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Coulomb drag between quantum wires
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We study Coulomb drag in a pair of parallel one-dimensional electron systems within the framework of the
Tomonaga-Luttinger model. We find that Coulomb coupling has a much stronger effect on one-dimensional
wires than on two-dimensional layers: At zero temperature the transresistivitydiverges, due to the formation of
locked charge density waves. At temperature well above a crossover temperatureT* the transresistivity
follows a power lawr}Tx, where the interaction-strength dependent exponentx is determined by the Luttinger
liquid parameterKc2 of the relative charge mode. At temperature belowT* relative charge displacements are
enabled by solitonic excitations, reflected by an exponential temperature dependence. The crossover tempera-
ture T* depends sensitively on the wire width, interwire distance, Fermi wavelength and the effective Bohr
radius. For wire distancesd̄@kF

21 it is exponentially suppressed withT* /EF;exp@2d̄kF /(12Kc2)#. The be-
havior changes drastically if each of the two wires develop spin gaps. In this case we find that the transresis-
tivity vanishesat zero temperature. We discuss our results in view of possible experimental realizations in
GaAs-AlxGa12xAs semiconductor structures.
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I. INTRODUCTION

Measurements of Coulomb drag transresistivity betw
two coupled low dimensional electronic systems are a p
erful probe of scattering and correlations between electro1

In a measurement of the transresistivityrD , a currentI 1 is
driven in one~the ‘‘active’’! of the systems, while no curren
is allowed to flow in the other system~the ‘‘passive’’ sys-
tem!. The Coulomb interaction between electrons in the t
systems transfers momentum from the active system to
passive one, where a voltage dropV2 develops. The ratio
2V2 /I 1 is the transresistance, which is related to the tra
resistivity by a geometric factor.

In weakly coupled two-dimensional systems, at least
zero magnetic field, the transresistivity is usually prop
tional to the electron-electron momentum relaxation tim
and is therefore proportional toT2, with T being the tempera
ture. As explained by Fermi-liquid theory, theT2 behavior
holds also in the presence of electron-electron interac
within each of the two coupled systems.

In one-dimensional systems, which are presently reali
by organic quasi-one-dimensional~1D! metals, carbon nano
tubes, edge states of quantum Hall liquids, and 1D semic
ducting structures, electron–electron interaction is belie
to invalidate the Fermi-liquid picture, and generate a diff
ent state, described approximately by the Tomona
Luttinger ~TL! theory2,3 ~for reviews, see, e.g., Refs. 4–7!.
Since electronic correlations in this state are stronger tha
a Fermi liquid, it is interesting to examine the Coulomb dr
transresistivity between two such systems.

In this paper we study theoretically Coulomb drag b
tween two identical parallel one-dimensional wires at clo
proximity. For perfectly clean wires, as assumed here,
current flowing in the active wire generates voltages on
two wires, which, due to Galilean invariance, are equal
magnitude and opposite in sign. The transresistivityrD[
2(V2)/I 1L ~with L the length of each wire! is then also the
intrinsic resistivity ~not including the contact resistance! of
PRB 620163-1829/2000/62~24!/16912~14!/$15.00
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the active wire. Thus, we occasionally refer torD as the
‘‘resistivity.’’ Note, however, that this resistivity does no
influence a symmetric flow of current in the two wires.

Drag between 1D electron systems was considered ea
by several authors. Hu and Flensberg8 and more recently
Gurevich et al.,9 and Raichev and Vasilopoulos10 investi-
gated the problem in the absence of electron correlati
~apart from screening effects! within Fermi-liquid theory.
Tanatar11 studied the same problem in the presence of dis
der, and Coulomb drag of Luttinger liquids with a pointlik
interaction region was considered by Flensberg,12 and
Komnik and Egger.13 In a recent work by Nazarov an
Averin,14 1D systems of spinless electrons are treated as
dependent Luttinger liquids with coupling limited to inte
wire backscattering (Dk'2kF , wherekF is the Fermi wave
vector in the two wires!. The present paper treats both intr
and interwire electron-electron interaction on equal footin
We find that although drag takes place primarily through 2kF
scattering, the small momentum component of the interw
interaction and spin-density interactions affect it in a cruc
way. The problem under consideration is also closely rela
to the problem of a coupled double~or N2) chain.15,16 In
case of the spin-full problem results of Leeet al.15 are useful.

The paper is organized as follows: In Sec. II we define
problem and present the main results and the physical
ture. Section III deals with two wires of spinless electro
~throughout the paper we use ‘‘wire’’ as synonym for ‘‘1
electron system’’!. After formulating this problem in Sec
III B, we analyze it by means of a renormalization group
Sec. III C. We then discuss the high-temperature reg
~Sec. III D!, the crossover temperature~III E !, and the low-
temperature regime~Sec. III F!. In this analysis we employ
the method developed recently by Nazarov and Averin,14 and
earlier results on impurity pinned charge density wav
~CDW’s!.17,18In Sec. IV we address a double-wire system
spin unpolarized electrons. We write the Hamiltonian a
renormalization-group equation in Sec. IV A, analyze t
fixed points in Sec. IV B, deal with weak interactions in Se
16 912 ©2000 The American Physical Society
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IV C, and extend the discussion beyond that limit in S
IV D. We then discuss the high- and low-temperature lim
of the drag in this case in Sec. IV E. In Sec. V we estim
experimental values of the relevant parameters for semic
ducting wires.19,20 Sec. VI concludes with a summary. Som
technical details are put into the appendices. In particular
Appendix B we examine the relation between the Nazar
Averin method and earlier weak-coupling calculations
Coulomb drag.21

II. REVIEW OF THE MAIN RESULTS

We consider two identical wires of diameterd, separated
by a distanced̄. We denote bykF the Fermi wave vector in
each wire, byvF the Fermi velocity in each wire. The
strength of the Coulomb interaction is characterized byr s
5r /aB , with r the mean~intrawire! electron distance andaB
the effective Bohr radius. The length of the two wires isL.

We first consider two wires of spinless electrons. Expe
mentally, this system may be realized by applying a m
netic field parallel to the wires, which would polarize th
electrons’ spins without affecting their orbital motion. Th
system is closely related to a single Luttinger liquid with
spin degree of freedom, when the two spin projections
identified with electrons in the two wires. Therefore, resu
obtained previously on the effect of backscattering in su
systems22,23 can be used.

We find that, for infinitely long wires, Coulomb couplin
always leads to adiverging resistivity rD as temperature
goes to zero. The physical picture behind this effect is tha
sufficiently low temperature the electrons in both wires fo
two interlocked CDW’s. Then a relative charge displacem
can be created only by overcoming a potential barrier.
zero temperature this cannot be done by an infinitesi
electric field, and leads to a nonlinear transresistance. A
nite T, below a crossover temperatureT* ~discussed below!,
the transresistance satisfies

r~T!;r0,T exp~Es /T!

with Es;T* defined below.
For short wires a qualitative different behavior appea

Here, from time to time the CDW in the active wire slips
a whole relative to the CDW in the other wire. These insta
taneous slips are a result of either thermal fluctuations
tunneling events. The latter leads to a nondiverging re
tance at zero temperature, which is exponential inL.

At temperatures well aboveT* the previous picture of
interlocked CDW’s is no longer valid. In this case it is mo
appropriate to think of independent electrons in the ac
wire, which suffer from backscattering at the 2kF component
of the potential generated by density fluctuations in the p
sive wire. A perturbative calculation yields in this case
resistivity

r~T!5r0l2S T

E0
D x

, x54Kc223, ~1!

exhibiting a characteristic power-law dependence onT. The
coefficientr0 is of orderhkF /e2, l denotes the dimension
less interwire backscattering potential, andE0 is of the order
of the Fermi energy. The parameterKc2 is the TL parameter
.
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of the relative charge-density sector (c2). It is determined
by thedifferenceof the small-momentum intra- and interwir
couplings, and not by the intrawire small-momentum co
pling, as assumed in Ref. 14. With vanishing sma
momentum interaction,Kc2 approaches unity, andr(T)
takes the linear temperature dependence of the drag r
tance of independent 1D electrons.8 In the presence of Cou
lomb interactions,Kc2 may be either larger or smaller tha
1, depending on the interwire distance.

