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We study Coulomb drag in a pair of parallel one-dimensional electron systems within the framework of the
Tomonaga-Luttinger model. We find that Coulomb coupling has a much stronger effect on one-dimensional
wires than on two-dimensional layers: At zero temperature the transresislivisges due to the formation of
locked charge density waves. At temperature well above a crossover temperatihe transresistivity
follows a power lanp T, where the interaction-strength dependent exporéntetermined by the Luttinger
liguid parameteK_ of the relative charge mode. At temperature belBfwrelative charge displacements are
enabled by solitonic excitations, reflected by an exponential temperature dependence. The crossover tempera-
ture T* depends sensitively on the wire width, interwire distance, Fermi wavelength and the effective Bohr
radius. For wire distances> k;l it is exponentially suppressed with*/Er~exd —dk:/(1—K._)]. The be-
havior changes drastically if each of the two wires develop spin gaps. In this case we find that the transresis-
tivity vanishesat zero temperature. We discuss our results in view of possible experimental realizations in
GaAs-AlGa _,As semiconductor structures.

[. INTRODUCTION the active wire. Thus, we occasionally refer gg as the
“resistivity.” Note, however, that this resistivity does not
Measurements of Coulomb drag transresistivity betweeinfluence a symmetric flow of current in the two wires.
two coupled low dimensional electronic systems are a pow- Drag between 1D electron systems was considered earlier
erful probe of scattering and correlations between electronsby several authors. Hu and Flensbeand more recently
In a measurement of the transresistivity, a currentl; is  Gurevich et al,’ and Raichev and VasilopoulSsinvesti-
driven in one(the “active”) of the systems, while no current gated the problem in the absence of electron correlations
is allowed to flow in the other systelfthe “passive” sys- (apart from screening effegtsvithin Fermi-liquid theory.
tem). The Coulomb interaction between electrons in the twoTanatat! studied the same problem in the presence of disor-
systems transfers momentum from the active system to thder, and Coulomb drag of Luttinger liquids with a pointlike
passive one, where a voltage drup develops. The ratio interaction region was considered by Flensbérgand
—V, /1, is the transresistance, which is related to the transkomnik and Egget® In a recent work by Nazarov and
resistivity by a geometric factor. Averin}* 1D systems of spinless electrons are treated as in-
In weakly coupled two-dimensional systems, at least atlependent Luttinger liquids with coupling limited to inter-
zero magnetic field, the transresistivity is usually propor-wire backscatteringAk~2kg, wherekg is the Fermi wave
tional to the electron-electron momentum relaxation timeyector in the two wires The present paper treats both intra-
and is therefore proportional 7, with T being the tempera- and interwire electron-electron interaction on equal footing.
ture. As explained by Fermi-liquid theory, ti& behavior ~ We find that although drag takes place primarily through 2
holds also in the presence of electron-electron interactioscattering, the small momentum component of the interwire
within each of the two coupled systems. interaction and spin-density interactions affect it in a crucial
In one-dimensional systems, which are presently realizegvay. The problem under consideration is also closely related
by organic quasi-one-dimensiordD) metals, carbon nano- to the problem of a coupled doubier N—) chain!>%In
tubes, edge states of quantum Hall liquids, and 1D semicorsase of the spin-full problem results of Leeal1® are useful.
ducting structures, electron—electron interaction is believed The paper is organized as follows: In Sec. Il we define the
to invalidate the Fermi-liquid picture, and generate a differ-problem and present the main results and the physical pic-
ent state, described approximately by the Tomonagature. Section lll deals with two wires of spinless electrons
Luttinger (TL) theory?® (for reviews, see, e.g., Refs. 47 (throughout the paper we use “wire” as synonym for “1D
Since electronic correlations in this state are stronger than ialectron system). After formulating this problem in Sec.

a Fermi liquid, it is interesting to examine the Coulomb draglll B, we analyze it by means of a renormalization group in
transresistivity between two such systems. Sec. IlIC. We then discuss the high-temperature regime
In this paper we study theoretically Coulomb drag be-(Sec. Il D), the crossover temperatu¢Bl E), and the low-

tween two identical parallel one-dimensional wires at closegemperature regiméSec. Il B. In this analysis we employ
proximity. For perfectly clean wires, as assumed here, th¢he method developed recently by Nazarov and Av&tamd
current flowing in the active wire generates voltages on thesarlier results on impurity pinned charge density waves
two wires, which, due to Galilean invariance, are equal in(CDW'’s).}"8In Sec. IV we address a double-wire system of
magnitude and opposite in sign. The transresistiyif= spin unpolarized electrons. We write the Hamiltonian and
—(V,)/1,L (with L the length of each wineis then also the renormalization-group equation in Sec. IV A, analyze the
intrinsic resistivity (not including the contact resistancef  fixed points in Sec. IV B, deal with weak interactions in Sec.
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IV C, and extend the discussion beyond that limit in Sec. TABLE I. log;oEq/T* (which is also log,L*/r) for different
IV D. We then discuss the high- and low-temperature limitsvalues ofd/ag andr/ag for a spin-polarized double-wire system
of the drag in this case in Sec. IV E. In Sec. V we estimatgd=3d,D=200 nmag=10 nm).

experimental values of the relevant parameters for semicon
ducting wirest®?°Sec. VI concludes with a summary. Some d/ag 1.0 2.0 4.0
technical details are put into the appendices. In particular, in

Appendix B we examine the relation between the Nazarov-r/aB

Averin method and earlier weak-coupling calculations 01‘3'O 122 21
Coulomb drag? : : 14
4.0 5.6 9.1 17
5.0 4.3 6.7 11
Il. REVIEW OF THE MAIN RESULTS 20 a1 aa 24
We consider two identical wires of diamet#rseparated 9.0 2.6 3.3 5.3
by a distanceld. We denote by, the Fermi wave vector in 12 2.2 26 3.8
each wire, byve the Fermi velocity in each wire. The 16 2.0 21 2.8
strength of the Coulomb interaction is characterizedrpy 20 18 1.9 2.3

=r/ag, with r the mear(intrawire) electron distance arag
the effective Bohr radius. The length of the two wired.is

We first consider two wires of spinless electrons. Experi-of the relative charge-density sectoc(-). It is determined
mentally, this system may be realized by applying a magby thedifferenceof the small-momentum intra- and interwire
netic field parallel to the wires, which would polarize the couplings, and not by the intrawire small-momentum cou-
electrons’ spins without affecting their orbital motion. This Pling, as assumed in Ref. 14. With vanishing small-
system is closely related to a single Luttinger liquid with amomentum interactionK._ approaches unity, ang(T)
spin degree of freedom, when the two spin projections aréakes the linear temperature dependence of the drag resis-
identified with electrons in the two wires. Therefore, resultstance of independent 1D electrdh the presence of Cou-
obtained previously on the effect of backscattering in sucHomb interactionsK. may be either larger or smaller than
system&>?3 can be used. 1, depending on the interwire distance.

