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Surface diffusion-induced smoothing of features below the roughening temperature is discussed using ki-
netic Monte Carlo simulations and a continuum description is developed. Rounding off the cusp in the surface
free energy at low Miller index orientations permits a numerical solution of relaxation driven by surface
diffusion. For both unidirectional and bidirectional sinusoidal profiles of wavelehgthe amplitude decays
linearly with time and the decay time scales las®. Surface morphology evolution below the roughening
temperature as described by the continuum equation and a step model are compared.

[. INTRODUCTION by Rettori and Villain? and subsequently by the authors who
proposed it originally® The various issues associated with

The fabrication of nanostructures by patterning and bythis approach are addressed below.
various self-assembly techniques has received a lot of atten- The paper is organized as follows. Kinetic Monte Carlo
tion recently due to the unique size-dependent properties e)_sjmulations are discu;sed in _Sec. .II. The continuum method
hibited by the features. The small size of the features implie&s developed and applied to sinusoidal and patterned surfaces
short thermal processing times for the fabrication of devicesin Sec. lll. Limitations of the continuum approach are dis-
Nanoscale features will smooth out rapidly by surface diffu-cussed in Sec. IV, followed by a conclusion in Sec. V.
sion upon annealing to minimize the surface free enérdy.

Thereforg, it is of intgrest to determine how the rate of decay Il KINETIC MONTE CARLO SIMULATIONS
scales with feature size.

A continuum description of surface diffusion mediated Important aspects of the decay process can be highlighted
relaxation was derived by Herrifignd further developed by using a Monte Carlo simulation. We use a solid-on-solid
Mullins.® The theory can be readily applied to amorphousmodel with a square lattice. The energy of an atom wgith
materials and to single-crystal surfaces above their roughemearest neighbors is pe. Atoms are only allowed to hop to
ing temperaturd . However, as noted by Mullirsa direct  nearest-neighbor sites. The hopping riai@m sitei to sitej
application of the theory to crystalline materials beldwis  is
prevented by the presence of a cusp in the surface free en-
ergy at low Miller index orientations. { vexd —(E;—Eij+eq/kgT], E<E;

- VeX[{_Sd/kBT], E|>EJ (1)

To get around the nonanalyticity of the free energy, step f=
model$ involving rate equations for individual steps have
been developed to describe the smoothing of a rough
surface’ 1% A continuum approach has also been develope
that involves the explicit identification of facet
boundaries?~** However, these methods become compli-

cated when the surface geometry is not simple, i.e., does n

. ) ~15 _
possess symmetry. In addition, these meth&d$ *°and re facet isTr=0.62/kg .%° There is no Ehrlich-Schwoebel bar-

lated Monte Carlo simulatioff$ **have led to widely differ- rier and we expect diffusion-limited kinetics. Kinetic Monte
ent predictions for the temporal evolution, the WavelengthCarlo simulations for this model have ' been reported
scaling exponent, and the shape of a sinusoidal profile durinefore16'18 Here, | only elaborate on aspects not discussed
decay. \Apreviously.

In this paper, surface diffusion mediated relaxation belo . S . . .
C : . L : Consider the decay of bidirectional sinusoidal profiles of
Tr is discussed with the aid of kinetic Monte Carlo simula- the form

tions and a continuum description is developed. The nonana-

lytic point in the free energy is removed by rounding off a 2% 5

small section through the cusp. The resulting nonlinear equa- 2(%,y) =2 cos( i) cos( iy) _ %)

tion describes surface dynamics in systems where the detach- L L

ment and diffusion of atoms across a terrace is the rate-

determining process. The method can be applied to materiak discretized version of E¢(2) is set up and we follow the
whose equilibrium crystal shape consists of the curved reevolution of the surface. Figure 1 shows snapshots of the
gion meeting the facet without a discontinuity in slope. Thesurface at different stages of decay for a profile with initial
description of surface morphology evolution according to theamplitudez,=4 and wavelengtt. =120. Time is measured

ere, v is the attempt frequenc¥g is the Boltzmann con-
tant, andT is the temperature. The adato@nd vacancy
diffusion barrier on the terrace isy. The parameter values
ghosen for the simulations are= 102 571 £4=0.3 eV,
and £=0.3 eV. The roughening temperature for t@91)

