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Theory of quasi-one-dimensional electron liquids with spin-orbit coupling

A. V. Moroz, K. V. Samokhin,* and C. H. W. Barnes
Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE, United Kingdom

~Received 3 June 2000; revised manuscript received 5 September 2000!

We present a model for the study of spin-orbit coupling in interacting quasi-one-dimensional electron
systems~Q1DES’s! and solve it exactly to find both single- and two-particle characteristics. We show that the
combination of spin-orbit coupling and electron-electron interactions results in the replacement of separate spin
and charge excitations with two kinds of bosonic mixed-spin-charge excitation, and a characteristic modifica-
tion of the spectral function and single-particle density of states. Analysis of the two-particle characteristics
indicates that as the strength of the spin-orbit coupling is increased it is likely that a Q1DES would undergo a
magnetic ordering phase transition. We also study the transport properties of a Q1DES and prove, in particular,
that its ballistic conductance is not renormalized by the spin-orbit interaction.
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I. INTRODUCTION

In contemporary condensed matter physics there a
great variety of electron systems that can be considere
quasi-one-dimensional~Q1D!. Among them are semiconduc
tor heterostructures,1 carbon nanotubes,2 and conducting
polymers.3 Q1D systems combine the richness of observa
physical properties with the possibility that exact solutions
nontrivial interacting problems may be found. The major th
oretical advance in this field was the formulation and so
tion of the Tomonaga-Luttinger model,4 which revealed the
generic physical behavior expected in interacting Q1D s
tems: the separation of charge and spin degrees of freed
and the anomalous scaling of correlation functions.5

It is known that an electron moving in an electric fie
experiences not only an electrostatic force but also a rela
istic influence that couples the spin and orbital degrees
freedom of the electron and is referred to as spin-orbit~SO!
interaction or spin-orbit coupling. Despite its purely relati
istic nature, the SO coupling appears to be important in Q
systems because it can result, e.g., in a significant modi
tion to the band structure~see, e.g., experimental6,7 and
theoretical8,9 papers!.

In most Q1D systems, there are two distinct sources
electrical field that give rise to SO coupling:~i! microscopic
periodic modulation arising from the crystal potential a
producing an observable SO coupling in materials lack
inversion symmetry~GaAs and many III-V and II-VI com-
pounds!; ~ii ! macroscopic electric fields induced by near
unbalanced charge and potentials applied to surface g
The latter fields confine lateral motion of electrons and
responsible for the very existence of Q1D systems~or quan-
tum wires!. The electric field at a heterojunction or meta
oxide-semiconductor~MOS! interface produces a particu
larly strong intrinsic SO coupling in 2D electron and ho
systems. Owing to the different density dependences of
couplings from these two sources of electric field they can
distinguished experimentally.10,7 In contrast to the crystal
field SO coupling, the strength of the quantum-well-induc
coupling can be changed and controlled reliably by simu
neous adjustment of two surface gates, one above the 2D
and one below.11 In a variety of experimental systems in
cluding 2D electron and hole gases in Si-MOS field-eff
transistors10 and GaAs-AlGaAs heterostructures7 the strength
PRB 620163-1829/2000/62~24!/16900~12!/$15.00
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of the quantum-well SO coupling is dominant. It is therefo
reasonable to think of SO coupling in Q1D systems as
sulting mainly from macroscopic electric fields and bei
controllable by applying potentials to surface gates.

In strictly 1D and 2D clean systems the single-partic
wave functions are plane waves. Therefore the quantum-
SO coupling, which is proportional to the electron mome
tum and to the electron spin, has a simple effect on the b
structure: the energy branches corresponding to spin-up
spin-down electron states split ‘‘horizontally’’ in momentu
space by a momentum-independent value.9,12 In Q1D sys-
tems in the presence of a confining potential the transve
single-particle wave functions are more complicated~e.g.,
the Hermite functions for a parabolic confinement!. As a
result, along with the horizontal splitting of the sp
branches, SO coupling leads to a deformation of each bra
of the single-particle dispersion relations~see Fig. 1 and Ref
13!. The most important feature of this deformation is th
each branch loses its vertical symmetry axis and the elec
Fermi velocities become different for different directions
motion. In other words, a breakdown of chiral symme
occurs. Since this effect was predicted only recently, an
perimental measurement of its strength is not available
Nevertheless, our calculations13 indicate that the difference
of the Fermi velocities monotonically increases as the
coupling is enhanced, and in some Q1D semiconductor

