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Morphological stability of nanostructures
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Surface diffusion-induced smoothing of features below the roughening temperature is discussed using ki-
netic Monte Carlo simulations and a continuum description is developed. Rounding off the cusp in the surface
free energy at low Miller index orientations permits a numerical solution of relaxation driven by surface
diffusion. For both unidirectional and bidirectional sinusoidal profiles of wavelengthL, the amplitude decays
linearly with time and the decay time scales asL23. Surface morphology evolution below the roughening
temperature as described by the continuum equation and a step model are compared.
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I. INTRODUCTION

The fabrication of nanostructures by patterning and
various self-assembly techniques has received a lot of a
tion recently due to the unique size-dependent properties
hibited by the features. The small size of the features imp
short thermal processing times for the fabrication of devic
Nanoscale features will smooth out rapidly by surface dif
sion upon annealing to minimize the surface free energy1–3

Therefore, it is of interest to determine how the rate of de
scales with feature size.

A continuum description of surface diffusion mediat
relaxation was derived by Herring4 and further developed by
Mullins.5 The theory can be readily applied to amorpho
materials and to single-crystal surfaces above their rough
ing temperatureTR. However, as noted by Mullins,5 a direct
application of the theory to crystalline materials belowTR is
prevented by the presence of a cusp in the surface free
ergy at low Miller index orientations.

To get around the nonanalyticity of the free energy, s
models6 involving rate equations for individual steps ha
been developed to describe the smoothing of a ro
surface.7–10 A continuum approach has also been develop
that involves the explicit identification of face
boundaries.11–13 However, these methods become comp
cated when the surface geometry is not simple, i.e., does
possess symmetry. In addition, these methods7,8,11–15and re-
lated Monte Carlo simulations16–19have led to widely differ-
ent predictions for the temporal evolution, the wavelen
scaling exponent, and the shape of a sinusoidal profile du
decay.

In this paper, surface diffusion mediated relaxation bel
TR is discussed with the aid of kinetic Monte Carlo simu
tions and a continuum description is developed. The nona
lytic point in the free energy is removed by rounding off
small section through the cusp. The resulting nonlinear eq
tion describes surface dynamics in systems where the de
ment and diffusion of atoms across a terrace is the r
determining process. The method can be applied to mate
whose equilibrium crystal shape consists of the curved
gion meeting the facet without a discontinuity in slope. T
description of surface morphology evolution according to
continuum equation and the step model is compared.

The method of rounding off the cusp in the project
surface free energy has been suggested previously.14 How-
ever, this approach to surface relaxation has been challe
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by Rettori and Villain,7 and subsequently by the authors wh
proposed it originally.15 The various issues associated wi
this approach are addressed below.

The paper is organized as follows. Kinetic Monte Ca
simulations are discussed in Sec. II. The continuum met
is developed and applied to sinusoidal and patterned surf
in Sec. III. Limitations of the continuum approach are d
cussed in Sec. IV, followed by a conclusion in Sec. V.

II. KINETIC MONTE CARLO SIMULATIONS

Important aspects of the decay process can be highlig
using a Monte Carlo simulation. We use a solid-on-so
model with a square lattice. The energy of an atom withp
nearest neighbors is2p«. Atoms are only allowed to hop to
nearest-neighbor sites. The hopping ratef from sitei to sitej
is

f 5H n exp@2~Ej2Ei1«d!/kBT#, Ei,Ej

n exp@2«d /kBT#, Ei>Ej .
~1!

Here,n is the attempt frequency,kB is the Boltzmann con-
stant, andT is the temperature. The adatom~and vacancy!
diffusion barrier on the terrace is«d . The parameter value
chosen for the simulations aren51012 s21, «d50.3 eV,
and «50.3 eV. The roughening temperature for the~001!
facet isTR50.62«/kB .20 There is no Ehrlich-Schwoebel ba
rier and we expect diffusion-limited kinetics. Kinetic Mont
Carlo simulations for this model have been report
before.16,18 Here, I only elaborate on aspects not discuss
previously.

Consider the decay of bidirectional sinusoidal profiles
the form

z~x,y!5z0 cosS 2px

L D cosS 2py

L D . ~2!