The crossover temperatureT* is a complicated function
of four length scales: the wire separationd̄, wire width d,
effective Bohr radiusaB , and the mean~intrawire! electron

distancer 5p/kF . The first,d̄, controlsl̄, the strength of the
2kF component of the interwire Coulomb interaction. F
widely separated wiresd̄@r , this component is exponen

tially small, l̄}exp22kFd̄ and consequently,

T* ;E0expS 2
kFd̄

12Kc2
D .

As d̄/r→`, then,T* →0 and the transresistivity follows Eq
~1! in practically all relevant temperatures and length sca
The general trends are shown in Table I. The maximum v
ues ofT* that can be expected in realistic experimental s
ups are of orderT* ;0.013E0. In case of small wire sepa
ration d̄!r , the crossover temperatureT* is exponentially
suppressed according to

T* ;E0expS 2
p3

r s

c~kF!

kFd̄
D ,

where c(kF) is of order one and only logarithmically de
pends onkF .

For the spin-full case the results are similar, as long as
spin sectors are not unstable towards a formation of an
ergy gap in their spectrum~spin gap!. The resistivity di-
verges at zero temperature, and scales with temperature
an exponent

x52Kc221

TABLE I. log10 E0 /T* ~which is also log10 L* /r ) for different
values ofd/aB and r /aB for a spin-polarized double-wire system

(d̄53d,D5200 nm,aB510 nm).

d/aB 1.0 2.0 4.0

r /aB

2.0 15 27
3.0 8.2 14
4.0 5.6 9.1 17
5.0 4.3 6.7 11
7.0 3.1 4.4 7.4
9.0 2.6 3.3 5.3
12 2.2 2.6 3.8
16 2.0 2.1 2.8
20 1.8 1.9 2.3
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16 914 PRB 62ROCHUS KLESSE AND ADY STERN
in the high-temperature regime. A comparison with the p
vious exponent reveals that fluctuations in the neutral s
sector moderate the effect of the charged modes.

The behavior changes drastically if the single wires
velop spin gaps. In this case we find that the transresisti
vanishesat zero temperature.

III. SPINLESS DOUBLE WIRE

A. Notation

We use the following notations:~i! arw
† (k),arw(k): cre-

ation and annihilation operator of a right (r 51) or left (r
52) moving fermion of momentumk. The second index
refers to the active (w51) and passive (w52) wire. ~ii !
c rw(x)5L21/2(ke

ikxarw(k): fermionic operators in real
space representation.~iii ! r rw : density of right/left moving
fermions in wirew. ~iv! nw5r2,w1r1,w : charge density of
wire w. ~v! nc65n16n2 : absolute~or symmetric,c1) and
relative~or antisymmetric,c2) charge density of the doubl
wire system. In general, the indicesc1 and c2 refer to
quantities of the absolute and relative charge mode, res
tively. We also use this convention for bosonic fields, int
duced in Sec. III B.

The notation we use for the coupling constants follo
that of Voit’s review.4 We usegi to denote intrawire cou-
plings, andḡi to denote interwire couplings. The subscri
i 51 denotes 2kF scattering,i 52,4 denote small momentum
scattering.

B. The Hamiltonian in fermionic and bosonic representation

In this section we consider two one-dimensional wires
spin-polarized electrons with equal densities. If the wire
dex is viewed as az component of an ‘‘isospin,’’ the Hamil-
tonian of the problem is that of an isospin-1

2 1D system@but
with interactions that are notSU(2)-symmetric#, and results
obtained previously on the effect of backscattering in su
systems22,23 can be used. The kinetic-energy part of t
Hamiltonian states,4

H05vF(
rwk

rkarw
† ~k!arw~k!5

pvF

L (
qrw

r rw~q!r rw~2q!.

~2!

The small-momentum transfer or forward-scattering part
the electron-electron interaction is given by24

H f5
1

L (
ww8q

@dw,w8g21dw,2w8ḡ2#r1w~q!r2w8~2q!

1
1

2L (
rww8q

@dw,w8g41dw,2w8ḡ4#r rw~q!r rw8~2q!

and backscattering processes are described by4

Hb5 (
ww8

E dx c1w
† ~x!c2w8

†
~x!c1w8~x!c2w~x!

3@dw,w8g11dw,2w8ḡ1#.

It is convenient to switch to a standard boson represe
tion by introducing bosonic fields fw(x)5
-
in

-
ty

c-
-

s

f
-

h

f

a-

2ipL21(qq
21e2iqx2auqu/2@r1w(q)1r2w(q)# with their con-

jugates Pw(x)5L21(qe2 iqx2auqu/2@r1w(q)2r2w(q)#.7

Throughout the paper we interpret the lengtha as the inverse
Fermi wave vector 2p/kF . Physically, the fieldfw(x) de-
notes the displacement of electrons in wirew, normalized in
such a way that density fluctuationsdnw(x) and current
I w(x) are given by ]xfw(x)52pdnw(x) and ] tfw(x)
5pI w(x). The relation to the fermionsc rw is established
by the Luther-Peschel transformation formula,c rw(x)
5(2pa)21/2exp@ir @kFx2fw(x)#1iuw(x)#, where u(x)
5p*x0

x dx8Pw(x8).7

The total HamiltonianH5H01H f1Hb separates into
two decoupled parts, one describing absolute~symmetric!
current and density, and one describing relative~antisymmet-
ric! current and density. The decoupling is obtained
means of the transformation,fc65221/2(f16f2), Pc6

5221/2(P16P2).22 In bosonic representation the two par
are4

Hc15
uc1

2p E dxS Kc1p2Pc1
2 1

1

Kc1
~]xfc1!2D , ~3!

Hc25
uc2

2p E dxS Kc2p2Pc2
2 1

1

Kc2
~]xfc2!2D

1
2ḡ1

~2pa!2E dx cos~A8fc2!, ~4!

Kc65A11Uc6

12Uc6
, ~5!

Uc15
1

2pvc1
~2g22ḡ21g1!, ~6!

Uc25
1

2pvc2
~2g21ḡ21g1!, ~7!

vc65vF1~g46ḡ4!/2p, ~8!

uc65vc6~12Uc6
2 !1/2. ~9!

~The signs in the definition of the small-momentum co
plings Uc6 are chosen according to the conventions in R
23.! The fieldsfc6 describe fluctuations in the absolute a
relative density via]xfc65222(1/2)pdnc6 . Accordingly,
the relation to currents are] tfc6522(1/2)pI 6 .

The current in a drag experiment is a superposition o
symmetric and an antisymmetric current. A symmetric c
rent flows without resistivity, due to Galilean invarianc
Thus, the resistance results from the antisymmetric part o
and is determined by the relative charge sectorHc2 only.
Formally this is manifested in the invariance ofHc1 to spa-
tially homogeneous charge displacementsfc6(x)→fc6(x)
1wc6 , an invariance which is absent in the backscatter
potential (} cosA8fc2) in Hc2 . Consequently, we confine
ourselves to the sine- Gordon-type HamiltonianHc2 .

