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We study the conductance properties of a straight two-dimensional quantum wire with impurities modeled
by slike scatterers. Their presence can lead to strong interchannel coupling. It was shown that such systems
depend sensitively on the number of transverse modes included. Based on a poor man'’s scaling technique we
include the effect of higher modes in a renormalized coupling constant. We therefore show that the low-energy
behavior of the wire is dominated by only a few modes, which hence is a way to reduce the necessary
computing power. The technique is successfully applied to the case of one asdikescatterers.

[. INTRODUCTION caled system. We finally generalize the scaling approach to a
system with many scatterers and show results for the case of

Over the past decade, quantum transport in twoiwo S-function scatterers.
dimensional electron systems has attracted increasing atten-
tion. In electron wave guide structures, the transmission and
resonance phenomena have been studied extensively, espe-
cially because the conductance was shown to be directly re- |n this section we sketch the calculation of the conduc-
lated to the scattering properties of the system. This relatioance of an electron wave guide including a general scatterer.
is known as Landauer-Biiker formula= We restrict ourselves to a single scatterer, because the trans-
mission matrix for many scatterers can be obtained by mul-
tiplying together the transmission matrices for the individual
single scatterers.

Let us first obtain a solution of the Schiinger equation
where G denotes the two-point conductance ahdhe full ~ for an electron in a two-dimensional wave guide with a gen-
transmission function(spin degrees of freedom are ne- eral scatterer. The Hamiltonian is given by
glected. Equation(1) results in a quantized conductance for
ballistic channels, which has been experimentally verified for 2
a large range of conduction chann®ls. H= p—+V(x,y)+VC(y). )

It is therefore of great interest to study the properties of 2m
ballistic wires containing impurities. Especially for attractive
scatterers the combined effect of the scatterer itself and th¥c represents a confinement potential restricting the trans-
backscattering off the walls leads to interesting phenomen¥€erse movement of the electron awgx,y) represents the
such as resonances and quasibound sfatésVioreover — scattering potential. We assurvéx,y) to be nonzero only
strong inter channel coupling is introduced into the systenwithin a finite region small compared to the width of the
making calculations quite complicated. A simple model con-channel. We can now expand any stationary solution
taining all of the features mentioned above consists of ag(x,y) of the Schrainger equation, Hye(X,y)
pointlike scatterer modeled by a two-dimensional =Eye(X,y), in a Fourier series with-dependent expansion
function/~® In this paper we present a way to dramatically coefficients using the complete set of transversal modes
reduce the computational complexity of this problem by in-

I. CONDUCTANCE CALCULATION

G=-—T, (1)

cluding the effect of the higher modes in a renormalized o
coupling constant. Pe(xy)= 2, Ca(X)xn(Y), 3
The outline of this paper is as follows. In the next section n=1

we present the standard approach to calculating the conduc-

tance in this kind of wave guide setup. We then briefly dis-where y,(y) is the transverse state of the electron in the
cuss results for two model systems for an impurity in theabsence of the scatterer. Inserting this series into the Schro
wave guide. For the case of&function impurity, we intro-  dinger equation and employing orthogonality of the transver-
duce a scaling approach and discuss the results for the resal modes we obtain a set of coupled equations
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2 Ill. SIMPLE MODEL SYSTEMS

J
. 2 _
X2 Cm(X) + KinCm(X) zn: Mmn(X)Cn(X), ) We will now apply the general outline of the previous

section to two simple model systems: the case of the
with the definitions of the mode coupling constams,,(x) o-function scatterer described by
and the wave vectdk,,,

V(X,y)=y8(x) 8y —Yo) (13
Mmn(X) = Z—TI dyx*(YVOGY) xn(Y), (59 and discussed by various auth8ré;'°as well as the slightly
f more realistic model with

2m = i _y_z
K= /?(E—Em). (6) V(X,y)=yd(x) Gpexp( p2) (14

describing a softer “impurity” scatterer in transversal
direction®

For both potentials, the wave guide can be split in two
A ek 4B e kX x<0, separate regions at=0 and Eq.(7) can be written as

(@)

Outside the scattering region the solution is given by linea
combinations of the form

C,e ™+ D, e kX x>0.

