being that it allows one to derive simple, an
lytical formulas which capture the essential physics. In
presence of perturbing potentials it becomes the enve
function approximation~EFA!,3 which has been successful
applied to such different problems as impurities4 and semi-
conductor heterostructures.5 However, the EFA requires th
perturbation potentialV1(r ) to be slowly varying on the
length scale of the lattice constant, i.e., the nonzero Fou
components of the potentialV1(r ) must be restricted to wav
vectors which are small compared to the dimensions of
Brillouin zone. Some authors6,7 reported problems with the
EFA for systems where this requirement is not fulfilled, n
tably in artificial and natural short-period superlattices su
as spontaneously ordered GaInP2. These superlattices can b
viewed as systems with a periodic perturbation, where
smallest Fourier components of the perturbation are com
rable to the dimensions of the Brillouin zone of the unp
turbed problem. These Fourier components result in inte
tions between states with very different wave vectors, wh
are crucial for the properties of these short-period supe
tices. However, the interactions cannot be accurately
scribed within standardk•p theory.3 In this paper we presen
a general method which allows us to treat perturbing pot
tials which are rapidly oscillating but commensurate to
periodicity of the potential of the unperturbed problem.
illustrate the method, we apply it to the natural superlatt
of spontaneously ordered GaInP2.

The GaxIn12xP alloy for x'0.51 can be lattice matche
grown on a GaAs(001) substrate. Under proper growth c
ditions, long-range order of the CuPt type is observed8,9

This type of ordering is characterized by^111& layers alter-
natingly rich in Ga or In. In the ordered material the symm
try of the lattice is reduced fromTd to C3v , and the Brillouin
zone becomes smaller than the zinc-blende Brillouin zo
which leads to a backfolding of states. The change in
crystal potential induced through the ordering is a sho
period potential that mixes electronic states of an ‘‘av
aged’’ zinc-blende structure. In particular, the interactio
betweenG andL states lead to energy shifts of the band-ed
states in the ordered alloy, which cause band-gap reduc
and valence-band splitting. These effects have been inv
PRB 620163-1829/2000/62~3!/1843~8!/$15.00
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gated theoretically10,11 and experimentally.8,12,13 In addition
to the changes in the energies, the effective masses are
altered. Raikh and Tsiper14 calculated the conduction-ban
effective mass of ordered GaInP2 using a two-band model
which accounts only for the mixing of conduction-bandG
and L states. They found that the effective mass paralle
the ordering directionmi and the effective mass perpendic
lar to the ordering directionm' increase with increasing or
dering, and thatmi is larger thanm' . This model, however,
does not take into account the change of the interaction
tween conduction- and valence-band states due to the b
gap reduction and valence-band splitting. These chan
were investigated by Zhang and Mascarenhas15 with an
eight-bandk•p model, which included zinc-blendeG states
from both the conduction and valence bands. They findmi
andm' to decrease with increasing ordering, withmi being
larger thanm' . A third investigation was done by France
schetti, Wei, and Zunger,7 who performed first-principle cal-
culations using the local-density approximation. They fi
mi to increase, whereasm' decreases with increasing orde
ing. This result agrees qualitatively with the only meas
ment that investigated the anisotropy of the effective mas
in ordered GaInP2.16 In Ref. 7 the conclusion was drawn tha
the conduction-band effective masses in ordered GaInP2 de-
pend on a ‘‘delicate balance’’ ofG-L mixing and increased
interaction between conduction and valence band. Howe
the G-L mixing and the increase of the interaction betwe
conduction and valence bands have a common source in
ordering inducedG-L interactions. The conduction-ban
masses in partially ordered GaInP2 present an excellent tes
for our theory, which should be able to describe that ‘‘de
cate balance.’’

This paper is organized as follows. In Sec. II we derive
general scheme applicable to periodic perturbations wit
k•p theory. In Sec. III we use this theory to derive a mod
for the conduction band of spontaneously ordered GaIn2.
The results are discussed in Sec. IV. A summary and a s
outlook are presented in Sec. V.