We find that, for infinitely long wires, Coulomb coupling ~ The crossover temperatufie’ is a complicated function
always leads to aliverging resistivity pp as temperature of four length scales: the wire separatidn wire width d,
goes to zero. The physical picture behind this effect is that agffective Bohr radiusag, and the meartintrawire) electron
suff|_C|entIy low tempe,rature the eIec_trons in both wires formdistance = 7lke . The first d, controls\. the strength of the
two interlocked CDW’s. Then a relgtlve charge.d|splac.emen§kp component of the interwire Coulomb interaction. For
can be created only by overcoming a potential barrier. At . . . .
zero temperature this cannot be done by an infinitesima\f"Idely sengated W|rexi>r, this component is exponen-
electric field, and leads to a nonlinear transresistance. At fitially small, A cexp—2ked and consequently,
nite T, below a crossover temperaturé (discussed beloyy
the transresistance satisfies p( kFE )

T* ~Egexp — .

p(T)~por eXp(Es/T) 1-Ke-

with ESNhT* defined belo‘l’_‘" e dift behavi As d/r —, then, T* —0 and the transresistivity follows Eq.
For short wires a qualitative different behavior appears,q) jn practically all relevant temperatures and length scales.

Here, from time to time the CDW in the active wire slips as g general trends are shown in Table I. The maximum val-

a whole reI.at|ve to the CDW in the other wire. These INStan+,a5 of T* that can be expected in realistic experimental set-
taneous slips are a result of either thermal fluctuations o

. . . ) [lps are of ordef* ~0.01X Ey. In case of small wire sepa-
tunneling events. The latter leads to a nondiverging resis-

tance at zero temperature, which is exponentidl.in ration d<r, the crossover temperatufie® is exponentially
At temperatures well abov&* the previous picture of suppressed according to

interlocked CDW's is no longer valid. In this case it is more

appropriate to think of independent electrons in the active p( s c(kF))

wire, which suffer from backscattering at thk2component T* ~Egex
of the potential generated by density fluctuations in the pas-
sive wire. A perturbative calculation yields in this case a

resistivity where c(kg) is of order one and only logarithmically de-

pends orkg .
T\ % For the spin-full case the results are similar, as long as the
p(T)=p0>\2<E—) , X=4K._ -3, (1)  spin sectors are not unstable towards a formation of an en-
0

ergy gap in their spectrunispin gap. The resistivity di-
exhibiting a characteristic power-law dependenceTofhe ~ Verges at zero temperature, and scales with temperature with
coefficientp, is of orderhkg/€?, \ denotes the dimension- an éxponent

less interwire backscattering potential, dglis of the order

of the Fermi energy. The paramet€g_ is the TL parameter x=2K,_ —1
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in the high-temperature regime. A comparison with the pre—izL '3 - lgiox—aldizrp, (a)+p_w(a)] with their con-
vious exponent reveals that fluctuations in the neutral spijugates  IT,(x)=L 1= e"qX a2 o (@)= p_wl(@)].”
sector moderate the effect of the charged modes. Throughout the paper we interpret the lengths the inverse
The behavior changes drastically if the single wires defermi wave vector Z/kg. Physically, the fieldg,,(x) de-
velop spin gaps. In this case we find that the transresistivityiotes the displacement of electrons in wivenormalized in

vanishesat zero temperature. such a way that density fluctuation$n,,(x) and current
lw(X) are given by d,¢,(X)=—mn,(X) and d;dh,(X)
Ill. SPINLESS DOUBLE WIRE =7ly(X). The relation to the fermiong,,, is established
A Notation by the Luther-Peschel transformation formulay.,(x)
' =(2ma) Y2exdir[kex— d (0] +i6,(¥)],  where  6(x)
We use the following notationsi) a,TW(k),a,W(k): cre- =7Tf§0dx’HW(x’).7
ation and annihilation operator of a right<€ +) or left (r The total HamiltonianH=Hy+H;+H, separates into

=—) moving fermion of momentunk. The second index two decoupled parts, one describing absol(sgmmetrig

refers to the activew= +) and passiveW=—) wire. (i)  current and density, and one describing relatatisymmet-

Y () =L~ 22, €%a,,(k): fermionic operators in real- ric) current and density. The decoupling is obtained by

space representatiofiii) p,,,: density of right/left moving means of the transformatiomh.. =2 YA, +¢_), 1.

fermions in wirew. (iv) n,=p_ v+ p4 w: charge density of =2"Y4II, +TI_).??In bosonic representation the two parts

wirew. (V) Nng==n,*n_: absolute(or symmetricc+) and  ar

relative (or antisymmetricc—) charge density of the double

wire system. In general, the indicest and c— refer to :_f dx

guantities of the absolute and relative charge mode, respec- ¢t 2m

tively. We also use this convention for bosonic fields, intro-

duced in Sec. Il B. Ue— - )
The notation we use for the coupling constants follows He-=5—| dX| Ke-mIlc_+ —(dxbe-)

that of Voit's review? We useg; to denote intrawire cou- ¢

plings, andg; to denote interwire couplings. The subscript 20,

i =1 denotes R scatteringj =2,4 denote small momentum + (27a)? f dxcodv8 ‘/—‘ZSC

scattering.

T

1
Ke+ W2H§+ + K_+((7x¢c+)2) )
C

4

B. The Hamiltonian in fermionic and bosonic representation Kee= — (5)

In this section we consider two one-dimensional wires of
spin-polarized electrons with equal densities. If the wire in-
dex is viewed as @ component of an “isospin,” the Hamil- Uer =
tonian of the problem is that of an isospintD systen{but
with interactions that are n@U(2)-symmetrid, and results
obtained previously on the effect of backscattering in such U, =
system&?3 can be used. The kinetic-energy part of the
Hamiltonian state$,

(—92—-92+01), (6)

2TV

(—g2+02+01), @)

2T,

Ver =Vp+(0sEg)/2m, ®)
_ T _ Tur
Ho—UF%( rkay,, (K)an, (k)= T q%v Pru(A)prw(—1). Ugr =0 (1—-U2)¥2 (9)

(2) (The signs in the definition of the small-momentum cou-
The small-momentum transfer or forward-scattering part ofplings U.. are chosen according to the conventions in Ref.
the electron-electron interaction is given’by 23) The fields¢.. describe fluctuations in the absolute and
relative density viadype. = —2~ H2arén.. . Accordingly,
_1 — N the relation to currents a@ e =2~ (aR)
L 2 [ G2t dw-wGolpw(Wp-w (=) The current in a drag experiment is a superposition of a

e symmetric and an antisymmetric current. A symmetric cur-
E (84w Gat ,g 19ra(@) preer(— ) rent flows Without resistivity, due to G_alilean inyariance.
2|_ ' w.w' 94 Ow,—wGalPrw w Thus, the resistance results from the antisymmetric part only,
] . and is determined by the relative charge sec¢igr only.
and backscattering processes are describéd by Formally this is manifested in the invarianceléf. to spa-
tially homogeneous charge displacemets. (X) — ¢¢+(X)
Hy= 2 f dx wiw(x)wiwr(x)mw/(x) P (X) + Qe , an invariance vyhich is absent in the backscatt.ering
ww' potential < cosy/8¢._) in H._ . Consequently, we confine

— ourselves to the sine- Gordon-type Hamiltonkap .
X[Ow,w 91+ dw, w91l The HamiltonianH._ has two parametersS. [Which

It is convenient to switch to a standard boson representdnay be expressed in termsdt_ , see Eq(5)] andg;. Our
tion by introducing  bosonic fields ¢(X)= results are all independent of the signgaf which we take
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below to be positive. For a single wire with electrons of two
spin directions[namely, forSU(2) symmetric interaction,
0,=05] the sign ofU._ is determined by the sign @f;, i.e.,
by whether the interaction is repulsive or attractive. Here this
only holds for two wires that are very close to one another.
For larger interwire distancdd.  can become negative also
for repulsive interaction, in particular Coulomb interaction:
Then, g,—g,= — (2e?/€) Ind/d, while the parameteg; is
independent ofl. Thus, for large interwire distanag, the
parameteitd._<O0. A
Below we confine ourselves to repulsive interaction, and
0.5 0.75 1.25 1.5 1.75

discuss the case of wires at close proximity and that of well K
separated wires.

