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Scaling properties of one-dimensional Anderson models in an electric field: Exponential versu
factorial localization

Matthias Weiss, Tsampikos Kottos, and T. Geisel
Max-Planck-Institut fu¨r Strömungsforschung and Fakulta¨t für Physik der Universita¨t Göttingen, Bunsenstrasse 10,

37073 Go¨ttingen, Germany
~Received 9 February 2000!

We investigate the scaling properties of eigenstates of a one-dimensional Anderson model in the presence of
a constant electric field. The states show a transition from exponential to factorial localization. For infinite
systems this transition can be described by a simple scaling law based on a single parameterl`5 l ` / l el , the
ratio between the Anderson localization lengthl ` and the Stark localization lengthl el . For finite samples,
however, the system sizeN enters the problem as a third parameter. In that case the global structure of
eigenstates is uniquely determined by two scaling parameterslN5 l ` /N andl`5 l ` / l el .
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I. INTRODUCTION

In recent years several studies have investigated the in
ence of constant uniform electric fields on the localization
electrons in one-dimensional~1D! systems with on-site ran
domness. In the absence of dc fields, it is by now well kno
that even small amounts of disorder lead to an exponen
localization of all eigenstates.1,2 On the other hand, in the
case of a single-orbital tight-binding model of an electron
a periodic potential, application of a static electric field
known to generate a discrete, uniformly spaced eigenva
spectrum,3 known as a Stark ladder, with all eigenfunctio
localized factorially.4 For weak fields, the wave function
may be extended over several lattice periods, but with
creasing field strength the electron tends to be localized
specific site. This is known as Stark localization and h
been observed experimentally in superlattices5 which are
commonly used for such measurements.6

In infinite samples the localization of eigenstates can
characterized in terms of the localization length; the latte
commonly defined from the amplitude decay of eigensta
in the limit unu→`, where n labels the site in the tight
binding picture. The most powerful and informative meth
available for such studies is the transfer-matrix method
the presence of a strong electric field, however, it appear
be less efficient due to the factorial nature of the Stark loc
ization. Moreover, for finite systems the structure of eige
vectors cannot be characterized in the same way. One
needs to use other quantities~such as the inverse participa
tion ratio!, that are valid both for finite and infinite sample
Through the use of scaling conjectures, one can link then
properties of eigenstates in infinite samples to those of fi
samples. Since the scaling approach proved to be extrem
useful in describing conductance and its fluctuations~see,
e.g., Refs. 7 and 8! in the theory of disordered solids, it als
seems natural to use this approach in order to describe lo
ization properties of eigenfunctions of 1D disordered s
tems in the presence of a constant electric field.

In this paper we study the 1D Anderson model in t
presence of a constant electric field in view of scaling pr
erties of its eigenstates. The main question that we wan
PRB 620163-1829/2000/62~3!/1765~8!/$15.00
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answer is whether the equivalence between quasi-1D and
disordered models24,13 known up to now can be extended
order to include systems with a constant electric field. F
this purpose we analyze the scaling properties of informa
lengths for infinite and finite samples, which were used s
cessfully in the studies of one- and quasi-one-dimensio
systems.9–15 Contrary to the standard Anderson case, wh
the ratio of the Anderson localization lengthl ` and the
sample sizeN, i.e., lN5 l ` /N, is the only relevant scaling
parameter, in the present case we find an additional sca
parameterl`5 l ` / l el . Here l el is the Stark localization
length, which arises from the applied constant electric fie
Hence, the structure of eigenvectors in our model is cha
terized by two scaling parameterslN , andl` .

The structure of the paper is as follows. In Sec. II w
describe the mathematical model, and briefly summarize
known facts about the two limiting cases that appear for
model. In Sec. III we discuss different definitions of loca
ization length, which are used in our numerical simulatio
In Sec. IV we present numerical data on scaling of locali
tion lengths of eigenstates in infinite and finite systems.
nally, in Sec. V we study the scaling of the whole distrib
tion of eigenvectors. Our conclusions are summarized in S
VI.

