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Cumulant expansion approach to stimulated emission in semiconductor lasers
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We present a simple model of absorption and gain spectra in highly excited semiconductor systems that
incorporates interactions between electrons and holes. The scattering of the recombining electron-hole pair by
charge fluctuations in the plasma is treated to infinite perturbation order by summing the corresponding
cumulant series. We further show that the lowest cumulant in our expansion is simply related to the self-energy
operator in theGW approximation. Our results therefore predict correctly the energy gap renormalization and
the proper line shape of the emission spectra, including the exponential behavior of the spectral edge in the
low-energy limit. Numerical results obtained within the plasmon pole approximation match experimental data
in heterojunction lasers without adjustable parameters. Our procedure is sufficiently accurate and simple that it
can be used in practical models of linear and nonlinear gain.

I. INTRODUCTION the Lorentzian approximation. The characteristic asymmetric
shape of the spectral line was very often explained on the
In this paper, we investigate the response of many-bodyasis of the so-called “nd-selection rule” justified by an
systems to electromagnetic fields with an emphasis on phassumption of static disorder in the active matetfabuch a
ton absorption and emission in semiconductor lasers. In padisorder would be responsible for the fact that the interband
ticular, we describe the linear gain coefficient in the vicinity transition with finite momentum change would become al-
of the laser threshold as a function of photon energy andowed. However, in the absence of lattice imperfections one
excitation level. In this regime the fundamental optical tran-should rather consider the time-dependent fluctuating poten-
sitions between the valence and conduction bands are atial due to, e.g., lattice vibrations or scattering by free
companied by low-energy excitations of the electron-holecarriers’® Realistic models of dephasing due to the coupling
plasma and phonons in the active layer. The interaction ofo phonons employ very often the cumulant expansion, i.e.,
the electron-hole pairs with this plasma leads to a substantighe exponential resumation of the perturbation series. This
band-gap renormalization and spectral line asymmetry in thghethod was used to explain the characteristic exponential

emission and absorption spectra. . low-energy tail of the absorption and gain spectra in intrinsic
Various theoretical models of gain and absorption spectragmiconductor&®

in semiconductor lasers or highly excited semiconductors |, qur approach, an interband absorption process is di-

take into account many-body effects such as band-gap renfye into two distinct phases. First, an electron-hole pair is

malization, dephasing, excitonic enhancement or screenin(greated by absorption of a photon wilh~E,, the band-
on different levels of approximation. A very popular ap- e

proach consists in assuming that the basically two—particlgap energy. This e-h pair then interacts with the electric field

interband excitations accompanying photon creation or anm(-)f the fluctuating plasma charge, gaining or losing energies

hilation can be described using the one-particle properties Otpat correspond to intraband transitions. We assume that only

the valence and the conduction band. Thus the band-gé e interband particle-hole pair is created in the process and
ggditionally neglect virtual interband transitions. The inter-

renormalization is, for example, calculated as a difference of*“'~ N ]
the separate shifts of those bands in the presence of the eXCEtion of the electron-hole pair with the free-carrier plasma

cited particles. Similarly the excitonic states are built fromcan be modeled by representing the eigenmodes of the
the combination of renormalized states of electron hole pairflasma by a system of fictitious bosons corresponding to the
interacting with a renormalized(screeneyl Coulomb potential fluctuations. For the one-electron spectra this pro-
potential’* Such models allow for a number of simplifica- cedure is equivalent to th&W approximation if the full
tions such as applying the plasmon pole model for calculatboson dispersion relation and coupling potentials are re-
ing the energy-level renormalization or neglecting retardaplaced by effective quantities. We now extend this approach
tion in the screening of the electron hole-interactistatic  to the electron-hole pair which can be viewed as a composite
screening approximatiomproviding a reasonable scheme for particle coupled to the system of fluctuating potenttals.

