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Cumulant expansion approach to stimulated emission in semiconductor lasers
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We present a simple model of absorption and gain spectra in highly excited semiconductor systems that
incorporates interactions between electrons and holes. The scattering of the recombining electron-hole pair by
charge fluctuations in the plasma is treated to infinite perturbation order by summing the corresponding
cumulant series. We further show that the lowest cumulant in our expansion is simply related to the self-energy
operator in theGW approximation. Our results therefore predict correctly the energy gap renormalization and
the proper line shape of the emission spectra, including the exponential behavior of the spectral edge in the
low-energy limit. Numerical results obtained within the plasmon pole approximation match experimental data
in heterojunction lasers without adjustable parameters. Our procedure is sufficiently accurate and simple that it
can be used in practical models of linear and nonlinear gain.
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I. INTRODUCTION

In this paper, we investigate the response of many-b
systems to electromagnetic fields with an emphasis on p
ton absorption and emission in semiconductor lasers. In
ticular, we describe the linear gain coefficient in the vicin
of the laser threshold as a function of photon energy
excitation level. In this regime the fundamental optical tra
sitions between the valence and conduction bands are
companied by low-energy excitations of the electron-h
plasma and phonons in the active layer. The interaction
the electron-hole pairs with this plasma leads to a substa
band-gap renormalization and spectral line asymmetry in
emission and absorption spectra.

Various theoretical models of gain and absorption spe
in semiconductor lasers or highly excited semiconduct
take into account many-body effects such as band-gap re
malization, dephasing, excitonic enhancement or scree
on different levels of approximation. A very popular a
proach consists in assuming that the basically two-part
interband excitations accompanying photon creation or a
hilation can be described using the one-particle propertie
the valence and the conduction band. Thus the band
renormalization is, for example, calculated as a difference
the separate shifts of those bands in the presence of the
cited particles. Similarly the excitonic states are built fro
the combination of renormalized states of electron hole p
interacting with a renormalized~screened! Coulomb
potential.1–4 Such models allow for a number of simplifica
tions such as applying the plasmon pole model for calcu
ing the energy-level renormalization or neglecting retar
tion in the screening of the electron hole-interaction~static
screening approximation! providing a reasonable scheme f
gain calculation. A microscopic description of the dephas
or spectral line-shape function usually required going bey
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the Lorentzian approximation. The characteristic asymme
shape of the spectral line was very often explained on
basis of the so-called ‘‘nok-selection rule’’ justified by an
assumption of static disorder in the active material.5,6 Such a
disorder would be responsible for the fact that the interba
transition with finite momentum change would become
lowed. However, in the absence of lattice imperfections o
should rather consider the time-dependent fluctuating po
tial due to, e.g., lattice vibrations or scattering by fr
carriers.7,8 Realistic models of dephasing due to the coupli
to phonons employ very often the cumulant expansion,
the exponential resumation of the perturbation series. T
method was used to explain the characteristic exponen
low-energy tail of the absorption and gain spectra in intrin
semiconductors.9,10

In our approach, an interband absorption process is
vided into two distinct phases. First, an electron-hole pai
created by absorption of a photon withEg'Eg , the band-
gap energy. This e-h pair then interacts with the electric fi
of the fluctuating plasma charge, gaining or losing energ
that correspond to intraband transitions. We assume that
one interband particle-hole pair is created in the process
additionally neglect virtual interband transitions. The inte
action of the electron-hole pair with the free-carrier plas
can be modeled by representing the eigenmodes of
plasma by a system of fictitious bosons corresponding to
potential fluctuations. For the one-electron spectra this p
cedure is equivalent to theGW approximation if the full
boson dispersion relation and coupling potentials are
placed by effective quantities. We now extend this appro
to the electron-hole pair which can be viewed as a compo
particle coupled to the system of fluctuating potentials.11

Our paper is organized as follows. First we describe
fluctuating potential associated with plasma excitatio
1835 ©2000 The American Physical Society
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1836 PRB 62BARDYSZEWSKI, YEVICK, AND PRYWATA
within the random-phase approximation~RPA!. Subse-
quently we derive the equation of motion for an exciton
the presence of fluctuating potentials. The approximate g
spectra is finally obtained by solving such an equat
through an exponential~cumulant! resumation of the pertur
bation series.