The HamiltonianHc2 has two parameters,Kc2 @which
may be expressed in terms ofUc2 , see Eq.~5!# andḡ1. Our
results are all independent of the sign ofḡ1, which we take
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below to be positive. For a single wire with electrons of tw
spin directions@namely, for SU(2) symmetric interaction,
g25ḡ2# the sign ofUc2 is determined by the sign ofg1, i.e.,
by whether the interaction is repulsive or attractive. Here t
only holds for two wires that are very close to one anoth
For larger interwire distancesUc2 can become negative als
for repulsive interaction, in particular Coulomb interactio
Then, ḡ22g252(2e2/e) ln d̄/d, while the parameterg1 is
independent ofd̄. Thus, for large interwire distanced̄, the
parameterUc2,0.

Below we confine ourselves to repulsive interaction, a
discuss the case of wires at close proximity and that of w
separated wires.

C. Renormalization-group analysis

In this section we analyze the backscattering term of
sine- Gordon Hamiltonian by means of a renormalizatio
group ~RG! analysis, and show that if the bare interactio
are weak, and the electron-electron interaction potential
cays with distance, the drag resistivity diverges at zero te
perature.

Let us first recall the main elements of an RG treatm
for Hc2 ~see, e.g., Ref. 4!. For small backscattering cou

plings, l̄[ḡ1/2puc2!1, the RG equations are of th
Kosterlitz-Thouless type~here we denoteK[Kc2)

dl̄

dx
5~222K !l̄,

dK

dx
522l̄2K2, ~10!

where the parameterx5 ln l/a is the logarithm of the renor
malized momentum cutoffl 21. The RG procedure starts wit

the bare couplingsl̄0 ,K0 at an initial momentum cutoffl 0
21

of order ofa21, and ends with renormalized couplings at
final cutoff l 1

215max$L21,T/uc2%. One method~due to Jose
et al.25! to derive the RG equations is to expand the sc
invariant correlation function̂e2ifc2(x1 ,t1)e22ifc2(x2 ,t2)& in

powers of the couplingl̄ and to integrate out the large mo
mentum degrees of freedom. After re-exponentiating the
sult one can then read off the RG equations~for details see
Refs. 25 and 26!. Within each RG step only the backscatte
ing interaction ḡ1 is treated perturbatively, whereas th
small-momentum interaction parametersg22g1 ,g4 ,ḡ2 ,ḡ4,
which determine the parameterK, are treated exactly. A dif-
ferent method, which leads to the same RG equations~10!
but may provide additional insights, is by means of mapp
the sine-Gordon Hamiltonian onto the two-dimensional C
lomb gas problem.23

The integral curvesl̄(K) of the RG flow~10! shown in
Fig. 1 obey the differential equation

dl̄

dK
5

K21

K2l̄
,

and are of the form

l̄~K !5A2S 1

K
1 ln~K/K0!2

1

K0
1

l̄0
2

2
D 1/2

.

is
r.

:

d
ll

e
-
s
e-
-

t

e

e-

g
-

There are two types of stable fixed points to Eqs.~10!.

Fixed points of the first type are characterized byl̄50,K
.1, i.e., by zero drag atT50. The basin of attraction o
these fixed points is the area below the separatrix

l̄s~K !5A2S 12K

K
1 logK D 1/2

.

Systems with bare couplingsl̄0 ,K0 inside this area scale

towards weaker backscattering couplingl̄ when temperature
decreases. Below we show that no realistic set of interac
parameters falls under this category.

When the bare couplings are outside this region@i.e., K0

,1 or l̄0.l̄s(K0)# renormalization to lower temperatur
drives the system into the strong-coupling stable fixed po

wherel̄→` andK→0. In this case backscattering becom
dominant at sufficiently low temperatures and freezes
phasefc2 to a minimum position. Translated to the doubl
wire system this means that the charges adjust their rela
displacementA2fc25f12f2 in such a way that the 2kF
interwire potential is minimal, i.e., the system forms tw
interlocked CDW’s.

Under these conditions the drag is very strong, as poin
out by Nazarov and Averin.14 The system’s resistivity to a
flow of unequal currents in the two wires becomes infinite,
the limit of zero temperature and infinite length. We elab
rate on this subject in Sec. III F.

It is instructive to express the condition for weak a
strong coupling in terms of the bare interaction parame
gi ,ḡi . For reasonably weak interaction,K&1.6, the sepa-

ratrix l̄s(K) is well approximated byl̄s(K)'K21'Uc2 .
Within this approximation the requirement for strong co

pling, l̄0.l̄s(K0), states

l̄0.Uc2
0 ~11!

which is equivalent to

~g22g1!.~ ḡ22ḡ1!. ~12!

Rather than the absolute strength of the interwire interac
couplings, it is their differenceḡ22ḡ1 in comparison tog2

FIG. 1. The RG-flow of a double wire system of spinless ele
trons. Point A corresponds to the bare couplings of a system w

d̄@kF
21 , point B to wires with narrow spacingd̄!kF

21 .
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2g1 that determines the zero temperature fixed point of
system. Takinggi andḡi as the Fourier components of intra
and interwire interactionV(x) and V̄(x) at q152kF andq2
51/L→0, condition~12! becomes

E dx~12cosq1x!@V~x!2V̄~x!#.0. ~13!

The first factor is non-negative. Then, a sufficient condit
for the left-hand side to be positive is obviouslyV(x)
.V̄(x) for all x, which is fulfilled by all monotonously de
caying repulsive interactions potentials, in particular t
Coulomb potential. Therefore,a Coulomb coupled double
wire system of spinless electrons should scale towards st
coupling, which implies a diverging zero temperature dr
in infinitely long wires.

There are two types of initial valuesl̄0 ,K0 that flow to
the strong-coupling fixed point. The first is defined byK0

,1. As seen in Eqs.~10!, for this casel̄ varies monoto-
nously as the temperature decreases. The second type

fined by K0.1 and l̄0.l̄s(K0). For this type,l̄ does not

vary monotonously. For relatively high temperature,l̄ de-

creases. At the temperature at whichK51, l̄ starts increas-
ing towards the strong-coupling fixed point. As explained
the previous section, well-separated wires (d̄→`) fall under
the first category, while wires at very close proximity fa
under the second. Assuming the bare interaction parame
gi ,ḡi to be small, for both types of initial conditions we ma
separate between a weak-coupling, high-temperature,
gime, where perturbation theory calculations can be car
out, and a low-temperature, strong-coupling regime. In
following sections we calculate the drag resistivity for bo
regimes, and identify the temperature scale that separate
two.

D. The high-temperature regime

We begin with the weakly coupled regime, in which w
employ a method devised by Nazarov and Averin.14 In the
limit of linear response (I→0) this approach of calculating
the drag resistivity is similar to the memory-function forma
ism of Zheng and MacDonald,21 as it is shown in Appendix
B. In the present calculation only the backscattering com
nent of the interwire interaction is treated perturbative
while the small-momentum part is treated exactly.

We consider a four-probe measurement with volta
probes at positionsx0 and x01a on both wires~let uc2 /T
!a!L), and calculate the voltage dropeVw5^mw(x0)
2mw(x01a)& I along wirew when a currentI is driven only
through the active wire (1). Using the relationdeVw
5k21dnw , wherek215]mw /]nw is the inverse compress
ibility, we obtain

eVw5
1

k
^dnw~x1a!2dnw~x!& I52

1

kEx0

x01a

^]xnw& I .

Due to translational invariance,
e

e

ng

de-

ers

re-
d
e

the

-
,

e

eVw

a
5

1

k
^]xnw& I52

p

A2k
^]x

2fc11w]x
2fc2& I . ~14!

The thermodynamical averaging^ . . . & I has to be restricted
to states satisfyinĝI 1&5I and ^I 2&50. Equivalently, but
technically more convenient, one can use an ensembl
currentless states, and then perform a Galile
-transformation of the active wire such that a net currenI
results. In terms of the displacement fieldsfs , this means
that f1 acquires a component growing linearly in time,

f1~x,t !→f1~x,t !1Vt,

or, translated into absolute and relative fields,

fc6→fc61
Vt

A2
. ~15!