Ch(X)= (

Anelkn*+Bpe™ k%, x<0,

Ce*+D, e kX x>0. (19

Cn(x):|

For k, real, we get propagating modes, fly imaginary
evanescent modes. By matching the wave functions for botl&

regions with the appropriate boundary conditions, the coef—hS 4 mfl.JS.tt b? con;uhnuou?hat=0 and |t§_t_der|vat|vet hmulgtf
ficients for incoming and outgoing waves can be obtained. ave a finite jump there, the same conditions must hold for

i L : : the expansion coefficients,(x). Thus using these two con-
The transmission coefficient for propagating modes is de-,. . . .
fined asT,,= (K, /Ky)(|Co|%|Ay|?) and the total transmis- ditions on Eq.(4) with the ansatz in Eq15) yields

sion function as A,+B,=C,+D,, (16)

T(E)= ;n Tons (8)

ikn(Ch—Dy) —iky(A—B,) = 2 Mom(AmtBp).
(prop) m

where the sum extends over all propagating modes. The con- (17

ductance is finally calculated using E4). If ¢ is an evanescent mode, we can kgtix, and must
The transmission coefficients can also be obtained fromequireA,=0 andD,=0 to have a normalizable wave func-

the Green’s function of the system. More specifically, it istion. The coupling constants are given by

the retarded Green’s function that governs this behavior and

via its poles also describes resonance behavidihe re- 2my
tarded Green’s function for the wire without scatterer is Mam=—7" X4 (Yo) Xm(Yo) (18)
) fi
given by
" ‘ , for the case of the-function scatterer, Eq13), and
0 N 2 * ’ 2m e'knlx_x |
G (Xay!X 1y )_n=l Xn(y)Xn(y )?Tkn (9) 2m,y . 1 y2
Man=3 | ayxin——ex| =5 | xv) (9
or f Vap p
for the “impurity” scatterer, Eq.(14). In either case, the
GO (x.x’ :J dy dy yv* (V)GOX,y. X'y’ . coupl!ng constants do not depenq omnymore. For given
an(X.X") y dy xa () G0y X"y xe(y") coupling constantM ,,,, the transmission coefficients can be

(10 computed by solving Eq9416) and (17). For an attractive

The full solution can then be obtained from the Dyson equap()tentlal <0 resonance dips can be observed just be'OW_
the energy at which a new propagating mode develops. Their

tion position and width depends sensitively on the number of
modes and the scatterer’s strength.
Gab(x,x’)=ng(x,x’)+2 f dx”GgC(x,x”) We note that in the case of th&function scatterer, the
cd integral equation for the full Green’s function, Ed.1), can
p v be solved explicitly to yieltf
X Veg(X") Ggp(X" X) (1) plety toy
with G(X!yvx,iy,):Go(leixr!yl)

+ GO(X,y,O,yo)GO(O,yo,X’ 1y,)

VedX') = J dyx! WV Yxely).  (12) 1y—G%0yaoys 20
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3.4

E[E]

FIG. 2. The conductance for an attractifescatterer of strength
y=—7 feVent, n,=100 calculated without scalin@lotted and
with ., rescaled to 1@solid), to 50(dashed} and to 5(dot-dashel
If the number of modes after the scaling is large enough, the dif-
ference is hardly visible.

—7 feVen? and p=3.0 A. In contrast to thes-function
potential, the result converges to its exact solution when us-
ing a large enough, but finite number of modes.
Nevertheless, the characteristic behavior of the conduc-
% 5 10 15 20 25 tance is identical to the>-function scatterer with a finite
EEE) number of modes. This again demonstrates that the
() o-function scatterer serves its purpose as a useful model if it
FIG. 1. The conductance for an attractitep) and a repulsive is interpreted as aglike scatterer for a fixed finite number

(bottom) & scatterer of strengthy=%7 feven? and n,=100  ©Of modes.

(dasheg, n,=10 (dotted, and n,=100 scaled down t0~10=10
(solid). The original curve witm.=100 and the rescaled one with IV. SCALING APPROACH

ﬁc=10 lie nearly on top of each other.