II. MODEL

Our starting point is the 1D Schro¨dinger equation in the
tight-binding approximation,

i
dcn~ t !

dt
5 ~en1neF!cn~ t !1Vcn11~ t !1Vcn21~ t !,

~1!

wherecn(t) denotes the probability amplitude for an ele
tron to be at siten. Moreover,en is the local site energy,V is
the hopping element,e is the electron charge, andF the
strength of the applied dc field. By applying the transform
tion cn(t)5exp(2i E t) wn, one obtains the stationary equ
tion

Ewn5Vwn111~en1neF!wn1Vwn21 ~2!
1765 ©2000 The American Physical Society
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1766 PRB 62M. WEISS. T. KOTTOS, AND T. GEISEL
for the eigenvaluesE and the corresponding eigenstat
wn(E). We can distinguish two limiting cases which are re
evant for our study:~a! a perfect system~i.e. en5e) with a
nonzero electric field18–20 FÞ0, and~b! a zero field~i.e., F
50) with a random on-site potential.

In the case of a perfect system withFÞ0, one can prove
that the corresponding eigenstatesw(E), known as Wannier-
Stark states, show a generic factorial decay, i.e.,4,16

wn~E!5Jm2n~2/eF!→~1/eF! unu/~ unu! !, n→6`, ~3!

where Jn is a Bessel function of ordern. Wannier-Stark
states constitute a complete set of energy eigenstates.17 Their
eigenvaluesEm5meF form the so-called Wannier-Star
ladder.3 A particular Wannier-Stark statewn is factorially
localized around thenth site, with a localization length of the
order of l el.1/eF, i.e., the electric field appears in the d
nominator of the localization length in Eq.~3!. This under-
scores the fact thatF cannot be treated as a small perturb
tion to the field-free Hamiltonian. An example of such a st
is presented in Fig. 1~a!.

The other limit of interest corresponds to a zero elec
field, with en random andd-correlated, chosen from a distr
bution Pe with mean zero and variances2. Below, in our
numerical investigation, we will always assume thatPe is a
uniform distribution in@2W/2,W/2#. Such a model is known
in the literature as the Anderson model,1 and has been stud
ied in great detail in the context of disordered materials
was shown with mathematical rigor that in the limit of infi
nite samples this model displays exponentially localiz
eigenfunctions, no matter how small the disorder is@see Fig.
1~b!#. The rate of decay is measured by the Lyapunov ex
nent g which may be evaluated by the transfer-mat
method. To this end, one has to study the asymptotic be
ior of the random matrix product)Mn , whereM n is defined
through the relation

jn115Mnjn , Mn5S vn 21

1 0 D , vn5
E2en

V
~4!

FIG. 1. Two representative eigenfunctions of the 1D tig
binding model@Eq. ~1!#. ~a! Stark regime with factorial localization
(W50, eF50.5, l el'2). ~b! Anderson regime with exponentia
localization (W55,eF50, and l `'3.4). The dashed line has
slope 2/l ` .
-
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for the vectorjn5(xn ,xn21), with the matrixMn known as
the transfer matrix. The localization lengthl ` is hence the
inverse Lyapunov exponentg; the latter is evaluated as th
exponential rate of increase of an initial vectorj1:

l `
215g5 lim

N→`

1

N

lnS )
n51

N UMnjnU D
uj1u

. ~5!

Although the Lyapunov exponentg for finite N depends on
the particular realization of disorder, forN→` it converges
to its mean value.21 For the calculations below we have use
samples of length 53105 for relatively large values ofW,
and up to 43106 for small values ofW .

III. SCALING APPROACH FOR THE EIGENSTATES

Our interest is dedicated to the structure of eigenstates
infinite as well as finite samples, as we tune the disorder
the electric-field strength. Unlike the simpler case of infin
samples, however, the meaning of a localization length
finite samples is not clear. Below we follow the approa
developed in the theory of quasi-1D disordered solids wh
is based on the evaluation of multifractal localization leng
~see, e.g., Ref. 13!. The great advantage of this approach
the applicability in both finite and infinite samples.

One of the commonly used quantities in this approach
the so-called entropic localization length, defined through
information entropyHN of eigenstates,

HN52 (
n51

N

wn ln wn , wn5uwn
2u, ~6!

wherewn is the nth component of an eigenstate in a give
basis. For eigenstates normalized as(nwn51, the simplest
case ofwn5N21/2 results in an entropy equal to the max
mum value:HN5 ln(N). We therefore define the localizatio
lengthL as the number of basis states occupied by the eig
statewn ; the latter is equal to exp(HN). We note that, in
general, the amplitudeswn fluctuate strongly withn, and thus
the coefficient of proportionality betweenL and l ` depends
on the type of fluctuations.