RN

FIG. 1. The RG-flow of a double wire system of spinless elec-
C. Renormalization-group analysis trons. Point A corresponds to the bare couplings of a system with

. . . d>k=1, point B to wires with narrow spacind<kz!.
In this section we analyze the backscattering term of the  F P pacing<k

sine- Gordon Hamiltonian by means of a renormalization- ' :
. : . . Th two t f stable fixed ts to EQD).
group (RG) analysis, and show that if the bare interactions ere_are ° ypgs ot stable fixe pom_s 0- 40
are weak, and the electron-electron interaction potential de=ixed points of the first type are characterized oy 0K
cays with distance, the drag resistivity diverges at zero tem="1, i-€., by zero drag af=0. The basin of attraction of

perature. these fixed points is the area below the separatrix
Let us first recall the main elements of an RG treatment 1-K U2
for H._ (see, e.g., Ref. )4 For small backscattering cou- A(K)=12 THOQK

plings, )\551/27ruc,<1, the RG equations are of the

Kosterlitz-Thouless typéhere we denot&=K,_) Systems with bare couplinggo,Ko inside this area scale

N dK towards weaker backscattering coupliagvhen temperature

Do (2-2K)N,  — = —92)\2K2 decreases. Below we show that no realistic set of interaction
(2—2K)\, 202K2, (10) )

dx d parameters falls under this category.

where the parameter=Inl/« is the logarithm of the renor- When the bare couplings are outside this redioa, Ko

malized momentum cutoff *. The RG procedure starts with <1 O Ao>Xs(Ko)] renormalization to lower temperature
L= - _ rives th m into the strong- lin le fix in
the bare couplings,,K at an initial momentum cutoff, * drives the syste to the strong-coupling stable fixed point,

of order ofa™ %, and ends with renormalized couplings at a Wherex—2 andK—0. In this case backscattering becomes
final cutoff 17 =maxL 1 T/u,_}. One methoddue to Jose dominant at sufficiently low temperatures and freezes the
’ cC—J-

et al?®) to derive the RG equations is to expand the scalé)hased’c— to a.minimum position. Translated. to the (_jouble_—
invariant correlation functioe? #e- (1. 7g=2i%c-(x2.)} i wire system this means that the charges adjust their relative

— displacement/2¢._ = ¢, — ¢ _ in such a way that the
powers of the coupling. and to integrate out the large mo- P V2o =, — 6 Y %

q  freed ¢ e h interwire potential is minimal, i.e., the system forms two
mentum degrees of freedom. After re-exponentiating the regiariocked CDW's.

sult one can then read off the RG equati¢its details see Under these conditions the drag is very strong, as pointed
Refs. 25 and 26 Within each RG step only the backscatter- o s hy Nazarov and Averitf The system’s resistivity to a
ing interactiong, is treated perturbatively, whereas the flow of unequal currents in the two wires becomes infinite, in
small-momentum interaction parameteys—g4,94.9-.94,  the limit of zero temperature and infinite length. We elabo-
which determine the parameti€r are treated exactly. A dif- rate on this subject in Sec. Ill F.

ferent method, which leads to the same RG equati@0s It is instructive to express the condition for weak and
but may provide additional insights, is by means of mappingstrong coupling in terms of the bare interaction parameters
the sine-Gordon Hamiltonian onto the two-dimensional Couy, g;. For reasonably weak interactiok,<1.6, the sepa-

3 — —
lomb gas problen: ratrix \¢(K) is well approximated by ((K)~K—-1~U._.

The integral curves (K) of the RG flow(10) shown in within this approximation the requirement for strong cou-
Fig. 1 obey the differential equation pling fo>:(K0) states
y s y

dv K-1 No>U% (11)

which is equivalent to

and are of the form _
(92—91)>(92—01)- (12

— 1 1 0 Rather than the absolute strength of the interwire interaction
ANK)=2| = +In(KIKg)— o+ = | . . o o = .
K Ko 2 couplings, it is their differencg,—g,; in comparison tay,

o\ 12
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—g, that determines the zero temperature fixed point of the eV 1 -
. — . . w_ _ 2 2

system. Taking; andg; as the Fourier components of intra- = ;(ﬁxnw>|— - E(ax¢c+ +Wdipe-) . (14

and interwire interactio®v(x) andV(x) at g,=2kg andq,

=1/L—0, condition(12) becomes The thermodynamical averagidg . . ), has to be restricted
to states satisfyingl ,)=1 and{l _}=0. Equivalently, but
technically more convenient, one can use an ensemble of

f dx(l—cosqlx)[V(x)—V(x)]>O. (13 currentless states, and then perform a Galilean

-transformation of the active wire such that a net curdent

_ . _ o _ results. In terms of the displacement fields, this means
The first factor is non-negatlve. Then, a sufficient Cond|t|0nthat ¢+ acquires a Component growing |inear|y in time,

for the left-hand side to be positive is obviousW(x)

>V(x) for all x, which is fulfilled by all monotonously de- P (X, 1) = by (X,1) +Ot,
caying repulsive interactions potentials, in particular the | ; | lative fiel
Coulomb potential. Thereforg Coulomb coupled double- or, translated into absolute and relative fields,

wire system of spinless electrons should scale towards strong Ot

coupling, which implies a diverging zero temperature drag Gos— Por T —. (15)
in infinitely long wires N T2

There are two types of initial values,,K that flow to  The frequency is related to the current bQ = /e’
the strong-coupling fixed point. The first is defined Ky As expected, the transformatiqi5) does not alter the
<1. As seen in Eqs(10), for this case\ varies monoto- absolute sectoH.,, and no symmetric voltage is induced
nously as the temperature decreases. The second type is dg-the current. It does affect the relative Hamiltonidp_

fined by Ko>1 andhy>\g(Ko). For this type,x does not Via the backscattering interaction, which becomes
vary monotonously. For relatively high temperatuxede-

= — dx
creases. At the temperature at whi€k=1, \ starts increas- Hint:)\Eof 5005( V8¢ +201), (16)
ing towards the strong-coupling fixed point. As explained in

the previous section, well-separated wirds{x) fall under ~ nd gives rise to a finite drag-voltage
the first category, while wires at very close proximity fall

under the second. Assuming the bare interaction parameters e_VW:WTrK
0i ,0; to be small, for both types of initial conditions we may a V2
separate between a weak-coupling, high-temperature, re- . L

gime, where perturbation theory calculations can be carrie%or the ffollow;}ng calculat!on itis fadvantqge6ﬁ$<2) maEe
out, and a low-temperature, strong-coupling regime. In th&!S¢ ~ of ~ the ~ equation — of  motion, df¢._=
following sections we calculate the drag resistivity for both ~[Hc—:[He—éc-1], from which follows that under sta-

i i 2 —0)
regimes, and identify the temperature scale that separates tHgnary conditions (; ¢._)=0):

e K | 5H V8K
2 _ int\ VO .
<8X¢C—>_ u < 5¢C—> - a2 )\<S|n( \/§¢C—+29t)>y

We begin with the weakly coupled regime, in which we ] ] (18).
employ a method devised by Nazarov and Avéfimn the and then to perform a perturbative expansion of the right-
limit of linear responsel(—0) this approach of calculating hand side in the backscattering couplingwith respect to
the drag resistivity is similar to the memory-function formal- Hy=H._ —Hj,;.
ism of Zheng and MacDonalft,as it is shown in Appendix By standard methods we obtain in lowest nonvanishing
B. In the present calculation only the backscattering compoerder the resistivity
nent of the interwire interaction is treated perturbatively,
while the small-momentum part is treated exactly. 9 Vy N s