II. GENERAL THEORY

We consider a system with the one-particle Hamiltonia

H05
p2

2m
1V0~r !, ~1!
1843 ©2000 The American Physical Society
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1844 PRB 62R. STUBNER, R. WINKLER, AND O. PANKRATOV
wherep is the momentum operator,m the free-electron mass
andV0(r ) the periodic potential of the crystal. In the case
the GaInP2 alloy, V0(r ) is an averaged potential of the di
ordered material. The eigenfunctions of the HamiltonianH0
are Bloch functionscnk(r )5eik•runk(r ), with eigenvalues
«n(k):

H0cnk5«n~k!cnk . ~2!

Here k is a wave vector in the first Brillouin zone (BZ0),
which corresponds to the periodicity ofV0(r ).

In conventionalk•p theory, basis functions

xnk
k0~r !5eik•rcnk0

~r !5eik•reik0•runk0
~r !, ~3!

are introduced, wherek belongs to BZ0. As shown by Lut-
tinger and Kohn,3 the functionsxnk

k0 provide a complete and
orthonormal basis set for anyk0 being an element of BZ0.
Thus any eigenfunction ofH0 can be expanded in terms o
xnk

k0 ,

fn9~r !5(
n8

E
BZ0

d3k8 cn9n8~k8!x
n8k8

k0 ~r !, ~4!

which yields the well-knownk•p equation for expansion co
efficientscn9n(k) and energy«n9(k01k),

(
n8

H
nn8

k0 ~k!cn9n8~k!5«n9~k01k!cn9n~k!, ~5!

with

H
nn8

k0 ~k!5S «n~k0!1
\2

2m
k2D dnn81

\

m
k•p

nn8

k0 . ~6!

The momentum matrix elementp
nn8

k0 is defined as

p
nn8

k0 5
~2p!3

V0
E d3r e2 ik0"runk0

* peik0"run8k0
. ~7!

Here the integration extends over the unit cell with volum
V0. Equation~5! is diagonal with respect tok due to the
periodicity of V0(r ), i.e., k is a good quantum number, an
the eigenstatesfn can be written as a superposition of ba
functionsxnk

k0 for different bandsn but the same wave vecto

k. Because of the completeness of the basis functionsxnk
k0(r )

an arbitrary potentialV1(r ) can be taken into account in Eq
~5!, even ifV1 does not have the periodicity ofV0. However,
this results in eigenstatesfn(r ) which are superpositions o
functionsxnk

k0 for different k. In practical calculations one i
usually restricted to wave vectorsk1k0 close tok0, since
the k•p term is treated as a perturbation. Therefore, t
method will fail if the additional potentialV1(r ) is not
smooth.

Here we will generalize the above approach to perturb
potentialsV1(r ) which are rapidly oscillating, but periodi
and commensurate to the periodicity ofV0. In the case of
GaInP2 , V1(r ) corresponds to the ordering potential.10
f

s

g

The total potentialV01V1 is characterized by a large
unit cell, and hence a smaller Brillouin zone (BZ1). Due to
commensurability, the reciprocal-lattice vectors associa
with the original potentialV0 can be expressed as an integ
linear combination of the reciprocal-lattice vectors associa
with the perturbing potential. In particular we haveseveral
wave vectors in the larger Brillouin zone BZ0 which become
reciprocal-lattice vectors of the perturbed problem, i.e., th
wave vectors become equivalent to theG point. This set of
wave vectors will be called$K%. For ordered GaInP2 this
consists of theG andL points of BZ0.

The main difference from standardk•p theory is that
eigenfunctions ofH0 belonging to wave vectors of theset
$K% are used to form basis functions of the form

XnK
K ~r !5eiK•rcnK~r !5eiK•reiK•runK~r !. ~8!

Any function having the periodicity of the perturbed syste
can be expanded in terms of the functionscnK(r ) as the set
$K% is folded onto theG point of BZ1. Therefore, whenK is
taken from BZ1 the functions XnK

K (r ) form a complete and
orthonormalbasis~cf. also Refs. 3 and 17!. The eigenfunc-
tions of H5H01V1 are expanded in terms of XnK

K :

Fn9~r !5 (
K8,n8

E
BZ1

d3K8 Cn9n8
K8 ~K 8!Xn8K8

K8 ~r !. ~9!

This yields the Schro¨dinger equation for the expansion coe
ficientsCn9n

K (K ),

(
n8

F S «n~K!1
\2

2m
K2D dnn81

\

m
K•Pnn8

K GCn9n8
K

~K !