II. ELECTRON-HOLE PLASMA MODEL

Under typical conditions in a semiconductor laser t
electron-hole plasma is at quasi-equilibrium parametri
with conduction and valence band quasi-Fermi levelsmc and
mv respectively. The single-particle excitations of the syst
are generally modeled by theGW approximation in which
the self-energy is calculated in the lowest order with resp
to the fully screened potentialW. This approximation yields
the correct intensity and energy position of the quasipart
resonances.

The mathematical structure of theGWself-energy expres
sion is very similar to the analogous lowest order contrib
tion from the electron-phonon interaction, e.g., the Fro¨chlich
interaction with LO phonons, provided that the dispers
part of W is replaced by the phonon propagator.12 The ana-
lytic properties of the screened interactionW in the random-
phase approximation in fact permit the precise identificat
of the elementary plasma excitations as well as the e
form of the coupling potentials between these excitations
an external particle.

To illustrate the above concepts, consider the retar
screened potentialW,

WR~q,v!5@12vqx0
R~q,v!#21vq . ~1!

Here x0
R(q,v) represents the susceptibility of the syste

while vq is the unscreened Coulomb potential in the wa
vector representation. Defining an analogous expression
the advanced potential

WA~q,v!5vq@12x0
A~q,v!vq#21, ~2!

we can easily show that the spectral density function
WR(q,v) is given by

2
1

p
Im WR~q,v!5WA~q,v!S 2

1

p
Im x0

R~q,v! D
3WR~q,v!. ~3!
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The continuous part of the spectrum ofW is related to the
elementary electron-hole~intraband! excitations in the non-
interacting gas which according to the Lindhard formula p
vides the following contribution to Imx0

R(q,v):

2
1

p
Im x0

R~q,v!5(
k

f c„ec~k!…@d„v2ec~k1q!1ec~k!…

2d„2v2ec~k1q!1ec~k!…#

1(
k

@12 f v„ev~k!…#@d„2v2ev~k1q!

1ev~k!…2d„v2ev~k1q!1ev~k!…#.

~4!

In the above expressionsec(k) andev(k), respectively, de-
note the energies of the conduction and valence bands, w
the corresponding Fermi-Dirac partition functions a
f c„ec(k)… and f v„ev(k)…. Since the electron and hole Ferm
Dirac functions in a degenerate gas are well approximated
a step function of energy, the intraband electron-hole exc
tions do not occur outside of a well-defined region in t
(q,v) plane and thus do not contribute to Imx0

R(q,v). How-
ever, in the region where Imx0

R(q,v)'0 discrete plasmons
may still be emitted or absorbed if Re„12vqx0

R(q,v)…50
yielding the following contribution to the spectral density
the screened interaction:

2
1

p
Im WR~q,v!5U ]x0

R

]v
U

v5v
q
pl
U21

@d~v2vq
pl!

2d~v1vq
pl!#. ~5!

in which vq
pl is the energy of a plasmon with momentumq.

Accordingly within this framework, the spectral densi
function for WR can be expressed as

2
1

p
Im WR~q,v!5(

m
(

q
Vq

m~V2q
m !* @d~v2vq

m!

2d~v1vq
m!#. ~6!

The indexm runs both over all possible electron-hole exc
tations @m5(n,k), wheren5c or n5v# with energiesvq

m

5en(k1q)2en(k) and plasmon excitationsm5pl with
vq

m5vq
pl . From the equations above, the coupling potenti

for these excitations are
Vq
m55

WR~q,vq
m!A12 f v„ev~k!… for electron-hole pairs in the val. band,

WR~q,vq
m!Af c„ec~k!… for electron-hole pairs in the cond. band,

U ]x0
R

]v
U

v5v
q
pl
U21/2

for plasmons.

~7!
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III. SINGLE-PARTICLE SPECTRUM

Many properties of the one-particle spectrum of t
electron-hole gas such as the change in the energy le
with carrier density can be immediately derived from t
self-energy function in theGWapproximation. This function
can be generally represented as

S~q,v!5SHF~q!1M ~q,v!. ~8!