gain calculation. A microscopic description of the dephasing Our paper is organized as follows. First we describe the
or spectral line-shape function usually required going beyondluctuating potential associated with plasma excitations
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within the random-phase approximatiofRPA). Subse- The continuous part of the spectrum\fis related to the
guently we derive the equation of motion for an exciton inelementary electron-hol@ntraband excitations in the non-
the presence of fluctuating potentials. The approximate gaimteracting gas which according to the Lindhard formula pro-
spectra is finally obtained by solving such an equationvides the following contribution to Iy§(q, »):

through an exponentigtumulan} resumation of the pertur-
bation series. 1 R

= 2 ImXG(a,0)= 2 fo(ec(k)[ 8 eclk+a) + €c(k))

Il. ELECTRON-HOLE PLASMA MODEL
: L . —0(—w—e(k+q)+ec(k))]
Under typical conditions in a semiconductor laser the
electron-hole plasma is at quasi-equilibrium parametrized

with conduction and valence band quasi-Fermi leygland + ; [1=fo(e(KNI[O(-w—e,(k+0)
M, respectively. The single-particle excitations of the system

are generally modeled by tH8W approximation in which +€,(k))— d(w—€,(k+0q)+ €,(k))].
the self-energy is calculated in the lowest order with respect ()

to the fully screened potentid@l.. This approximation yields
the correct intensity and energy position of the quasiparticlén the above expressiong(k) and €,(k), respectively, de-
resonances. note the energies of the conduction and valence bands, while
The mathematical structure of t&W self-energy expres- the corresponding Fermi-Dirac partition functions are
sion is very similar to the analogous lowest order contribu-f.(e.(k)) andf,(e,(k)). Since the electron and hole Fermi-
tion from the electron-phonon interaction, e.g., thedilich ~ Dirac functions in a degenerate gas are well approximated by
interaction with LO phonons, provided that the dispersivea step function of energy, the intraband electron-hole excita-
part of W is replaced by the phonon propagatdiThe ana- tions do not occur outside of a well-defined region in the
lytic properties of the screened interactidhin the random- (g, ) plane and thus do not contribute to }gﬁ(q,w). How-
phase approximation in fact permit the precise identificatiorever, in the region where |m§(q,w)~o discrete plasmons
of the elementaw plasma_ excitations as well as the exaghay still be emitted or absorbed if Rle—vq)(g(q.w))=0
form of the coupling potentials between these excitations angielding the following contribution to the spectral density of

an external particle. _ the screened interaction:
To illustrate the above concepts, consider the retarded

screened potential, X(F)& -1
— —ImWR(q,0)=| —— [(w—wf)
w=wp|
WR(q,w)=[1—vq)(§(q,w)]7lvq. (1) q
—S(w+wf)]. (5)

Here X(Ff(q,w) represents the susceptibility of the system,
while v, is the unscreened Coulomb potential in the wave-n which P is the energy of a plasmon with momentum
vector representation. Defining an analogous expression fakccordingly within this framework, the spectral density
the advanced potential function for WR can be expressed as

1
WA(d, @) =v4[1- x5(q, @)vg] (2) - S ImWR(g,0)= 2 g VeV )* 80— wf)

we can easily show that the spectral density function of

WR(q,w) is given by — 8w+ og)]. (6)

The indexm runs both over all possible electron-hole exci-

1 1 tations[m=(»,k), wherev=c or v=v] with energlieSw,@In
—;ImWR(q,w):WA(q,w)( ——lIm X(Ff(q,w)) =¢€,(k+0q)—e€,(k) and plasmon excitationsn=pl with
o= wg'. From the equations above, the coupling potentials
XWR(q,w). (3) for these excitations are

( WR(q,wg") Vv1—1f,(e,(k)) for electron-hole pairs in the val. band,

WR(q,wqm) VEc(ec(Kk)) for electron-hole pairs in the cond. band,

V=4 7)
q _

(9)(82 1/2

Jw

for plasmons.