We consider a four-probe measurement with voltage pWZETl':OZWPOM = ’ (19)
probes at positiong, and x,+a on both wires(let u._ /T _
<a<L), and calculate the voltage drogV,,=(um,(X;)  Wherepy~h/e?a. Higher-order termg ™M« \3" scale with
— uw(Xo+a)), along wirew when a current is driven only  temperature as
through the active wire {). Using the relationdeV,,
=k ~16n,,, wherex =dpu,/dn, is the inverse compress- pMocTon,  5,=(4K—4)n+1.
ibility, we obtain

-1

(2deIn (17)

int’

D. The high-temperature regime

Terms with odd powers 051 vanish.
The temperature-scaling lawxT*~2 can be also de-
rived from the RG treatment in the following way: In the

1 1 (xota
eV K<5nW(X 2) = (X)) foo U absence of electron correlations a simple calculation yields

N
Due to translational invariance, p(T)~porgT/Ep.
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The effect of forward scattering can be accounted for by F. Low-temperature limit

using a renormalized backscattering coupling constant In the strong-coupling limit withh=1. andK<1. the
=\(T). One finds from the RG equatiori$0) that in the  sine-Gordon Hamiltonian(4) describes two interlocked
weak-coupling limit\ (T) =\ o(T/Eo) 22 [see Appendix A, charge-density waves, and carries strong resemblance to the

Eq. (A1)], which inserted into the previous equation indeedProblem of a pinned charge density wave, which has been
giveSp(T)oc)\é(T/Eo)“K*. studied quite extensively in the 197@we refer in particular

to the work of Riceet al'” and Makj.'®

Classically, for IargeTthe HamiltonianH._ has an infi-
nite number of ground states with field configuratiabx)

In this section we estimate the crossover temperature be= én=(2N+1)/{/8. They are separated by a large energy
low which the perturbative calculation of the previous sec-paprier, such that at sufficiently low temperatures the field
tion ceases to hold, and interlocking of the two chargey,ctyates around one of the ground stafgg. These fluc-
density waves in the two wires becomes relevant. Thgyations do not carry an antisymmetric current. Rather, it is a
crossover temperature is that in which the coupling constantansition from a ground statey to its neighbor ¢y,

\ becomes of order 1. which corresponds to an electron transfer through the active

For initial conditionsfo<1 andK,<1, corresponding to Wire from the left end to the right end or vice versa. These
well separated wires, the solution to the RG equations can pgansitions are carried out either by a soliton moving along

E. The crossover temperature

approximated by the wire, or by a soliton-antisoliton pair which is created in
the wire and is dissociated by an electric field. The width
iy Eo)|2 %Ko and energyE; of a classical soliton afé
(T~No| 7
andK~K,. The crossover is then a 8\
W~ — Es: TEO.
T* ~Eohg & 2K0, (20) VKA 7K

. o e We expect that the transport properties of short wires with
In Appendix A it is shown that fod>d,kr and for the ) .
PP ] ) ) -F — L<W are different from that of long wires, whete>W,
Coulomb interaction, the coupling constang~exp—ked,  4nq therefore consider both regimes separately.

o : )
and thusT* is exponentially suppressed. More specifically, | |ong wires electronic current is carried by means of

we find in this case soliton-antisoliton pairs. This mechanism was studied by
— Rice et all” and Maki® within a semiclassical approxima-
T*~EoeXp( B ked ) 1) tion. The semiclassical regime is that in which the classical
1-Ky soliton energyEg is much larger than the zero-point energy
of the fluctuations around it. In terms of our parameters this

Note that with vanishing interaction strength—K._ ~

— regime is defined bk <1. As found by Riceet al.*’ in this
—Uc=ry(Inked+y)7 = (see Sec. ¥, and hence regime thermal creation of soliton-antisoliton pairs leads to a
— resistivity
Ked
T ocexp( — _) ,
rsnked h ET
. . p= S eEs/T (23)
where the parameter=r/ag= me?/vge describes the inter- 16me?l ZIKES '

action strength.

For initial conditions of the typd&,=1 and;0>xs(K), wherel, the mean-free path dintisolitons, is a phenom-
corresponding to wires at very close proximity, the RG equaenological parameter.

tions can again be solved approximatgdge Appendix A for WhenK <1, the soliton energy is renormalized according
detailg, and we find t0?°
3
7> C(Kg) E.\ Ki1-K
T*~Egexp —— ——|, 22 [—Eg —
° p( s ked 22 Es Es( Eo) - (24)

where c(kg) is of order one_and only logarithmically de-

_ Equations(23) and (24) define a crossover temperaturé
pends onkg. Thus, when Krd>1, the temperaturd™ is

) : i : e =E{ separating the low- and high-temperature regimes. As
again exponenually small. At first sight, this might be SUT one may expect, this temperature is approximately equal to
prising. However, it becomes understandable by observing, . ;e "obtained in Sec. IIl E

that ford<¢r, intra- and interwire coupling are almost equal_. The low-temperature regime is characterized by a highly

Hence the problem becomes close to that_of a smgle Wir@onlinear drag, taking p|ace at exceeding|y low tempera_

with electrons of two spin state$whereg;=g;), which is  tures, where soliton-antisoliton pairs are generated by quan-
known to renormalize to the marginal weak-coupling fixedtum tunneling, rather than thermal activation. In this regime,

point. as found by Maki,



16 918

~h E
e? 16m%u,_

eeole

p , (295

where eo=E§/2euc, ,e=V/L, andV is the voltage differ-

ence between the two ends of the wires. The crossover tem-

perature, at which thermally activated behavior changes to
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Stom=—= [ "dp\f1-cosex T
= —— —COSp = ——
wow=—s-|  de 0 e
4By om
) o’

a

tunneling dominated one, can be determined by equating thehereo~ (K @2/\L2)¥4<1 takes care of the finite width of

exponentials, which yields

Ka
Teo~2 \[:—ev.
\ L

For short wires, where the soliton widW is large com-
pared to the wire length, the fieldsII,¢ may be approxi-
mated as constant in space, leading to a Hamiltonian

Uc-L AN
| 72K T2+ —zcos\/§¢c,
o

2

Ep
2

2
w
_ 2
—p2+
E,P

COoSe.