In order to study the properties of eigenstates in quasi
solids, localized on some scale in the finite basis, it w
suggested in Ref. 22 to normalize the localization lengthL in
such a way that in the extreme case of fully extended st
the quantityL is equal to the size of the basisN. In such an
approach, the entropic localization lengthL1 is defined as

L15N exp~^HN&2Href!. ~7!

In Eq. ~7!, the ensemble average^•••& is performed over the
number of eigenstates with the same structure, and ove
alizations of the disorder potential. The normalization fac
Href has the meaning of an average entropy of the comple
extended random eigenstates in a finite basis. For
quasi-1D case the distribution of componentswn is assumed
to correspond to the Gaussian orthogonal ensemble~GOE!.22

Analogously, a whole set of localization lengthsLq can be
defined as13

-
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Lq5 N S ^Pq&

Pref
(q) D 1/(12q)

, Pq5 (
n51

N

~wn!q, q>2, ~8!

wherePref
(q) is the average value ofPq for the reference en

semble of completely extended states. One should note
for the particular caseq52 the quantityP2 is known as the
participation ratio.23

In the context of quasi-1D disordered models in the pr
ence of a constant electric field,9,15,14 it was shown that all
global properties of eigenfunctions are described by the
calization parameters

bq
`5

Lq

l el
, bq

N5
Lq

N
, ~9!

where the superscripts̀ and N denote infinite and finite
samples, respectively. Moreover it was found thatbq

`, N obey
some scaling law, i.e., they depend only on the ratio of
characteristic lengths of the system. In the case of infin
samples only two length scales, i.e.,l ` and l el , are relevant.
For finite samples, however, a third lengthN, which is the
actual size of the sample, comes into play and has to be ta
into account in the scaling theory. According to the scal
conjecture in the modern theory of disordered solids, it w
found that for quasi-1D systems in the presence of an ele
field,9,15,14bq

`,N follow the scaling laws

bq
`5bq

`~l`!, bq
N5bq

N~l` ,lN!,

where

l`5
l `

l el
, lN5

l `

N
. ~10!

Our main question is whether relations of the type of E
~10! are also applicable for our 1D Anderson tight-bindi
model with electric field. In Refs. 13 and 24 it was show
analytically that the eigenstates in 1D and quasi-1D dis
dered systems,without electric field, possess the same gro
structure~envelope! on scales comparable with the localiz
tion length, while their statistical properties are quite diffe
ent on a much finer scale of the order of the lattice spac
That is the reason why many scaling laws, which are do
nated by the fluctuations of the envelope, hold both for
and quasi-1D systems. The validity of such a statemen
however questionable in the presence of electric fields.
will show that such a similarity between quasi-1D and 1
disordered systems also persists in this case.

The first nontrivial question in this context arises abo
the reference ensemble for the computation of the ave
entropy Href . Indeed, in application to 1D Anderson-typ
models,10–12 the reference ensemble cannot be chosen a
ensemble of full random matrices, like the GOE. This po
is related to the fact that in the 1D tight-binding case fu
extended states are not Gaussian random functions but
plane waves which arise for zero disorder. In the presenc
an electric field, the situation is even more complicated d
to strong dependence of the eigenstates on the electric fi
However, and this is our expectation, in spite of the abo
mentioned differences, scaling properties of the eigenst
of the 1D model@Eq. ~1!# are of the generic type discovere
for quasi-1D systems.
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For this reason, and in the spirit of Refs. 10 and 12
define the normalization factorsHref andPref

(q) from the solu-
tion of Eq. ~2! for zero disorder and electric field, i.e.,en
50 andF50,

Ek52V cos
kp

N11
, wn

k5AS 2

N11D sin
nkp

N11
, ~11!

with k,n51, . . . ,N. The entropyHref and the participation
ratio Pref

(2) of the above eigenstates in the largeN limit have
the same values for every eigenvalueEk, i.e.,

Href5 ln~2N!21, Pref
(2)5

3

2N
. ~12!