1 (
n8,K8

Vnn8
KK8Cn9n8

K8 ~K !5En9~K !Cn9n
K

~K !, ~10!

where

Pnn8
K

5
~2p!3

V1
E d3r e2 iK•runK* peiK•run8K ~11!

and

Vnn8
KK85

~2p!3

V1
E d3r e2 iK•runK* V1eiK8•run8K8 . ~12!

On the left-hand side of Eq.~10! the part diagonal inK is
identical toHnn8

K defined in Eq.~6!, because we havePnn8
K

5pnn8
K . @Note that in Eq.~11! the larger normalizing volume

V1 is compensated for by the larger integration volume.# The
only effect of the perturbing potentialV1 are the coupling

matrix elementsVnn8
KK8 , and Eq.~10! can be written as

(
n8

Hnn8
K

~K !Cn9n8
K

~K !1 (
n8K8

Vnn8
KK8Cn9n8

K8 ~K !

5En9~K !Cn9n
K

~K !. ~13!
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PRB 62 1845GENERALIZATION OF k•p THEORY FOR PERIODIC . . .
Equation~10! represents our generalization of the stand
k•p equation~5!. Like Eq. ~5!, this new equation depend
only explicitly on K .18

As noted above, the set$K% is folded onto theG point of
BZ0. Therefore, an expansion in terms of the basis functi
~8! is appropriate for the description of states near the ce
of the Brillouin zone of the perturbed system. If one is inte
ested in states nearK0Þ0, one has to replaceK by K
1K0 in Eq. ~8!.

It is straightforward to include spin-orbit coupling an
strain-induced effects19 in Eq. ~10!. Likewise, we can easily
add a slowly varying perturbation, like the potential of
impurity, as ansatz~9! does not require periodicity.

III. APPLICATION TO PARTIALLY ORDERED GaInP 2

In this section we apply the above theory to t
conduction-band effective masses at theG point of partially
ordered GaInP2. The unperturbed potentialV0 corresponds
to the disordered material. The perturbationV1 represents the
ordering potential which is defined in Ref. 10 as the diffe
ence between the potentials of the ordered and disord
materials. In principle there are four equivalent variants
CuPt ordering for GaInP2, corresponding to the four̂111&
directions. Due to substrate effects only two of them
observed in experiments, however.8 Since we consider the
bulk system, the domain structure is not relevant to our c
culations. Hence we choose the@111# direction to be parallel
to the ordering direction.

Due to the periodicity of the ordering potentialV1, zone-
center states of ordered GaInP2 are derived from zinc-blende
G- and L-point states of the disordered system. Thus
choose$G,L% as the wave-vector set$K%. We restrict our-
selves to a seven-band model, containing the zinc-ble
G1c , G5v , L1c , and L3v states~nomenclature according t
Kosteret al.20!. Spin-orbit interaction is neglected, as it h
only a minor influence on the conduction-band effect
masses. Due to time-reversal symmetry wave functions f
G and L points can be chosen to be real. With this pha
convention all momentum and potential matrix elements
be defined as real quantities.

A. k"p Hamiltonian

The HamiltonianHG describing thek•p interaction be-
tweenG5v andG1c is well known.1 We are only interested in
conduction-band effective masses, so we do not conside
mote band contributions in the valence band. In the cond
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tion band, both thek•p interaction with the topmost valenc
band and remote bands contribute to the effective m
However, the latter terms are rather small, and we neg
them here. HenceHG reads as follows:

HG~K !51
Ec

G1
\2

2m
K2 iPGKx iPGKy iPGKz

2 iPGKx
\2

2m
K2 0 0

2 iPGKy 0
\2

2m
K2 0

2 iPGKz 0 0
\2

2m
K2
2 .

~14!

The energy reference in Eq.~14! is taken at the maximum o
the valence band. Note thatHG is spherically symmetric, i.e.
we can choose the coordinate system to beêxi@11̄0#,
êyi@112̄#, and êzi@111#, which is convenient for describing
theL point. The only parameters we need to know to spec
Eq. ~14! are the band gapEc

G and Kane’s momentum matrix
element1

PG52 i
\

m
^G1cupxuG5v

x &. ~15!