The frequencyV is related to the current byV5pI /e.27

As expected, the transformation~15! does not alter the
absolute sectorHc1 , and no symmetric voltage is induce
by the current. It does affect the relative HamiltonianHc2

via the backscattering interaction, which becomes

Hint5l̄E0E dx

pa
cos~A8fc212Vt !, ~16!

and gives rise to a finite drag-voltage

eVw

a
5w

pk21

A2
^]x

2fc2&Hint
. ~17!

For the following calculation it is advantageous14 to make
use of the equation of motion, ] t

2fc25
2@Hc2 ,@Hc2 ,fc2##, from which follows that under sta
tionary conditions (̂] t

2fc2&50):

^]x
2fc2&52

K

u K dHint

dfc2
L 5

A8K

a2
l̄^sin~A8fc212Vt !&,

~18!

and then to perform a perturbative expansion of the rig

hand side in the backscattering couplingl̄ with respect to
H05Hc22Hint .

By standard methods we obtain in lowest nonvanish
order the resistivity

rw[
]

]I

Vw

l
u I 505wr0l̄0

2S T

E0
D 4K23

, ~19!

wherer0;h/e2a. Higher-order termsr (n)}l̄0
2n scale with

temperature as

r (n)}Tdn, dn5~4K24!n11.

Terms with odd powers ofḡ1 vanish.
The temperature-scaling lawr}T4K23 can be also de-

rived from the RG treatment in the following way: In th
absence of electron correlations a simple calculation yiel

r~T!;r0l̄0
2T/E0 .
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The effect of forward scattering can be accounted for

using a renormalized backscattering coupling constanl̄

5l̄(T). One finds from the RG equations~10! that in the

weak-coupling limitl̄(T)5l̄0(T/E0)2K22 @see Appendix A,
Eq. ~A1!#, which inserted into the previous equation inde

givesr(T)}l̄0
2(T/E0)4K23.

E. The crossover temperature

In this section we estimate the crossover temperature
low which the perturbative calculation of the previous se
tion ceases to hold, and interlocking of the two charg
density waves in the two wires becomes relevant. T
crossover temperature is that in which the coupling cons

l̄ becomes of order 1.

For initial conditionsl̄0!1 andK0,1, corresponding to
well separated wires, the solution to the RG equations ca
approximated by

l̄~T!'l̄0S E0

T D 222K0

andK'K0. The crossover is then

T* ;E0l̄0
1/(222K0) . ~20!

In Appendix A it is shown that ford̄@d,kF and for the

Coulomb interaction, the coupling constantl̄0;exp2kFd̄,
and thusT* is exponentially suppressed. More specifical
we find in this case

T* ;E0expS 2
kFd̄

12K0
D . ~21!

Note that with vanishing interaction strength, 12Kc2'

2Uc2'r s(ln kFd̄1g)p22 ~see Sec. V!, and hence

T* }expS 2
kFd̄

r sln kFd̄
D ,

where the parameterr s[r /aB5pe2/vFe describes the inter
action strength.

For initial conditions of the typeK0*1 andl̄0.l̄s(K),
corresponding to wires at very close proximity, the RG eq
tions can again be solved approximately@see Appendix A for
details#, and we find

T* ;E0expS 2
p3

r s

c~kF!

kFd̄
D , ~22!

where c(kF) is of order one and only logarithmically de
pends onkF . Thus, when 1/kFd̄@1, the temperatureT* is
again exponentially small. At first sight, this might be su
prising. However, it becomes understandable by observ
that for d̄!r , intra- and interwire coupling are almost equ
Hence the problem becomes close to that of a single w
with electrons of two spin states,~wheregi5ḡi), which is
known to renormalize to the marginal weak-coupling fix
point.
y

e-
-
-
e
nt
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,

-
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F. Low-temperature limit

In the strong-coupling limit, withl̄*1, andK!1, the
sine-Gordon Hamiltonian~4! describes two interlocked
charge-density waves, and carries strong resemblance to
problem of a pinned charge density wave, which has b
studied quite extensively in the 1970’s~we refer in particular
to the work of Riceet al.17 and Maki!.18

Classically, for largel̄ the HamiltonianHc2 has an infi-
nite number of ground states with field configurationsf(x)
[fN5p(2N11)/A8. They are separated by a large ener
barrier, such that at sufficiently low temperatures the fi
fluctuates around one of the ground statesfN . These fluc-
tuations do not carry an antisymmetric current. Rather, it
transition from a ground statefN to its neighborfN61,
which corresponds to an electron transfer through the ac
wire from the left end to the right end or vice versa. The
transitions are carried out either by a soliton moving alo
the wire, or by a soliton-antisoliton pair which is created
the wire and is dissociated by an electric field. The widthW
and energyEs of a classical soliton are28

W;
a

AKl̄

, Es5A 8l̄

p2K
E0 .

We expect that the transport properties of short wires w
L!W are different from that of long wires, whereL@W,
and therefore consider both regimes separately.

In long wires electronic current is carried by means
soliton-antisoliton pairs. This mechanism was studied
Rice et al.17 and Maki18 within a semiclassical approxima
tion. The semiclassical regime is that in which the classi
soliton energyEs is much larger than the zero-point energ
of the fluctuations around it. In terms of our parameters t
regime is defined byK!1. As found by Riceet al.,17 in this
regime thermal creation of soliton-antisoliton pairs leads t
resistivity

r5
h

16pe2l
A EsT

2l̄KE0
2
eEs /T, ~23!

where l, the mean-free path of~anti!solitons, is a phenom-
enological parameter.

WhenK!1, the soliton energy is renormalized accordi
to29

Es
r5EsS Es

E0
D K/12K

. ~24!

Equations~23! and ~24! define a crossover temperatureT*
[Es

r separating the low- and high-temperature regimes.
one may expect, this temperature is approximately equa
the one obtained in Sec. III E.

The low-temperature regime is characterized by a hig
nonlinear drag, taking place at exceedingly low tempe
tures, where soliton-antisoliton pairs are generated by qu
tum tunneling, rather than thermal activation. In this regim
as found by Maki,
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r5
h

e2

Es

16p2uc2

ee0 /e, ~25!

where e05Es
2/2euc2 ,e5V/L, and V is the voltage differ-

ence between the two ends of the wires. The crossover
perature, at which thermally activated behavior changes
tunneling dominated one, can be determined by equating
exponentials, which yields

Tco;2AK

l̄

a

L
eV.

For short wires, where the soliton widthW is large com-
pared to the wire lengthL, the fieldsP,f may be approxi-
mated as constant in space, leading to a Hamiltonian

H5
uc2L

2p Fp2Kc2P21
2l̄

a2
cosA8fc2G[

v2

Eb
p21

Eb

2
cosw.

~26!

Here we introduced a frequencyv258l̄KE0
2, a barrier en-

ergy Eb5(2/p)l̄(L/a)E0, and canonical conjugated var
ables w5A8f, p5LP/A8. While this Hamiltonian re-
sembles that of a pendulum, it differs from it in on
important aspect: in the present case the statesw and w
62p are distinct physical states, since a shift of the phase
2p corresponds to a transfer of one electron between
reservoirs the active wire is coupled to. Since differe
minima of the potential energy correspond to distinct sta
of the reservoirs, it is unlikely that the fieldf can be in a
superposition of several such minima. We therefore ass
that the field is in one of the minima, and transport tak
place by tunneling or thermal hopping between adjac
minima.

A chemical potential differencedm between the reser
voirs at the ends of the active wire adds a linear potentia
the Hamiltonian~26!:

V~q!5
dm

2p
w.

To determine the current induced bydm we calculate the
ratesG l /r by which the phasew hops between minima by
thermal activation or tunneling. Then

I 5e~G r2G l !.