IV. SCALING PROPERTIES OF LOCALIZATION
LENGTHS

A. Infinite samples

In this section we analyze the scaling properties of eig
states of infinite systems. In numerical studies the matri
are obviously of finite sizeN. However, in our analysis be
low we will always consider the case thatN@ l ` , l el , and
thus the finite~but large! size of the matrix becomes irrel
evant. We therefore have used these data to investigate
scaling assumption forbq

` @see Eq.~9!#.
As mentioned in Sec. II, the introduction of a nonze

electric fieldFÞ0 results in an additional length scalel el .
This length arises when we consider a cross section of
energy band locally tilted by the electric field:2V/21Fn
<E<V/21Fn for an energy levelE. Therefore the scaling
parameterl`5 l ` / l el enters the problem. Furthermore, if w
consider the localization lengthsL (q) of Eqs. ~7! and ~8! as
the typical length, which contains most of an eigenvec
normalization, we expect that

Lq.
l ` l`!1

l el l`@1,
~13!

i.e., the exponentially localized states progressively beco
localized factorially as the field increases. This is due to
fact that, for a weak electric field, we havel`!1, and thus
the dominant localization mechanism, i.e., the one that p
duces the shortest localization length scale, is the one rel
to the randomness. From now on we will refer to this as
‘‘Anderson regime.’’ In the opposite limitl`@1, the domi-
nant localization mechanism is due to the electric field. W
will refer to this regime as the ‘‘Stark regime.’’ Based on th
previous considerations we expect that theLq’s have the fol-
lowing scaling form~also see Ref. 9 for an equivalent re
soning for quasi-1D systems!:

Lq5 l ` f ~l`! with f ~l`!.H 1 l`!1

1

l`

l`@1,
~14!

where f (l`) is related to the scaling functionbq
` as bq

`

5l` f (l`).
Our aim in this paragraph is to support the abov

mentioned scaling law based on numerical data, and to
tend our knowledge on the structure of the eigenstates in
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intermediate regime between the two discussed limits. In
der to study scaling properties of the localized eigensta
we have used the transfer-matrix method for the calcula
of l ` as well as the direct diagonalization of the Hamilt
nians that are associated with Eq.~1!, for finite but long
chains of sizeN5104. In all numerical calculations below
we usedV51. We then varied the disorder strengthW as
well as the dc field strength in a regime, where alwa
l ` ,l el!N. One should stress here that both localizat
lengths l ` and Lq are functions of the energyE. For this
reason, in our numerical experiments, we consider ensem
of states specified by the values of the energyE in a small
window EP@0.95,1.05#. The size of the energy window wa
chosen in such a way that the localization lengthl ` is ap-
proximately constant inside this window~in all cases,
D l ` / l `<0.06). The values ofb1

` andb2
` are then obtained

by averaging over all eigenstates which are found inside
energy window for a set of different realizations of disord
As a result, the total number of eigenstates used for the
culation ofbq

` was more than 1500.
A detailed analysis of the numerical data gives evide

of a scaling behavior of the form of Eqs.~10! and~14! with
the scaling function

bq
`'aq

0@12exp~2aq
1l`!#, ~15!

where the parametersaq
0 , and aq

1 are determined from a
least-squares fit. We have found thataq

054.45 ~4.43! and
aq

150.55 ~0.37! for q51 ~2!. We note here that a simila
scaling function was found in the framework of quasi-1
systems forq51.14 Our data, together with a fit according t
Eq. ~15!, are presented in Fig. 2. We observe a nice agr
ment with the scaling assumption of Eqs.~10! and ~14!.

B. Finite samples

In realistic situations one always deals with fini
samples. In such cases an understanding of the statis
properties of conductance is of major importance. Sin

FIG. 2. One-parameter scaling of the~nearly! infinite sample
(N5104) upon variation ofl` in a rangeN@ l el ,l ` (W52.62,
3.87, 5, 7.35, and 10, andeFP@1024,2#). A least-squares fit ac
cording to Eq.~15! is shown as dashed line.~a! Scaling of b1

`

(a1
054.45 anda1

150.55). ~b! Scaling of b2
` (a2

054.43 anda2
1

50.37).
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these properties are directly related to the structure of eig
states, it is important to investigate the statistical proper
of eigenstates for finite systems. This is the goal of
present subsection.

