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Scaling behavior in a quantum wire with scatterers
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We study the conductance properties of a straight two-dimensional quantum wire with impurities modeled
by s-like scatterers. Their presence can lead to strong interchannel coupling. It was shown that such systems
depend sensitively on the number of transverse modes included. Based on a poor man’s scaling technique we
include the effect of higher modes in a renormalized coupling constant. We therefore show that the low-energy
behavior of the wire is dominated by only a few modes, which hence is a way to reduce the necessary
computing power. The technique is successfully applied to the case of one and twos-like scatterers.
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I. INTRODUCTION

Over the past decade, quantum transport in tw
dimensional electron systems has attracted increasing a
tion. In electron wave guide structures, the transmission
resonance phenomena have been studied extensively,
cially because the conductance was shown to be directly
lated to the scattering properties of the system. This rela
is known as Landauer-Bu¨ttiker formula1–5

G5
e2

h
T, ~1!

whereG denotes the two-point conductance andT the full
transmission function~spin degrees of freedom are n
glected!. Equation~1! results in a quantized conductance f
ballistic channels, which has been experimentally verified
a large range of conduction channels.6

It is therefore of great interest to study the properties
ballistic wires containing impurities. Especially for attractiv
scatterers the combined effect of the scatterer itself and
backscattering off the walls leads to interesting phenom
such as resonances and quasibound states.7–12 Moreover
strong inter channel coupling is introduced into the syst
making calculations quite complicated. A simple model co
taining all of the features mentioned above consists o
pointlike scatterer modeled by a two-dimensionald
function.7–9 In this paper we present a way to dramatica
reduce the computational complexity of this problem by
cluding the effect of the higher modes in a renormaliz
coupling constant.

The outline of this paper is as follows. In the next secti
we present the standard approach to calculating the con
tance in this kind of wave guide setup. We then briefly d
cuss results for two model systems for an impurity in t
wave guide. For the case of ad-function impurity, we intro-
duce a scaling approach and discuss the results for the
PRB 620163-1829/2000/62~24!/16933~6!/$15.00
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caled system. We finally generalize the scaling approach
system with many scatterers and show results for the cas
two d-function scatterers.

II. CONDUCTANCE CALCULATION

In this section we sketch the calculation of the condu
tance of an electron wave guide including a general scatte
We restrict ourselves to a single scatterer, because the tr
mission matrix for many scatterers can be obtained by m
tiplying together the transmission matrices for the individu
single scatterers.

Let us first obtain a solution of the Schro¨dinger equation
for an electron in a two-dimensional wave guide with a ge
eral scatterer. The Hamiltonian is given by

H5
p2

2m
1V~x,y!1Vc~y!. ~2!

Vc represents a confinement potential restricting the tra
verse movement of the electron andV(x,y) represents the
scattering potential. We assumeV(x,y) to be nonzero only
within a finite region small compared to the width of th
channel. We can now expand any stationary solut
cE(x,y) of the Schro¨dinger equation, HcE(x,y)
5EcE(x,y), in a Fourier series withx-dependent expansio
coefficients using the complete set of transversal modes

cE~x,y!5 (
n51

`

cn~x!xn~y!, ~3!

where xn(y) is the transverse state of the electron in t
absence of the scatterer. Inserting this series into the Sc¨-
dinger equation and employing orthogonality of the transv
sal modes we obtain a set of coupled equations
16 933 ©2000 The American Physical Society
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]2

]x2
cm~x!1km

2 cm~x!5(
n

Mmn~x!cn~x!, ~4!

with the definitions of the mode coupling constantsMmn(x)
and the wave vectorkm ,

Mmn~x!5
2m

\2 E dyxm* ~y!V~x,y!xn~y!, ~5!

km5A2m

\2
~E2Em!. ~6!

Outside the scattering region the solution is given by lin
combinations of the form

cn~x!5H Aneiknx1Bne2 iknx, x!0,

Cneiknx1Dne2 iknx, x@0.
~7!