— P!
o)wq

\
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I1l. SINGLE-PARTICLE SPECTRUM
, , (PIP")= 2. PX Py, (12
Many properties of the one-particle spectrum of the Kk, 12 "1%2
electron-hole gas such as the change in the energy levels
with carrier density can be immediately derived from thewe obtain the following compact expression for the linear
self-energy function in th&W approximation. This function  gain at a light frequency:
can be generally represented as

2

3(q,0)=3"(q)+M(q,). (8) a(w)=

(1—ePl=my(P |iG=(w)|P,). (13

HereX"F(q) is the time-independent Hartree-Fock contribu-

tion. The dispersive palil(g,w), which is nonlocal in time, ~Here u,= u.— u, corresponds to the chemical potential for
can be obtained by the Kramers-kig transformation from interband electron-hole pair excitationd,~(w) represents
the spectral density functiort (1/m)M(q,w). The formulas  the Fourier transform o6 =(t), 8=1/kgT, n, andV are the
of the previous section yield for the conduction band RPAthe refractive index and volume of the system, anid the

spectral density vacuum speed of light. Atomic units are used throughout the
paper.
1 1 In order to calculateG=(t) we introduce a correlation
— ;Im M(q,w)=— p Im3(q,w) function on the imaginary time patt= —i 7 where 0< 7(3:
t . .
=% % VRV *{[ 1~ fo(ec(k+0)) gkikéklk2(7)2<acki(_|T)avké(_lT)alkz(o)ackl(O»’
(14)

+N(wg)]8(w— wg - e(k+0))

+[felec(k+a)+N(wg)] so that'lekzkik;(t) is obtained by the analytic continuation

of gkikéklkz(_”) to the real time axis at the end of our
calculations:?

. ) i . . Applying next the coherent-state representation for
where N(wg) is the Bose-Einstein partition function. An posonic excitations which here include intraband electron-
analogous equation applies to the valence band. Note thgh)e pair excitations, plasmons, and phonons, we may cast
Eq. (9) is virtually identical to the self-energy contribution i, expression fog(7) into a functional integral with respect
from electron-phonon interactions with the coupling poten-iy the fluctuation amplitudegcoherent coordinatazsbq(r)

tials Vg if we replace the phonon frequency by the plasmong,g b (7) of the bosonic fields for the wave-vector com-
frequency or electron-hole pair energy,. ponents of the potential. The resulting expression reads

X 8w+ wg— e(k+))}, 9

IV. SPONTANEOUS AND STIMULATED EMISSION

1
gT:—J'Db*T’b '
The linear gain in a semiconductor laser can be immedi- (m) YA (05 (7")bg( )]

ately derived from the Fourier transform of the time- b (Aby(r): 7] . o
dependent electron-hole pair correlation function describing X e o2 R g([bg (7)bg(71) 5 7).
the spontaneous recombination: (15)

<

iG, k,k,(t)=(aik,(0)avké(O)a;rkz(t)ackl(t)). (10)  The correlation functiong(7) which depends on the the
rente ! given time-dependent fluctuations of the classical amplitudes

* .
The expectation value in ELO) is taken with respect to the b(7) andby (7) can be expressed as the fOHO\.ng thgrmal
SR i . average solely with respect to electron variables in the
quasiequilibrium state of the excited semiconductor. The cre; A
. . X Hartree-Fock approximation:
ation operator for a conduction-band electron with momen-
tum k at timet and the corresponding annihilation operator
fora va!ence—band electron are denotedpy(t) anda,(t), gkikéklkz(T) = <alk,( —i T)avké( —i T)a;sz(o)ackl(o»el_H_F i
respectively. 1 (16)
The coupling of electron-hole pairs to the electromagnetic

field with polarizationo is proportional to the matrix ele- ) ) . i )
ment of thes component of the momentum operator be- T he effective actior§,{ by by] for boson fields is assumed

tween the valence and conduction band states: to be bilinear with respect tb, andbg (Gaussian approxi-
mation and the standard periodicity conditionis,(s3)
. B R =bg(0) andb (B8)=bj (0) are applied: According to Eq.
P’r'k1k2_<c’kl|p"|v’k2>5k1'k2' 1y (6) the effective interaction between electron-hole pairs and
bosons of the typen can then be described by the Hamil-
Applying the standard definition of the scalar product: tonian
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2me’hog( 1 1\]¥21