For finite N and zero electric field, it was shown in Ref
10–12 that the statistical properties of 1D Anderson mod
are characterized by a single scaling parameterlN5 l ` /N.
Moreover, the scaling relation for the eigenvectors w
found to be very simple:

bq
N5bq

N~lN!5
cqlN

11cqlN
, ~16!

where the constantscq were found to bec1'2.6 andc2
'1.5. In fact, this scaling relation is exact only forq52. For
other cases of small valuesq, includingq51, however, it is
very close to the correct one~see details in Ref. 13!.

Once the electric field is turned on, however, a new len
scalel el ~with respect to the standard Anderson models! ap-
pears. This can already be seen from the previous paragr
where on the basis of numerical results we were able
conclude that for infinite 1D Anderson models in the pre
ence of an electric field the scaling properties of the eig
vectors are characterized by the parameterl` . Since the
sample size now enters as a third length scale, the sec
scaling parameterlN is likely to show up. Thus we expec
that the statistical properties of the eigenstates, and acc
ingly the bq

N’s, are going to be determined by the two p
rametersl` andlN which arise due to the competition be
tween the characteristic lengthsl ` and l el of the
corresponding infinite sample and the actual sizeN of the
sample. In the rest of this section we are going to pres
numerical evidence that for finite 1D Anderson models in
presence of an electric field; the statistical properties of
eigenstates are characterized by the two scaling param
l` andlN . To this end, we will concentrate on the localiz
tion measuresbq

N @see Eq.~9!#, which are the finite-size
counterparts ofbq

` .
To find the localization lengthsLq for finite samples of

sizeN, we have used the same approach as in Sec. IV A.
average values ofLq were calculated by choosing only th
eigenstates which had eigenvalues within a small ene
window EP@0.95,1.05#. Additionally, we performed an en
semble averaging over at least 100 realizations of the di
der potential. For eachN the total averaging thus involve
several hundreds up to several thousands of eigenstate
all these calculations the sample size was varied fromN
5200 up to 1000.

To test scaling assumption~10! for finite systems, we first
analyze the behavior of the localization measuresb1,2

N once
lN is fixed. This is the finite sample counterpart of the sc
ing analysis presented in Sec. IV A. In Fig. 3 we report o
numerical results. Different symbols correspond to vario
sample sizesN’s and disorder strengthsW’s such that always
lN51. The good overlap confirms the scaling depende
bq

N5bq
N(l`) conjectured in Eq.~10!.

Let us now try to gain some insight in the asympto
form of the scaling law ofbq

N(l` ,lN5const). Forl`!1,
the system is in the Anderson regime, wherebq

N is given by
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Eq. ~16!. The latter expression does not depend onl` , and
thus we can conclude thatbq

N has to saturate to a consta
which is given by

bq
N~l`!1,lN!'

cqlN

11cqlN
, ~17!

where lN5const The dashed lines in Fig. 3 show the e
pected saturation plateau given by Eq.~17! for lN51. The
agreement with the numerical data is very good.

In the opposite limitl`@1, Stark localization sets th
dominant length scalel el . Since we can always choose th
strength of the electric fieldF such thatN,l `@ l el , and as-
suming continuity in the form ofbq

N , we can approximate
the latter with the help of Eq.~15!. For l`@1 this formula
yields bq

`'aq
0 . Next, by changing variables and going fro

bq
` to bq

N , we obtain

bq
N5

l elbq
`

N
5

lNaq
0

l`
. ~18!

Displaying bq
N versusl` in a double logarithmic fashion

this yields

ln~bq
N!' ln~lNaq

0!2 ln~l`!. ~19!

This linear behavior~19! is shown by solid lines in Fig. 3, i
approximately describes the numerical data. Deviations
due to the fact that the approximation via the scaling law
Eq. ~15! actually requires not onlyl el!N but also l `!N,
which is not fulfilled in our case. Nevertheless it gives
reasonable estimate.