A discretized version of Eq.~2! is set up and we follow the
evolution of the surface. Figure 1 shows snapshots of
surface at different stages of decay for a profile with init
amplitudez054 and wavelengthL5120. Time is measured
in units of @n exp(2«d /kBT)#21. The temperature for the
simulationT50.33«/kB50.54TR is well below the roughen-
ing temperature. The simulations were performed on a
3240 cell with periodic boundary conditions. The sinusoid
17 004 ©2000 The American Physical Society
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PRB 62 17 005MORPHOLOGICAL STABILITY OF NANOSTRUCTURES
shape is not preserved during decay as the regions nea
extrema and the saddle points get flattened. This has b
observed in experiments21 and occurs due to the lower fre
energy of the facet compared to neighboring orientations

Figure 2 shows the evolution of the Fourier amplitude22

uZ(q,t)u,q5(2p/L,2p/L) for wavelengths fromL516 to
L5160 as a function of scaled timet/L3. The initial ampli-
tude z054 for all wavelengths and the temperatureT
50.54TR. The results represent an average over at le
16(L3L) cells at each wavelength. We observe that ther
no unique wavelength scaling exponent. However, for lo
wavelengths the decay can be described approximately

FIG. 1. Snapshots of the surface morphology during the ev
tion a bidirectional sinusoidal profile of wavelengthL5120 and
initial amplitudez054. The unit of time is@n exp(2«d /kBT)#21.
Lighter regions represent higher points on the surface.

FIG. 2. Decay of the Fourier amplitudeuZ(q,t)u at q
5(2p/L,2p/L) for bidirectional sinusoidal profiles of wavelength
L516 to L5160. Due to the use of discretized sinusoidal profi
the starting amplitude was slightly different from four for ea
wavelength, and was normalized to four for this figure.
the
en

st
is
g

uZ~q,t !u'z02bt/L3. ~3!

The wavelength scaling exponent ofn'3 is in agreement
with a step model due to Rettori and Villain.7 It is noted that
for the very short wavelengths (L516,20), n'5 gives a
better fit and there is a gradual transition fromn'5 to n
'3.

Consider now the decay of two superposed bidirectio
sinusoidal profiles of the form in Eq.~2!. On a (2403240)
cell, bidirectional profiles with wavelengthsL560 and 120
and initial amplitudez054 are superposed and we follow th
evolution at T50.54TR. The evolution of Fourier ampli-
tudes for the superposed wavelengths is compared to the
cay when only one wavelength is present in Fig. 3. T
decay is clearly different in the two situations. Surfa
diffusion-mediated relaxation below the roughening te
perature must therefore be described by a nonlin
equation.8 This is in contrast to the situation aboveTR where
the Herring-Mullins equation, a linear equation, describ
surface diffusion-mediated relaxation.23

III. A CONTINUUM DESCRIPTION

The description of facets and the decay process belowTR
presents no conceptual difficulty in the Monte Carlo simu
tions. However, these simulations are extremely slow.
example, the decay process in Fig. 1 required on the orde
1012 atom jumps. The high wavelength scaling exponent i
plies that the time required for simulations goes up ve
rapidly with increasing wavelength. A continuum descripti
of the decay process can overcome this limitation.

Below TR, the projected@onto the~001! plane# surface
free energy per unit areaG has the general form24

G5G01G1~zx
21zy

2!1/21
1

3
G3~zx

21zy
2!3/2. ~4!

Here, z(x,y) is the height at position (x,y) and (zx ,zy)
[¹z. The three terms in the summation represent, per
area, the terrace free energy (G0), the step free energy (G1

-

FIG. 3. Comparison of the evolution of the Fourier amplitu
for two superposed wave vectorsq5(2p/L,2p/L), L560 and 120
~dashed lines! with the situation when only one wave vector
present~solid lines!. The data is averaged over 10 simulations, ea
on a 2403240 cell.
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17 006 PRB 62M. V. RAMANA MURTY
term! and the step-step interaction energy (G3 term!. For
simplicity, G1 and G3 are taken to be independent of th
azimuth.