The situation at theL point is very similar, in that there is
only one reduced matrix element

PL52 i
\

m
^L1cupxuL3v

x &. ~16!

If we neglect remote band contributions in the conduct
band,PL is responsible for the conduction-band transve
massm'

L . However, interactions betweenL1c andL3v states
cannot account for the conduction band longitudinal m
mi

L , and the longitudinal mass would be equal to the fre
electron massm without contributions from remote bands
Therefore, in theL point k•p matrix we have to retain the
parameterG, which represents remote band contributions
mi

L . Neglecting remote band contributions in the valen
band, the Hamiltonian matrixHL takes the form
HL~K !5S Ec
L1

\2

2m
K21GKz

2 iPLKx iPLKy

2 iPLKx Ev
L1

\2

2m
K2 0

2 iPLKy 0 Ev
L1

\2

2m
K2
D . ~17!
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1846 PRB 62R. STUBNER, R. WINKLER, AND O. PANKRATOV
B. Matrix elements of V1

The potential of the ordered material can be modeled
dividing the lattice into two sublattices which are rich in G
or In, respectively, and averaging separately over the
sublattices. Subtracting the averaged potential of the di
dered material, one obtains a model for the ordering poten
as used in Ref. 14. In principle, there are two different typ
of matrix elements of the ordering potential, those wh
coupleG- andL-point states, and those which lead to inte
actions withinG- or L-point states, respectively. Howeve
the latter matrix elements are exactly zero, if the order
potential is modeled with the above outlined separate virtu
crystal approximations over the two sublattices. Therefore
can be expected that these matrix elements are small,
they are neglected here. The nonzero matrix elements o
ordering potentialV1 can be derived using group theory, an
we are left with only three real reduced matrix elements

V115^G1cuV1uL1c&, ~18a!

V355^G5v
x uV1uL3v

x &5^G5v
y uV1uL3v

y &, ~18b!

V155^G5v
z uV1uL1c&. ~18c!

These equations illustrate that our generalized appro
shares the well-known and important feature of stand
k•p theory that by means of group theory the number
independent parameters can be greatly reduced.

Combining Eqs.~14!, ~17!, and ~18! we end up with a
Hamiltonian of the form

HGL~K !5S HG~K ! VGL

VGL† HL~K !
D , ~19!

with

VGL5S V11 0 0

0 V35 0

0 0 V35

V15 0 0

D . ~20!

Figure 1 shows a schematic picture of the interactions
scribed by the different matrix elements.

FIG. 1. Schematic picture of the interactions described by
momentum and potential matrix elements in Eq.~19!.
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C. Values of the matrix elements

Two limiting cases are used to determine the numer
values of the potential and momentum matrix elements
Eq. ~19!. For V115V155V3550 the model describes the dis
ordered material, and the unknown parametersPG, PL, and
G can be fitted to the conduction-band effective masse
the G andL points, respectively. Such an analysis using e
perimental data has been done for theG point,21 but not for
theL point. In order to obtain a consistent set of paramete
we deduce the effective masses and band gaps from a b
structure calculation based on an empirical tight-bind
model with asp3d5s* basis, nearest-neighbor interaction
and without spin-orbit interaction. Jancuet al.22 showed that
a tight-binding model with such a basis is capable of ac
rately describing the valence bands and the two lowest c
duction bands in many diamond and zinc-blende-type se
conductors. The tight-binding parameters we use
interpolated from the values for GaP and InP in Ref. 22, w
a Ga:In ratio of 51:49. In order to correctly reproduce t
fundamental band gap in this virtual-crystal approximatio
we incorporate an empirical bowing factorb( l l 8m)
51/2@( l l 8m)GaP2( l l 8m) InP# for the four (sss)-type two-
center integrals. Band gaps and effective masses from
calculation and the resulting values forPG, PL, and G are
summarized in Table I. We use a phase convention for
wave functions, such that bothPG and PL are positive. The
values forPG and PL are very close to each other,23 so we
use the approximation

PL5PG58.86 eV Å. ~21!

