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We investigate the scaling properties of eigenstates of a one-dimensional Anderson model in the presence of
a constant electric field. The states show a transition from exponential to factorial localization. For infinite
systems this transition can be described by a simple scaling law based on a single paxaméiei, the
ratio between the Anderson localization lendgthand the Stark localization length,. For finite samples,
however, the system sizd enters the problem as a third parameter. In that case the global structure of
eigenstates is uniquely determined by two scaling parameterd .. /N and\..=1./l.

I. INTRODUCTION answer is whether the equivalence between quasi-1D and 1D

. . . .. disordered modet&*®known up to now can be extended in
In recent years several studies have investigated the InﬂLb

¢ i lectric field he localizati f'rder to include systems with a constant electric field. For
ence of constant uniform electric fields on the localization oly;q 1 rhose we analyze the scaling properties of information
electrons in one-dimensionélD) systems with on-site ran-

) o lengths for infinite and finite samples, which were used suc-
domness. In the absence of dc fields, it is by now well knowrpesstylly in the studies of one- and quasi-one-dimensional

that even small amounts of disorder lead to an exponentialystem15 Contrary to the standard Anderson case, where

localization of all eigenstatész. On the other hand, in the the ratio of the Anderson localization |engta and the

case of a single-orbital tight-binding model of an electron insample size\, i.e., \y=1../N, is the only relevant scaling

a periodic potential, application of a static electric field is parameter, in the present case we find an additional scaling

known to generate a discrete, uniformly spaced eigenvaluparameterh..=1../l. Here | is the Stark localization

spectrunt, known as a Stark ladder, with all eigenfunction length, which arises from the applied constant electric field.

localized factorially? For weak fields, the wave functions Hence, the structure of eigenvectors in our model is charac-

may be extended over several lattice periods, but with interized by two scaling parametexg,, andX., .

creasing field strength the electron tends to be localized on a The structure of the paper is as follows. In Sec. Il we

specific site. This is known as Stark localization and haslescribe the mathematical model, and briefly summarize the

been observed experimentally in superlatticeich are known facts about the two limiting cases that appear for our

commonly used for such measureméhts. model. In Sec. lll we discuss different definitions of local-
In infinite samples the localization of eigenstates can bdzation length, which are used in our numerical simulations.

characterized in terms of the localization length; the latter idn Sec. IV we present numerical data on scaling of localiza-

commonly defined from the amplitude decay of eigenstate§°” Ie_ngths of eigenstates in |nf|n_|te and finite systems. Fi-

in the limit |n|—c, wheren labels the site in the tight- r_lally, m_Sec. V we study the scgllng of the Whol_e dISFI’IbU-

binding picture. The most powerful and informative methogtion of eigenvectors. Our conclusions are summarized in Sec.

available for such studies is the transfer-matrix method. In

the presence of a strong electric field, however, it appears to

be less efficient due to the factorial nature of the Stark local- Il. MODEL

ization. Moreover, for finite s_ystems the structure of eigen- starting point is the 1D Schdimger equation in the

vectors cannot be characterized in the same way. One thg@ynt-pinding approximation,

needs to use other quantitiésuch as the inverse participa-

tion ratio), that are valid both for finite and infinite samples. dyp(t)
Through the use of scaling conjectures, one can link then the  I—57— = (entNEF)Yn(O) +Vihn11 (1) +Vihn_4 (1),
properties of eigenstates in infinite samples to those of finite 1)

samples. Since the scaling approach proved to be extremely

useful in describing conductance and its fluctuatiosse, Where ¢r,(t) denotes the probability amplitude for an elec-

e.g., Refs. 7 and)dn the theory of disordered solids, it also tron to be at site.. Moreover,e, is the local site energy/ is

seems natural to use this approach in order to describe locdPe hopping elementg is the electron charge, ané the

ization properties of eigenfunctions of 1D disordered sys-strength of the applied dc field. By applying the transforma-

tems in the presence of a constant electric field. tion yn(t) =exp(-iE1) ¢,, one obtains the stationary equa-
In this paper we study the 1D Anderson model in thetion

presence of a constant electric field in view of scaling prop-

erties of its eigenstates. The main question that we want to Een=Veni1t(entneFeq,+Ve, g 2
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10° rrme————— . for the vectoré,= (X, ,Xn_1), With the matrixM,, known as
|y |2 () (b) the transfer matrix. The localization lengkh is hence the

el T 1 inverse Lyapunov exponent; the latter is evaluated as the
exponential rate of increase of an initial vectgr