Thermal activated hopping dominates at temperatureT
@v with a rate30

G l /r'
v

2p
e2Eb /Te7dm/2T.

At low temperaturesT!v the main contribution come
again from tunneling processes with rate

G l /r8 ;ve2Sl /r (dm).

For dm!Eb the action can be expressed as
m-
a

he

y
e
t
s

e
s
t

o

Sl /r~dm!5
Eb

A2v
E

s

2p2s

dwA12cosw6
dm

pEb

'
4Eb

v
6C

dm

v
,

wheres;(Ka2/l̄L2)1/4!1 takes care of the finite width o
the well ground state. The coefficientC is of order unity and
only logarithmically dependent ons.

Putting this together we end up with current-voltage re
tions

I'e
v

p
e2Eb /T sinh~dm/2T! for T@v, ~27!

I;eve24Eb /vsinh~Cdm/v! for T!v. ~28!

Accordingly, the linear resistance is

R'
h

e2

T

v
eEb /T for T@v, ~29!

R;
h

e2
e4Eb /v for T!v. ~30!

These expressions are valid for wires much shorter than

soliton lengthW;a/AKl̄ and voltageseV!Eb . Notice
that because ofEb}L/a the resistance increases expone
tially with length L.

IV. SPIN-FULL DOUBLE WIRE

A. The Hamiltonian and renormalization-group equations

We now extend our analysis to include the spin degree
freedom of electrons in the two wires. Denoting the sp
degree of freedom by an indexs56 in addition tor ,w as
above, and taking into account theSU(2) symmetry of the
Coulomb interaction, we have

H05
pvF

L (
qrws

r rsw~q!r rsw~2q!,

H f5
1

L (
qsws8w8

@dw,w8g21dw,2w8ḡ2#

3r1sw~q!r2s8w8~2q!1
1

2L

3 (
rqsws8w8

@dw,w8g41dw,2w8ḡ4#r rsw~q!r rs8w8~2q!,

Hb5 (
sws8w8

E dx@dw,w8g11dw,2w8ḡ1#

3c1sw
† ~x!c2s8w8

†
~x!c1s8w8~x!c2sw~x!.

Following the same procedure as in the spinless case
first change to bosonic field variables7
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fsw~x!52
ip

L (
qÞ0

e2 iqx2auqu/2

q
@r1sw~q!1r2sw~q!#,

Psw~x!5
1

L (
qÞ0

e2 iqx2auqu/2@r1sw~q!2r2sw~q!#,

and then transform to new bosonic fieldsf̃c/s6 ,P̃c/s6 cor-
responding to absolute (1) and relative (2) charge~c! and
spin ~s! density. The transformation is defined by

fsw5 1
2 ~f̃c11sf̃s11wf̃c21swf̃s2!,

and in the same way forP̃c/s6 . For the transformation of the
backscattering HamiltonianHb we use the formula

c rsw5
h rsw

A2pa
exp@ ir ~kFx2fsw!1 iusw#, ~31!

whereusw(x0)5p21*0
x0Pswdx and theh rsw5h rsw

† are so-
called Majorana fermions. They obey

@h rsw ,h r 8s8w8#152d rsw,r 8s8w8

and ensure that the operators given by Eq.~31! follow fer-
mionic commutation rules.7 We obtain the following Hamil-
tonian ~the tilde is omitted,j takes the valuesj 5c,s, for
charge and spin.l takes the valuesl 56, for symmetric and
antisymmetric!

H5(
j l

H jl 1Hb , ~32!

H jl 5
ujl

2pE K jl p
2P j l

2 1
1

K jl
~]xf j l !

2, ~33!

K jl 5~11U jl !
1/2~12U jl !

21/2, ~34!

Uc15
1

2pvc1
~22g222ḡ21g1!, ~35!

Uc25
1

2pvc2
~22g212ḡ21g1!, ~36!

Us65
1

2pvs6
g1 , ~37!

vc65vF1~g46ḡ4!/p, ~38!

vs65vF , ~39!

ujl 5v j l ~12U jl
2 !1/2, ~40!

Hb51
g1

p2a2E dx cos 2fs1cos 2fs2 ~41!

2
ḡ1

p2a2E dx cos 2fc2cos 2fs2 ~42!

2
ḡ1

p2a2E dx cos 2fc2cos 2fs1 . ~43!
Again, the system has no resistance to a symmetric flow
current, due to Galilean invariance, and thus the charge s
metric part of the HamiltonianHc1 decouples from the othe
parts. The remaining parts are all coupled by the backsca
ing HamiltonianHb , so that the spin modes, despite the
charge neutrality, do affect the role of the Coulomb intera
tion.

As in the spin-polarized case, when the backscatter
couplingsg1 ,ḡ1 scale to the strong coupling fixed point
T50, spin fieldsfs6 and the relative charge fieldfc2

freeze to minimum positions, which causes a divergent d

resistance at zero temperature. On the other hand, whel̄
renormalizes to zero~while l can still scale to stronger cou
plings!, the drag resistance decreases with temperature
vanishes atT50. ~The case of a decreasingl and an in-

creasingl̄ does not exist.!
The second-order RG equations for a double wire as

scribed by the Hamiltonian above are

dl̄

dx
5~22Ks2Kc22l!l̄, ~44!

dl

dx
5~222Ks!l22l̄2, ~45!

dKs

dx
522~ l̄21l2!Ks

2 , ~46!

dKc

dx
524l̄2Kc

2 , ~47!

where l̄[ḡ1/2puc2 , l[g1/2pus6 , Kc[Kc2 , and Ks
[Ks6 . These equations can be derived in the same man
as those in the spin-polarized case by assuming scale in
ance of the correlation function
^e2if j l (x1 ,t1)e22if j l (x2 ,t2)&.24,25 They are valid for arbitrary

Ks/c , but restricted to smallul̄u,ulu!1. ~Similar RG equa-
tions appear in the context of single wall carbon nanotub
where also two spin-degenerate channels are present.!31

B. Fixed points for the renormalization-group equations

The following types of fixed points are found for the R
equations~44!–~47!: ~i! Fixed points whereKsÞ0. As evi-

dent from Eq.~46!, for these fixed pointsl5l̄50, and thus
we refer to them as the ‘‘weak-coupling fixed points.’’ The
describe wires with vanishing backscattering interaction
low temperatures, and therefore vanishing drag. As in
spin-polarized case, for large values ofKc ,Ks these fixed
points are stable, while for small values they are unstabl

~ii ! Fixed points for whichKs50 andKcÞ0. As evident

from Eq. ~47!, for these pointsl̄50, and then, from Eq.
~45!, a stable fixed point exists only forulu5`. The former,

l̄50, indicates vanishing drag, the latter,ulu5`, means that



s

ith
th
p
ab

er
in

e
te

d

ee

l-
-
ain
n-

ing,
ture.

ty

n
ak-
ns

on-
tion
int,

u-

ac-
he
de-

he

ver

ll

cou-

s

ng

on

16 920 PRB 62ROCHUS KLESSE AND ADY STERN
the spinmodes are massive~spin gap!. These fixed points
have no analog in the spinless case. We refer to them a
‘‘spin-gap fixed points.’’

~iii ! Fixed points whereKs5Kc50. There are two stable

fixed points in this plane. The first isl52` and l̄51`,
and it obviously describes two strongly coupled wires, w
diverging zero-temperature drag. We refer to it as
‘‘strong-coupling fixed point.’’ The second is a spin-ga
fixed point as described above. There are also two unst

fixed points on that plane. The first isl5l̄50. It is repul-

sive in all directions of the (l,l̄) plane. The second isl

5l̄51. It is attractive in the direction (1,1). The bord
between the basin of attraction of the two stable fixed po

is the diagonall5l̄ ~see Fig. 2!. This border has a simple
physical interpretation, separating between the region wh
bare intrawire backscattering is stronger than the bare in
wire one and the region where the opposite is true.