With nonzero potential matrix elements butK50, the
Hamiltonian matrix~19! describes the zone center states
ordered GaInP2. These states have been studied previou
both experimentally12,13,24,25 and theoretically.26,11 These
studies indicate that there is a certain correlation betw
different ordering-induced changes of the band structure
particular, the crystal-field splittingDCF, the band-gap re-
duction DEBGR, and the change in the transition ener

DEG→L for the ordering-induced transitionḠ3v(G5v)

→Ḡ1c(L1c) have a fixed ratio for all samples:27

z5
DEBGR

DCF
52.66, ~22a!

u5
DEG→L

DEBGR
50.48. ~22b!

e

TABLE I. Energies, effective masses, and momentum ma
elements or remote bands contribution, respectively, forG1c , L1c ,
andL3v . The energy zero is the valence-band maximumG5v .

State Energy Effective mass Matrix element
~eV! ~m!

G1c Ec
G52.024 mG50.0899 PG58.83 eV Å

L1c Ec
L52.250 m'

L 50.1349 PL58.88 eV Å
mi

L51.699 G521.57 eV Å2

L3v Ev
L520.978
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PRB 62 1847GENERALIZATION OF k•p THEORY FOR PERIODIC . . .
ExpressingDCF, DEBGR, andDEG→L as functions ofV11,
V15, andV35 to second order in these matrix elements a
using ratios~22!, we obtain

uV35u2

Ev
L

520.426
uV11u2

Ec
L2Ec

G
, ~23a!

uV15u2

Ec
L

510.110
uV11u2

Ec
L2Ec

G
. ~23b!

Equation~23! determines the relation betweenuV11u and
uV35u, and betweenuV11u and uV15u. Different degrees of or-
dering, i.e., different strengths of the ordering potential, c
therefore be modeled by different values ofV11. The matrix
elementV11 itself is proportional to the degree of orderingh,
as defined in Ref. 14, if the ordering potentialV1(r ) is de-
scribed by separate virtual-crystal approximations over
sublattices described above. Note that this method does
determine the relative signs of the matrix elements in
~18!.

D. Diagonalization

The band-gap reduction in highly ordered samples
about 150 meV.16,12,13This corresponds toV11'200 meV in
our model. Thus, according to Eq.~23b!, the potential matrix
elementV15, which couplesL1c and G5v

z states, is small
compared to the energy difference between these states
therefore use Lo¨wdin perturbation theory28 to calculate the
d

n

o
ot
.

s

We

change in energy of these states to second order. For theL1c

state this givesEc
L1uV15u2/Ec

L , whereas for theG5v
z state the

energetic position of the level isẼv
Gz52uV15u2/Ec

L . Neglect-
ing the mixing of wave functions, we decouple valence a
conduction bands with respect to the ordering potential
this procedure.

The problem thus reduces to two two-level system
which can be solved analytically, resulting in energy eige
valuesEc

(1/2) and Ev
(1/2) , and expansion coefficients for th

zone-center states in the conduction band,

uḠ1c~G1c!&5acuG1c&1bcuL1c&, ~24a!

uḠ1c~L1c!&5bcuG1c&2acuL1c&, ~24b!

and in the valence band,

uḠ3v
x ~G5v

x !&5avuG5v
x &1bvuL3v

x &, ~25a!

uḠ3v
x ~L3v

x !&5bvuG5v
x &2avuL5v

x &. ~25b!

In these equations a bar denotes states of the ordered m
rial. In addition, the main contributing state of the zin
blende crystal is given in parentheses. As states~24! and~25!
are diagonal with respect to the ordering potential, this
moves the potential matrix elements from the Hamilton
~19!, but at the price of introducing newk•p interactions.
The following four momentum matrix elements appear:
P1
'52 i

\

m
^Ḡ1c~G1c!upxuḠ3v

x ~G5v
x !&52 i

\

m
^Ḡ1c~L1c!upxuḠ3v

x ~L3v
x !&5~avac1bvbc!P

G, ~26a!

P2
'52 i

\

m
^Ḡ1c~G1c!upxuḠ3v

x ~L3v
x !&52 i

\

m
^Ḡ1c~L1c!upxuḠ3v

x ~G5v
x !&5~avbc2bvac!P

G, ~26b!

P1
i 52 i

\

m
^Ḡ1c~G1c!upzuḠ1v~G5v

z !&5acP
G, ~26c!