For kn real, we get propagating modes, forkn imaginary
evanescent modes. By matching the wave functions for b
regions with the appropriate boundary conditions, the co
ficients for incoming and outgoing waves can be obtaine

The transmission coefficient for propagating modes is
fined asTmn5(kn /km)(uCnu2/uAmu2) and the total transmis
sion function as

T~E!5 (
mn

(prop)

Tmn , ~8!

where the sum extends over all propagating modes. The
ductance is finally calculated using Eq.~1!.

The transmission coefficients can also be obtained fr
the Green’s function of the system. More specifically, it
the retarded Green’s function that governs this behavior
via its poles also describes resonance behavior.3,13 The re-
tarded Green’s function for the wire without scatterer
given by

G0~x,y,x8,y8!5 (
n51

`

xn* ~y!xn~y8!
2m

\2

eiknux2x8u

2ikn
~9!

or

Gab
0 ~x,x8!5E dy dy8xa* ~y!G0~x,y,x8,y8!xb~y8!.

~10!

The full solution can then be obtained from the Dyson eq
tion

Gab~x,x8!5Gab
0 ~x,x8!1(

c,d
E dx9Gac

0 ~x,x9!

3Vcd~x9!Gdb~x9,x8! ~11!

with

Vcd~x9!5E dyxc* ~y!V~x9,y!xd~y!. ~12!
r

th
f-

-

n-

m

d

-

III. SIMPLE MODEL SYSTEMS

We will now apply the general outline of the previou
section to two simple model systems: the case of
d-function scatterer described by

V~x,y!5gd~x!d~y2y0! ~13!

and discussed by various authors,8,14,15as well as the slightly
more realistic model with

V~x,y!5gd~x!
1

Apr
expS 2

y2

r2D ~14!

describing a softer ‘‘impurity’’ scatterer in transvers
direction.16

For both potentials, the wave guide can be split in tw
separate regions atx50 and Eq.~7! can be written as

cn~x!5H Aneiknx1Bne2 iknx, x,0,

Cneiknx1Dne2 iknx, x.0.
~15!

As c must be continuous atx50 and its derivative mus
have a finite jump there, the same conditions must hold
the expansion coefficientscn(x). Thus using these two con
ditions on Eq.~4! with the ansatz in Eq.~15! yields

An1Bn5Cn1Dn , ~16!

ikn~Cn2Dn!2 ikn~An2Bn!5(
m

Mnm~Am1Bm!.

~17!

If c is an evanescent mode, we can setkn5 ikn and must
requireAn50 andDn50 to have a normalizable wave func
tion. The coupling constants are given by

Mnm5
2mg

\2
xn* ~y0!xm~y0! ~18!

for the case of thed-function scatterer, Eq.~13!, and

Mnm5
2mg

\2 E dyxm* ~y!
1

Apr
expS 2

y2

r2D xn~y! ~19!

for the ‘‘impurity’’ scatterer, Eq.~14!. In either case, the
coupling constants do not depend onx anymore. For given
coupling constantsMnm , the transmission coefficients can b
computed by solving Eqs.~16! and ~17!. For an attractive
potential (g,0) resonance dips can be observed just be
the energy at which a new propagating mode develops. T
position and width depends sensitively on the number
modes and the scatterer’s strength.15

We note that in the case of thed-function scatterer, the
integral equation for the full Green’s function, Eq.~11!, can
be solved explicitly to yield14

G~x,y,x8,y8!5G0~x,y,x8,y8!

1
G0~x,y,0,y0!G0~0,y0 ,x8,y8!

1/g2G0~0,y0,0,y0!
. ~20!
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We first briefly summarize the results for thed-function
scatterer. As there is no solution to a two-dimensionad
function the problem would be ill posed unless one restr
the problem to a finite number of transverse modes. T
potential is then equivalent to ans-like scatterer. As more
modes are included the electron becomes more strongly
calized. For the following computations, we will use the p
rametersD5300 Å for the width of the channel~hard wall
potential!, y05 5

12 D for the transversal position of the sca
terer, and the massm50.067me as the effective mass of a
electron in GaAs-AlGaAs heterostructures. The total num
of modes will be denoted bync . For a potential strength o
g577 feV cm2, the resulting conductance is shown
Figs. 1~dashed line! and 2~dotted line!. The dependence o
the pole location on the number of modes can be seen in
3 ~dots!, with no indication of convergence with respect
nc .