H — T + T LO_ _; 0 _ -
el-bos ; % (Ack+ g@ck By + gBuk) Vg — e o/l T (18
X[Vg‘bg"Jr(VTq)*(qu)*]. 17) in which 2 wq denotes the LO phonon energy aadand eq

are high-frequency and static dielectric constants, respec-
The coupling constant‘ﬁ![]n for interaction with plasma fluc- tively. Representing the Coulomb interaction between the
tuations are defined in E¢7) while the polar coupling to the electron and hole byJ,, the Hartree-Fock approximation
longitudinal-optical(LO) phonons is given by the Feblich  for the electron-hole pair moving in a fluctuating field gen-
expression: erates the equation of motion

4 : :
779K kgkyk,(7) = [ec(k) = €,(K2) 1Gkkpk i, (7) + qu Ugl(al(—i T (~17))elGk; +qk+qkek,(T)

—<alki<—ir)ack<—iT>>e|gk+qké+qklk2(r>]+§ % [Vabg +(VT)* (b™)*]

XLGk +akpkoko( T~ Gt g kykp (T ]- (19

In the presence of fluctuating potentials associated with inr:|0 denotes an effective electron-hole Hamiltonian

traband plasma excitations or phonons, the effective

electron-hole interaction is modified through the one- L

particle density matrices(a:fk(—iT)avké(—ir))a and Ho=T+FU, (23

<alk,(—ir)ack(—i7-))e| and the direct coupling to the fluc- L o _ _
1 in which T is the kinetic energy matrix, and the statically

tuating potentials given by the last term in E9). Thus in . A o
the context of the RPA, averaging with respect to fluctuatin crgened Coulomb interactias is muIt.|pI|ed by the occu-
ation factor represented by the matrix

potentials reproduces the vertex corrections and dynamic
screening. A commonly used approximation is thus to re-
place U, by the statically screened potential. The density .
matrix elements are similarly approximated by the corre-  Fijkjkk, 7) = iyl k[ Fu(eu(ka)) = Felec(ka))],
sponding averages with respect to the fluctuating potentials (24)
and, therefore, adopt the form

+ ] ] and the time-dependent coupling to the boson fields given by
(@ —Im)a,(=T7)e= digfu(eu(K)) @9 the last term in Eq(19) is denoted by/(7).

The formal solution to Eq(22) can be written as

and
t . . Y T NP oo
<acki(_|7')ack(_|7')>elz it fe(ec(Kk)). (21 g(T)ZeHOTTeX[{ f e Homy(7)eMom d 7’ |g(0). (25
0
The quasiparticle energies, (k) and e.(k) now represent
renormalized quantities within the RPA. In the above expression, the time-ordering operédtas ap-
The equation of motion, E¢19) can be written as plied along the integration interval. Averaging with respect

to the potential fluctuations and performing a cumulant ex-
pansion to the second order with respect to the coupling

P A
--9(7)=[Ho+V(7)]g(7). (22) V(7) then yields

aT

a( r>=eﬁ°fex‘{ J dr, f " drye 10V 71) P01 DV (1)) o072 | G(0), (26)
0 0
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after factoring the average of the initial valgg0) of G 2 - )
whereG(7) =(g(7))pes- Equation(26) can now be expanded ~ a(w)= V(l—eﬁ(“’ 1) 2 [(Pon)2BL(w—Ey).
in terms of the right and left eigenvectors of the Hamiltonian ' " (35)

H, defined by
In Eq. (35) the first term of the summation is the square of
I:|0|n>= E,/n) and <F1|I:|0=<F1|En. (270  the optical transition-matrix element associated with the re-
combination channet for the eigenstatén) of the excitonic

Retaining only diagonal elements in the representation of HamiltonianH,, while the line-shape functios,,(w) is de-
the exponential in Eq.26) and passing to the real time cor- fined by

relation function yields

+ .
_ En(w)zRef eSMelotdt, (36)
Gy (D)=2, e EnleS —— > (kikj|n) 0
k1k2k1k2 n n k//k// L.
Further, the statistical factor
X<n|k k2>| Gk k k//k//(o). (28) Bn:<’ﬁ|(eﬁﬁeﬁ_ 1)_1ﬂﬁ> (37)