FIG. 1. Single-electron energy spectrum in a quantum wire w
spin-orbit interaction. The dotted line is the Fermi energy leveE
5EF and 6p1,2 are the Fermi momenta of respective groups
electrons.
16 900 ©2000 The American Physical Society
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tems it may reach 10–20 %. This is well within the range
possible experimental observation.14

Semiconductor Q1D electron systems offer a unique
portunity of varying and controlling their properties in
wide range via chemical composition, band engineering,
ternal fields, etc. In particular, by varying carrier concent
tion and effective width of the system one can change
strength of electron-electron~EE! interactions by orders o
magnitude. Apparently, a very interesting physical situat
occurs as the carrier concentration and the system width
made sufficiently small, such that EE interactions beco
strong~up to a few meV! and may not be neglected. In th
case one can expect that the properties of the system m
be drastically modified~for a relevant review see, e.g., Re
5!. Since the strength of the SO coupling can be chan
independently,11 it appears possible to create a strongly
teracting Q1D electron system whose single-particle ene
spectrum lacks chiral symmetry as in Fig. 1. In this case
faces the following fundamental question: how does such
interacting system respond to the asymmetry of the sin
electron spectrum? In this paper we answer this ques
theoretically and describe possible experimental manife
tions of the results we find. In Sec. II we formulate a mod
for the SO coupling in interacting Q1D systems and ap
the bosonization technique15 to recast it in a solvable form
The destruction of the spin-charge separation by the SO
pling is demonstrated and discussed. In Sec. III we calcu
the retarded single-electron Green’s function, the spec
function, and the density of electron states. We analyze
dependence of the spectral function and the density of st
on the energy of elementary excitations for varying stren
of the SO coupling and EE interactions. Some of the res
t
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of Sec. III have been recently published in Ref. 16. In S
IV we study the effect of the SO coupling on two-partic
characteristics, such as the charge compressibility, the
susceptibility, and the ballistic conductance of a finite s
tem. Section V is a conclusion.

II. MODEL FORMULATION AND FORMALISM

A. Fermionic Hamiltonian

In constructing a Hamiltonian for a quasi-on
dimensional electron system~Q1DES! with SO coupling, we
consider the case where the Fermi energyEF is sufficiently
small such that only the lowest-energy subband in a quan
wire is partly filled, while all the others are empty~see Fig.
1!. Also we assume that EE interactions are not too stron
lead to noticeable hybridization of the two lowest subban
This regime has proved to be the richest in nontrivial expe
mental results,2,17 and the SO effects are expected13 to be
most pronounced here. As a natural way of capturing
essential physics in a quantum wire, we suggest the use
modified Tomonaga-Luttinger model that takes into acco
the asymmetric single-particle spectrum in Fig. 1. That is,
consider the model Hamiltonian of a Q1DES in the formH
5H01Hint , where

H052 iv1E dx~cR,↑
† ]xcR,↑2cL,↓

† ]xcL,↓!

2 iv2E dx~cR,↓
† ]xcR,↓2cL,↑

† ]xcL,↑! ~1!

and
Hint5E dxE dx8g1~x2x8!:cR,↑
† ~x!cL,↑~x!cL,↓

† ~x8!cR,↓~x8!:1
1

L (
q,s,s8

@g2i~q!ds,s81g2'~q!ds,2s8#%R,s~q!%L,s8~2q!

1
1

2L (
r ,q,s,s8

@g4i~q!ds,s81g4'~q!ds,2s8#:% r ,s~q!% r ,s8~2q!:1~R↔L !. ~2!
e

res
is

t
he

n
li-

e

HereH0 is the kinetic part of the Hamiltonian~we use units
where\51). The operatorsc r ,s(x) (r 5R,L;s5↑,↓) anni-
hilate spin-up (↑) and spin-down (↓) electrons near the righ
(R) and left (L) Fermi points. In what follows, the indicesr
ands will also be used as factors in equations and take
values11 (21) for R(L) and↑(↓), respectively. The term
Hint in the Hamiltonian describes the EE interactions and
the standard form:5 g1(x) is the backward scattering coeffi
cient, while the momentum-dependent functionsg2i(q),
g2'(q), g4i(q), andg4'(q) correspond to forward scatte
ing. The symbols :•••: in Eq. ~2! denote normal ordering
The Fourier component% r ,s(q) of the chiral charge density
operator is defined as