continuum equation and the step model is compared. in units of [vexp(—ey4/kgT)] L. The temperature for the
The method of rounding off the cusp in the projectedsimulationT=0.33/kg=0.54Ty is well below the roughen-
surface free energy has been suggested previdtishpw-  ing temperature. The simulations were performed on a 240

ever, this approach to surface relaxation has been challenge¢240 cell with periodic boundary conditions. The sinusoidal
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FIG. 3. Comparison of the evolution of the Fourier amplitude
for two superposed wave vectars- (2#/L,27/L), L=60 and 120
(dashed lineswith the situation when only one wave vector is
presenisolid lines. The data is averaged over 10 simulations, each
on a 240x 240 cell.

© )

FIG. 1. Snapshots of the surface morphology during the evolu- |Z(q,t)[~2zo— Bt/L>. 3
tion a bidirectional sinusoidal profile of wavelength=120 and
initial amplitudezo=4. The unit of time ig v exp(—&q/kgT)] L.
Lighter regions represent higher points on the surface.

The wavelength scaling exponent of3 is in agreement
with a step model due to Rettori and Villairit is noted that
for the very short wavelengthd &16,20), n~5 gives a

shape is not preserved during decay as the regions near thgtter fit and there is a gradual transition fram+5 to n
extrema and the saddle points get flattened. This has beén3: .
observed in experimerfisand occurs due to the lower free ~ Consider now the decay of two superposed bidirectional
energy of the facet compared to neighboring orientations. Sinusoidal profiles of the form in Eq2). On a (240<240)
Figure 2 shows the evolution of the Fourier amplittide Cell, bidirectional profiles with wavelengttis=60 and 120
1Z(q,t)],q=(27/L,27/L) for wavelengths fromL=16 to and |n!t|al amplitudezy=4 are superp_osed and we follow t_he
L =160 as a function of scaled tintéL3. The initial ampli- ~ volution atT=0.54Tg. The evolution of Fourier ampli-
tude z,=4 for all wavelengths and the temperatufe tudes for the superposed wavelengths is compared to the de-
=0.54T. The results represent an average over at leat®y When only one wavelength is present in Fig. 3. The
16(L X L) cells at each wavelength. We observe that there i§€cay is clearly different in the two situations. Surface
no unique wavelength scaling exponent. However, for |ondi|ffu3|on—med|ated relaxation below the roughening tem-

wavelengths the decay can be described approximately byPerature must therefore be described by a nonlinear
equatiorf This is in contrast to the situation aboVg where

the Herring-Mullins equation, a linear equation, describes
surface diffusion-mediated relaxatiéh.

Ill. A CONTINUUM DESCRIPTION

The description of facets and the decay process bdlgw
presents no conceptual difficulty in the Monte Carlo simula-
tions. However, these simulations are extremely slow. For
example, the decay process in Fig. 1 required on the order of
10'2 atom jumps. The high wavelength scaling exponent im-
plies that the time required for simulations goes up very
rapidly with increasing wavelength. A continuum description
of the decay process can overcome this limitation.

Below Tg, the projectedonto the(001) plandg surface
free energy per unit are@ has the general forffl

G=G.+G (ZZ+22)1/2+ EG (ZZ+22)3/2 (4)
FIG. 2. Decay of the Fourier amplitudéz(q,t)| at g 07 P& T 4y 3T

=(2=/L,2=/L) for bidirectional sinusoidal profiles of wavelengths

L=16 toL=160. Due to the use of discretized sinusoidal profilesHere, z(x,y) is the height at positionxy) and (,,z,)

the starting amplitude was slightly different from four for each =Vz. The three terms in the summation represent, per unit
wavelength, and was normalized to four for this figure. area, the terrace free energg(), the step free energyd;
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term) and the step-step interaction enerdg;(term). For
simplicity, G, and G; are taken to be independent of the
azimuth.