10‘10- N

In( [T [Mag, )
ey lim 5
10 o =Y T e Ta—
L N—oo N |§l|

1071 Although the Lyapunov exponent for finite N depends on
the particular realization of disorder, fof— o it converges

SR W W A . to its mean valué! For the calculations below we have used

0 200 400 0 200 400 samples of length 510° for relatively large values oV,

n to 4< 10° for small val W
FIG. 1. Two representative eigenfunctions of the 1D tight-a dupto 0° for small values o

binding modelEq. (1)]. (a) Stark regime with factorial localization

(W=0, eF=0.5, I,~2). (b) Anderson regime with exponential Ill. SCALING APPROACH FOR THE EIGENSTATES
localizati =5,eF=0, andl,~3.4). The dashed line h . . . .
S‘ngézgylon W=5.e an ). The dashed line has a Our interest is dedicated to the structure of eigenstates for

infinite as well as finite samples, as we tune the disorder and

for the e | h di . the electric-field strength. Unlike the simpler case of infinite
or the eigenvaluesE and the corresponding eigenstatesg,hieq however, the meaning of a localization length for

¢n(E). We can distinguish two limiting cases which are rel- gnite samples is not clear. Below we follow the approach

evant for our S_t“qy(lg)_g) perfect systenii.e. e;=¢) with @ yeyeloped in the theory of quasi-1D disordered solids which
nonzero electric fie F#0, and(b) a zero field(i.e., F ig pased on the evaluation of multifractal localization lengths

=0) with a random on-site potential. (see, e.g., Ref. 13The great advantage of this approach is
In the case of a perfect system wiii¥0, one can prove  he applicability in both finite and infinite samples.

that the corresponding eigenstatgs), known as Wannier- One of the commonly used quantities in this approach is
Stark states, show a generic factorial decay,’i:8., the so-called entropic localization length, defined through the
information entropyHy of eigenstates,
en(E)=Jn_n(2leF)—(LeP)M/(|n]1), n—=xx, (3) y
— _1,.2
where J, is a Bessel function of orden. Wannier-Stark HN__ngl Wq Wy, Wo=[enl, ©)
states constitute a complete set of energy eigenstaieseir
eigenvaluesg,,=meF form the so-called Wannier-Stark where ¢, is the nth component of an eigenstate in a given
ladder® A particular Wannier-Stark state, is factorially  basis. For eigenstates normalized3sv,=1, the simplest
localized around thath site, with a localization length of the case ofe,=N~2 results in an entropy equal to the maxi-
order oflg=1/eF, i.e., the electric field appears in the de- mum value:Hy=In(N). We therefore define the localization
nominator of the localization length in E¢3). This under- lengthL as the number of basis states occupied by the eigen-
scores the fact the cannot be treated as a small perturba-state ¢, ; the latter is equal to exp(y). We note that, in
tion to the field-free Hamiltonian. An example of such a stategeneral, the amplitudes, fluctuate strongly wittn, and thus

is presented in Fig.(&). the coefficient of proportionality betwednand|., depends
The other limit of interest corresponds to a zero electricon the type of fluctuations.
field, with €, random ands-correlated, chosen from a distri- In order to study the properties of eigenstates in quasi-1D