P2
i 52 i

\

m
^Ḡ1c~L1c!upzuḠ1v~G5v

z !&5bcP
G, ~26d!

where we have already used relation~21!. The momentum matrix elements~26! define a standardk•p problem of the form of
Eq. ~5! for ordered GaInP2,

H Ḡ~K !5S H Ḡ(G)~K ! H Ḡ(G)Ḡ(L)~K !

H Ḡ(G)Ḡ(L)†~K ! H Ḡ(L)~K !
D , ~27!

with

H Ḡ(G)~K !5S Ec
(1)1

\2

2m
K21bc

2Gkz
2 iP1

'Kx iP1
'Ky iP1

i Kz

2 iP1
'Kx Ev

(1)1
\2

2m
K2 0 0

2 iP1
'Ky 0 Ev

(1)1
\2

2m
K2 0

2 iP1
i Kz 0 0 Ẽv

Gz1
\2

2m
K2

D ,
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H Ḡ(L)~K !5S Ec
(2)1

\2

2m
K21ac

2GKz
2 iP1

'Kx iP1
'Ky

2 iP1
'Kx Ev

(2)1
\2

2m
K2 0

2 iP1
'Ky 0 Ev

(2)1
\2

2m
K2

D ,

and

H Ḡ(G)Ḡ(L)~K !5S 0 2 iP2
'Kx 2 iP2

'Ky

2 iP2
'Kx 0 0

2 iP]
'Ky 0 0

2 iP2
i Kz 0 0

D .
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Without the approximation of Eq.~21! the form of Hamil-
tonian~27! would correspond to the general case of a crys
with C3v symmetry. The momentum matrix elementsP1

' and

P2
' determine the effective masses ofḠ1c(G1c) andḠ1c(L1c)

perpendicular to the ordering direction. The momentum m
trix elementsP1

i and P2
i together withG determine the ef-

fective masses parallel to the ordering direction. A schem
picture for the interactions described by the momentum m
trix elements is shown in Fig. 2.

IV. RESULTS AND DISCUSSION

Having set up our model, we can first calculateuV15u and
uV35u for different values ofV11, and then derive the new
band-edge energies and the expansion coefficients in
~24! and~25!. The expansion coefficients determine the m
mentum matrix elements~26!, which, together with the new
band-edge energies, yield the effective masses. The re
for the momentum matrix elements and effective masses
plotted for a range ofuV11u up to 0.35 eV. This value result
in a band gap reductionDEBGR of about 430 meV, which is
the theoretical value for the perfectly ordered Cu
structure.11

FIG. 2. Schematic picture of the interactions described by
momentum matrix elements after diagonalization with respect to
ordering potential@Eq. ~27!#. For clarity the picture is split into~a!
K perpendicular and~b! K parallel to the ordering direction.
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Up to now we have not considered the different possib
ties for the relative signs of the potential matrix elemen
The sign ofV15 does not matter since onlyuV15u2 enters into
a second order perturbation theory correction. Hence o
the relative sign ofV11 and V35, that is s5sgn(V11/V35),
has to be determined. We will show that this can be done
appropriate comparison with experimental results.

The results for the squares of the four momentum ma
elements~26! are shown in Fig. 3~a! for s,0 and in Fig.
3~b! for s.0. The intensity of the optical transition

Ḡ3v(G5v)→Ḡ1c(G1c) is proportional touP1
'u2, whereas the

intensity of the ordering-induced transitionḠ3v(G5v)

→Ḡ1c(L1c) is proportional touP2
'u2. Experimental results

indicate that the latter transition is much weaker than
former, even for highly ordered samples.25 Therefore, we can
rule out the options.0, as this would result in approxi
mately the same intensity for these two transitions.