HereSHF(q) is the time-independent Hartree-Fock contrib
tion. The dispersive partM (q,v), which is nonlocal in time,
can be obtained by the Kramers-Kro¨nig transformation from
the spectral density function2(1/p)M (q,v). The formulas
of the previous section yield for the conduction band R
spectral density

2
1

p
Im M ~q,v!52

1

p
Im S~q,v!

5(
m

(
q

Vq
m~Vq

m!* $@12 f c„ec~k1q!…

1N~vq
m!#d„v2vq

m2ec~k1q!…

1@ f c„ec~k1q!…1N~vq
m!#

3d„v1vq
m2ec~k1q!…%, ~9!

where N(vq
m) is the Bose-Einstein partition function. A

analogous equation applies to the valence band. Note
Eq. ~9! is virtually identical to the self-energy contributio
from electron-phonon interactions with the coupling pote
tials Vq

m if we replace the phonon frequency by the plasm
frequency or electron-hole pair energyvq

m .

IV. SPONTANEOUS AND STIMULATED EMISSION

The linear gain in a semiconductor laser can be imme
ately derived from the Fourier transform of the tim
dependent electron-hole pair correlation function describ
the spontaneous recombination:

iGk1k2k
18k

28
,

~ t !5^ack
18

†
~0!avk

28
~0!avk2

† ~ t !ack1
~ t !&. ~10!

The expectation value in Eq.~10! is taken with respect to the
quasiequilibrium state of the excited semiconductor. The c
ation operator for a conduction-band electron with mom
tum k at time t and the corresponding annihilation opera
for a valence-band electron are denoted byack

† (t) andavk(t),
respectively.

The coupling of electron-hole pairs to the electromagne
field with polarizations is proportional to the matrix ele
ment of thes component of the momentum operator b
tween the valence and conduction band states:

P̂s,k1k2
5^c,k1u p̂suv,k2&dk1 ,k2

. ~11!

Applying the standard definition of the scalar product:
els

-

at

-
n

i-

g

e-
-

r

c

-

^PuP8&5 (
k1k2

Pk1k2
* Pk1k2

8 , ~12!

we obtain the following compact expression for the line
gain at a light frequencyv:

a~v!5
2p

cnrvV ~12eb(v2mx)!^Psu iĜ,~v!uPs&. ~13!

Heremx5mc2mv corresponds to the chemical potential f
interband electron-hole pair excitations,Ĝ,(v) represents
the Fourier transform ofG,(t), b51/kBT, nr andV are the
the refractive index and volume of the system, andc is the
vacuum speed of light. Atomic units are used throughout
paper.

In order to calculateG,(t) we introduce a correlation
function on the imaginary time patht52 i t where 0<t^b:

Gk
18k

28k1k2
~t!5^ack

18
†

~2 i t!avk
28
~2 i t!avk2

† ~0!ack1
~0!&,

~14!

so thatiGk1k2k
18k

28
,

(t) is obtained by the analytic continuatio

of Gk
18k

28k1k2
(2 i t) to the real time axis at the end of ou

calculations.13

Applying next the coherent-state representation
bosonic excitations which here include intraband electr
hole pair excitations, plasmons, and phonons, we may
the expression forG(t) into a functional integral with respec
to the fluctuation amplitudes~coherent coordinates! bq(t)
andbq* (t) of the bosonic fields for theq wave-vector com-
ponents of the potential. The resulting expression reads

G~t!5
1

ZE D@bq* ~t8!bq~t8!#

3e2Sbos[bq* (t)bq(t);t8]g~@bq* ~t8!bq~t8!#;t!.

~15!

The correlation functiong(t) which depends on the th
given time-dependent fluctuations of the classical amplitu
bq(t) andbq* (t) can be expressed as the following therm
average solely with respect to electron variables in
Hartree-Fock approximation:

gk
18k

28k1k2
~t!5^ack

18
†

~2 i t!avk
28
~2 i t!avk2

† ~0!ack1
~0!&el-H-F .

~16!

The effective actionSbos@bq* bq# for boson fields is assume
to be bilinear with respect tobq andbq* ~Gaussian approxi-
mation! and the standard periodicity conditionsbq(b)
5bq(0) andbq* (b)5bq* (0) are applied.14 According to Eq.
~6! the effective interaction between electron-hole pairs a
bosons of the typem can then be described by the Ham
tonian
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Hel-bos5(
k

(
q

~ack1q
† ack1avk1q

† avk!