FIG. 3. Finite sample scaling ofbq
N as a function ofl` with

lN51. Different symbols correspond to various sample sizesN
P@200,1000# and disorder strengthsWP@0.3,0.6#; the electric field
was chosen appropriately (eFP@531024,531021#). Dashed
lines correspond to Eq.~17!, where the valuescq were taken from a
least-squares fit of Fig. 4~a! and 4~b! ~see below!. Full lines repre-
sent the scaling law derived in Eq.~19!, where the values foraq

0

where taken from Fig. 2.~a! Scaling ofb1
N (a1

054.45, c152.59).
~b! Scaling ofb2

N (a2
054.43, c251.45).
-

re
f

We now turn to the case wherel` is fixed andlN varies.
Our numerical results, forl`50.01, 1, and 20, correspond
ing to the Anderson, intermediate, and Stark regimes, res
tively, are shown in Fig. 4 where now we refer to the va
able

Yq5
bq

12bq
. ~20!

The points corresponding to the samel` ~but different l `

and l el) fall onto the same smooth curve with a good acc
racy, confirming scaling hypothesis~10!. From Fig. 4 one
can see that the behavior ofYq is different in the two regimes
l`@1 (l`!1) where localization is due to the Star
~Anderson! mechanism. As a matter of fact, as we are
creasingl` two asymptotic regimes start to build up whic
have the same slope and differ only by a constant shift.

To understand the behavior ofYq(lN) as a function of
l` , we first try to illuminate the limiting cases. Let us sta
with the limit l`!1. This condition defines the Anderso
regime, where Eq.~16! holds, and thus a behavior

ln~Yq!5 ln~lN!1 ln cq ~21!

in terms of the variableYq is expected over the whole rang
of lN . This expectation is shown in Fig. 4 by solid line
Since l` is small but still finite, we can also estimatecq
from Eq. ~15!. The limit lN!l`!1 corresponds to the
Anderson regime of a nearly infinite sample. Expanding E
~15! to first order yieldsbq

`'aq
0aq

1l` . Substituting this ex-
pression into Eq.~18!, we end up with the following term for
bq

N :

bq
N'aq

0aq
1lN . ~22!

Inserting Eq.~22! into the definition ofYq , and assuming
lN!1, we obtain

ln~Yq!' ln~lN!1 ln~aq
0aq

1!, ~23!

which impliescq'aq
0aq

1 . A comparison ofcq52.59 (1.55)
and aq

0aq
152.45 (1.64) shows a very good agreement. Th

we conclude that our scaling function~15! is consistent with
Eq. ~21!, as it should be in the above limit.

In the opposite limit ofl`@1, we have to distinguish
between the following two cases. WhenlN@l` , the sample
sizeN sets the smallest length scale. In this limit the eige
states extend over the whole sample. Then, by continuity,
expect that the behavior ofYq(lN) for lN@1 will be given
by Eq. ~21!. Our numerical data@see Figs. 4~e! and 4~f!#
support this hypothesis. The second case, in whichlN!l`

holds, can be viewed as the extreme Stark regime of an
finite sample. In that limit one obtains Eq.~19! again, which
yields

ln~Yq!' ln~lN!1 lnS aq
0

l`
D . ~24!

The asymptotic behavior@Eq. ~24!# is reported in Figs. 4~e!
and 4~f! by dashed lines and, agrees quite well with o
numerical data.

From the above analysis we conclude that, at
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l`.lN , ~25!

two asymptotic regimes are created due to the interplay
tween Anderson and Stark localization mechanisms.

FIG. 4. Scaling ofYq5bq /(12bq) in the finite sample upon
variation of lN for l`50.01, 1, and 20. Different symbols corre
spond to various disorder strengthsWP@0.1,6# and sample sizes
NP@200,1000#. Full and dashed lines correspond to the limitin
cases given by Eqs.~16! ~with c152.59,c251.45) and~24! ~with
a1

054.45,a2
054.35), respectively.~a! and~b! Scaling ofY1, andY2

for l`50.01 ~Anderson regime!. ~c! and~d! Scaling ofY1, andY2

for l`51 ~intermediate regime.! ~e! nd ~f! Scaling ofY1, andY2

for l`520 ~Stark regime!.
e-
l-

though these estimations are made only on a very ro
level, they describe our numerical findings rather well.