The methods presented in the last section work fine ex-
We first briefly summarize the results for tléefunction cept .that they require an infinite or very Iar_@er a strongly
scatterer. As there is no solution to a two-dimensiodal Iocqhzed scattergmumber of modes to be included. S|mply
function the problem would be ill posed unless one restrictscUttlng of the sum at some _small humber does not give the
the problem to a finite number of transverse modes. Th orrect answer. But calculathns for Iarg.@ have the draw-
potential is then equivalent to aslike scatterer. As more . ack that substantle}l computing power Is heeded. Therefore

dt would be useful if one could find a way to reduce the

modes are included the electron becomes more strongly | X umber of modes in th \culation without nealecting their
calized. For the following computations, we will use the pa-. umber of modes € calculatio out negiecting the

rametersD =300 A for the width of the channéhard wall influence. A well known technique for this kind of problem
potentia), y,= D for the transversal position of the scat- is the poor man's scaling approatfiThe idea is the follow-

terer, and the mass=0.067m, as the effective mass of an ing: Consider a typical relevant process which includes an

electron in GaAs-AlGaAs heterostructures. The total numbelrntermed|ate virtual state. The sum over the virtual states

of modes will be denoted bg.. For a potential strength of shall haye .a.cut.off. If the system exhibits sgaling behavior
y=77 feven?, the resultirﬁg.; conductance is shown in °N€ €an infinitesimally reduce the cutoff and incorporate the

Figs. 1(dashed lingand 2(dotted ling. The dependence of change into a new effective coupling constant for a process
the pole location on the number of modes can be seen in Fig.
3 (dotg, with no indication of convergence with respect to ' R A
nc . ' C
This convergence problem can be avoided by modifying ’
the §-function potential in they direction to the smoother
form of a Gaussian function as in E@.4). The finite width
allows the higher modes to decouple from the lower ones. In
the limit p— 0, we recover theS-function potential with the 06k oo.{.m -
potential strengthy. By numerically evaluating the integrals A
for the coupling constants, E(L9), one can again obtain the . . . .
full transmission function and thus the conductance. As ex- 475 s BN P B
pected, the conductance curves closely resembles the results "
for the §-function scatterer, showing the same characteristic FIG. 3. Poles of the Green’s function as a functiomgf The
resonance dip for attractive scatterers. Numerical results fatots indicate the pole location for values frarp=2 to n.=110.
the exact pole location of the transmission function areThe diamonds represent the cage= 100 withn, varying between
shown in Fig. 4 using the potential parametefs= 2 and 60.




16 936 DANIEL BOESE, MARKUS LISCHKA, AND L. E. REICHL PRB 62

0 T T n,k n”,k” n,,k,
I o ° o
0,05 o ° 4 Y Y
0 ]; o ° | FIG. 5. A diagram describing the propagation from a state char-
E h & acterized by mode and longitudinal momenturk via two scatter-
w0151 /f& | ing events into the state’,k’.
0.2 4
oy 22m __[anyo| 1
5—:—)/25 —ZSII']2< [; ik (24)
Bk 73 — s 249 Ne h IKn,
Eg [meV]

For largen. we can approximatkncwincw/D and integrate

FIG. 4. Poles of the Green'’s function as a functiomgf The Eq. (24) to obtain

circles indicate the pole location for values from=2 to n,
=110. When usingi.=80 modes, the pole location is converged to
its final position. 1 2m {_ 1(3_(27-ry0nC

7_ﬁ27T D

+ const

1
5 ) + 5 Inng
not involving these virtual states. By repeating these steps
one can integrate out a large portion of the states.
For the present system this means that we investigate the = %'” N+ const, (25
influence of decreasing the mode cutaff on the coupling

constanty.® In the spirit of poor man’s scaling in the Kondo \ynere the last equality holds again for langeand Ci(x) is
problem we look at a diagram as shown in Fig. 5 whichihe jntegral cosine function. Since we expect a small change

represents a typical process in the wire. We will first discusgy the cutoff not to change the result as a whole we can
this in terms of a general scatterer before we show the dejequce the renormalization group equation

tailed calculation for thes-function scatterer from above.
The contribution of the diagram is given by B2 B2
n.exp ——|=n¢.expg —= (26)

Ne m’y
CZ:L f dx'd X///Gga(x, X”)Vac( XH) ch( X" ' X///)

X Vep(X") Gpp(X"X). (21) A
The cutoff n, stops the summation of the intermediate F
modes. Reducing the cutoff by one mode amounts to a dif- o 1 |
ference that equals thg’s summand. This change should be © § ;
incorporated into the new coupling constant that is taken for o5 f

a process with only one scattering event, which would have
the following form:

J dX"G2 (X, X" )V (X")GRL(X",X"), (22

where theV/,(x") denotes a potential with renormalized
coupling constant. Assuming that althoughis clearly in-
teger we can treat the difference as infinitesimal, and that the
potential can always be written &g,(x) = YWap(X), we can
formally write

5’)/ ~, m1—1 " n 0 "o m
5_nC:_[Vab(X )] dx VanC(X )Gncnc(x X")

XVp p(X"). (23 FIG. 6. Conductance for the twé-function scatterer case. The
¢ used parameter values agg=25 feVcnf, y,=—25 feVcnf?,
andd=90 nm. In (8 the different lines aren,=50 (solid), 30

This equation is in general difficult to solve, and could PO- dotted, 10 (dashedl and 2 (dot-dasheli One can see that already

; ; ‘i 19
tentially contain an explicit de_pendenqe anand b. We from n.=10 on, the qualitative behavior is the same.(b) the
therefore Show h?"_" to solve this equation for_thémctlon scaling is applied to the,=100 casgsolid) and performed down
scatterer with a finite number of modes as discussed above,

?o .= 10 (dotted and 2 modes(dot-dashell The dashed line
. . . . . 0 c
The contribution of the diagram is given byG, , (0,0)y. ghows how well it compares to the case with= 10 modes without

For largen, we can thus write the change nas scaling.
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With the help of Eq(26) we can now calculate the conduc- method. It is remarkable that even downrig=2, all poles

tance for a model with a large number of modgsby in-  lie very close to the correct value. Moreover, they are not
cluding onlyn, modes and the renormalized coupling randomly scattered around,=100, but rather lie on the
parabolic curve of the poles for increasing.
- 1 Our result shows that although a true description of quan-
A (270 tum wires with scatterers requires the inclusion of all modes,
1+ imf_c the presence of higher modes does not have a strong affect
Y h%m ng on the low energy behavior. Their influence can be cast in a

_ renormalized value of the coupling constant. Therefore one
The cutoffn, must be chosen such that the approximationsan say that calculations done on these wave guide systems
made above are valid, i.e., the renormalization procedur@jith a few number of modes should give qualitatively cor-
will eventually break down for smafi,. Moreover, there is  rect results. This is not a trivial result, because the mecha-
one strict physical criterion for a minimum lower bound to nism of the suppression of the higher modes is not of thermal

N.: To reproduce the resonance behavior of the full system@rigin. Rather it is the scaling behavior of these systems that
it is at least necessary to include one evanescent mode in tR#OWs our conclusion.

renormalized calculatiof. We would also like to point out

that a divergence of is not only possible in Eq(27), but VI. MANY SCATTERER CASE

furthermore that it may even abruptly change sign from
—o to +o. This is, however, not problematic: As can be
seen from Eq(20) it is 1/y that enters the Green'’s function,
telling us thaty— *=o show the same physics, indepen-

Another important consequence is that future calculations
need to be done only for a few low lying modes. This is
important especially for systems with many scatterers: Due

dently of the sign of the coupling strength. With increasingt0 the lgcatt?rlngtﬂﬁtnx muk:tlph(;atlor;i the conglputlng time
scatterer strength, the transmittive behavior of the attractiv@OWs linearty wi € humber of Sscatterers and grows more

scatterer indeed more and more resembles that of the repdhan quadratic with the number of modes. When choosing
sive scattere$. one needs of course to make sure, that the evanescent modes

are strongly enough localized, such that they do not carry a
virtual current® and thereby provide a minimum upper cut-
off. In order to demonstrate this, we perform a calculation for
In this section we show and compare the results when ththe simple case of twé-function scatterers placed in series
formalism from above is applied to the sing&function  and separated by a distandeFor a few number of modes
scatterer given by Eq13). At the end we discuss the impli- this model has been discussed in Ref. 21. Here we present
cations of this scaling behavior. In Fig. 1 we show the con-esults for the case of many modes and discuss how they can
ductance of a system with an attractitep) and a repulsive be obtained using our scaling method.
(bottom S-function scatterer with a finite number of modes.  The specific system under consideration consists of two
The shape of the curves is altered by a variationngf  &-function scatterers located at y9) and d,y,), with po-
especially the width and position of the resonance in thdential strengthsy; and y,, respectively. The wave guide
attractive case are quite sensitte®mparing, e.g., the dotted itself shall be the same as before. The Green’s function of
and dashed lingsWhen we apply the scaling approach, Eq.this system can be obtained analytically and is given by the