Mass transport occurs from regions of high chemical po-
tential to regions of low chemical potential. The chemical
potential « [in excess of an infinitely flat001) plang is

given by*®
d ((?G) J (aG)
Q= —|+—|—
ax\ dzy)  ay\ dz,

where() is the atomic volume. G,
For a circular island of radius, Eq. (5) gives (for G4
=0) u=QG,/r, the expected Gibbs-Thompson relatfdn.
At places wher&/z=0, Eq.(5) has the formu=0- creat-
ing a difficulty for an analytical or numerical solution. Of 2
course,u is finite at all points on the surface and due to

adatoms and vacancies on fackts.

We can get around the uncertainty jn at Vz=0 by
replacing g;+2z;) in Eq. (4) with (zZ+ 25+ o?). The param-
eter o has the units of slope and is chosen to be sufficiently
small as discussed below. Rounding off the cusp petffits 0
the evaluation ofu at all orientations, includin§y z=0.

w=—

5 (o)

0.001 0.01 01 q
®

FIG. 4. (a) Equilibrium shape of the crystal according to E6).

We first show that one approaches the exact equilibriunfor a fixed volumevV=1, G;=0.1, G;=1, ande=0, 0.001, 0.01,
shape of the crystal and the exact valueuoin the limit « and 0.1. The constraint c#=45° contact angle was imposed in
—0. Consider a crystal of a fixed volumé placed on a calculating the equilibrium shape. Note that the scale along hori-
substrate with the constraint that the angle of cont@ct zontal and vertical directions is different. The equilibrium shape
=45°. (As long as tané>«, the conclusion remains un- @approaches the exact shagec(O) asa—0. (b) Chemical pqtential
changed. The equilibrium shape of the crysta&f(r) with on the surface as a function of for G;=1 and three different

A. Equilibrium crystal shape

r:(x2+y2)1’2 is given by the Landau-Andreev values of(_53:0.01, 0.1, a_nd 1. The dotted line is th_e exact ch_emi-
constructioR®27 cal potential calculated with=0. As «— 0, the chemical potential
approaches the exact value in all three cases.
m(a)

2 - 2
g "~ Gafe(f; +a®) V4 Gof (7 +a®)Y% (8)  (wulff) and the analyticalLandau-Andreelconstruction of

the equilibrium crystal shapéthat any reasonable function

wheref,=df/dr. Figure 4a) shows the equilibrium shape of would yield the same resuilt.

the crystal for three different values ef=0.001, 0.01, and

0.1, as well as the exact shape widh=0 for the ratio B. Equation for surface diffusion-mediated relaxation

G3/G;=0.1. For finite values oy, the equilibrium shape i ,

approaches the exact shapeaas 0. Figure 4b) shows the We now consider surface morphology evolution under

chemical potential for several values @fand three different Nonequilibrium conditions. In such situations, one defines a

values of the rati,/G,. As a— 0, u approaches the exact local chemical potential according to E¢p). The surface

value. Note thatu=2G,Q/r*, r* being the radius of the Currentj is taken as

facet, with contributions from both the step free energy and D.
the step-step interaction energy terms. j=- ﬁceqv M. (8
As mentioned above, one encountgis=0- on the B
(001 plane when using Ed5). By rounding off the cusp we where D is the adatom diffusivityce, is the equilibrium
get adatom concentratigfon an infinitely largg001) pland, kg
G is the Boltzmann constant, aridis the temperature.Con-
wla)=—0 71 +Gaa|(Zy+2yy). (7)  servation of mass gives
Jz
While it is true that one replaces the by a finite number —=-QV.j=«V?u 9

. . ot
(=G, /a+Gza), it is also the case that the 0 is replaced by

a finite number € z,,+2,,). In other words, there is no true where the coefficienic=DC.4(2/kgT. The expression for
facet when the cusp is removed from the projected surfacsurface current, Eq(8), corresponds to diffusion-limited
free energy. The region with tH801) orientation has a small transport, where adatoms do not face Ehrlich-Schwoebel bar-
curvature. In the limita—0, w(«) approaches the exact riers at step edge's We are assuming that transport is slow
value. While a particular functional form was chosen forwith respect to one variable, namely, the mean step position,
rounding off the cusp, it is evident from both the geometricaland extremely fast for all other variables. Surface morphol-
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— c(x)—c c(x)—c
(a) z(x.) M= kBT |n 1+ —eq ~ kBT_C €q (13)
height eq eq
We can also express the step velocity as
dxp dcp(x) dcp-1(x)
b) n WZZI: DS dx Xr;_ S—dX | (14)
step model .