C. The small U limit

In case of smallUc/s , Eqs. ~44! to ~47! reduce to the
following set of equations, derived first by Gorkov an
Dzyaloshinskii for the problem of coupled chains,32,15

dl̄

dx
52~Us1Uc12l!l̄,

dl

dx
522Usl22l̄2,

dUs

dx
522~ l̄21l2!,

dUc

dx
524l̄2, ~48!

(Uc/s[Uc2/s6). Furthermore, in that limitl05Us
0 and

d(l2Us)/dx[0. Thereforel(x)5Us(x). With this, Eqs.
~48! reduce to three independent equations:

dl̄

dx
52~Uc13l!l̄,

dl

dx
522~l21l̄2!,

FIG. 2. RG flow of the spin-full double-wire system in theKc

5Ks50 plane~schematic!. p0 andp1 are unstable fixed points,p2

is the strong-coupling fixed point, andp3 a spin-gap fixed point.
the

e

le

ts

re
r-

dUc

dx
524l̄2. ~49!

These RG flow equations were analyzed in detail by L
et al.,15 who found that for initial values satisfying

Ucl,l̄2, ~50!

the system scales to a strong-coupling fixed pointl→2`,

l̄→`. Rewritten in terms ofgi . . . ,ḡi . . . this condition states

ḡ22g2,
1

2
S ḡ1

2

g1
2g1D 1O~gi . . .

2 /vF
2 !.

For g1.0 the right-hand side is always larger thanḡ12g1,
such that a sufficient condition for this inequality to be fu
filled is ḡ22g2,ḡ12g1. This, however, is exactly the in
equality~12! we had in the spinless case. We find then ag
that for weak monotonously decaying repulsive electro
electron interaction~small positivel), a double wire with
spin-unpolarized electrons scales towards strong coupl
manifested by diverging transresistance at zero tempera
The conditionl05Us

0 , valid in the smallU regime, does not
allow a flow to the spin-gap fixed point.

D. Beyond the smallU limit: Linear stability
of the weak-coupling fixed points

As stated above, a smallU analysis~i.e., weak electron-
electron interaction! of the RG equations~44!–~47! leads to

the conclusion thatl̄ and therefore also the drag resistivi
diverges at zero temperature, accompanied by a largenega-
tive couplingl. It is unlikely that stronger electron-electro
interaction would push the system towards the we
coupling fixed points, where both backscattering interactio
become negligible at zero temperature. It is, however, c
ceivable that for some range of parameters strong interac
would lead the system towards the spin-gap fixed po

where l goes to largepositive coupling, but l̄ ~and rD)
vanishes. For example, if in the absence of interwire co

pling each of the wires is in a spin-gapped state withl̄*1
~as happens for attractive intrawire electron-electron inter
tion! one may expect weak interwire coupling to leave t
two wires in that state. Consequently, the wires would

couple (l̄→0) and the drag wouldvanish.
In principle one may analyze this behavior by use of t

RG equations~44!–~47! beyondthe smallU limit. The va-
lidity of such an analysis to the problem at hand is howe
unclear, since at the level of initial valuesl0.Us

0 , and the
RG equations are derived under the assumption of smal.

Instead of doing this, we treatKc/s ,l and l̄ as independent
parameters and confine ourselves to the case of small

plings l̄,l!1 ~but arbitraryKc/s), where the RG equation
are valid.

Let us consider the linear stability of the weak-coupli

fixed points~wherel5l̄50) to turning on a smalll,l̄. We

find that thel5l̄50 plane is split into four regions~see
Fig. 3!. In the first region, areaI, defined byKs1Kc.2 and
Ks.1, the weak-coupling fixed point is stable. In the regi
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whereKs.1 butKs1Kc,2 ~which we call area II, see Fig
3!, the weak-coupling fixed points are linearly stable w
respect to infinitesimal values ofl, but unstable with respec

to such values ofl̄. We now argue that initial values in tha

area flow to the strong-coupling fixed point (l→2`,l̄→
1`). Let us considerul̄0u!l0!Ks21 in this region. By
Eq. ~45!, the coupling constantl will scale to small values,

such that the instability of thel̄ mode @Eq. ~44!# becomes

relevant. Thenl̄ keeps increasing until finally the22l̄2

term in Eq.~45! overcomes thel stability and forcesl to
scale to negative values.

Points lying below theKs51 line in area III or III8 are
linearly unstable inl. Consequently,l increases and thereb

decreases the coefficient in the equation forl̄. In the limit of

l̄0!l0 this leads to a stabilization of thel̄ mode, even
where it was initially unstable~area III8). Hence, points in
areas III and III8 scale to the spin-gap fixed point (l→
1`,l̄50).

To summarize, in the limit oful̄u!l!uKs21u the basins
of attraction of the weak- and strong-coupling fixed poin
correspond to areas I and II in Fig. 3, respectively. Furth
points of area III/III8, which characterize systems with
tendency to~single-wire! spin-gap phase, indeed scale t
wards the~double-wire! spin-gap fixed point with vanishing

l̄ ~zero drag!.
The linear stability analysis we carried out is expected

give the right structure of Fig. 3, but not the precise bord

between the areas. Near the borders, terms linear inl andl̄
may have very small prefactors, which make the role of
quadratic terms significant. An example to that is the reg
Ks'11l, studied by Leeet al., where in the right-hand side
of, Eq. ~45! both terms become comparable.

When l0 is comparable touKs21u ~but still l̄0!1) the
condition for l scaling towards weaker couplings isKs21
.l0 ~see the discussion in Sec. III!. Then, the border be
tween areas III/III8 and II/I is raised toKs511l0. The ef-
fect of largerl0 is therefore a reduction of area II, i.e., als
in this sense a largerl0 is in favor of wire decoupling.

E. High- and low-temperature limits of the drag

A perturbative calculation of the drag voltage in th
weak-coupling regime, applicable for widely separated wi

FIG. 3. Stability of weak-coupling fixed pointsl5l̄50. Only

fixed points in area I can be stable. In the limitul̄0u!l0!uKs

21u points in areas II flow to the strong-coupling fixed pointp2

~where l̄→`), while points in area III or III8 flow towards the

spin-gap fixed pointp3 ~wherel̄→0).
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o
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e
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in the high-temperature regime, can be developed along
same lines as before. We have

eVw5
ak

p
^]x

2fc11w]x
2fc2& I .

The transformation to current carrying states is again gi
by Eq. ~15!, such that

eVw5w
ak

p
^]x

2fc2& I5w
4ak

pa2
l̄^sin~2fc21A2Vt !

3~cos 2fs21cos 2fs1!&.

Hereby, we used the equation of motion forfc2 and the
stationarity condition̂ ] t

2fc2&50. A perturbative expansion

in the couplingsl̄, l, andUs'l then leads to

rw5wr0l̄2S T

E0
D 2Kc21

~51!

with r;h/e2a. Leading higher-order terms are of orderl̄2

3O(l,Us).

For wire distancesd̄@kF
21 , the smallness ofl̄}e22kFd̄ is

guaranteed. Further, in this case the spin-sector coupl
l,Us flow to the single wire Luttinger liquid fixed poin
l* 5Us* 50, as long as the temperature is still large co
pared to T* . Hence, effective couplingsl'Us are also
small, where the perturbative result~51! is applicable.

The crossover temperatureT* , separating between th
high- and low-temperature regimes, is exponentially s
pressed ford̄@kF

21 with

T* ;E0expS 2
2kFd̄

12Kc
D , ~52!

as shown in Appendix A.
When the system flows towards the strong-coupling fix

points, at sufficiently low temperatures the phasesfs6 ,fc2

freeze to their minimum positions, and antisymmetric curr
flows by means of solitons. Again, in this case we exp
drag resistivity to be proportional toeT* /T.