bution P, with mean zero and varianae?. Below, in our  solids, localized on some scale in the finite basis, it was
numerical investigation, we will always assume tifatis a  suggested in Ref. 22 to normalize the localization lengt
uniform distribution in[ —W/2 W/2]. Such a model is known such a way that in the extreme case of fully extended states
in the literature as the Anderson modeind has been stud- the quantityl is equal to the size of the badi In such an
ied in great detail in the context of disordered materials. ltapproach, the entropic localization lendth is defined as
was shown with mathematical rigor that in the limit of infi-
nite samples this model displays exponentially localized Li=Nexp((Hn) — Her) - (7)
eigenfunctions, no matter how small the disorddisise Fig.
1(b)]. The rate of decay is measured by the Lyapunov expot Eg. (7), the ensemble average- - ) is performed over the
nent y which may be evaluated by the transfer-matrix number of eigenstates with the same structure, and over re-
method. To this end, one has to study the asymptotic behawlizations of the disorder potential. The normalization factor
ior of the random matrix produdiM,, whereM , is defined ~ Hef has the meaning of an average entropy of the completely
through the relation extended random eigenstates in a finite basis. For the
quasi-1D case the distribution of componeatsis assumed
’ 1 E to correspond to the Gaussian orthogonal ense(@®E).22
_ _(“ _ET¢6n Analogously, a whole set of localization lengthgcan be
Enr1=Mnén, Mn_( 1 0 )a Un= 4 defined a& 'h§
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(Pg) U(1-a) N For this reason, and in the spirit of Refs. 10 and 12 we
Ly=N ( (g)) , Pg=2 (w)% g=2, (8 define the normalization factof, and P& from the solu-
ref n=1 tion of Eq. (2) for zero disorder and electric field, i.es,
wherePd) is the average value @, for the reference en- =0 andF=0,
semble of completely extended states. One should note that Ko 5 nkar
for the particular casg=2 the quantityP, is known as the EX=2Vcos——, ¢X=1 i - sin——, (11)
participation ratic®® N+1 " N+1/7" 'N+1

In the context of quasi-1D disordered models in the Presyith k.n=1 N. The entropyH, and the participation
, oL re

H ] 514 :
ence of a constant electric field>**it was shown that all ratio ng) of the above eigenstates in the langdimit have

global properties of eigenfunctions are described by the lo; . .
S the same values for every eigenvalEg i.e.,
calization parameters

«_Lq n_ Lg Hee=IN(2N) — 1 P(2)=i. (12)
Ba=7 Ba=y° 9 re T 2N
el
where the superscripts and N denote infinite and finite IV. SCALING PROPERTIES OF LOCALIZATION
samples, respectively. Moreover it was found tﬁét’\' obey LENGTHS
some scaling law, i.e., they depend only on the ratio of the o
characteristic lengths of the system. In the case of infinite A. Infinite samples
samples only two length scales, i.k.,andl¢, are relevant. In this section we analyze the scaling properties of eigen-

For finite samples, however, a third length which is the  states of infinite systems. In numerical studies the matrices
actual size of the sample, comes into play and has to be takejte obviously of finite siz&\. However, in our analysis be-
into account in the scaling theory. According to the scalingiow we will always consider the case thit>1.,, I, and
conjecture in the modern theory of disordered solids, it washys the finite(but large size of the matrix becomes irrel-
found that for quasi-1D systems in the presence of an electrigyant. We therefore have used these data to investigate our

field >1>1 g;N follow the scaling laws scaling assumption fos;; [see Eq(9)].
o o N N As mentioned in Sec. Il, the introduction of a nonzero
Ba=Bq(\) Bg=Bq(Xx.Mn), electric fieldF#0 results in an additional length scdlg.
where This length arises when we consider a cross section of the
energy band locally tilted by the electric fiele: V/2+Fn
e e <E<V/2+Fn for an energy leveE. Therefore the scaling
)\“_|_e|’ )‘N_N' (10 parameten .. =1/l enters the problem. Furthermore, if we

consider the localization lengths® of Egs.(7) and (8) as

Our main question is whether relations of the type of Eq.the typical length, which contains most of an eigenvector
(10) are also applicable for our 1D Anderson tight-binding normalization, we expect that
model with electric field. In Refs. 13 and 24 it was shown
analytically that the eigenstates in 1D and quasi-1D disor- e A<l
dered systemsyithout electric field, possess the same gross '-q:|eI A1, (13
structure(envelope on scales comparable with the localiza-
tion length, while their statistical properties are quite differ-1-€., the exponentially localized states progressively become
ent on a much finer scale of the order of the lattice Spacindpcalized faCtoria”y as the field increases. This is due to the
That is the reason Why many Scaﬁng laws, which are domifaCt that, for a weak electric fIE|d, we ha\b(e,g«l, and thus
nated by the fluctuations of the envelope, hold both for 1Dthe dominant localization mechanism, i.e., the one that pro-
and quasi-1D systems. The validity of such a statement iguces the shortest localization length scale, is the one related
however questionable in the presence of electric fields. Wéo the randomness. From now on we will refer to this as the
will show that such a similarity between quasi-1D and 1D “Anderson regime.” In the opposite limik..>1, the domi-
disordered systems also persists in this case. nant localization mechanism is due to the electric field. We