Mass transport occurs from regions of high chemical
tential to regions of low chemical potential. The chemic
potential m @in excess of an infinitely flat~001! plane# is
given by4,5

m52VF ]

]x S ]G

]zx
D1

]

]y S ]G

]zy
D G ~5!

whereV is the atomic volume.
For a circular island of radiusr, Eq. ~5! gives ~for G3

50) m5VG1 /r , the expected Gibbs-Thompson relation25

At places where¹z50, Eq.~5! has the formm50•` creat-
ing a difficulty for an analytical or numerical solution. O
course,m is finite at all points on the surface and due
adatoms and vacancies on facets.7

We can get around the uncertainty inm at ¹z50 by
replacing (zx

21zy
2) in Eq. ~4! with (zx

21zy
21a2). The param-

etera has the units of slope and is chosen to be sufficien
small as discussed below. Rounding off the cusp permits14,26

the evaluation ofm at all orientations, including¹z50.

A. Equilibrium crystal shape

We first show that one approaches the exact equilibr
shape of the crystal and the exact value ofm in the limit a
→0. Consider a crystal of a fixed volumeV placed on a
substrate with the constraint that the angle of contacu
545°. ~As long as tanu@a, the conclusion remains un
changed.! The equilibrium shape of the crystalz[ f (r ) with
r 5(x21y2)1/2 is given by the Landau-Andree
construction24,27

m~a!

2V
r 5G1f r~ f r

21a2!21/21G3f r~ f r
21a2!1/2, ~6!

wheref r[d f /dr. Figure 4~a! shows the equilibrium shape o
the crystal for three different values ofa50.001, 0.01, and
0.1, as well as the exact shape witha50 for the ratio
G3 /G150.1. For finite values ofa, the equilibrium shape
approaches the exact shape asa→0. Figure 4~b! shows the
chemical potential for several values ofa and three different
values of the ratioG3 /G1. As a→0, m approaches the exac
value. Note thatm52G1V/r * , r * being the radius of the
facet, with contributions from both the step free energy a
the step-step interaction energy terms.

As mentioned above, one encountersm50•` on the
~001! plane when using Eq.~5!. By rounding off the cusp we
get

m~a!52VS G1

a
1G3a D ~zxx1zyy!. ~7!

While it is true that one replaces thè by a finite number
(5G1 /a1G3a), it is also the case that the 0 is replaced
a finite number (5zxx1zyy). In other words, there is no tru
facet when the cusp is removed from the projected surf
free energy. The region with the~001! orientation has a smal
curvature. In the limita→0, m(a) approaches the exac
value. While a particular functional form was chosen f
rounding off the cusp, it is evident from both the geometri
-
l

y

d

e

r
l

~Wulff ! and the analytical~Landau-Andreev! construction of
the equilibrium crystal shape24 that any reasonable functio
would yield the same result.

B. Equation for surface diffusion-mediated relaxation

We now consider surface morphology evolution und
nonequilibrium conditions. In such situations, one define
local chemical potential according to Eq.~5!. The surface
currentj is taken as

j52
Ds

kBT
ceq¹m. ~8!

where Ds is the adatom diffusivity,ceq is the equilibrium
adatom concentration@on an infinitely large~001! plane#, kB
is the Boltzmann constant, andT is the temperature.5 Con-
servation of mass gives

]z

]t
52V¹• j5k¹2m ~9!

where the coefficientk5DsceqV/kBT. The expression for
surface current, Eq.~8!, corresponds to diffusion-limited
transport, where adatoms do not face Ehrlich-Schwoebel
riers at step edges.7,8 We are assuming that transport is slo
with respect to one variable, namely, the mean step posit
and extremely fast for all other variables. Surface morph

FIG. 4. ~a! Equilibrium shape of the crystal according to Eq.~6!
for a fixed volumeV51, G350.1, G151, anda50, 0.001, 0.01,
and 0.1. The constraint ofu545° contact angle was imposed i
calculating the equilibrium shape. Note that the scale along h
zontal and vertical directions is different. The equilibrium sha
approaches the exact shape (a50) asa→0. ~b! Chemical potential
on the surface as a function ofa for G151 and three different
values ofG350.01, 0.1, and 1. The dotted line is the exact chem
cal potential calculated witha50. Asa→0, the chemical potentia
approaches the exact value in all three cases.
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PRB 62 17 007MORPHOLOGICAL STABILITY OF NANOSTRUCTURES
ogy evolution is described in the limit where step fluctu
tions get established quickly, and adatom concentration
the terraces comes to local equilibrium with the ste
quickly.