This convergence problem can be avoided by modify
the d-function potential in they direction to the smoothe
form of a Gaussian function as in Eq.~14!. The finite width
allows the higher modes to decouple from the lower ones
the limit r→0, we recover thed-function potential with the
potential strengthg. By numerically evaluating the integral
for the coupling constants, Eq.~19!, one can again obtain th
full transmission function and thus the conductance. As
pected, the conductance curves closely resembles the re
for the d-function scatterer, showing the same characteri
resonance dip for attractive scatterers. Numerical results
the exact pole location of the transmission function
shown in Fig. 4 using the potential parametersg5

FIG. 1. The conductance for an attractive~top! and a repulsive
~bottom! d scatterer of strengthg577 feV cm2 and nc5100

~dashed!, nc510 ~dotted!, and nc5100 scaled down toñc510
~solid!. The original curve withnc5100 and the rescaled one wit

ñc510 lie nearly on top of each other.
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27 feV cm2 and r53.0 Å. In contrast to thed-function
potential, the result converges to its exact solution when
ing a large enough, but finite number of modes.

Nevertheless, the characteristic behavior of the cond
tance is identical to thed-function scatterer with a finite
number of modes. This again demonstrates that
d-function scatterer serves its purpose as a useful model
is interpreted as ans-like scatterer for a fixed finite numbe
of modes.

IV. SCALING APPROACH

The methods presented in the last section work fine
cept that they require an infinite or very large~for a strongly
localized scatterer! number of modes to be included. Simp
cutting of the sum at some small number does not give
correct answer. But calculations for largenc have the draw-
back that substantial computing power is needed. There
it would be useful if one could find a way to reduce th
number of modes in the calculation without neglecting th
influence. A well known technique for this kind of problem
is the poor man’s scaling approach.17 The idea is the follow-
ing: Consider a typical relevant process which includes
intermediate virtual state. The sum over the virtual sta
shall have a cutoff. If the system exhibits scaling behav
one can infinitesimally reduce the cutoff and incorporate
change into a new effective coupling constant for a proc

FIG. 2. The conductance for an attractived scatterer of strength
g527 feV cm2, nc5100 calculated without scaling~dotted! and

with ñc rescaled to 10~solid!, to 50~dashed!, and to 5~dot-dashed!.
If the number of modes after the scaling is large enough, the
ference is hardly visible.

FIG. 3. Poles of the Green’s function as a function ofnc . The
dots indicate the pole location for values fromnc52 to nc5110.

The diamonds represent the casenc5100 with ñc varying between
2 and 60.
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not involving these virtual states. By repeating these st
one can integrate out a large portion of the states.

For the present system this means that we investigate
influence of decreasing the mode cutoffnc on the coupling
constantg.18 In the spirit of poor man’s scaling in the Kond
problem we look at a diagram as shown in Fig. 5 whi
represents a typical process in the wire. We will first disc
this in terms of a general scatterer before we show the
tailed calculation for thed-function scatterer from above
The contribution of the diagram is given by

(
c51

nc E dx9dx-Gaa
0 ~x,x9!Vac~x9!Gcc

0 ~x9,x-!

3Vcb~x-!Gbb
0 ~x-,x8!. ~21!

The cutoff nc stops the summation of the intermedia
modes. Reducing the cutoff by one mode amounts to a
ference that equals thenc’s summand. This change should b
incorporated into the new coupling constant that is taken
a process with only one scattering event, which would h
the following form:

E dx9Gaa
0 ~x,x9!Vab8 ~x9!Gbb

0 ~x9,x8!, ~22!

where theVab8 (x9) denotes a potential with renormalize
coupling constant. Assuming that althoughnc is clearly in-
teger we can treat the difference as infinitesimal, and that
potential can always be written asVab(x)5gṼab(x), we can
formally write

dg

dnc
52@Ṽab~x9!#21E dx-Vanc

~x9!Gncnc

0 ~x9,x-!

3Vncb~x-!. ~23!