The first nontrivial question in this context arises aboutWill refer to this regime as the “Stark regime.” Based on the
the reference ensemble for the computation of the averagerevious considerations we expect that thés have the fol-
entropy H,es- Indeed, in app"cation to 1D Anderson-type Iowing scaling form(also see Ref. 9 for an equivalent rea-
modelsi®~*?the reference ensemble cannot be chosen as &ning for quasi-1D systems
ensemble of full random matrices, like the GOE. This point
is related to the fact that in the 1D tight-binding case fully 1 A<l
extended states are not Gaussian random functions but just Lo=lof(Ae) with f(A,)={ 1 (14)
plane waves which arise for zero disorder. In the presence of . A>1,
an electric field, the situation is even more complicated due
to strong dependence of the eigenstates on the electric fieldhere f(\..) is related to the scaling functioﬁ;c as ﬁ;"
However, and this is our expectation, in spite of the above=\_f(\..).
mentioned differences, scaling properties of the eigenstates Our aim in this paragraph is to support the above-
of the 1D modelEg. (1)] are of the generic type discovered mentioned scaling law based on numerical data, and to ex-
for quasi-1D systems. tend our knowledge on the structure of the eigenstates in the
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10! e & these properties are directly related to the structure of eigen-
e o - states, it is important to investigate the statistical properties
B L o . . i
1 Pt 2 %,35 of eigenstates for finite systems. This is the goal of the
2 @ ;ZA/Q 0 present subsection.
10°F 423 E + 5 For finite N and zero electric field, it was shown in Refs.
o o 10-12 that the statistical properties of 1D Anderson models
4 are characterized by a single scaling param o !N.
X h t db I I eterl.. /N
b %é Moreover, the scaling relation for the eigenvectors was
107 f F 1 found to be very simple:
¢
f 4
7/ +7
b ’ CgM
£ J N_ N _ __“a™*N
o2k A 11 A/oD i Bq IBq()\N) 1+Cq)\N, (16)

10 10" 10° 1017L
o where the constants, were found to bec;~2.6 andc,

~1.5. In fact, this scaling relation is exact only fpe=2. For
other cases of small valueg includingg=1, however, it is
very close to the correct origsee details in Ref. 13

Once the electric field is turned on, however, a new length
scalel . (with respect to the standard Anderson mogels-
pears. This can already be seen from the previous paragraph,
where on the basis of numerical results we were able to
intermediate regime between the two discussed limits. In oreonclude that for infinite 1D Anderson models in the pres-
der to study scaling properties of the localized eigenstategnce of an electric field the scaling properties of the eigen-
we have used the transfer-matrix method for the calculatiowectors are characterized by the parametgr Since the
of 1, as well as the direct diagonalization of the Hamilto- sample size now enters as a third length scale, the second
nians that are associated with Ed), for finite but long scaling parametexy is likely to show up. Thus we expect
chains of sizeN=10% In all numerical calculations below that the statistical properties of the eigenstates, and accord-
we usedV=1. We then varied the disorder strengthas ingly the g,’s, are going to be determined by the two pa-
well as the dc field strength in a regime, where alwaysametersk.., and\ which arise due to the competition be-
| ,le<<N. One should stress here that both localizationtween the characteristic lengths, and I, of the
lengthsl.. and L, are functions of the energk. For this  corresponding infinite sample and the actual di¢zef the
reason, in our numerical experiments, we consider ensembl&ample. In the rest of this section we are going to present
of states specified by the values of the eneligin a small  numerical evidence that for finite 1D Anderson models in the
window E €[0.95,1.05. The size of the energy window was presence of an electric field; the statistical properties of the
chosen in such a way that the localization lengthis ap-  eigenstates are characterized by the two scaling parameters
proximately constant inside this windowin all cases, \, and\,. To this end, we will concentrate on the localiza-
Al../1,<0.06). The values oB; and 3, are then obtained tion measureseg‘ [see EQq.(9)], which are the finite-size
by averaging over all eigenstates which are found inside theounterparts oﬁ:_
energy window for a set of different realizations of disorder. To find the localization lengthk, for finite samples of
As a result, the total number of eigenstates used for the cakizeN, we have used the same approach as in Sec. IVA. The
culation of 8; was more than 1500. average values df, were calculated by choosing only the