The time-dependent correlation function is, therefore, equatorresponds to the distribution function of electron-hole pairs
to a sum of terms that oscillate at a frequency given by theprior to recombination. If correlation effects in the electron
electron-hole pair eigenfrequencids,/# with additional  hole pair are neglected®,, accordingly reduces to the prod-
time-dependent phase factors that both renormalize the et of the Fermi-Dirac occupation factors for electrons in the
energies and are responsible for the dephasing of those osenduction band and for holes in the valence baBg:

cillations. Since =folec(ke))1—1, (e, (k)]
. We now specialize to a two-band model and further ap-
([bg(7) +Db ((7)][b—g/(0) + by (0) Dpos proximate the excitonic states by a produa=|\)|P)

_ oy o where|\) describes the internal state of the exciton #Rd
= Jqq {[N(wq) +1]e"“a™+N(wq)e*e7}, (29 is a plane-wave function of the center-of-mass momerfum

the time-dependent phase function is in our model given byRepresenting the internal energy and the total mass of the
exciton bye, andM, respectively, the energy of this state is

(t)—fm M0+ B @1 4 ag) p2
S(0= ) Mnlo+Ey ? @ E\(P)= e+ = (39)
2M
where After some algebra, the following expression for the function
1 M= for an exciton in the staté\,)|P=0) can be derived,
M= (o) )=> > (ﬁ|Vg“|n’>(ﬁ’|(VTq)*|n> wherer, andr, are the electron and the hole positions
m o a (n'|n’)
XAIN(0M) +1]18( 0+ o'~ Ey) Mfo(w)=§ % % VRV *[(1+N(wf))
+N(wg1)5(w—wg]—Enr)}. (31

X 8(w+ wg —E\(Q))

The contributions from the differing sources of the fluctuat-
ing potentials are labeled by
Finally, we turn our attention to the initial valug(0) of

1 . )
iGlflkzk,k,(O). From the cyclic property of the trace appear- Xm()\de"q're—e'q"hp\)
172
ing in our expressions for thermodynamic averages of qua-
siequilibrium quantities we obtain X (X|e'9Te—e 1d:Th|\ (). (39)

+N(0M 80— ol —Ey(q))]

((Te/Ho+ V(147 1)g(0)) o= F. (32) Note that the matrix elemenfX|e/dTe—e ™ 9h|)\,) is
) proportional to the probability amplitude of a scattering pro-
The matrix elements of are cess in which the internal state of the exciton is transformed
B . N from |\o) to |\), while its total momentum changes loy
fkikéklkz_ 5k1ki<auk2avké>_ 5k2ké<ackia0k1>' (33 The first term in this expression corresponds to the electron
and the second to the hole scattering amplitude. Since these
Factorizing the average on the left-hand side of the(BB.  two contributions are 180° out of phase, the negative quan-
and deflnlng an effective electron-hole Hamiltonian such thaium interference between the two processes, which vanishes

eBHeff <Tefo(Ho+V(T))dT> Lyields in the absence of correlation between the electron and hole,
) partially cancels the contribution from the interaction with
G(0)=(ePHei—1)~1F, (34)  long-wavelength potential fluctuations. This, in turn, re-

moves the singularity generated by the coupling potentials
The linear gain can therefore be calculated as Vg1 in M <. Indeed, for correlatefe.g., bounglelectron-hole
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pairs the exciton has zero net charge and therefore couples 200 T
only weakly to fluctuating electric fields.