wherev is the areal density of an adatom. The adatom den-

© » sity ¢(x) can be determined for specific geometries from

continuum

dc(X) B

2 _
Vie(x)=—

(15

FIG. 5. Surface morphology evolution according to the con-By sgtting the time derivative to zero, we Qre assumi.ng slow
tinuum equation and the step mod&l) Schematic of the surface. moving steps and that the adatom density can quickly re-

Chemical potential variation across theerage surfacaccording ~ SPOnd to the moving steps. For a circular stack of islands, the
to (b) The step model(c) The continuum equation. adatom density on theth terrace is of the form

ogy evolution is described in the limit where step fluctua- Cm(X) =8+ b INX (16
tions get established quickly, and adatom concentration oand for straight steps

the terraces comes to local equilibrium with the steps

quickly. Cm(X)=am+bmX. 17)

The coefficients,,, andb,, are determined by applying ap-
C. Connection with the step model propriate boundary conditions. In the general case, using
The equation for annealing, E@), was written using the  Eds.(12), (13), and(14), we equate the components of the
standard principles of irreversible thermodynamics. AwayStep velocity to get
from the facets, the equation can be obtained from a step — dey(x)
model. The following derivation closely follows the work of vh= vDsL
Ozdemir and Zangwilf. We assume that adatoms are the dx
only diffusing species. (18)
Consider the surface(x,y) shown in Fig. %a). At the gng
microscopic level, it is composed of steps and terraces. Con-
sider the section with steps labeled-1, m, andm+1. The _ —_dey(x)
terrace between steps andm+1 is referred to as theth Um+1™ ~ Vs gy |><;1+1
terrace. The position of stap is x,,, and its velocity is

kgT N
|x;:_k+ +kgT— c Crm(Xm) + 1m
eq

keT
+kBT_C_C(Xm+1)+Mm+1 . (19
eq

Xm+1]

kgT B N
=(Mm+1— Mm) — c [Cm(xm+1)_cm(xm)]- (20
eq

dx, SF* SF~ =—k-
W——Q k+5x_m+k_m . (10)
From Egs.(18) and(19), we get

Here, SF" (8F ) is the change in the free energy when
nearby atoms on the lowéuppe) terrace are transferred to I i dcm(X)
the step edge, ankl, andk_ are kinetic coefficients. The Sk, dx
change in free energy when atoms from the lower terrace are
transferred to the step edge is

1 dcy(x)
Xr;+[ dx

— OX
SF " =[ pm— (X)) I 11
L™ pmlm) 1y (D For diffusion-limited kinetics, we ignore the term on the left-

Here, u,, is the chemical potential of an atom attached tohand side of Eq(20) to give’

stepm, and u,, is the chemical potential of adatoms on the kgT _ N
mth terrace. The positions,, andx,, are adjacent to stem Mm“—ﬂm:C—m[cm(me)—cm(xm)]. (22)
on the lower and upper side, respectively. Combining Egs.
(10) and(11), we get To take the continuum limit, we recognize that the surface
g heightz(x,y) can be related to step velocity by
X — _
S =~ kel s 1= K[ = e 2(60) . 0z dxy

(12) E:VZW' (22)

For small deviations from equilibrium, the chemical poten-If the step height isa, we can write the slopeVz
tial of adatoms with densitg(x) is given by =al(Xms1— Xm). From Egs.(14) and(22), we get
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dcm(x) dcm(x) _A__l ....................................... AI .............................. 0005

X . z Z --=--a=0.
iz — dx eerdx s 0 0 =001
—=vaDq — . 23 |~ ie1s0| R o=0.02
at Xm+1~ Xm -6~ 0.=0.05