A detailed analysis of the numerical data gives evidencesigenstates which had eigenvalues within a small energy
of a scaling behavior of the form of Eqgl0) and(14) with  window E €[0.95,1.03. Additionally, we performed an en-
the scaling function semble averaging over at least 100 realizations of the disor-
der potential. For eacN the total averaging thus involved
several hundreds up to several thousands of eigenstates. In
all these calculations the sample size was varied fiém
=200 up to 1000.

P RTTT| B S A RTTT B S W EETT B ST |
107 100 10° 10'y

FIG. 2. One-parameter scaling of tlieearly infinite sample
(N=10% upon variation ofx,, in a rangeN>I,l,, (W=2.62,
3.87, 5, 7.35, and 10, anelFe[lO"‘,Z]). A least-squares fit ac-
cording to Eq.(15) is shown as dashed lin¢a) Scaling of 87
(a%=4.45 anda}=0.55). (b) Scaling of 85 (a5=4.43 andaj
=0.37).

By~aJ[1—exp —ag\..)], (15

where the parameterag, and acl] are determined from a

Ielast-squares fit. We have found thaft=4.45 (4.43 and To test scaling assumptiga0) for finite systems, we first
83=0.55(0.37 for q=1 (2). We note here that a similar 5na\y 76 the behavior of the localization measyBés once
scaling function was found in the framework of quasi-1D ) is fixed. This is the finite sample counterpart of the scal-
systems foq=1." Our data, together with a fit according 10 jng analysis presented in Sec. IVA. In Fig. 3 we report our
Eq. (15), are presented in Fig. 2. We observe a nice agreeqmerical results. Different symbols correspond to various
ment with the scaling assumption of Eq%0) and (14). sample sizedl’s and disorder strengthd’s such that always
An=1. The good overlap confirms the scaling dependence
By=By(\.) conjectured in Eq(10).

In realistic situations one always deals with finite Let us now try to gain some insight in the asymptotic
samples. In such cases an understanding of the statisticiirm of the scaling law OIBQI(M,)\N=COHSO- For\. <1,
properties of conductance is of major importance. Sincahe system is in the Anderson regime, whgt?#q\éis given by

B. Finite samples
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We now turn to the case whekg, is fixed and\  varies.
Our numerical results, fox,.=0.01, 1, and 20, correspond-
ing to the Anderson, intermediate, and Stark regimes, respec-
tively, are shown in Fig. 4 where now we refer to the vari-
able

10°

Yo=1 f ‘}3 :
q
The points corresponding to the sarkg (but differentl.,
andl,) fall onto the same smooth curve with a good accu-
racy, confirming scaling hypothes{4¢0). From Fig. 4 one
can see that the behaviorf, is different in the two regimes
B I L No>1 (No<<1) wh_ere localization is due to the Sta(k
10! 109 10! N 10210~ 109 10! N 102 (Ande_rson) mechanism. A_s a r_natter of fact, as we are in-
o oo creasing\., two asymptotic regimes start to build up which
have the same slope and differ only by a constant shift.
FIG. 3. Finite sample scaling gy as a function ofi.. with To understand the behavior of;(\y) as a function of
Ay=1. Different symbols correspond to various sample sides ) e first try to illuminate the limiting cases. Let us start
€[200,100Q and disorder strength®&/ e[ 0.3,0.4; the electric field with the limit A.,<1. This condition defines the Anderson

was chosen appropriatelyeFe[5X10745x1071]). Dashed regime, where Eq(16) holds, and thus a behavior
lines correspond to Eq17), where the values, were taken from a