C. Connection with the step model

The equation for annealing, Eq.~9!, was written using the
standard principles of irreversible thermodynamics. Aw
from the facets, the equation can be obtained from a s
model. The following derivation closely follows the work o
Ozdemir and Zangwill.8 We assume that adatoms are t
only diffusing species.

Consider the surfacez(x,y) shown in Fig. 5~a!. At the
microscopic level, it is composed of steps and terraces. C
sider the section with steps labeledm21, m, andm11. The
terrace between stepsm andm11 is referred to as themth
terrace. The position of stepm is xm and its velocity is

dxm

dt
52VS k1

dF1

dxm
1k2

dF2

dxm
D . ~10!

Here, dF1 (dF2) is the change in the free energy whe
nearby atoms on the lower~upper! terrace are transferred t
the step edge, andk1 and k2 are kinetic coefficients. The
change in free energy when atoms from the lower terrace
transferred to the step edge is

dF15@mm2m̄m~xm
1!#

dxm

V
. ~11!

Here, mm is the chemical potential of an atom attached
stepm, and m̄m is the chemical potential of adatoms on t
mth terrace. The positionsxm

1 andxm
2 are adjacent to stepm

on the lower and upper side, respectively. Combining E
~10! and ~11!, we get

dxm

dt
52k1@mm2m̄m~xm

1!#2k2@mm2m̄m21~xm
2!#.

~12!

For small deviations from equilibrium, the chemical pote
tial of adatoms with densityc(x) is given by5

FIG. 5. Surface morphology evolution according to the co
tinuum equation and the step model.~a! Schematic of the surface
Chemical potential variation across theaverage surfaceaccording
to ~b! The step model.~c! The continuum equation.
-
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m̄5kBT lnS 11
c~x!2ceq

ceq
D'kBT

c~x!2ceq

ceq
. ~13!

We can also express the step velocity as

dxm

dt
5 n̄FDs

dcm~x!

dx Ux
m
12Ds

dcm21~x!

dx U
x

m
2G , ~14!

wheren̄ is the areal density of an adatom. The adatom d
sity c(x) can be determined for specific geometries from

¹2c~x!5
]c~x!

]t
50. ~15!

By setting the time derivative to zero, we are assuming s
moving steps and that the adatom density can quickly
spond to the moving steps. For a circular stack of islands,
adatom density on themth terrace is of the form

cm~x!5am1bm ln x ~16!

and for straight steps

cm~x!5am1bmx. ~17!

The coefficientsam andbm are determined by applying ap
propriate boundary conditions. In the general case, us
Eqs. ~12!, ~13!, and ~14!, we equate the components of th
step velocity to get

vm
15 n̄Ds

dcm~x!

dx
ux

m
152k1S 1kBT2

kBT

ceq
cm~xm

1!1mmD
~18!

and

vm11
2 52 n̄Ds

dcm~x!

dx
ux

m11
2

52k2S 1kBT2
kBT

ceq
c~xm11

2 !1mm11D . ~19!

From Eqs.~18! and ~19!, we get

n̄DsF 1

k1

dcm~x!

dx Ux
m
11

1

k2

dcm~x!

dx U
x

m11
2 G

5~mm112mm!2
kBT

ceq
@cm~xm11

2 !2cm~xm
1!#. ~20!

For diffusion-limited kinetics, we ignore the term on the le
hand side of Eq.~20! to give8

mm112mm5
kBT

ceq
@cm~xm11

2 !2cm~xm
1!#. ~21!

To take the continuum limit, we recognize that the surfa
heightz(x,y) can be related to step velocity by

]z

]t
5¹z

dxm

dt
. ~22!

If the step height isa, we can write the slope¹z
5a/(xm112xm). From Eqs.~14! and ~22!, we get

-
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]z

]t
5 n̄aDs

F dcm~x!

dx Ux
m11
2 2

dcm~x!

dx U
x

m
1

xm112xm

G . ~23!