3@Vq
mbq

m1~V2q
m !* ~b2q

m !* #. ~17!

The coupling constantsVq
m for interaction with plasma fluc-

tuations are defined in Eq.~7! while the polar coupling to the
longitudinal-optical~LO! phonons is given by the Fro¨chlich
expression:
in
tiv
e

-

in
ic
re
it
re
tia
Vq
LO52 i F2pe2\v0

V S 1

e`
2

1

e0
D G1/21

q
, ~18!

in which \v0 denotes the LO phonon energy ande` ande0
are high-frequency and static dielectric constants, resp
tively. Representing the Coulomb interaction between
electron and hole byUq , the Hartree-Fock approximatio
for the electron-hole pair moving in a fluctuating field ge
erates the equation of motion
]

]t
gk

18k
28k1k2

~t!5@ec~k18!2ev~k28!#gk
18k

28k1k2
~t!1(

k,q
Uq@^avk

† ~2 i t!avk
28
~2 i t!&elgk

181q k1q k1k2
~t!

2^ack
18

†
~2 i t!ack~2 i t!&elgk1q k

281q k1k2
~t!#1(

m
(

q
@Vq

mbq
m1~V2q

m !* ~b2q
m !* #

3@gk
181q k

28k1k2
~t!2gk

18k
282q k1k2

~t!#. ~19!
ly

by

ct
ex-
ling
In the presence of fluctuating potentials associated with
traband plasma excitations or phonons, the effec
electron-hole interaction is modified through the on
particle density matrices ^avk

† (2 i t)avk
28
(2 i t)&el and

^ack
18

†
(2 i t)ack(2 i t)&el and the direct coupling to the fluc

tuating potentials given by the last term in Eq.~19!. Thus in
the context of the RPA, averaging with respect to fluctuat
potentials reproduces the vertex corrections and dynam
screening. A commonly used approximation is thus to
place Uq by the statically screened potential. The dens
matrix elements are similarly approximated by the cor
sponding averages with respect to the fluctuating poten
and, therefore, adopt the form

^avk
† ~2 i t!avk

28
~2 i t!&el5dkk

28
f v„ev~k!… ~20!

and

^ack
18

†
~2 i t!ack~2 i t!&el5dkk

18
f c„ec~k!…. ~21!

The quasiparticle energiesev(k) and ec(k) now represent
renormalized quantities within the RPA.

The equation of motion, Eq.~19! can be written as

]

]t
g~t!5@Ĥ01V̂~t!#g~t!. ~22!
-
e
-

g
al
-

y
-
ls

Ĥ0 denotes an effective electron-hole Hamiltonian

Ĥ05T̂1F̂Û, ~23!

in which T̂ is the kinetic energy matrix, and the statical
screened Coulomb interactionÛ is multiplied by the occu-
pation factor represented by the matrix

F̂k
18k

28k1k2
~t!5dk2k

28
dk1k

18
@ f v„«v~k2!…2 f c„«c~k1!…#,

~24!

and the time-dependent coupling to the boson fields given
the last term in Eq.~19! is denoted byV̂(t).

The formal solution to Eq.~22! can be written as

g~t!5eĤ0tT expF E
0

t

e2Ĥ0t8V̂~t8!eĤ0t8dt8Gg~0!. ~25!

In the above expression, the time-ordering operatorT is ap-
plied along the integration interval. Averaging with respe
to the potential fluctuations and performing a cumulant
pansion to the second order with respect to the coup
V̂(t) then yields
G~t!5eĤ0t expF E
0

t

dt1E
0

t1
dt2e2Ĥ0t1^V̂~t1!eĤ0(t12t2)V̂~t2!&bose

Ĥ0t2GG~0!, ~26!
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after factoring the average of the initial valueg(0) of G
whereG(t)5^g(t)&bos. Equation~26! can now be expande
in terms of the right and left eigenvectors of the Hamiltoni
Ĥ0 defined by

Ĥ0un&5Enun& and ^ñuĤ05^ñuEn . ~27!