V. RESULTS AND DISCUSSION

To illustrate our theoretical approach we now consider
spontaneous recombination and emission in a wng
INg. 707G & 27ASy 5042/ INP based heterostructure laser at
room temperatur&1® For simplicity we neglect the Cou-
lomb interaction between the valence and conduction band %00 —100 5 100 200 300
electrons in the Hamiltoniakly. Since the motion of elec- ENERGY (meV)
trons in the conduction and valence band is then uncorre-
lated, the expression fovl = can be divided into the sum of FIG. 1. M=(E) function at electron-hole concentration 1.8
two seperate terms pertaining to each band separately. Thel0' cm 2.
time-dependent spectral density function of an e-h pif!
is given by the product of one-particle spectral densitiegjuence, the resulting shape function shown as the solid line
since the line-shape function is then the convolution of twoin Fig. 2 is asymmetric and posesses pronounced sidebands.
single-particle spectral densitid$n our calculations we in- Fitting this curve to a Lorentzian function with the same half
clude the scattering of electron-hole pairs by LO phononswidth and height, displayed as the dotted curve in the figure,
and plasma fluctuations. To obtain an analytic expression foshows that the half width at half maximum of the main spec-
M= we describe the latter through the plasmon pole approxitral line approximately equalE=M<(0).
mation in which all plasma excitations are represented by Due to the plasmon frequency dependence fBq. (40)]
well-defined plasmons with frequency an electron hole pair with total momentum equal to zero

- cannot decay through plasmon absorption or emission. LO
m

M® (meV)
E

!
|
|
|
|
|
[
|
|
|
|
|

2
q
1+ —
K2

phonons, therefore, play a dominant role in broadening the
2m, emission and gain spectra. The resulting linewidth is solely
determined by dispersionless LO phonon scattering, while
Herem, is the conduction band effective mass ands the  the plasmon coupling simply yields the sidebands that appear
screening parameter given in terms of the concentration afn the low-energy side of the main peak in Fig. 2. The plas-

2

q +

(40)

w

_ 2
=wp

electrons and holes, andn, by mon satellites are thus responsible for experimentally ob-
) served gain profile in the tail regidf.
2:4779 (&ne+¢9”h) (41) In Fig. 3@ we display the material gain curves for
€0 \due Iy, 1.3 um, Ing 70/5a 27ASe 58042/ INP at several subthreshold

concentrations at room temperature. The experimental modal

The plasma frequency, is then obtained from gain spectra according to Ref. 16 are given in Fit) 3or

— . = 2 injection current values corresponding approximately to ex-
w2=n, AULRAULE + 1 Aﬂl cess carrier densities used for theoretical calculations of Fig.
P mp+ \/m?’L Me) € 3(a). The evolution of the crossover and gain maximum with

carrier concentration is quite well reproduced. Note that our

The coupling constant for this case is model incorporates not only the screened exchange contribu-

2 re?w?| 121 tion to the energy level shift but also the “Coulomb hole”
V;’L: (—p — (42) correction associated with low-energy intraband electron-
€xWq aq hole plasma excitations within the RPA. Since the latter con-

where we have neglected the exciton scattering by lowdribution properly shifts the maximum of the line-shape func-
energy intraband electron-hole excitations. Moreover, it idion with wavelength, our model correctly describes band-
well known that plasmon excitations in the presence of free
holes in 1lI-V semiconductors are strongly damped due to — T T 1 T
intervalence band transitioh.As the associated plasmon
spectral density is, therefore, broadened, the plasma contri-
bution to theM = function is similarly damped. Finally, in
order to further simplify the calculations we neglect the de-
pendence of botiv = and the line-shape function on initial
state of the recombining electron-hole phip. Instead, we
apply the line-shape function associated with the lowest en-
ergy transition to the entire spectrum. The details of this
calculations are given in the Appendix. s _100""_;30 B ST a— 0
In Fig. 1 the solid line represents the calculated energy ENERGY (meV)
dependence of the spectral density- for an electron-hole
pair concentration oh=1.8x10' cm™2. Observe the two FIG. 2. Line-shape function for the lowest energy electron-hole
pairs of singularities at energies corresponding topair excitation (solid line) and the Lorentzian function with
Twy=*35.8 meV and *w,=+58 meV. As a conse- HWHM=M=(0) (dashed ling

L (arb. units)

-

\
I
I
I
I
I
I
I
I
i
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300 1
i 10° + -
! 'TA L ’ .
5 0 . 5 /f’/
G %
=z —e 1.2x10%cm™ Z /7" 16
& b e 1.4%10'%em™ - <10 VS fe—e 1.2x10%em™ -
---- 1.5x10"°cm™ 0] % / ~~~~~ 1.4x10"°cm™
L ——- 1.7x10"%cm™ | ---- 1.5x10"°cm™
— 1.8x10"°cm ——- 1.7x10"°cm™ .
-300 | . — 1.8x10"°cm™
890 940 990 107 1 1 L
ENERGY (meV) 600 700 800 900
ENERGY (meV)
60 ] FIG. 4. The low-energy region of the gain curves of Figa)3

VI. CONCLUSIONS

In conclusion we have developed a consistent yet easily
implemented procedure for describing many-body effects in
highly excited semiconductors. Our model includes exciton
scattering by both plasmons and electron-hole excitations.