With Eq. (21) and settingva= (), this becomes

9z DgCef)

ot kgT

Veu, (24

which is the same as E¢9). FIG. 6. The decay of the amplitudeefined as the local maxi-
Away from the facets wher&z+0, the step model and myum in height for bidirectional sinusoidal profiles for three differ-

the continuum equation predict the same behavior. The demt wavelengths. The initial amplitudg= 2. The wavelength scal-

scription is, however, different on the plateaus Wh&® ing exponent i;i~3.0.(b) The dependence of the amplitude decay

~0. on « for a fixed wavelength. = 100.
On a dynamically evolving surface, one sets the adatom
density to be constant at the extrema in a step mo&#&For dA
example, the coefficients,, in Egs. (16) and (17) are set —~—pB/L" (25

equal to zero at the top of a circular stack of islands or dt
straight steps. This implies that the chemical potential is congith n~3.0. Figure €b) shows the amplitude decay for the

stant at the extrema. The variation of chemical pOtential/vavelengthL=100 with four different values ofr=0.005
across the surface according to a step model is sketched §1o1 002 and 0.05. The rate of decay is found to be ir’1$en—
Fig. 5b). _ _ _ sitive to the value ofr and grid size(not shown, provided

A solution using the continuum equation, E), on the  yhey are sufficiently small. The form of the amplitude evolu-

other hand, showssee the example of bidirectional sinu- yjon s in agreement with a previous analysis using rate equa-
soidal profile belowthat the chemical potential varies every—alN

: . o Y- tions for step§ and with Monte Carlo simulations at long
where including the plateaus. The variation of the chemic

ol . " , s sketched avelengthgFig. 2).1%" The parametep=92 from the nu-
E?g;egzg’)‘ according to the continuum equation is sketched ifyarica| solution is also in agreement wi=77 from the

. : step model. The analytical estimatg@~77 takes into ac-
Should the chemical potential vary on the plateaus? The, .+ an additional factor of 2 not included in the step

answer to this question is determine.d by the nature of th?hode? since, as noted abovg, near the facet is closer to
fluctuations. Note that we are attempting to describe the eVOZGlﬂlr* rather tharG, Q/r* 2

lution of the average surface profilith the continuum
equation. The snapshots of the surface morphology in Fig. hr
give us a clue. Even though we start with perfédis-
cretized sinusoidal profiles, the various hilltops and valleys
follow different trajectories in phase space due to the rando
(Brownian nature of the diffusion process. There is no
unique facet radius and even the number of layers might b
different at different hilltopgand valley$. Now the radius of
the island bounding the facet decreases gradually during d
cay, typically following a power law(when averaged®
There is a finite probability for finding a facet of a particular z
radius all the way down to a single atdhif we average the 1F
chemical potential across the surface for a large number of
profiles such as Fig. 1, we should expect the chemical poten-
tial to vary smoothly across the plateaus of the average sur-
face. o}

Figure 7 shows a section of the surface morphology
ough the extrema and variation of the chemical potential
over the same region. The starting surface was a bidirectional
sinusoidal profile of wavelength =200 and initial ampli-

de zy=4. The sinusoidal shape is not preserved and flat-
tened regions are observed at the extrdara also saddle
Soints, not showh The regions with slopgVz|<a may be
[egarded as a facet and the set of points with a Kinite|

D. Bidirectional sinusoidal profiles

We now apply the equation of motion for annealing, Eq. 1-0:005

(9), to describe bidirectional sinusoidal profile decay below
Tr. The starting surface is given by E@) with initial am-
plitude z,=2. The paramater&,=0.1, G3=0.01, k=1,
and «=0.01. The grid size is\x=Ay=L/50. Figure 6a) FIG. 7. The variation of surface heiglt(solid line) and the
shows the decay of the amplitude (defined as the local chemical potentialw (dashed ling for a bidirectional sinusoidal
maximum) for three different wavelengthis=50, 100, and  profile of wavelengthL=200. They=L/2 section is shown at
150. Following an initial transient, the amplitude decay canscaled time/L3=6.25x 10" 3. Note that the chemical potential var-
be expressed as ies smoothly everywhere, including the plateaus.