least-squares fit of Fig.(d) and 4b) (see below. Full lines repre- _
sent the scaling law derived in E¢L9), where the values foag In(Yq) In()\N)Han @D
where taken from Fig. 2@) Scaling of 8} (a?=4.45,c;=2.59).  in terms of the variablé, is expected over the whole range
(b) Scaling of B (a3=4.43, c,=1.45). of Ay. This expectation is shown in Fig. 4 by solid lines.
Since N, is small but still finite, we can also estimatg
from Eq. (15). The limit Ay<<\..<1 corresponds to the
Eq. (16). The latter expression does not dependhon and  Anderson regime of a nearly infinite sample. Expanding Eq.
thus we can conclude thz,ﬁ(’;' has to saturate to a constant (15) to first order yieldsﬁa"wagaé)\x. Substituting this ex-
which is given by pression into Eq(18), we end up with the following term for

Baq:

Nh L)~ ot 17) N~alal
Bq(Ae<1\y)~ T+ cohy’ ( By ~agaghy - (22)

(20

Inserting Eq.(22) into the definition ofY,, and assuming

where \y=const The dashed lines in Fig. 3 show the ex-)\N<1’ we obtain

pected saturation plateau given by Efj7) for \y=1. The
agreement with the numerical data is very good. Y- ~In() + In(a%al 23
In the opposite limit\,,>1, Stark localization sets the (Yo)=In(hy) +In(aga,), @3

dominant length scalk,. Since we can always choose the \which impliescqav«agaé. A comparison ofc,=2.59 (1.55)

suming continuity in the form of8}, we can approximate e conclude that our scaling functi@hs) is consistent with

the latter with the help of Eq15). ForA..>1 this formula  Eq. (21), as it should be in the above limit.
yieIdSBg’%E}- Next, by changing variables and going from In the opposite limit ofA..>1, we have to distinguish

,83 to B, , we obtain between the following two cases. Whegp>\.., the sample
size N sets the smallest length scale. In this limit the eigen-
. |e|/3;° )\Nag states extend over the_ whole sample. Then, b_y conti_nuity, we

Bq "N T (18)  expect that the behavior ofg(\y) for Ay>1 will be given

by Eq. (21). Our numerical datdsee Figs. &) and 4f)]
support this hypothesis. The second case, in whigke\ .,

Displaying B versush., in a double logarithmic fashion, holds, can be viewed as the extreme Stark regime of an in-

this yields finite sample. In that limit one obtains E@.9) again, which
yields
In(BY)~In(Anag) —In(\..). (19
0
a
This linear behaviof19) is shown by solid lines in Fig. 3, it In(Yq)~In(Ay)+In i) (24)

approximately describes the numerical data. Deviations are

due to the fact that the approximation via the scaling law ofThe asymptotic behavidiEq. (24)] is reported in Figs. @)

Eq. (15) actually requires not only,<N but alsol..,<N, and 4f) by dashed lines and, agrees quite well with our
which is not fulfilled in our case. Nevertheless it gives anumerical data.

reasonable estimate. From the above analysis we conclude that, at
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102 LELRRALL L B L B | LI LH I AL, DL, B AL |
(b)

100 L

10—1_

10—2 .

T T T T T T T
Ax o

10724

10?

10!

107" 10° 10" Ay 107 10° 10" Ay

FIG. 4. Scaling ofY,=,/(1— ;) in the finite sample upon
variation of Ay for \,,=0.01, 1, and 20. Different symbols corre-
spond to various disorder strengtidée [0.1,6] and sample sizes

N e[200,100Q. Full and dashed lines correspond to the limiting

cases given by Eq$16) (with ¢c;=2.59,c,=1.45) and(24) (with
al=4.45,a0=4.35), respectively(a) and(b) Scaling ofY;, andY,
for A,,=0.01(Anderson regimg (c) and(d) Scaling ofY,, andY,
for \..=1 (intermediate regimg.(e) nd (f) Scaling ofY,, andY,
for \.,,=20 (Stark regimg

)\DO:)\Nl (25)

though these estimations are made only on a very rough
level, they describe our numerical findings rather well.