This equation is in general difficult to solve, and could p
tentially contain an explicit dependence ona and b.19 We
therefore show how to solve this equation for thed-function
scatterer with a finite number of modes as discussed ab
The contribution of the diagram is given bygGncnc

0 (0,0)g.

For largenc we can thus write the change ing as

FIG. 4. Poles of the Green’s function as a function ofnc . The
circles indicate the pole location for values fromnc52 to nc

5110. When usingnc580 modes, the pole location is converged
its final position.
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dg

dnc
52g2

2

D

2m

\2
sin2S pncy0

D D 1

2iknc

. ~24!

For largenc we can approximateknc
' incp/D and integrate

Eq. ~24! to obtain

2
1

g
5

2m

\2p
F2

1

2
CiS 2py0nc

D D1
1

2
ln ncG1const

>
m

\2p
ln nc1const, ~25!

where the last equality holds again for largenc and Ci(x) is
the integral cosine function. Since we expect a small cha
of the cutoff not to change the result as a whole we c
deduce the renormalization group equation

nc expS \2p

mg D5ñc expS \2p

mg̃
D . ~26!

FIG. 5. A diagram describing the propagation from a state ch
acterized by moden and longitudinal momentumk via two scatter-
ing events into the staten8,k8.

FIG. 6. Conductance for the twod-function scatterer case. Th
used parameter values areg1525 feV cm2, g25225 feV cm2,
and d590 nm. In ~a! the different lines arenc550 ~solid!, 30
~dotted!, 10 ~dashed!, and 2~dot-dashed!. One can see that alread
from nc510 on, the qualitative behavior is the same. In~b! the
scaling is applied to thenc5100 case~solid! and performed down

to ñc510 ~dotted! and 2 modes~dot-dashed!. The dashed line
shows how well it compares to the case withnc510 modes without
scaling.
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With the help of Eq.~26! we can now calculate the condu
tance for a model with a large number of modesnc by in-
cluding only ñc modes and the renormalized coupling

g̃5
1

1

g
1

m

\2p
ln

nc

ñc

. ~27!

The cutoff ñc must be chosen such that the approximatio
made above are valid, i.e., the renormalization proced
will eventually break down for smallñc . Moreover, there is
one strict physical criterion for a minimum lower bound
ñc : To reproduce the resonance behavior of the full syst
it is at least necessary to include one evanescent mode i
renormalized calculation.15 We would also like to point out
that a divergence ofg̃ is not only possible in Eq.~27!, but
furthermore that it may even abruptly change sign fro
2` to 1`. This is, however, not problematic: As can b
seen from Eq.~20! it is 1/g that enters the Green’s function
telling us thatg→6` show the same physics, indepe
dently of the sign of the coupling strength. With increasi
scatterer strength, the transmittive behavior of the attrac
scatterer indeed more and more resembles that of the re
sive scatterer.8

V. COMPARISON TO EXACT FORMALISM

In this section we show and compare the results when
formalism from above is applied to the singled-function
scatterer given by Eq.~13!. At the end we discuss the impli
cations of this scaling behavior. In Fig. 1 we show the co
ductance of a system with an attractive~top! and a repulsive
~bottom! d-function scatterer with a finite number of mode
The shape of the curves is altered by a variation ofnc ,
especially the width and position of the resonance in
attractive case are quite sensitive~comparing, e.g., the dotte
and dashed lines!. When we apply the scaling approach, E
~27! to the model withnc5100 and scale it down toñc
510, we obtain an almost identical result~solid line!. This
clearly confirms the validity of our approach. In Fig. 2 w
again plot the conductance for the attractive case. This t
we scale down toñc550, 10, and 5. For largeñc the method
works very well, but as we get to small values ofñc , it
eventually breaks down. However, we used the assump
that nc is large in our derivation, so this breakdown is e
pected. But even forñc55 it still gives fairly good results.
Another limit is reached when the number of propagat
modes is close toñc . But only for nprop>ñc it breaks down
completely, as there is no evanescent mode left which co
build up the resonance. It may seem surprising that suc
simple method yields these results. However, it confirms
the type of process we have chosen is indeed the rele
one.