1
0 100 x 200
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“ A ] Zpoe e 1%
’ . % 1| i,/ 10.005
< ( 05 o hy———A—o
i S
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-1 NI 1-0.005
0 50 x 100
< ' (b)
~ FIG. 9. (a) Amplitude decay of unidirectional sinusoidal profiles

for three different wavelengths. The initial amplitude was scaled
l ‘ ) ‘ ‘ . with the wavelengtlzy /L =0.02. The wavelength scaling exponent
@

is n=3. (d) Surface profile £, dotted ling and the contributions of

@) ®) © the step free energyu(;, dashed lingand the step-step interaction
energy (3, solid line) to the chemical potential.

FIG. 8. (a) Schematic of the equilibrium surface morphology ) o o

relevant to the unidirectional surface corrugations. Since steps aMith 8~20 from the previous descriptior.This is not sur-

freely wandering, the opposite steps will cross several times alongrising since these modéls™® make the same assumptions

their length.(b)—(d) View near the maximum during the evolution as the one described here. However, the form of the ampli-

of a unidirectional sinusoidal corrugation. The opposite steps at théude decay disagrees with the wavelength scaling exponent

extrema cross as they wander due to fluctuations. The 2D islandsf n=5 in a step modé&land in previous Monte Carlo

that form eventually decay away leading to the removal of onesimulations'®

monolayer. The contribution of the step free-energy term to the
chemical potential is not included in the step mdtiElgure

can be regarded as the operational definition of the faced(b) shows the surface profile and the contributipnsand

boundary. As noted above, the chemical potential varieg,, to the chemical potential for the wavelendth=100 at

smoothly everywhere, including the plateaus. t/L3=0.01 according to the continuum description. The sur-
face profile consists of plateaus near the maximum and mini-
E. Unidirectional sinusoidal profiles mum, as often observed in experimefits> In the curved

regions|Vz|> «, the dominant contribution tp comes from

) . S T -3 [y must strictly vanish according to Eq@l) and (5).%]
files, let us consider the equilibrium and nonequilibrium pic On the plateaugVz|<a, u varies significantly and the

tures in more detail. The equilibrium crystal shape appropri X S . )
d y be approp dominant contribution tqx comes fromu,. Physically, this

ate to this geometry is calculated according to the Landau- .
Andreev cc?nstructi?%‘i*” with the additionalgconstrainz corresponds to the presence of 2D islands. The Monte Carlo
y

=0. The condition of equilibrium implies that steps are simulations in previous wofR were Iimi_ted 0 small wave-
freely wandering. Hence, as shown in Figa8 we expect lengths due to the long computation times involved. Just as

opposite steps making the facet to have crossed several timIaO%Itheh bldgectpnal S|nu§9|dal pro|1f|le(§eg. I, it 'f‘ ﬁlau' i
along the length to form two-dimension@D) islands. Since S'de t .ar: t/ e3re IS If"‘ translmon toa llnearh ecay of the ampli-
the 2D islands necessarily have in-plane curvatureson- tude witht/L= scaling at long wavelengths.
sists of contributions from both the step free-energy term
(11) and the step-step interaction energy terpp)(** In F. Patterned surfaces
fact, u=G1Q/w, 2w being the width of the facet. Surface diffusion mediated relaxation is a slow process.
As shown in Figs. 8)—8(d), the evolution of a unidirec- The power-law scaling of the amplitude decay implies that
tional sinusoidal profile involve§) building up fluctuations one has to fabricate structures with nanoscale dimensions to
at the two opposite steps at the extrema leading to contacletermine scaling laws and activation energies. Given the
and formation of 2D islands, andi) the decay of the 2D difficulties in the fabrication of periodic profiles with nanom-
islands’ The continuum method describes the evolution ineter scale features, the use of “patterned” surfaces for such
the limit where proces§) occurs rapidly, and the decay of purposes has become populd*! Such surfaces are gener-
the 2D islands is the slow process. ated by growth or ion bombardment and exhibit a character-
Figure 9a) shows the decay of the amplitude of a unidi- istic length scale but always consist of a distribution of
rectional sinusoidal profile(x,y) =z,cos(2wx/L) for three  wavevectors*—3’Since the equation describing relaxation is
different wavelengths = 100, 200, and 300. The parameters non-linear, the results from such studf&é! are not repre-
areG,=0.1, G3=0.01, k=1, ande=0.01. The initial am- sentative of sinusoidal profile decay.
plitude is scaled with wavelength,/L=0.02 and the grid To illustrate this, we generate a “patterned” surface us-
size Ax=Ay=L/100. After the initial transient, the ampli- ing a standard differential equation with a stochastic t&m.
tude decay can be described by EB5 with n=3.0. The Snapshots of the surface morphology during subsequent evo-
functional form of the amplitude decay agrees with a previ-lution as described by Eq9) are shown in Figs. 1@ and
ous continuum descriptiott= 23 In addition, the parameter 10(b). The parameters are=1, G;=0.1, G;=0.01 anda
B=22 from the numerical solution is also in good agreement=0.01 and the simulations were performed on a>2@00