MODAL GAIN (cm™)
o

---=-10mA Applying the plasmon pole approximation to the inverse di-
- 12”‘2 electric function generates a numerical description of semi-
m conductor laser gain that is in good agreement with experi-
-60 | ment. We believe that the theory is sufficiently efficient and
890 * 9:10 = 990 compact that it can e_asily be incorporat_ed into _stant_jard pro-
ENERGY (meV) grams for, e.g., semiconductor laser gain and linewidth.

FIG. 3. (a) Theoretical material gain curves at electron- APPENDIX: EVALUATION OF THE SPECTRAL DENSITY
hole pair concentrations of 1x20® cm™3 1.4x10'® cm™3,
1.5x10% cm™3 1.7x10"® cm™3 and 1.8&10® cm™3 for The wave function of an electron-hole pair with total mo-

INg 70/G &y 27AS0 56P0.42/ INP at room temperaturéb) Experimental  mentumP is given in the independent particle model by

modal gain curves of a 1.8m, Ing 75,/Gay 2747ASy 580 42/ INP hetero-
structure laser for currents values of 6, 8, 10, 12, and 14 mA, at 1 P RAik.r
room temperaturéRef. 16. Wy p(re,rn)= pe e (A1)

gap narrowing and hence the correct variation of thdn Which R=(mere+myry)/(me+my) andr=re—ry repre-
maximum gain with carrier concentration. sent the center of mass and rglatlve coordmaﬁes of the elec-
That the gain curve decreases more slowly on the lowiron and hole. The corresponding energy is given by
energy side than on the high-energy side of its maximum is a K
consequence of multiphonon and multiplasmon scattering EW(P)==—+-—+E
processes. However, neglecting interference effect resulting
from quasiboson emissiop anq re'absorption and employin%here,\/I = Mgt my, and,uflzme’lergl.
the plasmon pole app_roxmatlon_ in our mode_l of_uncorre- The matrix element of Eq39) then becomes
lated electron-hole pairs results in an overestimation of the
relative s_trength of such proces¥em the low-energy part <ko|e_'q're—e'q'rh|k>:V(5k—ko,th/M)—5k0—k,qm ).
of the gain spectra. e (A3)
Our theoretical gain spectra possess the characteristic
shape described by the phenomenologicabnconservation Since the Kronecker delta functions are both equal to one
rule with a maximum shifted slightly towards the crossoveronly wheng=0 the cross products of the electron and hole
point in the gain spectrum. In the low-energy region, thescattering amplitudes in E439) that correspond to interfer-
measured gain decays exponentidlljhis behavior has pre- ence terms vanish. Thel < function can thus be seperated
viously often been modeled by assuming a line-shape fundnto two terms which correspond to electron and hole contri-
tion of the form cosh”(o(w— w®)) where the values ofr butions, namely
and w° are determined empirically. Our technique clearly
reproduces this exponential behavior as is evident from the leo(w)z ME:(“’H ME(’)<(w). (A4)
logarithmic plot of the gain curves in the low-energy region,
cf. Fig. 4. Here we have defined

(A2)
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q7 dwgl-

me ' dq

[1+N(wf )]
+ e —
q+

dwg'+ (A5)

dqg.

a+
Me

The coupling constant to thath boson branch is thus given
by
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2me’hw; for plasmons
2 €xWq
Ym= 1 1 (AB)
Zwezhw(,(— - —) for LO phonons,
€, 60

where the summation is performed with respect to the posi-
tive rootsq? of the equation

4 2me -
The hole contributioM E:(w) is finally obtained by replac-

ing the electron mass, by the hole massn, in the above
expressions.

m

0. (A7)
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