(26)

Here we introduced a frequenmyz=8fKE2, a barrier en-

ergy E,=(2/7m)\(L/a)E,, and canonical conjugated vari-
ables ¢=+/8¢, p=LII/\/8. While this Hamiltonian re-
sembles that of a pendulum, it differs from it in one
important aspect: in the present case the statesnd ¢

27 corresponds to a transfer of one electron between th
reservoirs the active wire is coupled to. Since differen
minima of the potential energy correspond to distinct state
of the reservoirs, it is unlikely that the field can be in a

superposition of several such minima. We therefore assume
that the field is in one of the minima, and transport takes
place by tunneling or thermal hopping between adjacent

minima.

the well ground state. The coefficie@tis of order unity and

only logarithmically dependent odx.
Putting this together we end up with current-voltage rela-

tions

w .
Iwe;e‘Eb’Tsmr(&u/ZT) for T>ow, (27
| ~ewe *Eo/esinf(Coulw) for T<w. (29
Accordingly, the linear resistance is
h
R~— —e®'T for T>o, (29
ec w
h
R~—2e4Eb"” for T<ow. (30)

e

oor . . X These expressions are valid for wires much shorter than the
+ 247 are distinct physical states, since a shift of the phase by

oliton lengthW~ «/ K\ and voltagese V<E,. Notice

that because oE,xL/«a the resistance increases exponen-

dially with length L.

IV. SPIN-FULL DOUBLE WIRE
A. The Hamiltonian and renormalization-group equations

We now extend our analysis to include the spin degree of

A chemical potential differenc&u between the reser- freedom of electrons in the two wires. Denoting the spin
voirs at the ends of the active wire adds a linear potential télegree of freedom by an indes= = in addition tor,w as

the Hamiltonian(26):

Op
V(QFEQD-

To determine the current induced #u we calculate the
ratesI’|,, by which the phaser hops between minima by
thermal activation or tunneling. Then

|=e(T,—T)).

Thermal activated hopping dominates at temperatires
> o with a raté®

—Ep /Ta¥ dul2T

w
F|/r%ﬁe e

At low temperaturesT<w the main contribution comes
again from tunneling processes with rate

1—‘|,/I'~ (l)e_ S|/r(5;L).

For su<<Ey the action can be expressed as

above, and taking into account ti$dJ(2) symmetry of the
Coulomb interaction, we have

TUE

HOZT 2 Prsw( @) Prsw( —a),
qrws

>

gswsw’

Hi= [6W,W’92+ 6W,*W’52]

L
1
Xpis@p_grw(—0)+ Z

x 2

rgsws w’

[5w,w’g4+ 5w,7w’54]9rsw(q)Prs’w’( —q),

Hp= 2

sws'w’

dX[ 5w,w’gl+ 5w,—w’§[]

XY )W 0 s g ()P sl X).

Following the same procedure as in the spinless case, we
first change to bosonic field variables
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i e—iqx—a\q|/2

PowlX)=— T 2

——— [P+ DT p_suD],
g#0 q

1
M) = 2 e p. ol @) = p-sul@],

and then transform to new bosonic fielgs/s. ,I1s. cor-
responding to absoluteH) and relative ) charge(c) and
spin (s) density. The transformation is defined by

Psw= %(a’c-%— + S:bs-# + W&c— + SW:i’s—) )

and in the same way fdil /. . For the transformation of the
backscattering HamiltoniaH, we use the formula

Mrsw

'/’rsw \/ﬁexq Ir (kFX d’sw) +i esw] (31)
where 6g,(Xo) = [Tl dx and the,s,= 7/, are so-
called Majorana fermions. They obey

25rsw r's'w’

[ Prsws Mrrsrwr 1+ =

and ensure that the operators given by E{) follow fer-
mionic commutation rule§We obtain the following Hamil-
tonian (the tilde is omitted,j takes the value$=c,s, for
charge and spir.takes the valueb= =, for symmetric and

antisymmetri¢
i
Uj| 1
HHZEJ‘ Kj|772Hj2|+ K—jl(ax(lsjl)zi (33)
Kji=(1+U;)Ya1-u;) 2 (34)
UC+:2WUC+(—292—2§2+91), %9
Ue- =5 (720242024 00), (36)
1
Vs = g 00 e
st
Ver =VE+(Gax0a)/ T, (38
Us+=UE, (39)
uj=v;(1-UHY2 (40
Hp=+ (41)
_C0S 2ps_ (42)
oS 2bg., . (43
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\=0, indicates vanishing drag, the lattpx]
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Again, the system has no resistance to a symmetric flow of
current, due to Galilean invariance, and thus the charge sym-
metric part of the Hamiltoniahl., decouples from the other
parts. The remaining parts are all coupled by the backscatter-
ing HamiltonianH,, so that the spin modes, despite their
charge neutrality, do affect the role of the Coulomb interac-
tion.

As in the spin-polarized case, when the backscattering

couplingsgl,al scale to the strong coupling fixed point at
T=0, spin fields ¢~ and the relative charge field,_
freeze to minimum positions, which causes a divergent drag

resistance at zero temperature. On the other hand, when
renormalizes to zer@while \ can still scale to stronger cou-
plings), the drag resistance decreases with temperature and
vanishes aff=0. (The case of a decreasing and an in-

creasingf does not exis}.
The second-order RG equations for a double wire as de-
scribed by the Hamiltonian above are

dn _
— = (2= K= K= 2\,

i (44)
dA -
Oy = (27 2K9n=2\%, (45)
dK -
G =~ 20ENAKE, (46)
dK -
dx°= —4N%K2, 47

where A\=g4/27u,_, N\=g./27us., K.=K._, and K
=K, . These equations can be derived in the same manner
as those in the spin-polarized case by assuming scale invari-
ance of the correlation functions
(eX 4l )g=2141(x2.72)) 2425 They are valid for arbitrary

Ky, but restricted to small\|,|\|<1. (Similar RG equa-
tions appear in the context of single wall carbon nanotubes,
where also two spin-degenerate channels are prggent.

B. Fixed points for the renormalization-group equations

The following types of fixed points are found for the RG
equations(44)—(47): (i) Fixed points where&K #0. As evi-
dent from Eq.(46), for these fixed pointa =\ =0, and thus
we refer to them as the “weak-coupling fixed points.” They
describe wires with vanishing backscattering interaction at
low temperatures, and therefore vanishing drag. As in the
spin-polarized case, for large values Kf ,K; these fixed
points are stable, while for small values they are unstable.

(i) Fixed points for whickK;=0 andK #0. As evident

from Eq. (47), for these points)T=0, and then, from Eq.
(45), a stable fixed point exists only fox|=<. The former,

=0, means that
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p2 A dUc:
dx

These RG flow equations were analyzed in detail by Lee

—4\2, (49)

BN - et al,*® who found that for initial values satisfying
UA<AZ, (50)
pO
¢ B A the system scales to a strong-coupling fixed paint —o,
-0 1 (s8] J—

\— 0. Rewritten in terms of; ,g;  this condition states
FIG. 2. RG flow of the spin-full double-wire system in thg
=K =0 plane(schematif. p, andp; are unstable fixed pointg,

2
. S : . ) : o 91 2 2
is the strong-coupling fixed point, ang} a spin-gap fixed point. gz—g2<§ g— —g.] +0O(g7  [lvp).
1

the spinmodes are mas;i‘(epin gap. These fixed points For g,>0 the right-hand side is always larger than— gy,
have no aff1'3|0dg in 'thte spinless case. We refer to them as thgch that a sufficient condition for this inequality to be ful-
“spin-gap fixed points.” filled is 5 _ - - - -