Before applying Eq(9) to unidirectional sinusoidal pro-
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sists of the curved region meeting the facet without a discon-
tinuity in slope.

In some situations, annealing may proceed through
nucleatior? If at some place on the surfafez=0 andV?z
=0, the chemical potentigh=0. There is nothing unusual
about u=0 since it refers to an excess chemical potential.
However, such a location is a potential site for island nucle-
ation. The surface kinetics will not be described accurately
by Eqg.(9) in this situation, since no nucleation mechanism is

built into it.
Z(q.0)! 1 1Z(q.0)! From a practical standpoint, how small a value should one
i —q=(0.047.,0) 1 choose fora? As a general observatiom, should be much
P ----a=(006m0) smaller than the maximum slope on the surface. One should
L q=(0.087.0) always try a few values of to make sure that the results are
o insensitive to its value. As is made smaller, one needs to
02f-. AN 3 . use a finer gridsmallerAx andAy) to accurately calculate
B N N the chemical potential near the edge of the plafgemint P
g, ™ 9= (250, 2n/50) in Fig. 4a] whereV?z diverges.
% rr— '1‘(')‘00 : % 250\0‘ T _ Finally, it was arguet_:i e_lbove that the step model _does not
© @ give an accurate description of the chemical potential varia-

tion over the plateau for the average surface. Why do we get
FIG. 10. Snapshots of the surface morphology during annealing©0d agreement between the continuum equation and the
of a patterned surface at timéa t=100 and(b) t=500.(c) The  Step model for the decay of bidirectional sinusoidal profiles?
evolution of three Fourier amplituded) Evolution of the Fourier N the step model one considers every position of the step
amplitudes during the decay of two bidirectional sinusoidal profilesdurmg the _decay of a syngle layer. Hence, thl}‘ t0t<’?1| decay
of wavelengthd. =50 and 100 evolving separatelsolid lines and  time for an island may still be reasonably described in a step

when superpose(tiashed lines model.

On heuristic grounds, the chemical potential is expected
cell with Ax=Ay=1. The amplitudes of the longer to vary over the plateau for the average surface. We could
wavevectors decay away faster than those of the shortepeculate that in the limiw—0, the chemical potential
wave vectors, leading to a gradual increase in the charactevariation over the plateau represents the ensemble average.
istic length scale. Figure 16) shows the variation of the However, | do not have any proof of the above statement.
amplitudes of three wave vectors with time. Unlike sinu-
soidal profiles, the decay is not linear with time and there is V. CONCLUSION
no unique wavelength scaling exponent.

The nonlinear nature of the decay process is further illus
trated in Fig. 10d) using the example of two superposed
bidirectional sinusoidal profiles of wavelengths=50 and

In conclusion, surface diffusion induced smoothing below
the roughening temperature has been discussed using kinetic
Monte Carlo simulations and a continuum equation. Round-
ing off the cusp in the surface free energy at low Miller index

tors for th d orofiles is diff i f th Qrientations permits a numerical solution of relaxation driven
wave Vectors Tor the SUperposed protiies IS difterent from EE)y surface diffusion. The continuum equation and its relation
situation where only one wave vector is present. The beha

Mo the step model is discussed in detail.
ior is similar to that observed in kinetic Monte Carlo simu- P
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