An alternative description of resonance behavior can
given in terms of quasibound states. They are defined as
poles of the energy Green’s function in the complex ene
plane. Hence our approach should apply to the quantitie
this approach as well. In Fig. 3 we show that the location
the poles can be calculated very well with the scal
s
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method. It is remarkable that even down tonc52, all poles
lie very close to the correct value. Moreover, they are
randomly scattered aroundnc5100, but rather lie on the
parabolic curve of the poles for increasingnc .

Our result shows that although a true description of qu
tum wires with scatterers requires the inclusion of all mod
the presence of higher modes does not have a strong a
on the low energy behavior. Their influence can be cast
renormalized value of the coupling constant. Therefore o
can say that calculations done on these wave guide sys
with a few number of modes should give qualitatively co
rect results. This is not a trivial result, because the mec
nism of the suppression of the higher modes is not of ther
origin. Rather it is the scaling behavior of these systems
allows our conclusion.

VI. MANY SCATTERER CASE

Another important consequence is that future calculati
need to be done only for a few low lying modes. This
important especially for systems with many scatterers: D
to the scattering matrix multiplication, the computing tim
grows linearly with the number of scatterers and grows m
than quadratic with the number of modes. When choosingñc
one needs of course to make sure, that the evanescent m
are strongly enough localized, such that they do not carr
virtual current20 and thereby provide a minimum upper cu
off. In order to demonstrate this, we perform a calculation
the simple case of twod-function scatterers placed in serie
and separated by a distanced. For a few number of modes
this model has been discussed in Ref. 21. Here we pre
results for the case of many modes and discuss how they
be obtained using our scaling method.

The specific system under consideration consists of
d-function scatterers located at (0,y1) and (d,y2), with po-
tential strengthsg1 and g2, respectively. The wave guid
itself shall be the same as before. The Green’s function
this system can be obtained analytically and is given by
lengthy, however, very useful expression

G~x,y,x8,y8!5G0~x,y,x8,y8!

1g1G0~x,y,0,y1!
c11a1c2

12a1a2

1g2G0~x,y,d,y2!
c21a2c1

12a1a2
, ~28!

where the following abbreviations have been used:

c15
G0~0,y1 ,x8,y8!

12g1G0~0,y1,0,y1!
,

c25
G0~d,y2 ,x8,y8!

12g2G0~d,y2 ,d,y2!
,

a15
g2G0~0,y1 ,d,y2!

12g1G0~0,y1,0,y1!
,
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a25
g1G0~d,y2,0,y1!

12g1G0~d,y2 ,d,y2!
. ~29!

To apply our scaling method, we employ the approximat
that the evanescent modes fall off exponentially. Hence c
tributions to the scaling of orderg1g2 are strongly sup-
pressed for higher modes, i.e.,ukndu is large. We can then
simply use the single scatterer result and apply it indep
dently to both coupling constants. The results are show
Figs. 6~a! and 6~b!.

In Fig. 6~a! we compare the conductance for various nu
ber of modes. Already for two modes the peaks in the low
subband with one evanescent mode are present. The in
sion of higher modes, however, leads to a strong shift
position and shape. Although the true peak structure
comes visible fornc510, it is fully developed only for many
more modes. In addition, the results in the second subb
are completely wrong for two modes. This should be e
pected since no evanescent mode is present. In Fig. 6~b! we
compare our scaling result to the exact one and again
that it works very well. It is remarkable that already for tw
modes the deviation in the first subband is negligible.

The generalization to many scatterers is obvious: one o
has to keep in mind to take enough evanescent mode
mimic the decaying currents between the scatterers.
Fabry-Perot behavior that causes the oscillations is cre
.
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by the propagating modes, however, it can be enhanced
the first few evanescent ones.

VII. CONCLUSION

In this article we discussed the conductance propertie
ballistic quantum wires containing impurities. As show
they depend strongly on the number of modes included
the calculations can thus become quite difficult. We prov
that it is possible to incorporate the effect of higher mod
into an effective coupling constant for the lower lyin
modes. This was done by a poor man’s scaling approach.
the d-function scatterer with a fixed number of modes w
compared our result to exact calculations and found v
good agreement. We therefore conclude that our appro
does not only allow for quicker calculations but also sho
that the system’s behavior is governed by a few low-lyi
modes.
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