V. SCALING OF THE DISTRIBUTION OF
EIGENVECTORS

As a complement to the above analysis, we show in t
section that the distributions of squared components
eigenvectors are parametrized in the same fashion bylN and
l` . Again we restrict ourselves to a definite energy windo
EP@0.95,1.05#, where all eigenvectors corresponding to e
genvalues in that window were computed for several real
tions of disorder. The total number of eigenstates were in
cases more than 1000.

Before examining the scaling properties of the distrib
tion let us distinguish between the various cases that ap
due to the competition between the three characteri
length scalesN,l el , and l ` ~see Sec. IV!. For simplicity we
define these regimes only by their limiting cases, which re
as follows:

~1! l `, l el,N, l el, l `,N ~infinite sample!,
~2! l `,N, l el , N, l `, l el ~Anderson regime!,
(3)N, l el, l ` , l el,N, l ` ~Stark regime!.
The first pair in this list corresponds to the scaling beh

ior of the infinite sample, since the sample size is alwa
larger than the other two competing lengths. For this ca
andq51 and 2, we have shown already in Sec. IV A thatbq

`

follows a single parameter scaling with respect tol` . We
will show here that the whole distribution of eigenvect
components is also parametrized according to the same
ing parameter. The first question which arises for the infin
sample is the proper normalization of the squared entrie
the eigenstateswn5uwnu2. A normalization with respect to
the number of sitesN does not seem appropriate, since w
are interested in the limitN→`. Sincewn has to scale with
some length, however, following our previous strategy@see
Eq. ~9!#, we introduce the variable

r 5 ln~wnl el!, ~26!

and investigate the distributionp(r ). For our calculations we
consider matrices of sizeN5104, while we letl el ,l `!N and
variedl` . For eachl` we considered two different disorde
strengths (l `'6 and 10! and adjusted the dc field streng
appropriately. The results forl`510, 1, and 0.1 are shown
in Fig. 5~a!–5~c! in a semilogarithmic plot. The assume
scaling ofp(r ) with l` is clearly visible.

The second and third pairs of conditions always invo
the sample sizeN. Therefore, scaling according tol` andlN
has to be taken into account. For these cases renormaliz
with respect to the sample size is meaningful; hence we
fine the rescaled squared entries of eigenstates as

r 5 ln~wnN!. ~27!

Before turning to an analysis of our numerical data, let
first qualitatively analyze the form ofp(r ). In the limit N
! l ` ,l el the system does not ‘‘feel’’ any localization due
disorder or electric field. Therefore all eigenstates are gi
approximately by Eq.~11!. The distributionp(r ) is then
given by
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p~r !5
er

pAer~22er !
. ~28!

Plotting ln@p(r)# versusr for r !0 yields a curve with slope
1/2, as can be verified by expanding Eq.~28!. Moreover, Eq.
~28! shows a sharp peak aroundr 50.

In the case wherel `!N,l el the disorder sets the releva
length scale, and the system resembles an infinite Ande
model with exponentially localized eigenstateswn5exp
(2un2n0u/l`). For smallr this particular form of eigenstate
leads to11

p~r !5 l ` /N. ~29!

In a semilogarithmic representation this results in a nea
horizontal curve of height ln(l` /N) for r !0, which drops
rapidly for somer .0.

For the second pair of conditions, i.e. the Anderson
gime, the scaling properties of the distribution were alrea
analyzed in Ref. 11. A good agreement with the limiti
equations~28! and ~29! was found.

The more interesting case is the pair of conditions w
label 3, where the competition betweenN and l el is domi-
nant. In this casel`@1, and thus the localization mecha
nism is due to the Stark effect. The resulting distribution
some representative values ofl` andlN are shown in Fig. 6.
One can clearly see that distributions corresponding to
ferent sample sizesN and disorder strengthsW, but having
the samelN andl` , coincide. Moreover, as we move from
higher to smaller values oflN, the shape of the distribution
changes drastically. In the caselN@1 ~corresponding toN
! l el) the eigenstates can be considered as extended
respect to the sample size, and thus we again obtain Eq.~28!
@see Fig. 6~a!#. The peak of the distribution broadens a
moves to the right upon an increase oflN , as can be seen
from Fig. 6~b!. At the same time, for negative values ofr the
distribution possesses long tails. This becomes more
more apparent as we move toward the Stark regime@Fig.
6~c!#. In the strong-field limit the eigenstates are essentia
localized at one site, i.e.,wn.dnm . In this case, one ha