Retaining only diagonal elements in theun& representation of
the exponential in Eq.~26! and passing to the real time co
relation function yields

iGk1k2k
18k

28
,

~ t !5(
n

e2 iEnteSn(t)
1

^ñun&
(
k19k29

^k18k28un&

3^ñuk19k29& iGk1k2k
19k

29
,

~0!. ~28!

The time-dependent correlation function is, therefore, eq
to a sum of terms that oscillate at a frequency given by
electron-hole pair eigenfrequenciesEn /\ with additional
time-dependent phase factors that both renormalize the
energies and are responsible for the dephasing of those
cillations. Since

^@bq~t!1b2q* ~t!#@b2q8~0!1bq8
* ~0!#&bos

5dqq8$@N~vq!11#e2vqt1N~vq!evqt%, ~29!

the time-dependent phase function is in our model given

Sn~ t !5E
2`

`

Mn
,~v1En!S e2 ivt1 ivt21

v2 D dv, ~30!

where

Mn
,~v!5(

m
(
n8

(
q

1

^ñ8un8&
^ñuVq

mun8&^ñ8u~V2q
m !* un&

3$@N~vq
m!11#d~v1vq

m2En8!

1N~vq
m!d~v2vq

m2En8!%. ~31!

The contributions from the differing sources of the fluctu
ing potentials are labeled bym.

Finally, we turn our attention to the initial value,G(0) of
iGk1k2k

18k
28

,
(0). From the cyclic property of the trace appea

ing in our expressions for thermodynamic averages of q
siequilibrium quantities we obtain

^~Te*0
b[ Ĥ01V̂(t)]dt21!g~0!&bos5F. ~32!

The matrix elements ofF are

Fk
18k

28k1k2
5dk1k

18
^avk2

† avk
28
&2dk2k

28
^ack

18
†

ack1
&. ~33!

Factorizing the average on the left-hand side of the Eq.~32!
and defining an effective electron-hole Hamiltonian such t

ebĤeff5^Te*0
b(Ĥ01V̂(t))dt&bos yields

G~0!5~ebĤeff21!21F. ~34!

The linear gain can therefore be calculated as
al
e

-h
os-

y

-

a-

t

a~v!5
2p

cnrvV ~12eb(v2mx)!(
n

u^Psun&u2BnL~v2En!.

~35!

In Eq. ~35! the first term of the summation is the square
the optical transition-matrix element associated with the
combination channels for the eigenstateun& of the excitonic
HamiltonianH0, while the line-shape functionLn(v) is de-
fined by

Ln~v!5ReE
0

1`

eSn(t)eivtdt. ~36!

Further, the statistical factor

Bn5^ñu~ebĤeff21!21Fuñ& ~37!

corresponds to the distribution function of electron-hole pa
prior to recombination. If correlation effects in the electro
hole pair are neglected,Bn accordingly reduces to the prod
uct of the Fermi-Dirac occupation factors for electrons in t
conduction band and for holes in the valence band:Bn
5 f c„«c(ke)…@12 f v„«v(kh)…#.

We now specialize to a two-band model and further a
proximate the excitonic states by a productun&5ul&uP&
whereul& describes the internal state of the exciton anduP&
is a plane-wave function of the center-of-mass momentumP.
Representing the internal energy and the total mass of
exciton byel andM, respectively, the energy of this state

El~P!5el1
P2

2M
. ~38!

After some algebra, the following expression for the functi
M , for an exciton in the stateul0&uP50& can be derived,
wherere and rh are the electron and the hole positions

Ml0

, ~v!5(
l

(
m

(
q

Vq
m~Vq

m!* @„11N~vq
m!…

3d„v1vq
m2El~q!…

1N~vq
m!d„v2vq

m2El~q!…#

3
1

^l̃ul&
^l̃0ue2 iq•re2eiq•rhul&

3^l̃ueiq•re2e2 iq•rhul0&. ~39!

Note that the matrix element̂l̃ueiq•re2e2 iq•rhul0& is
proportional to the probability amplitude of a scattering pr
cess in which the internal state of the exciton is transform
from ul0& to ul&, while its total momentum changes byq.
The first term in this expression corresponds to the elec
and the second to the hole scattering amplitude. Since th
two contributions are 180° out of phase, the negative qu
tum interference between the two processes, which vanis
in the absence of correlation between the electron and h
partially cancels the contribution from the interaction wi
long-wavelength potential fluctuations. This, in turn, r
moves the singularity generated by the coupling potent
Vq

m in M ,. Indeed, for correlated~e.g., bound! electron-hole
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1840 PRB 62BARDYSZEWSKI, YEVICK, AND PRYWATA
pairs the exciton has zero net charge and therefore cou
only weakly to fluctuating electric fields.