L O . L »—0,<0g;:—0g;. This, however, is exactly the in
_ (ir) F.|xed.p0|n.ts wher& = KC__O' There are two stable equality(12) we had in the spinless case. We find then again
fixed points in this plane. The first is=—< andA=+%,  that for weak monotonously decaying repulsive electron-
and it obviously describes two strongly coupled wires, withelectron interactior{small positive)), a double wire with
diverging zero-temperature drag. We refer to it as thespin-unpolarized electrons scales towards strong coupling,
“strong-coupling fixed point.” The second is a spin-gap manifested by diverging transresistance at zero temperature.
fixed point as described above. There are also two unstablehe condition = U?, valid in the smallJ regime, does not
fixed points on that plane. The first sis=\=0. It is repul-  allow a flow to the spin-gap fixed point.
sive in all directions of the X,\) plane. The second is

—\=1. It is attractive in the direction (1,1). The border D. Beyond the smallU limit: Linear stability

between the basin of attraction of the two stable fixed points of the weak-coupling fixed points

is the diagonah =\ (see Fig. 2 This border has a simple ~ As stated above, a small analysis(i.e., weak electron-
physical interpretation, separating between the region wher@lectron interactionof the RG equation$44)—(47) leads to
bare intrawire backscattering is stronger than the bare intethe conclusion thak and therefore also the drag resistivity

wire one and the region where the opposite is true. diverges at zero temperature, accompanied by a laega-
tive coupling\. It is unlikely that stronger electron-electron
C. The small U limit interaction would push the system towards the weak-

coupling fixed points, where both backscattering interactions
become negligible at zero temperature. It is, however, con-
ceivable that for some range of parameters strong interaction
would lead the system towards the spin-gap fixed point,

N . where A goes to largepositive coupling, but\ (and pp)
—=—(Ugt+ U+ 2NN, vanishes For example, if in the absence of interwire cou-

In case of smallU.,, Egs.(44) to (47) reduce to the
following set of equations, derived first by Gorkov and
Dzyaloshinskii for the problem of coupled chaiifs;®

dx pling each of the wires is in a spin-gapped state with1
- (as happens for attractive intrawire electron-electron interac-
—=—2UA—2)\?%, tion) one may expect weak interwire coupling to leave the
dx two wires in that state. Consequently, the wires would de-
dU, o couple A —0) and the drag wouldanish
i —2(N?+)\?), In principle one may analyze this behavior by use of the

RG equationg44)—(47) beyondthe smallU limit. The va-
lidity of such an analysis to the problem at hand is however

du =—4)\2, (48  unclear, since at the level of initial valuag>U?2, and the

dx RG equations are derived under the assumption of small

(Ugs=U¢_/s.). Furthermore, in that |imit)\ozug and Instead of doing this,_we tredt, s, A and\ asindependent
d(A—Ug)/dx=0. Thereforex(x)=U(x). With this, Eqs. Parameters and confine ourselves to the case of small cou-
(48) reduce to three independent equations: plings A\, A<<1 (but arbitraryK.;s), where the RG equations
are valid.

Let us consider the linear stability of the weak-coupling

fixed points(where)\=;= 0) to turning on a small ,\. We

find that thex=A=0 plane is split into four regiongsee
d_7‘_ —2(\2+2?) Fig. 3. In the first region, ared defined byK +K.>2 and

dx Ks>1, the weak-coupling fixed point is stable. In the region

a_ U.+ 3N\,
&__( c+ ),
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Ks in the high-temperature regime, can be developed along the
25 same lines as before. We have
: 1 a
K, 2 2
H _____ R ¥ = eVW:?<’9x¢c++W(9x¢c7>l .
1 < 47»0» Ao
P . The transformation to current carrying states is again given
by Eq. (15), such that
0 I1 I2 Kc

ak dak—
_ V=W — (F o) =W—\(SiN(2¢ +201)
FIG. 3. Stability of weak-coupling fixed points=A=0. Only ma
fixed pc_;ints_ in area | can be stable. In the Ii_rmto|_<)\0<|l_<S X (COS 2 +COS 2bgy ).
—1| points in areas Il flow to the strong-coupling fixed popy
(where \— ), while points in area Ill or Ill flow towards the Hereby, we used the equation of motion f¢g_ and the
spin-gap fixed poinps (wherex—0). stationarity conditiof{ 92¢._)=0. A perturbative expansion

whereK>1 butKs+ K. <2 (which we call area Il, see Fig. in the couplingsk, A, andUs=\ then leads to
3), the weak-coupling fixed points are linearly stable with T

respect to infinitesimal values af but unstable with respect Pw:WPofz(E—
to such values ok. We now argue that initial values in that 0

area flow to the strong-coupling fixed point-{—=,A—  with p~h/e2a. Leading higher-order terms are of ordet
+ ). Let us consideflg|<\y<Ks—1 in this region. By XO(A,Uy). B
Eq. (45), the coupling constarX will scale to small values, For wire distanceg> ke!, the smallness Of ce—2ked g

such that the instability of the mode[Eq. (44)] becomes guaranteed. Further, in this case the spin-sector couplings

relevant. Then\ keeps increasing until finally the-2x?>  \,Us flow to the single wire Luttinger liquid fixed point

term in Eq.(45) overcomes the stability and forces\ to  A*=U}=0, as long as the temperature is still large com-

scale to negative values. pared toT*. Hence, effective couplingd~Ug are also
Points lying below theK,=1 line in area lll or Il are  small, where the perturbative res(fil) is applicable.

linearly unstable inn. Consequently) increases and thereby ~ The crossover temperatui®*, separating between the

decreases the coefficient in the equationXoin the limit of ~ high- and low-temperature regimes, is exponentially sup-

fo<)\o this leads to a stabilization of the mode, even pressed fod> k-1 with

where it was initially unstabléarea II'). Hence, points in .

areas Il and Il scale to the spin-gap fixed poinh{ . 2ked

+o,1=0). B T =Boex) =1k )
To summarize, in the limit ofA | <\ <|Ks— 1| the basins

of attraction of the weak- and strong-coupling fixed points@S Shown in Appendix A. L
correspond to areas | and Il in Fig. 3, respectively. Further, Yhen the system flows towards the strong-coupling fixed

points of area III/IIf, which characterize systems with a POINts, at sufficiently low temperatures the phages, ¢
tendency to(single-wire spin-gap phase, indeed scale to- freeze to their minimum positions, and antisymmetric current

wards the(double-wirg spin-gap fixed point with vanishing flows by means of solitons._Again,Tir)Tthis case we expect
f(zero drag drag resistivity to be proportional @' *'".

The linear stability analysis we carried out is expected to
give the right structure of Fig. 3, but not the precise borders V. ESTIMATE OF PARAMETERS

between the areas. Near the borders, terms linearand\ The significance of Coulomb drag in a particular experi-
may have very small prefactors, which make the role of themental setup of two 1D coupled wires is determinedTty
quadratic terms significant. An example to that is the regiomand the corresponding minimal length = «E,/T*. We
Ks~1+\, studied by Leeet al, where in the right-hand side now estimate these quantities for a double-wire system with
of, Eqg. (45 both terms become comparable. parameters taken from the experiment by Yacaiyal,?
When )\, is comparable tdK,—1| (but still \y<1) the ~Where, using cleaved edge over growth in
condition for\ scaling towards weaker couplingshg—1  GaAs-AlGa ,As structures, quantum wires of width down
>\, (see the discussion in Sec.)lllThen, the border be- to 14 nm and length. of order um were fabricated, with
tween areas /11 and 1/l is raised toK =1+ \,. The ef- ~ adjustable electron density. B
fect of largerhq is therefore a reduction of area Il, i.e., also  The bare values of the interaction constagts ,g;
in this sense a largex, is in favor of wire decoupling. appearing in the fermionic Hamiltonians can be estimated
from the geometry of the experiment. If we assume the wires
to be parallel in a distanag and characterize the transversal
A perturbative calculation of the drag voltage in the extension of the electron wave function by a lendthntra-
weak-coupling regime, applicable for widely separated wiresand interwire potential are given by