V. ESTIMATE OF PARAMETERS

The significance of Coulomb drag in a particular expe
mental setup of two 1D coupled wires is determined byT*
and the corresponding minimal lengthL* 5aE0 /T* . We
now estimate these quantities for a double-wire system w
parameters taken from the experiment by Yacobyet al.,20

where, using cleaved edge over growth
GaAs-AlxGa12xAs structures, quantum wires of width dow
to 14 nm and lengthL of order mm were fabricated, with
adjustable electron density.

The bare values of the interaction constantsgi . . . ,ḡi . . .
appearing in the fermionic Hamiltonians can be estima
from the geometry of the experiment. If we assume the wi
to be parallel in a distanced̄ and characterize the transvers
extension of the electron wave function by a lengthd, intra-
and interwire potential are given by
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V~x!5
e2

e
~x21d2!21/2, V̄~x!5

e2

e
~x21d21d̄2!21/2.

The expression forV(x) is approximate on small lengt
scales&d. However, since generallykF

21*d, this may not
lead to large errors in the determination of the 2kF scattering
parameters,g1 ,ḡ1. The couplingsgi ,ḡi , are the Fourier
components ofV(x),V̄(x) at q152kF and q2 ,q451/D,
whereD is the screening length,

gi5
2e2

e
K0~qid!, ḡi5

2e2

e
K0~qiAd21d̄2!. ~53!

Taking the limitD→` does not raise any problem, since t
couplingsg2/4,ḡ2/4 appear always as differences. As point
out by Starykhet al. ~Ref. 33, see also Mahan!,34 the param-
eterg4 has to be modified for the Pauli principle to be sat
fied. This modification is however small when the 2kF part
of the interaction is much smaller than theq'0 part.

Having determinedgi . . . ,ḡi . . . , we can calculate the bar

parametersl0 ,Kc2
0 andl̄0 ,Ks

0 for the bosonic Hamiltonians
by means of the corresponding expressions of Secs. III
IV. These values are then to be used as initial valuesx
50) for the RG equations.

The system enters the regime of strong coupling wh

l̄(x);1. Thus,T* andL* are estimated byl̄(x* )51. The
integration of the RG equations can be done analytically
certain parameter regimes, which leads to expressions~21!,
~22!, and~52! ~see Appendix A!. Here we also give numeri
cal results.

One should be aware that this method leads to orde
magnitude estimates rather than precise values forT* . Nev-
ertheless, the reliability of this procedure can be dem
strated in the special case of spin-polarized fermions w
Kc251/2. Then, the bosonic HamiltonianHc2 can be trans-
formed to a Hamiltonian of noninteracting, fictitious ferm
ons ~‘‘refermionization’’!,21 which exhibit an energy gap o
the order ofT* obtained by the afore-mentioned method.

Let us first consider the spin-polarized case. We assu
an interwire distance of d̄53d. Table I contains
log10E0 /T* [ log10L* /r for wire widths d5aB ,2aB , and
4aB , whereaB is the effective Bohr radius. The screenin
length is defined by the distance to external metallic ga
and set toD5200 nm. With aB'10 nm in GaAs these
wire widths are close to the experimental values in Ref.
The TL parameter of the relative charge sector is typica
Kc2'0.8 andl0&0.1.

The main characteristic is the strong decrease ofx* with
r as longr &d̄, in accordance with the exponential suppre
sion of T* @see Eq.~21!#. For larger values ofr the depen-
dence is rather weak, since here, according to Eq.~22!, x*
'p3c(kF)/r skFd̄ with c(kF)/r skF'const.

The strong-coupling regime is not easily accessible. E
at very low densities ofr 215(200 nm)21 the crossover
temperature is still very low:T* ;0.01E0;1 mK ~the cor-
responding length isL* ;10 mm). However, even when th
system is still in the weak-coupling regime, the drag res
tance can be significant. According to the Eq.~19! we esti-
-

nd

n

n

of

-
h

e

s

.
y

-

n

-

mate the drag resistance of a 10m long double wire atT

5100 mK withd510 nm, d̄53d, andr /aB55,10, and 20
to be of order 0.01, 0.1 and 13h/e2, respectively. The in-
fluence of the screening gate turns out to be rather small
to the relatively large distance.

Quantitatively, our findings deviate strongly from the e
timate for L* given by Nazarov and Averin.14 For param-

eters d5d̄510 nm, D5100 nm ~Ref. 14! obtain L̃*
'0.3 mm, whereas according to our calculations for the
parametersL* '1000 mm.

The origin of this discrepancy of more than three ord
of magnitude is the missing interwire small-momentum co

pling ḡ2 in Ref. 14. Equation~53! shows that for not too

small D@d,d̄ this coupling becomes in fact very similar t
the corresponding intrawire couplingg2, meaning thatg2

2ḡ2!g2 ,ḡ2. ~The same holds forg4 /ḡ4.! Then, inspection

of Eq. ~7! reveals that under these circumstances settingḡ2

50 drastically overestimates the quantity 12Kc2'

2Uc2 . This in turn leads to the strongly reducedL̃*
;1 mm, as we have checked within our calculation.

The results obtained for a double wire of spin-unpolariz

electrons is shown in Table II~still d̄53d, D5200 nm).

For relatively small valuesr &d̄ the system scales to

strong interwire couplingsl̄. In this regime,x* decreases
with increasingr, as in the previous case. A qualitative
different behavior sets in at largerr: here, renormalization
drives the system towards the spin-gap fixed point, indica
by an ‘‘*’’ in Table II. The transition from the former regime
to the latter happens atr c /aB53.1,4.8, and 7.6 ford/aB

51.0,2.0, and 4.0, respectively. At these densities, the
parameter assume valuesKc2'0.5 andKs'1.3. Since fur-

TABLE II. log10 E0 /T* [ log10 L* /a for a spin-unpolarized

double-wire system (d̄53d,D5200 nm,aB510 nm). The ‘‘*’’
indicates the zero-drag phase atT50. Note that at larger /aB the

initial values ofl,l̄ are not small, and thus the validity of the R
equations is questionable.

d/aB 1.0 2.0 4.0

r /aB

1.0 18
1.5 11 18
2.0 8.7 13 22
2.5 7.6 9.9 17
3.0 7.3 8.4 13
3.5 * 7.6 11
4.0 * 7.0 9.7
4.5 * 6.7 8.7
5.0 * * 8.0
5.5 * * 7.5
6.0 * * 7.1
6.5 * * 6.8
7.0 * * 6.6
7.5 * * 6.8
8.0 * * *
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ther l'0.3, it is unclear, however, to what extent the R

equations we use, which are derived for smalll0 ,l̄0 are
applicable for this case.

VI. SUMMARY AND COMPARISON
TO OTHER RESULTS

In this paper we used the Tomonaga-Luttinger mode
analyze Coulomb drag between two ballistic quantum wir
We find the drag to be a strong effect, both in its magnitu
and in its temperature dependence.

We find that at zero temperature, for all weak mono
nously decaying repulsive electron-electron interaction
transresistance diverges, indicating the formation of in
locked charge-density wave ground state in the two wires
low temperature,T!T* , we predict the transresistance
depend exponentially onT* /T.

At high-temperatureT@T* we predict the transresistanc
to show a power-law dependence on temperature, with
power being determined by the Luttinger liquid paramete
For spin-polarized electrons, we find the power to be 4Kc2

23, with Kc2 being the TL parameter corresponding toanti-
symmetriccharge displacement. For spin-unpolarized el
trons, we find the power to be 2Kc221.