V. RESULTS AND DISCUSSION

To illustrate our theoretical approach we now consid
spontaneous recombination and emission in a 1.3mm,
In0.727Ga0.273As0.58P0.42/InP based heterostructure laser
room temperature.15,16 For simplicity we neglect the Cou
lomb interaction between the valence and conduction b
electrons in the HamiltonianH0. Since the motion of elec
trons in the conduction and valence band is then unco
lated, the expression forM , can be divided into the sum o
two seperate terms pertaining to each band separately.
time-dependent spectral density function of an e-h pair,eSn(t)

is given by the product of one-particle spectral densit
since the line-shape function is then the convolution of t
single-particle spectral densities.8 In our calculations we in-
clude the scattering of electron-hole pairs by LO phono
and plasma fluctuations. To obtain an analytic expression
M , we describe the latter through the plasmon pole appr
mation in which all plasma excitations are represented
well-defined plasmons with frequency

vq
25vp

2S 11
q2

k2D 1S q2

2me
D 2

. ~40!

Hereme is the conduction band effective mass andk is the
screening parameter given in terms of the concentration
electrons and holesne andnv by

k25
4pe2

e`
S ]ne

]mc
1

]nh

]mv
D . ~41!

The plasma frequencyvp is then obtained from

vp
25neS AmH1AmL

AmH
3 1AmL

3
1

1

me
D 4pe2

e`
.

The coupling constant for this case is

Vq
PL5S 2pe2vp

2

e`vq
D 1/21

q
, ~42!

where we have neglected the exciton scattering by lo
energy intraband electron-hole excitations. Moreover, it
well known that plasmon excitations in the presence of f
holes in III-V semiconductors are strongly damped due
intervalence band transitions.17 As the associated plasmo
spectral density is, therefore, broadened, the plasma co
bution to theM , function is similarly damped. Finally, in
order to further simplify the calculations we neglect the d
pendence of bothM , and the line-shape function on initia
state of the recombining electron-hole pairun&. Instead, we
apply the line-shape function associated with the lowest
ergy transition to the entire spectrum. The details of t
calculations are given in the Appendix.

In Fig. 1 the solid line represents the calculated ene
dependence of the spectral densityM , for an electron-hole
pair concentration ofn51.831018 cm23. Observe the two
pairs of singularities at energies corresponding
6v05635.8 meV and 6vpl5658 meV. As a conse-
les
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quence, the resulting shape function shown as the solid
in Fig. 2 is asymmetric and posesses pronounced sideba
Fitting this curve to a Lorentzian function with the same h
width and height, displayed as the dotted curve in the figu
shows that the half width at half maximum of the main spe
tral line approximately equalsG5M ,(0).

Due to the plasmon frequency dependence onq @Eq. ~40!#
an electron hole pair with total momentum equal to ze
cannot decay through plasmon absorption or emission.
phonons, therefore, play a dominant role in broadening
emission and gain spectra. The resulting linewidth is sol
determined by dispersionless LO phonon scattering, w
the plasmon coupling simply yields the sidebands that app
on the low-energy side of the main peak in Fig. 2. The pl
mon satellites are thus responsible for experimentally
served gain profile in the tail region.16

In Fig. 3~a! we display the material gain curves fo
1.3 mm, In0.727Ga0.273As0.58P0.42/InP at several subthreshol
concentrations at room temperature. The experimental m
gain spectra according to Ref. 16 are given in Fig. 3~b! for
injection current values corresponding approximately to
cess carrier densities used for theoretical calculations of
3~a!. The evolution of the crossover and gain maximum w
carrier concentration is quite well reproduced. Note that
model incorporates not only the screened exchange contr
tion to the energy level shift but also the ‘‘Coulomb hole
correction associated with low-energy intraband electr
hole plasma excitations within the RPA. Since the latter c
tribution properly shifts the maximum of the line-shape fun
tion with wavelength, our model correctly describes ban

FIG. 1. M ,(E) function at electron-hole concentration 1
31018 cm23.