With Eq. ~21! and settingn̄a5V, this becomes

]z

]t
5

DsceqV

kBT
¹2m, ~24!

which is the same as Eq.~9!.
Away from the facets where¹zÞ0, the step model and

the continuum equation predict the same behavior. The
scription is, however, different on the plateaus where¹z
'0.

On a dynamically evolving surface, one sets the ada
density to be constant at the extrema in a step model.7,8,10For
example, the coefficientsbm in Eqs. ~16! and ~17! are set
equal to zero at the top of a circular stack of islands
straight steps. This implies that the chemical potential is c
stant at the extrema. The variation of chemical poten
across the surface according to a step model is sketche
Fig. 5~b!.

A solution using the continuum equation, Eq.~9!, on the
other hand, shows~see the example of bidirectional sinu
soidal profile below! that the chemical potential varies ever
where including the plateaus. The variation of the chem
potential according to the continuum equation is sketche
Fig. 5~c!.

Should the chemical potential vary on the plateaus?
answer to this question is determined by the nature of
fluctuations. Note that we are attempting to describe the e
lution of the average surface profilewith the continuum
equation. The snapshots of the surface morphology in Fi
give us a clue. Even though we start with perfect~dis-
cretized! sinusoidal profiles, the various hilltops and valle
follow different trajectories in phase space due to the rand
~Brownian! nature of the diffusion process. There is n
unique facet radius and even the number of layers migh
different at different hilltops~and valleys!. Now the radius of
the island bounding the facet decreases gradually during
cay, typically following a power law~when averaged!.28

There is a finite probability for finding a facet of a particul
radius all the way down to a single atom.29 If we average the
chemical potential across the surface for a large numbe
profiles such as Fig. 1, we should expect the chemical po
tial to vary smoothly across the plateaus of the average
face.

D. Bidirectional sinusoidal profiles

We now apply the equation of motion for annealing, E
~9!, to describe bidirectional sinusoidal profile decay bel
TR. The starting surface is given by Eq.~2! with initial am-
plitude z052. The paramatersG150.1, G350.01, k51,
and a50.01. The grid size isDx5Dy5L/50. Figure 6~a!
shows the decay of the amplitudeA ~defined as the loca
maximum! for three different wavelengthsL550, 100, and
150. Following an initial transient, the amplitude decay c
be expressed as
e-

m

r
-
l
in

l
in

e
e
o-

1

m

e

e-

of
n-
r-

.

n

dA

dt
'2b/Ln ~25!

with n'3.0. Figure 6~b! shows the amplitude decay for th
wavelengthL5100 with four different values ofa50.005,
0.01, 0.02, and 0.05. The rate of decay is found to be ins
sitive to the value ofa and grid size~not shown!, provided
they are sufficiently small. The form of the amplitude evol
tion is in agreement with a previous analysis using rate eq
tions for steps7 and with Monte Carlo simulations at lon
wavelengths~Fig. 2!.16,17 The parameterb592 from the nu-
merical solution is also in agreement withb'77 from the
step model.7 The analytical estimateb'77 takes into ac-
count an additional factor of 2 not included in the st
model7 since, as noted above,m near the facet is closer to
2G1V/r * rather thanG1V/r * .30

Figure 7 shows a section of the surface morpholo
through the extrema and variation of the chemical poten
over the same region. The starting surface was a bidirectio
sinusoidal profile of wavelengthL5200 and initial ampli-
tude z054. The sinusoidal shape is not preserved and fl
tened regions are observed at the extrema~and also saddle
points, not shown!. The regions with slopeu¹zu!a may be
regarded as a facet and the set of points with a kink inu¹2zu

FIG. 6. The decay of the amplitude~defined as the local maxi
mum in height! for bidirectional sinusoidal profiles for three differ
ent wavelengths. The initial amplitudez052. The wavelength scal-
ing exponent isn'3.0. ~b! The dependence of the amplitude dec
on a for a fixed wavelengthL5100.

FIG. 7. The variation of surface heightz ~solid line! and the
chemical potentialm ~dashed line! for a bidirectional sinusoidal
profile of wavelengthL5200. The y5L/2 section is shown at
scaled timet/L356.2531023. Note that the chemical potential var
ies smoothly everywhere, including the plateaus.
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can be regarded as the operational definition of the fa
boundary. As noted above, the chemical potential va
smoothly everywhere, including the plateaus.