V. SCALING OF THE DISTRIBUTION OF
EIGENVECTORS

As a complement to the above analysis, we show in this
section that the distributions of squared components of
eigenvectors are parametrized in the same fashianygnd
... Again we restrict ourselves to a definite energy window
E[0.95,1.09, where all eigenvectors corresponding to ei-
genvalues in that window were computed for several realiza-
tions of disorder. The total number of eigenstates were in all
cases more than 1000.

Before examining the scaling properties of the distribu-
tion let us distinguish between the various cases that appear
due to the competition between the three characteristic
length scaled, |, andl., (see Sec. IY. For simplicity we
define these regimes only by their limiting cases, which read
as follows:

(D) 1.<lg<N, 14<l,<N (infinite sample,

(2 1.<N<lg, N<I_,<lg (Anderson regimg

(B)N<Ig<l,, Ig<N<I, (Stark regime

The first pair in this list corresponds to the scaling behav-
ior of the infinite sample, since the sample size is always
larger than the other two competing lengths. For this case,
andg=1 and 2, we have shown already in Sec. IVA tﬁﬁt
follows a single parameter scaling with respectatp. We
will show here that the whole distribution of eigenvector
components is also parametrized according to the same scal-
ing parameter. The first question which arises for the infinite
sample is the proper normalization of the squared entries of
the eigenstates/,=|¢,|%. A normalization with respect to
the number of site®N does not seem appropriate, since we
are interested in the limil—o. Sincew, has to scale with
some length, however, following our previous stratégge
Eqg. (9)], we introduce the variable

r=In(wgylg), (26)

and investigate the distributiqm(r). For our calculations we
consider matrices of sizé¢=10*, while we letl | .<N and
varied\,, . For each\,, we considered two different disorder
strengths [,,~6 and 10 and adjusted the dc field strength
appropriately. The results for,,=10, 1, and 0.1 are shown
in Fig. 5(@-5(c) in a semilogarithmic plot. The assumed
scaling ofp(r) with \.. is clearly visible.

The second and third pairs of conditions always involve
the sample siz8l. Therefore, scaling according xq, and
has to be taken into account. For these cases renormalization
with respect to the sample size is meaningful; hence we de-
fine the rescaled squared entries of eigenstates as

r=In(w,N). (27)

Before turning to an analysis of our numerical data, let us
first qualitatively analyze the form gb(r). In the limit N
<l,,l¢ the system does not “feel” any localization due to
disorder or electric field. Therefore all eigenstates are given

two asymptotic regimes are created due to the interplay beapproximately by Eq.(11). The distributionp(r) is then
tween Anderson and Stark localization mechanisms. Algiven by
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FIG. 5. Scaling of the entire distribution of squared eigenvector -50 40 30 -20 -10 0 r
componentsp(r) with A, in the case of nearly infinite samples
(N=10%. Two different pairs ofl,,, |4<N are denoted by full
lines W=3.49 andeF=1.666, 0.166, and 0.016and symbols
(W=2.62, andeF=1, 0.1, 0.0}, while keeping\., fixed. (a) \.,
=10.(b) A\.,=1.(c) A.=0.1.

FIG. 6. Scaling of the entire distribution of squared eigenvector
componentg(r) in the Stark regimeX.,= 20) in the case of finite
samples K e[230,1200,We[0.01,7],eFe[10 3,1]). Full lines
and symbols denote different sample sizesd thus different
strengths of disordgrwhile X\ is kept fixed to a chosen value)

) An=100 (the dashed line has a slope 1/2b) A\y=2. (C) Ay
p(r)= =0.05.
r r
mVe(2-e) p[r=In(N)]~1/N, while long tails appear due to factorial
Plotting IMp(r)] versusr for r<0 yields a curve with slope localization. We conclude this section by noting that the
1/2, as can be verified by expanding E2g). Moreover, Eq.  scaling of the distributions of squared eigenvector compo-
(28) shows a sharp peak aroune-0. nents withA,. and Ay implies a scaling of the localization

In the case wheré, <N, | the disorder sets the relevant parameterg10) for arbitraryq.