2Kg—1
(51

(52)

E. High- and low-temperature limits of the drag
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e? o g2 _ TABLE 1l. log9Eq/T*=log;oL*/a for a spin-unpolarized
V(x)= ?(Xz"‘ d?)~¥2, V(x)= ?(X2+ d2+d?) 12 double-wire systemd=3d,D=200 nmag=10 nm). The “*”
indicates the zero-drag phaseTat 0. Note that at large/ag the
initial values of)\,fare not small, and thus the validity of the RG

The expression foV(x) is approximate on small length Ve :
equations is questionable.

scales<=d. However, since generallk;lzd, this may not
lead to large errors in the determination of tHe- Zcattering

d/ag 1.0 2.0 4.0
parametersg,,g;. The couplingsg;,g;, are the Fourier
components ofV(x),V(x) at q;=2ke and g,,q,=1/D, /3
whereD is the screening length, 1.0 18
1.5 11 18
62 e _ 2.0 8.7 13 22
9i=—Ko(Gid),  gi=—Ko(a Vd?+d?). (53 25 76 9.9 17
3.0 7.3 8.4 13
. L . . 3.5 * 7.6 11
Taking the IlmiD—m does not raise any problem, since the 4 , " 70 97
couplingsg,,s,92,4 appear always as differences. As pointedy 5 * 6.7 8.7
out by Starykhet al. (Ref. 33, see also Mahaff the param- 5 g x N 8.0
eterg, has to be modified for the Pauli principle to be satis-g g * * 75
fied. This modification is however small when theg2part 4 * * 71
of the interaction is much s_maller than the-0 part. 6.5 * * 6.8
Having determined; ,g; , we can calculate the bare 7 * * 6.6
parametera ,K2_ and\,,K? for the bosonic Hamiltonians 7.5 * * 6.8
by means of the corresponding expressions of Secs. Ill angl0 * * *

IV. These values are then to be used as initial values (
=0) for the RG equations.

__ The system enters the regime of strong coupling whefy e the drag resistance of al0ong double wire afT
A(X)~1. Thus,T* andL* are estimated by (x*)=1. The —100 mK withd=10 nm.d=3d. andr/a.=5.10. and 20
integration of the RG equations can be done analytically in[0 be of order 0.01. 0.1 a,ndxlh/;az resp:ctiv;aly, The in-

certain parameter regimes, which leads to expresdi@ .
22 ang(52) (see Apgpendix A Here we also gFi)ve nsl(m?esri- fluence of the screening gate turns out to be rather small due
' to the relatively large distance.

cal results. o T .
One should be aware that this method leads to order of Quantitatively, our findings deviate strongly from the es-

magnitude estimates rather than precise value3foNev-  timate forL* given by Nazarov and Averitf. For param-
ertheless, the reliability of this procedure can be demoneters d=d=10 nm, D=100 nm (Ref. 14 obtain L*
strated in the special case of spin-polarized fermions with=0.3 wm, whereas according to our calculations for these
K.—=1/2. Then, the bosonic Hamiltoniath,_ can be trans- parameters.* ~1000 pm.

formed to a Hamiltonian of noninteracting, fictitious fermi-  The origin of this discrepancy of more than three orders
ons (“refermionization”),** which exhibit an energy gap of of magnitude is the missing interwire small-momentum cou-

the order ofT* obtained by the afore-mentioned method. pling 52 in Ref. 14. Equation53) shows that for not too

Let us first consider the spin-polarized case. We assume — . . . -
. . . — _ small D>d,d this coupling becomes in fact very similar to
an interwire distance ofd=3d. Table | contains

10910 Eo/T* =logyoL* /1 for wire widths d=ag,2ag. and the corres_pondlng intrawire coupling,, meaning thatg,

4ag, whereag is the effective Bohr radius. The screening ~—92<92,92 (The same holds fog,/g,.) Then, inspection

length is defined by the distance to external metallic gatesf Eq. (7) reveals that under these circumstances setiing

and set toD=200 nm. Withag~10 nm in GaAs these =0 drastically overestimates the quantity—K. ~

wire widths are close to the experimental values in Ref. 20y __ . This in turn leads to the strongly reducddt

The TL parameter of the relative charge sector is typically_ 1 um, as we have checked within our calculation.

Kc}:0-8 a}ndmoso-tl- siic is the st g romith The results obtained for a double wire of spin-unpolarized
© main characteristic s the strong decrease ol electrons is shown in Table (ktill d=3d, D=200 nm).

r as longr=d, in accordance with the exponential suppres- . -

sion of T* [see Eq.21)]. For larger values of the depen- For relatively small vzﬂuesrsd the system scales to

dence is rather weak, since here, according to(Eg), x*  strong interwire couplings. In this regime,x* decreases

~w3c(kF)/rSkF5With c(ke)/t ke~ const. with increasingr, as in the previous case. A qualitatively
The strong-coupling regime is not easily accessible. Evefifferent behavior sets in at larger here, renormalization

at very low densities of ~1=(200 nm) ! the crossover drives the system towards the spin-gap fixed point, indicated

temperature is still very lowT* ~0.01E,~1 mK (the cor- by an“*”in Table Il. The transition from the former regime

responding length is* ~10 wm). However, even when the to the latter happens at./ag=3.1,4.8, and 7.6 fod/ag

system is still in the weak-coupling regime, the drag resis=1.0,2.0, and 4.0, respectively. At these densities, the TL

tance can be significant. According to the Ef9) we esti- parameter assume valuks_~0.5 andKs~1.3. Since fur-
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ther \~0.3, it is unclear, however, to what extent the RG gther handk = T# with g=2K._ —2 [see Eq(A1)], we see

equations we use, which are derived for smedl\o are  that forK,_ >3~ 2 the ratio7/\ increases with decreasing

applicable for this case. temperature. As a consequence, a finite tunneling conigtant
can become relevant at sufficiently low temperatures, which
VI. SUMMARY AND COMPARISON eventually changes the picture drawn here. This sets a mini-
TO OTHER RESULTS mum temperature due to tunneling, below which drag experi-

) . ments can no longer be performed.
In this paper we used the Tomonaga-Luttinger model to

analyze Coulomb drag between two ballistic quantum wires.
We find the drag to be a strong effect, both in its magnitude
and in its temperature dependence. The authors thank I. Aleiner, A. Finkel'stein, D. Maslov,
We find that at zero temperature, for all weak monoto-A, Punnoose, and Y. Oreg for instructive discussions, and
nously decaying repulsive electron-electron interaction theyarticularly A. Moustakis, L. Balents, and S. Simon for a
transresistance diverges, indicating the formation of intergiscussion of the RG equations. We thank the Minerva-
locked charge-density wave ground state in the two wires. AFgundation(Munich), the Bi-national Israel-USA founda-
low temperature,T<T*, we predict the transresistance 1o tion, the Israel academy of Science, and the Victor Ehrlich
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At high-temperaturd >T* we predict the transresistance
to show a power-law dependence on temperature, with the APPENDIX A
power being determined by the Luttinger liquid parameters.
For spin-polarized electrons, we find the power to e 4 We begin with the calculation of* for spinless electrons
—3, withK._ being the TL parameter correspondingaftti-  and large wire separatiosh, such thaked> 1. In this case
symmetriccharge displacement. For spin-unpolarized elec-
trons, we find the power to bek2,_ —1. — e? _ o
The crossover temperatufie’ depends exponentially on No=———Ko(2ked) ~rse =F

parameters. For wires at large separatipd>1 it is .
is exponentially small, as a consequence of which (x)
bked ~const=K, [Eq. (10)]. With this we obtain fromd In A/dx
, =2-2Ky:

T* ~Egex
0P I ko
N (y) — )\ a(2—2Kg)x
where b=1 for spin-unpolarized, andb=2 for spin- AX)=Noe o (AL)
polarized wires.
Our estimates for the critical wire length* ~vg/T*,
which is necessary to observe an exponentially enhanced

wherex=InE,/T. The conditionf(x*)~1 then gives

drag, strongly deviates from the corresponding estimate in T+~ g ME2K0) _ exp(  ked ) (A2)
Ref. 14. This difference, however, is explained by the ne- 0% 0 1-Kp/*

glect of the small-momentum interwire scattering in the

model of Ref. 14. For small wire separationsdéd) inter- and intrawire

In _the limit of vanishing long-ranged interactions couplingsg and g become similar, such thatUg
(92/4:924=0), where electron correlations are absent, ourEUgf);
predictions agree with those obtained within Fermi-liquid
theory by Hu and Flensberg, and Gurevathal. In this case 1 o 9 5 .
K. —1 and hence, e.g., from EQq(9), pp~hke/e? Uo= (g1~ Got gp)~ —— S

XPT/EF, which is also found in Refs. 8 and 9. Further, the

2mv,.  2mUg. O

finding tgat a nr)tewotthyldrg%gseafelcdt rethuir?s ehqual Fermirhis means that the bare couplingg,Ko~1+ Uy lie close
lmor:j\ent (equa Fe'rdml vg: kc:cm Thp S azo or the corre- Rto the separatrix, but still outside the attractive region of the
ate system_s considered here. This can be seen, €.g., In Weak—coupling fixed pointssee Fig. 1 Under renormaliza-
14, where wires with different densities have been explicitly . — i
studied. t|qn ()\,K)_ flows alc_)ng th_e separatrlx towards weaker cou-

The analysis presented here is restricted to a regimBlings until the turning point & =1 is reached. Thencefor-
where interwire tunneling is insignificant, as it should be inward (\,K) flows towards the strong-coupling regime.
proper drag experiments. More precisely, single electron tun- For an estimate o * we use the approximate RG equa-
neling described by, =t, = a), (K)a) ) (K) is tolerable  tions valid for|U|<1,

as long asr=t, /[Eg<<\. Thereby it is important to notice _

that the effective tunneling constantmight scale to larger dx — du —
values with decreasing energy scale. According to Kusmart- dx )
sevet al* (see also YakovenR9) this is the case for inter- o
action parameter 2 3<K._ <2+ 3, where r<T* with These can be easily integrated by use of the constant of mo-

a=K,_/2+1/2K._ —2 (for spinless electronsSince on the  tion A\2—U2=aZ, which yields

2T
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1
x2—x1=£(arctarul/a—arctanUZ/a).

In particular, we obtain for the “time”x,, at which the
turning point is reached xg=x,=0,U;=Uq,X,=X5,U,

1
~—arctanJ,/a.

Xa= 2a

In the case under consideration wflamuo, the constana
is a small quantity:

a?~2\o(No— U0)<;(2),U(2),

which will be determined more explicitly later. Because of

the relative smallness & we have

m

Xa%E.

For the rise from the turning point to stronger couplin_gs
>a, an equally long “time”x, is needed, so that
X* ~X,+ Xp=7/2a

and therefore

T*~Ege” ™2 (A3)
It remains to calculate: Taking the expressions
2e? — 2¢? _
gi=—Ko(qid),  gi=—_—Ko(aid),
and expanding up to second orderkipnTwe obtain
Mo~ Ufm(gl—gﬁ 92— 02)
s T Dk-d12+ O k-d)
= — f(d/d,Inked)(ked)“+ O%(ked),
a
whereby
. (d  — —\[d?
f(d/d,Inked)= iln d/d+y—1+Inked rill 1

(y=0.577 is Euler's constantThis yields
- r — —
a=[2\o(No—Ug)]¥?=— KgA 2ked) FH%ed.
7T

As long askpasl, the Bessel functioKO(ZkFa) andf are

of order one and only logarithmically dependent kgd.
Hence in this case

with ¢ a numerical coefficient of order unity. Inserting this
into Eq. (A3) yields

ROCHUS KLESSE AND ADY STERN
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cms
T* ~Egexp — = .
rsked

Let us now consider a spin-full double wire with large

separatiorﬁ> ke 1 Then again the interwire backscattering
coupling is exponentially small, such that also here

Kc~const=K?.

Due to the smallness of, the RG equations for the spin-
sector couplinga., K¢ decouple from the relative charge sec-
tor and become identical to the corresponding RG equations
of a single spins wire:

\N'=

—2U\,

Ul=-2\?
(for \,|U¢<1). Accordingly, the couplinga,U with bare
valuesi = nggﬂZva scale down to weaker coupling:

Ao

)\(X):US(X): m

Because of this behavior we can neglect in the differential
equation for\,
dinx
dx

the last two terms, itJ? A o<1—K2. Then, for this regime,

=1-K2-U¢—2),

dinn
dx

~1-Kg,
which gives

— — 0
A(X)=A\geltKeX,

This leads in the same way as in the corresponding spinless
case to a crossover temperature

T* ~ Eoexp( -

This result deviates from the former estimation for the spin-
less case only by a factor of 2 in front &d. This extra

factor reflects the fact that here the mean electron distance
is exactly half of the one in a spinless wire, when the Fermi
momentum is the same.

2ked
1-K?

APPENDIX B: RELATION TO
THE MEMORY-FUNCTION FORMALISM

In this section we elaborate on the relation of the pertur-
bative calculation of Sec. Il D and a formula for the Cou-
lomb drag resistivity based on the memory-function formal-
ism by Zheng and MacDonaldq. (12) in Ref. 21].

From Egs.(17) and (198) it follows that (¢~ ¢¢_)

SHin (1)

d
”:ME< 36 (xo) >
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whereM is a constant factor determined by the system paThen, making use of the Kubo identity

rameters, andH,,, is given by Eq.(16). A first-order expan-
sion inH;,;=H; () leads to
),

Ey

0p(Xo)

OHin(t=0)
Hint(t), Tob(xg)

where the subscript O indicates a thermal average taken with

respect taHy. Forl«Q—0 we can expandi;,; in Q,

Qt [ SHipe
i) =Hin( 0 =0)+ 2 [ o
and obtain

p=i%f:dttf dx<[ >0.

SHini(t) 6Hin(0)
Op(x) " Od(Xo)

B dA
[efBHO,A]=iei'BH°J dN ——(—iN)
0 dt

e [ B
0 dt

and partial integration leads to
5Hint(_i7\) é\Hint(t)

”:%J:dtde*J dx< 56(%o) 5¢(x)>0'

Since the functional derivatives dfi;,,; are the interwire
force densitiegup to a constant factprthis expression es-
sentially equals the corresponding form(l2) of Zheng and
MacDonald.
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