E. Unidirectional sinusoidal profiles

Before applying Eq.~9! to unidirectional sinusoidal pro
files, let us consider the equilibrium and nonequilibrium p
tures in more detail. The equilibrium crystal shape appro
ate to this geometry is calculated according to the Land
Andreev construction24,27 with the additional constraintzy
50. The condition of equilibrium implies that steps a
freely wandering. Hence, as shown in Fig. 8~a!, we expect
opposite steps making the facet to have crossed several t
along the length to form two-dimensional~2D! islands. Since
the 2D islands necessarily have in-plane curvature,m con-
sists of contributions from both the step free-energy te
(m1) and the step-step interaction energy term (m3).34 In
fact, m5G1V/w, 2w being the width of the facet.

As shown in Figs. 8~b!–8~d!, the evolution of a unidirec-
tional sinusoidal profile involves~i! building up fluctuations
at the two opposite steps at the extrema leading to con
and formation of 2D islands, and~ii ! the decay of the 2D
islands.7 The continuum method describes the evolution
the limit where process~i! occurs rapidly, and the decay o
the 2D islands is the slow process.

Figure 9~a! shows the decay of the amplitude of a unid
rectional sinusoidal profilez(x,y)5z0cos(2px/L) for three
different wavelengthsL5100, 200, and 300. The paramete
areG150.1, G350.01, k51, anda50.01. The initial am-
plitude is scaled with wavelengthz0 /L50.02 and the grid
size Dx5Dy5L/100. After the initial transient, the ampli
tude decay can be described by Eq.~25! with n53.0. The
functional form of the amplitude decay agrees with a pre
ous continuum description.11–13 In addition, the paramete
b522 from the numerical solution is also in good agreem

FIG. 8. ~a! Schematic of the equilibrium surface morpholog
relevant to the unidirectional surface corrugations. Since steps
freely wandering, the opposite steps will cross several times a
their length.~b!–~d! View near the maximum during the evolutio
of a unidirectional sinusoidal corrugation. The opposite steps at
extrema cross as they wander due to fluctuations. The 2D isla
that form eventually decay away leading to the removal of o
monolayer.
et
s

-
i-
u-

es

ct

-

t

with b'20 from the previous description.13 This is not sur-
prising since these models11–13 make the same assumption
as the one described here. However, the form of the am
tude decay disagrees with the wavelength scaling expo
of n55 in a step model8 and in previous Monte Carlo
simulations.16

The contribution of the step free-energy term to t
chemical potential is not included in the step model.8 Figure
9~b! shows the surface profile and the contributionsm1 and
m3 to the chemical potential for the wavelengthL5100 at
t/L350.01 according to the continuum description. The s
face profile consists of plateaus near the maximum and m
mum, as often observed in experiments.31–33 In the curved
regionsu¹zu@a, the dominant contribution tom comes from
m3 @m1 must strictly vanish according to Eqs.~4! and ~5!.8#
On the plateausu¹zu!a, m varies significantly and the
dominant contribution tom comes fromm1. Physically, this
corresponds to the presence of 2D islands. The Monte C
simulations in previous work16 were limited to small wave-
lengths due to the long computation times involved. Jus
for the bidirectional sinusoidal profiles~Sec. II!, it is plau-
sible that there is a transition to a linear decay of the am
tude with t/L3 scaling at long wavelengths.

F. Patterned surfaces

Surface diffusion mediated relaxation is a slow proce
The power-law scaling of the amplitude decay implies th
one has to fabricate structures with nanoscale dimension
determine scaling laws and activation energies. Given
difficulties in the fabrication of periodic profiles with nanom
eter scale features, the use of ‘‘patterned’’ surfaces for s
purposes has become popular.38–41 Such surfaces are gene
ated by growth or ion bombardment and exhibit a charac
istic length scale but always consist of a distribution
wavevectors.34–37Since the equation describing relaxation
non-linear, the results from such studies38–41 are not repre-
sentative of sinusoidal profile decay.