length scale, and the system resembles an infinite Anderson

(28)

model with exponentially localized eigenstates,=exp VI. SUMMARY
—|n—ng|/l.;). For smallr this particular form of eigenstates . : - :
I(ea|ds té)|1 ) 'S particu '9 We have studied a 1D tight-binding model in the presence
of a constant electric field. For such a model we can distin-
p(r)=I./N. (29 guish between two regimes where localization is due to to-

tally different mechanisms. The first regime is the Anderson

In a semilogarithmic representation this results in a nearlyegime, which is defined through the conditibn<1. Here
horizontal curve of height Ih{/N) for r<0, which drops localization due to disorder is the dominant mechanism that
rapidly for somer>0. controls the statistical properties of the eigenstates. In the

For the second pair of conditions, i.e. the Anderson re-opposite limit,\..> 1, the localization is due to the presence
gime, the scaling properties of the distribution were alreadyof the electric field. This is the Stark regime. Our numerical
analyzed in Ref. 11. A good agreement with the limiting study deals with the scaling properties of eigenstates both for
equationg28) and(29) was found. infinite and finite samples. This study was motivated by the

The more interesting case is the pair of conditions withremarkable scaling law that has been found for quasi-1D
label 3, where the competition betwedhand | is domi-  models with electric field:**® Our results indicate that in
nant. In this case..>1, and thus the localization mecha- both infinite and finite samples with disorder and electric
nism is due to the Stark effect. The resulting distribution forfield, the eigenstates have generic properties, regardless of
some representative values)Xof and\ are shown in Fig. 6. the dimensionality of the system, provided that an appropri-
One can clearly see that distributions corresponding to difate renormalizatioriwith respect to the corresponding “ex-
ferent sample sizell and disorder strengthd/, but having tended” statesis done. Thus we show that the similarity
the same\ and\.., coincide. Moreover, as we move from between 1D and quasi-1D eigenstates should also persist for
higher to smaller values ofy, the shape of the distributions systems with electric field.
changes drastically. In the cadg>1 (corresponding ti\ We found that for infinite systems the statistical properties
<lg) the eigenstates can be considered as extended withf the eigenstates are characterized by the single parameter
respect to the sample size, and thus we again obtai2Bf. \... This conclusion was based on an extensive numerical
[see Fig. 63)]. The peak of the distribution broadens andanalysis of both the localization measuf&s. (9)] and the
moves to the right upon an increaseXgf, as can be seen whole distribution of squared eigenvector components.
from Fig. Gb). At the same time, for negative valuesrahe ~ Moreover for 8;_, , we have found a simple scaling law
distribution possesses long tails. This becomes more andeq. (15)] that describes our numerical data quite nicely.
more apparent as we move toward the Stark redifig.  This expression can be used in order to find the strength of
6(c)]. In the strong-field limit the eigenstates are essentiallythe applied dc electric field onde is known for the field-
localized at one site, i.ew,=3d,,. In this case, one has free model.
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Moreover, we have performed a finite length scalingalso holds for higher moments. Finally, we studied the
analysis. Our numerical analysis showed that for finite syswhole distribution of squared eigenvector components, and
tems the statistical properties of the eigenstates are charashowed that it also follows the same scaling behavior with
terized by two parameters, namely, (in the case of infinite  respect to the two scaling parameta&rs and\ y .
systemg and \y. The latter parameter involves the actual The main result of our work is the fact that scaling prop-
size of the sample which enters into the scaling analysis aserties of eigenstates of infinite systems are described by one
third length scale. We found that the localization measureparameter scaling.,, whereas for finite systems an addi-
,BE: 12 Show a totally different asymptotic behavior ky,  tional parameteky is also needed. In particular, both local-
—0,° as we increase the parameter. Based on some ization lengths, the entropy localization length as well as the
analytical arguments, we estimated that this occurs approxibne defined via the inverse participation ratio, follow the
mately at\ y=X\.,. This can be used as a criterion to identify universal scaling law of Eq10) after an appropriate normal-
which localization mechanisrtAnderson or Stark localiza- ization. This is in contrast to the standard Anderson models
tion) is responsible for the structure of eigenstates. It will bewithout electric field, where only one parametex,j is
interesting to investigate if the same asymptotic behavioneeded to describe the scaling properties of eigenstates.
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