FIG. 5. Scaling of the entire distribution of squared eigenvec
componentsp(r ) with l` in the case of nearly infinite sample
(N5104). Two different pairs ofl ` , l el!N are denoted by full
lines (W53.49 andeF51.666, 0.166, and 0.016! and symbols
(W52.62, andeF51, 0.1, 0.01!, while keepingl` fixed. ~a! l`

510. ~b! l`51. ~c! l`50.1.
on

ly
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y

r

f-
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nd

y

p@r . ln(N)#;1/N, while long tails appear due to factoria
localization. We conclude this section by noting that t
scaling of the distributions of squared eigenvector com
nents withl` and lN implies a scaling of the localization
parameters~10! for arbitraryq.

VI. SUMMARY

We have studied a 1D tight-binding model in the presen
of a constant electric field. For such a model we can dis
guish between two regimes where localization is due to
tally different mechanisms. The first regime is the Anders
regime, which is defined through the conditionl`!1. Here
localization due to disorder is the dominant mechanism t
controls the statistical properties of the eigenstates. In
opposite limit,l`@1, the localization is due to the presen
of the electric field. This is the Stark regime. Our numeric
study deals with the scaling properties of eigenstates both
infinite and finite samples. This study was motivated by
remarkable scaling law that has been found for quasi-
models with electric field.9,14,15 Our results indicate that in
both infinite and finite samples with disorder and elect
field, the eigenstates have generic properties, regardles
the dimensionality of the system, provided that an appro
ate renormalization~with respect to the corresponding ‘‘ex
tended’’ states! is done. Thus we show that the similarit
between 1D and quasi-1D eigenstates should also persis
systems with electric field.

We found that for infinite systems the statistical propert
of the eigenstates are characterized by the single param
l` . This conclusion was based on an extensive numer
analysis of both the localization measures@Eq. ~9!# and the
whole distribution of squared eigenvector componen
Moreover for bq51,2

` we have found a simple scaling law
@Eq. ~15!# that describes our numerical data quite nice
This expression can be used in order to find the strength
the applied dc electric field oncel ` is known for the field-
free model.

r

FIG. 6. Scaling of the entire distribution of squared eigenvec
componentsp(r ) in the Stark regime (l`520) in the case of finite
samples (NP@230,1200#,WP@0.01,2#,eFP@1023,1#). Full lines
and symbols denote different sample sizes~and thus different
strengths of disorder!, while lN is kept fixed to a chosen value.~a!
lN5100 ~the dashed line has a slope 1/2!. ~b! lN52. ~c! lN

50.05.
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Moreover, we have performed a finite length scali
analysis. Our numerical analysis showed that for finite s
tems the statistical properties of the eigenstates are cha
terized by two parameters, namely,l` ~in the case of infinite
systems! and lN . The latter parameter involves the actu
size of the sample which enters into the scaling analysis
third length scale. We found that the localization measu
bq51,2

N show a totally different asymptotic behavior inlN

→0,̀ as we increase the parameterl` . Based on some
analytical arguments, we estimated that this occurs appr
mately atlN.l` . This can be used as a criterion to identi
which localization mechanism~Anderson or Stark localiza
tion! is responsible for the structure of eigenstates. It will
interesting to investigate if the same asymptotic behav
s

et

V.

, J

ns
s

-
ac-

l
a
s

i-

e
r

also holds for higher momentsq. Finally, we studied the
whole distribution of squared eigenvector components,
showed that it also follows the same scaling behavior w
respect to the two scaling parametersl` andlN .

The main result of our work is the fact that scaling pro
erties of eigenstates of infinite systems are described by
parameter scalingl` , whereas for finite systems an add
tional parameterlN is also needed. In particular, both loca
ization lengths, the entropy localization length as well as
one defined via the inverse participation ratio, follow t
universal scaling law of Eq.~10! after an appropriate normal
ization. This is in contrast to the standard Anderson mod
without electric field, where only one parameter (lN) is
needed to describe the scaling properties of eigenstates
v.

.
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