To illustrate this, we generate a ‘‘patterned’’ surface u
ing a standard differential equation with a stochastic term42

Snapshots of the surface morphology during subsequent
lution as described by Eq.~9! are shown in Figs. 10~a! and
10~b!. The parameters arek51, G150.1, G350.01 anda
50.01 and the simulations were performed on a 2003200

re
g

e
ds
e

FIG. 9. ~a! Amplitude decay of unidirectional sinusoidal profile
for three different wavelengths. The initial amplitude was sca
with the wavelengthz0 /L50.02. The wavelength scaling expone
is n53. ~d! Surface profile (z, dotted line! and the contributions of
the step free energy (m1, dashed line! and the step-step interactio
energy (m3, solid line! to the chemical potential.
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cell with Dx5Dy51. The amplitudes of the longe
wavevectors decay away faster than those of the sho
wave vectors, leading to a gradual increase in the chara
istic length scale. Figure 10~c! shows the variation of the
amplitudes of three wave vectors with time. Unlike sin
soidal profiles, the decay is not linear with time and there
no unique wavelength scaling exponent.

The nonlinear nature of the decay process is further ill
trated in Fig. 10~d! using the example of two superpose
bidirectional sinusoidal profiles of wavelengthsL550 and
100. The decay of the amplitudes corresponding to the
wave vectors for the superposed profiles is different from
situation where only one wave vector is present. The beh
ior is similar to that observed in kinetic Monte Carlo sim
lations ~Fig. 3!.

IV. DISCUSSION

In applying the equation for annealing, Eq.~9!, we have
made a number of simplifications. This includes diffusio
limited kinetics~no Ehrlich-Schwoebel barrier! and a surface
free energy independent of azimuth. We also make the
sumptions about slow moving steps and the quick estab
ment of step fluctuations. The rate determining proces
taken to be the detachment and diffusion of atoms acro
terrace. Furthermore, surface morphology evolution is o
described for materials whose equilibrium crystal shape c

*Present address: Materials Science Division, Argonne Natio
Laboratory, Argonne, IL 60439. Email address: murty@anl.go

1C.G. Zimmermann, M. Yeadon, K. Nordlund, J.M. Gibson, R
Averback, U. Herr, and K. Samwer, Phys. Rev. Lett.83, 1163
~1999!.

FIG. 10. Snapshots of the surface morphology during annea
of a patterned surface at times~a! t5100 and~b! t5500. ~c! The
evolution of three Fourier amplitudes.~d! Evolution of the Fourier
amplitudes during the decay of two bidirectional sinusoidal profi
of wavelengthsL550 and 100 evolving separately~solid lines! and
when superposed~dashed lines!.
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sists of the curved region meeting the facet without a disc
tinuity in slope.

In some situations, annealing may proceed throu
nucleation.3 If at some place on the surface¹z50 and¹2z
50, the chemical potentialm50. There is nothing unusua
aboutm50 since it refers to an excess chemical potent
However, such a location is a potential site for island nuc
ation. The surface kinetics will not be described accurat
by Eq.~9! in this situation, since no nucleation mechanism
built into it.

From a practical standpoint, how small a value should o
choose fora? As a general observation,a should be much
smaller than the maximum slope on the surface. One sho
always try a few values ofa to make sure that the results a
insensitive to its value. Asa is made smaller, one needs
use a finer grid~smallerDx andDy) to accurately calculate
the chemical potential near the edge of the plateau@point P
in Fig. 4~a!# where¹2z diverges.

Finally, it was argued above that the step model does
give an accurate description of the chemical potential va
tion over the plateau for the average surface. Why do we
good agreement between the continuum equation and
step model for the decay of bidirectional sinusoidal profile
In the step model one considers every position of the s
during the decay of a single layer. Hence, the total de
time for an island may still be reasonably described in a s
model.

On heuristic grounds, the chemical potential is expec
to vary over the plateau for the average surface. We co
speculate that in the limita→0, the chemical potentia
variation over the plateau represents the ensemble ave
However, I do not have any proof of the above statemen

V. CONCLUSION

In conclusion, surface diffusion induced smoothing belo
the roughening temperature has been discussed using ki
Monte Carlo simulations and a continuum equation. Rou
ing off the cusp in the surface free energy at low Miller ind
orientations permits a numerical solution of relaxation driv
by surface diffusion. The continuum equation and its relat
to the step model is discussed in detail.
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