FIG. 2. Line-shape function for the lowest energy electron-h
pair excitation ~solid line! and the Lorentzian function with
HWHM5M ,(0) ~dashed line!.
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gap narrowing and hence the correct variation of
maximum gain with carrier concentration.

That the gain curve decreases more slowly on the lo
energy side than on the high-energy side of its maximum
consequence of multiphonon and multiplasmon scatte
processes. However, neglecting interference effect resu
from quasiboson emission and reabsorption and emplo
the plasmon pole approximation in our model of uncor
lated electron-hole pairs results in an overestimation of
relative strength of such processes18 in the low-energy part
of the gain spectra.

Our theoretical gain spectra possess the character
shape described by the phenomenologicalk nonconservation
rule with a maximum shifted slightly towards the crossov
point in the gain spectrum. In the low-energy region, t
measured gain decays exponentially.8 This behavior has pre
viously often been modeled by assuming a line-shape fu
tion of the form cosh2n

„s(v2v0)… where the values ofs
and v0 are determined empirically. Our technique clea
reproduces this exponential behavior as is evident from
logarithmic plot of the gain curves in the low-energy regio
cf. Fig. 4.

FIG. 3. ~a! Theoretical material gain curves at electro
hole pair concentrations of 1.231018 cm23, 1.431018 cm23,
1.531018 cm23, 1.731018 cm23, and 1.831018 cm23 for
In0.727Ga0.273As0.58P0.42/InP at room temperature.~b! Experimental
modal gain curves of a 1.3mm, In0.727Ga0.273As0.58P0.42/InP hetero-
structure laser for currents values of 6, 8, 10, 12, and 14 mA
room temperature~Ref. 16!.
e
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VI. CONCLUSIONS

In conclusion we have developed a consistent yet ea
implemented procedure for describing many-body effects
highly excited semiconductors. Our model includes exci
scattering by both plasmons and electron-hole excitatio
Applying the plasmon pole approximation to the inverse
electric function generates a numerical description of se
conductor laser gain that is in good agreement with exp
ment. We believe that the theory is sufficiently efficient a
compact that it can easily be incorporated into standard p
grams for, e.g., semiconductor laser gain and linewidth.

APPENDIX: EVALUATION OF THE SPECTRAL DENSITY

The wave function of an electron-hole pair with total m
mentumP is given in the independent particle model by

Ck,P~re ,rh!5
1

VeiP•Reik•r, ~A1!

in which R5(mere1mhrh)/(me1mh) and r5re2rh repre-
sent the center of mass and relative coordinates of the e
tron and hole. The corresponding energy is given by

Ek~P!5
P

2M
1

k

2m
1Eg , ~A2!

whereM5me1mh andm215me
211mh

21 .
The matrix element of Eq.~39! then becomes

^k0ue2 iq•re2eiq•rhuk&5V~dk2k0 ,qmh /M !2dk02k,qme /M).
~A3!

Since the Kronecker delta functions are both equal to
only whenq50 the cross products of the electron and ho
scattering amplitudes in Eq.~39! that correspond to interfer
ence terms vanish. TheM , function can thus be seperate
into two terms which correspond to electron and hole con
butions, namely

M k0

, ~v!5M k0

e,,~v!1M k0

h,,~v!. ~A4!

Here we have defined

at

FIG. 4. The low-energy region of the gain curves of Fig. 3~a!.
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M k0

e,,~v!52(
m

gm
2

2p F(
q2

N~vq2

m !

Uq2

me
1

dvq2

m

dq2
U

1(
q1

@11N~vq1

m !#

Uq1

me
2

dvq1

m

dq1
U G . ~A5!

The coupling constant to themth boson branch is thus give
by
s.
gm
2 5H 2pe2\vp

2 1

e`vq
for plasmons

2pe2\v0S 1

e`
2

1

e0
D for LO phonons,

~A6!

where the summation is performed with respect to the p
tive rootsq6

2 of the equation

v6vq
m2

q2

2me
50. ~A7!

The hole contributionM k0

h,,(v) is finally obtained by replac-

ing the electron massme by the hole massmh in the above
expressions.
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