The difference betweenP1
' andP1

i , and betweenP2
' and

P2
i should influence the optical anisotropy of order

GaInP2. This effect has been neglected in previo

e
e

FIG. 3. Square of momentum matrix elements in Eq.~26! for ~a!
s5sgn(V11/V35),0 and~b! s.0.
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calculations.29,30 The mirror symmetry in Figs. 3~a! and 3~b!
with respect to a horizontal line at (P/PG)250.5 is due to
the normalization of the zone center states~24! and~25!. The
matrix elements (P1

i )2 and (P2
i )2 do not depend ons, since

the Ḡ1v(G5v
z ) state is not a mixture of two different zin

blende states, and hence there are no ‘‘interference’’ term
Eqs. ~26c! and ~26d!. In Fig. 3~b! the relations (P2

')2

'(P1
i )2 and (P1

')2'(P2
i )2 for V1150.35 eV are purely ac-

cidental.
Figure 4~a! shows the effective masses of the lowe

conduction-band stateḠ1c(G1c) state fors,0. The effective
mass parallel to the ordering directionmi increases with or-
dering, whereas the effective mass perpendicular to the
dering directionm' decreases. Within our model the aniso
ropy of the effective masses is (mi2m')/mG50.489 for
uV11u50.35 eV, i.e., for perfect ordering. This value is
good agreement with the results of Ref. 7. The general tr
of the increase inmi and reduction ofm' agrees with both
theoretical7 and experimental16 results. For completenes
Fig. 4~b! shows the effective masses fors.0. It illustrates
how important it is to determines correctly.

The predictions of our model for the effective masses

the Ḡ1c(L1c) state are shown in Figs. 5~a! and 5~b!, again for
s,0. The most striking feature is the decrease in the eff
tive mass parallel to the ordering direction from 1.7 to le
than 0.4. The effective mass perpendicular to the orde
direction shows an increase, comparable in magnitude to

changes for theḠ1c(G1c) effective masses. To the best of o
knowledge, the present work is the first investigation of
effective masses of this second lowest conduction ban
the ordered material. For completeness Figs. 5~c! and 5~d!
shows the effective masses fors.0. Note thatmi does not
depend ons in Figs. 4 and 5. This can be easily understoo
as these masses are determined by the terms proportion
G in Eq. ~27! and by (P1

i )2 or (P2
i )2, respectively, which are

independent ofs.

V. SUMMARY AND OUTLOOK

In conclusion, we have presented a general formal
which extends standardk•p theory to periodic perturbations

FIG. 4. Effective masses of the lowest conduction-band s

Ḡ1c(G1c) for ~a! s5sgn(V11/V35),0 and~b! s.0.
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which are rapidly oscillating on a length scale of a few latti
constants. We choose a suitable complete and orthono
basis that makes it possible to consider explicitly the int
actions due to the perturbation. Our ansatz can be rea
combined with other extensions ofk•p theory such as for the
inclusion of strain and spin-orbit interaction, thereby reta
ing the simple analytic formulas ofk•p theory. When the
period of the perturbation increases, moreK points in the
Brillouin zone have to be considered in our ansatz, incre

ing the number of potential matrix elementsVnn8
KK8 . How-

ever, the number of independent parameters can be sig
cantly reduced using symmetry arguments, as illustrated
our discussion of ordered GaInP2. If it is desirable to de-
crease the number of parameters further, one can in a pe
bative way restrict the calculation to a subset$K% containing
only extremal points of the energy dispersion, which usua
are most important. Alternatively, one can calculate the
tential matrix elements according to their microscopic de
nition @Eq. ~12!# using wave fuctions from, e.g., a pseudop
tential calculation for the unperturbed system.

As an example, we calculate the effective masses in
lowest two conduction bands of spontaneously orde
GaInP2 as a function of the degree of ordering. For the lo
est conduction band we find qualitatively good agreem
between our results, first-principle calculations, and exp
mental data. We also find the momentum matrix elem
between conduction- and valence-band states to be an
tropic, which influences the optical anisotropy of order
GaInP2. Although we have calculated the curvatures of t
conduction bands only, our approach can also be applie
the valence band. To do this, a consistent set of band pa
eters is required, and spin-orbit interaction should be ta
into account. We expect, e.g., that the different signs of
curvature of the valence band parallel to the ordering dir
tion at G and L points cause an increase in the heavy-h
mass parallel to the ordering direction. Besides GaIn2,
which we have treated here, natural short-period superlatt
occur in many different semiconductor alloys~cf., e.g., Ref.
14!, and our method is well suited to describe these syste

te

FIG. 5. Effective masses of the second-lowest conduction-b

stateḠ1c(L1c) for ~a! and~b! s5sgn(V11/V35),0, and~c! and~d!
s.0.
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