The crossover temperatureT* depends exponentially o
parameters. For wires at large separationkFd̄@1 it is

T* ;E0exp2
bkFd̄

12Kc2
0

,

where b51 for spin-unpolarized, andb52 for spin-
polarized wires.

Our estimates for the critical wire lengthL* 'vF /T* ,
which is necessary to observe an exponentially enhan
drag, strongly deviates from the corresponding estimate
Ref. 14. This difference, however, is explained by the
glect of the small-momentum interwire scattering in t
model of Ref. 14.

In the limit of vanishing long-ranged interaction
(g2/4,ḡ2/450), where electron correlations are absent,
predictions agree with those obtained within Fermi-liqu
theory by Hu and Flensberg, and Gurevichet al. In this case
Kc221 and hence, e.g., from Eq.~19!, rD;hkF /e2

3l̄2T/EF , which is also found in Refs. 8 and 9. Further, t
finding that a noteworthy drag effect requires equal Fe
momenta8 ~equal Fermi velocities9! holds also for the corre
lated systems considered here. This can be seen, e.g., in
14, where wires with different densities have been explic
studied.

The analysis presented here is restricted to a reg
where interwire tunneling is insignificant, as it should be
proper drag experiments. More precisely, single electron
neling described byHt5t'( rkwarw

† (k)ar (2v)
† (k) is tolerable

as long ast[t' /E0!l̄. Thereby it is important to notice
that the effective tunneling constantt might scale to larger
values with decreasing energy scale. According to Kusm
sevet al.35 ~see also Yakovenko36! this is the case for inter
action parameter 22A3,Kc2,21A3, wheret}Ta with
a5Kc2/211/2Kc222 ~for spinless electrons!. Since on the
o
s.
e
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e
r-
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-

ed
in
-

r

i

ef.
y

e

n-
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other handl̄}Tb with b52Kc222 @see Eq.~A1!#, we see

that for Kc2.321/2 the ratiot/l̄ increases with decreasin
temperature. As a consequence, a finite tunneling constat'

0

can become relevant at sufficiently low temperatures, wh
eventually changes the picture drawn here. This sets a m
mum temperature due to tunneling, below which drag exp
ments can no longer be performed.
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APPENDIX A

We begin with the calculation ofT* for spinless electrons
and large wire separationd̄, such thatkFd̄@1. In this case

l̄05
e2

peuc2
K0~2kFd̄!;r se

22kFd̄

is exponentially small, as a consequence of whichKc2(x)

'const.[K0 @Eq. ~10!#. With this we obtain fromd ln l̄/dx
5222K0:

l̄~x!5l̄0e(222K0)x, ~A1!

wherex5 ln E0 /T. The conditionl̄(x* )'1 then gives

T* 'E0l̄0
1/(222K0)

;E0expS 2
kFd̄

12K0
D . ~A2!

For small wire separations (d'd̄) inter- and intrawire
couplings ḡ . . . and g . . . become similar, such that (U0

[Uc2
0 ):

U05
1

2pvc2
~g12g21ḡ2!'

g1

2pvc2
'

ḡ1

2puc2
5l̄0 .

This means that the bare couplingsl̄0 ,K0'11U0 lie close
to the separatrix, but still outside the attractive region of
weak-coupling fixed points~see Fig. 1!. Under renormaliza-

tion (l̄,K) flows along the separatrix towards weaker co
plings until the turning point atK51 is reached. Thencefor

ward (l̄,K) flows towards the strong-coupling regime.
For an estimate ofT* we use the approximate RG equ

tions valid for uUu!1,

dl̄

dx
522l̄U,

dU

dx
522l̄2.

These can be easily integrated by use of the constant of

tion l̄22U2[a2, which yields
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x22x15
1

2a
~arctanU1 /a2arctanU2 /a!.

In particular, we obtain for the ‘‘time’’xa , at which the
turning point is reached (x15x050,U15U0 ,xa5x2 ,U2
50)

xa5
1

2a
arctanU0 /a.

In the case under consideration withl̄0'U0, the constanta
is a small quantity:

a2'2l̄0~ l̄02U0!!l̄0
2 ,U0

2 ,

which will be determined more explicitly later. Because
the relative smallness ofa we have

xa'
p

4a
.

For the rise from the turning point to stronger couplingsl̄
@a, an equally long ‘‘time’’xb is needed, so that

x* 'xa1xb5p/2a

and therefore

T* 'E0e2p/2a. ~A3!

It remains to calculatea: Taking the expressions

gi5
2e2

e
K0~qid!, ḡi5

2e2

e
K0~qid̄!,

and expanding up to second order inkFd̄ we obtain

l̄02U05
1

2pvc2
~ ḡ12g11g22ḡ2!

5
r s

p2
f ~d/d̄, ln kFd̄!~kFd̄!21O4~kFd̄!,

whereby

f ~d/d̄, ln kFd̄!5S d

d̄
ln d/d̄1g211 ln kFd̄D S d2

d̄2
21D

(g'0.577 is Euler’s constant!. This yields

a5@2l̄0~ l̄02U0!#1/25
r s

p2
K0

1/2~2kFd̄! f 1/2kFd̄.

As long askFd̄&1, the Bessel functionK0(2kFd̄) and f are
of order one and only logarithmically dependent onkFd̄.
Hence in this case

a5c21
r s

2p2
kFd̄

with c a numerical coefficient of order unity. Inserting th
into Eq. ~A3! yields
f

T* ;E0expS 2
cp3

r skFd̄
D .

Let us now consider a spin-full double wire with larg
separationd̄@kF

21 . Then again the interwire backscatterin
coupling is exponentially small, such that also here

Kc'const.5Kc
0 .

Due to the smallness ofl̄, the RG equations for the spin
sector couplingsl,Ks decouple from the relative charge se
tor and become identical to the corresponding RG equat
of a single spin-12 wire:

l8522Usl,

Us8522l2

~for l,uUsu!1). Accordingly, the couplingsl,Us with bare
valuesl05Us

05g1/2pvF scale down to weaker coupling:

l~x!5Us~x!5
l0

112l0x
.

Because of this behavior we can neglect in the differen

equation forl̄,

d ln l̄

dx
512Kc

02Us22l,

the last two terms, ifUs
0 ,l0!12Kc

0. Then, for this regime,

d ln l̄

dx
'12Kc

0 ,

which gives

l̄~x!5l̄0e(12Kc
0)x.

This leads in the same way as in the corresponding spin
case to a crossover temperature

T* ;E0expS 2
2kFd̄

12Kc
0D .

This result deviates from the former estimation for the sp
less case only by a factor of 2 in front ofkFd̄. This extra
factor reflects the fact that here the mean electron distanr̄
is exactly half of the one in a spinless wire, when the Fer
momentum is the same.

APPENDIX B: RELATION TO
THE MEMORY-FUNCTION FORMALISM

In this section we elaborate on the relation of the pert
bative calculation of Sec. III D and a formula for the Co
lomb drag resistivity based on the memory-function form
ism by Zheng and MacDonald@Eq. ~12! in Ref. 21#.

From Eqs.~17! and ~18! it follows that (f;fc2)

r5M
]

]V K dHint~V!

df~x0! L ,
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whereM is a constant factor determined by the system
rameters, andH int is given by Eq.~16!. A first-order expan-
sion in Hint5Hint(V) leads to

K dHint

df~x0!L ' i E
0

`

dtK FHint~ t !,
dHint~ t50!

df~x0! G L
0

,

where the subscript 0 indicates a thermal average taken
respect toH0. For I}V→0 we can expandHint in V,

Hint~V!'Hint~V50!1
Vt

A2
E dHint

df~x!
dx,

and obtain

r5 i
M

A2
E

0

`

dt tE dxK FdHint~ t !

df~x!
,
dHint~0!

df~x0! G L
0

.
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