(27) to the model withn.=100 and scale it down to,  lengthy, however, very useful expression
=10, we obtain an almost identical res@blid line). This

V. COMPARISON TO EXACT FORMALISM

clearly confirms the validity of our approach. In Fig. 2 we G(x,y,x",y" ) =G%x,y,x",y")
again plot the conductance for the attractive case. This time ctac
we scale down tm.=50, 10, and 5. For large, the method +9,GO(x,y,0y )2
~ 1l-aja,
works very well, but as we get to small values mf, it
eventually breaks down. However, we used the assumption o Cp+ayCy
that n. is large in our derivation, so this breakdown is ex- + 726G (X’y’d’yZ)TalaZ’ (28)

pected. But even foﬁc=5 it still gives fairly good results.
Another limit is reached when the number of propagatingwhere the following abbreviations have been used:
modes is close ta.. But only forng,=n. it breaks down

completely, as there is no evanescent mode left which could GO0y, x',y")

build up the resonance. It may seem surprising that such a Cci1= 0 ,

simple method yields these results. However, it confirms that 1-y,G"(0y1,0y1)

the type of process we have chosen is indeed the relevant

one. ' o ' Go(d,yz,xr,y,)
An alternative description of resonance behavior can be Cy= 5 ,

given in terms of quasibound states. They are defined as the 1-v,G"(d,y,,d,y>)

poles of the energy Green’s function in the complex energy

plane. Hence our approach should apply to the quantities of 7,G%0y;,d,y>)

this approach as well. In Fig. 3 we show that the location of a

the poles can be calculated very well with the scaling 1-7:,G%0y1,0y,)’
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y,G%(d,y,,0y1) by the propagating modes, however, it can be enhanced by
a,= 5 . (29)  the first few evanescent ones.
1-y,G"(d,y,.,d,y2)
To apply our scaling method, we employ the approximation VIl. CONCLUSION

that the evanescent modes fall off exponentially. Hence con-

tributions to the scaling of ordey,y, are strongly SUp-  pqjistic quantum wires containing impurities. As shown,
pressed for higher modes, i.¢k,d| is large. We can then they depend strongly on the number of modes included and
simply use the single scatterer result and apply it indepeng,o”caicylations can thus become quite difficult. We proved
dently to both coupling constants. The results are shown it it is possible to incorporate the effect of higher modes
Figs. G_a) and &b). , into an effective coupling constant for the lower lying
In Fig. 6@ we compare the conductance for various NUm-y,es. This was done by a poor man'’s scaling approach. For
ber of modes. Already for two modes the peaks in the loweso 5 fnction scatterer with a fixed number of modes we
subband with one evanescent mode are present. The incligmnared our result to exact calculations and found very
sion of higher modes, however, leads to a strong shift iny,,q agreement. We therefore conclude that our approach
position and shape. Although the true peak structure bejneg not only allow for quicker calculations but also shows

comes visible fon.= 10, it is fully developed only for many o+ the system's behavior is governed by a few low-lying
more modes. In addition, the results in the second subba odes.

are completely wrong for two modes. This should be ex-
pected since no evanescent mode is present. In Hywie
compare our scaling result to the exact one and again find
that it works very well. It is remarkable that already for two ~ We thank Herbert Schoeller and Michele Governale for
modes the deviation in the first subband is negligible. useful discussions. D.B. acknowledges financial support

The generalization to many scatterers is obvious: one onlfrom the DFG Graduiertenkolleg 284: “Kollektive Pha
has to keep in mind to take enough evanescent modes twomene im Festkper.” L.E.R. acknowledges partial sup-
mimic the decaying currents between the scatterers. Thport from Welch Foundation Grant No. 1052 and U.S. DOE
Fabry-Perot behavior that causes the oscillations is create@rant No. DE-FG03-94ER14405.

In this article we discussed the conductance properties of
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