% r ,s~q!5E
0

L

dx exp~2 iqx!c r ,s
† ~x!c r ,s~x!, ~3!
e

s

whereL is the length of the Q1DES. In our Hamiltonian w
neglected the Umklapp scattering, which is not relevant5 in
quantum wires patterned in semiconductor heterostructu1

where energy bands are far from being half filled. In th
paper we assume repulsive EE interactions.

The Hamiltonian~1! and~2! is reminiscent of that for the
multicomponent Tomonaga-Luttinger model,5,18 which con-
sists of mutually interacting Luttinger liquids with differen
Fermi velocities. However, in contrast to our case, t
model5,18 assumes that each liquid has asymmetricsingle-
electron spectrum~as occurs, for example, with Zeema
splitting19! and therefore, as we will show, it describes qua
tatively different physical behavior.

B. Bosonization

We study the Hamiltonian~1! and~2! with the help of the
bosonization technique.15,20 This technique is based on th
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following representation of the fermion operators in terms
boson operators:

c r ,s~x!→ i (12r )/2

A2pL
:exp@2 iF r ,s~x!#:, ~4!

whereL is an infinitesimal ultraviolet cutoff parameter an

F r ,s~x!5rws~x!2pE
2`

x

Ps~x8!dx8. ~5!

The spin-up and spin-down phase operatorsws and Ps sat-
isfy the canonical commutation relations@ws(x),Ps8(x8)#
5 idss8d(x2x8).

The bosonized form of bilinear combinations of the fe
mion operators and their derivatives can be obtained15 by
expandingc r ,s

† (x)c r 8,s(x1a) in powers ofa asa → 0. Pro-
ceeding in this way, we find

c r ,s
† ~x!c r ,s~x!52~r /2p!]xF r ,s~x!,

c r ,s
† ~x!]xc r ,s~x!5~ ir /4p!@]xF r ,s~x!#2, ~6!

cR(L),s
† ~x!cL(R),s~x!5~2pL!21

3exp$6 i @FR,s~x!2FL,s~x!#%.

Substituting these expressions into Eq.~1! we obtain

H05
v0

2pE dx@~]xw↑!21~pP↑!21~]xw↓!21~pP↓!2#

1
dv
2pE dx@~pP↑!~]xw↑!2~pP↓!~]xw↓!#, ~7!

v05~v11v2!/2, dv5v22v1 . ~8!

Without losing the essential features of SO effects
Q1DES’s, from now on we assume that the EE interacti
are of the density-density type only. Microscopically this a
sumption means5 that in the model Hamiltonian~2! one
should putg15g25g4 , whereg2,4 are taken in the coordi
nate representation. In addition, we consider only pointl
interactions~e.g., well-screened Coulomb repulsion!, when
all the g’s are constants. Then all EE interaction proces
involving only one spin orientation become forbidden by t
Pauli principle. As applied to the Hamiltonian~2!, this means
that the terms proportional tog2i andg4i cannot exist and we
must put g2i5g4i50. Eventually, for pointlike density-
density interactions withg15g2'5g4'[g the Hamiltonian
~2! reduces to

Hint5
2g1

~2pL!2E dx cos@2~w↑2w↓!#

1b
v0

p E dx~]xw↑!~]xw↓!, ~9!

b5
2g

pv0
.

f

s
-

e

s

Alternatively, in terms of charge (wr andPr) and spin (ws

andPs) phase fields defined as

wr(s)5~w↑6w↓!/A2, Pr(s)5~P↑6P↓!/A2, ~10!

the Hamiltonian~7! and ~9! has the form

H5
1

2pE dxH vrKr~pPr!21
vr

Kr
~]xwr!21vsKs~pPs!2

1
vs

Ks
~]xws!2J 1

dv
2pE dx$~]xwr!~pPs!

1~]xws!~pPr!%1
2g1

~2pL!2E dx cos~2A2ws!, ~11!

where

vr(s)5v0~16b!1/2, Kr(s)5~16b!21/2. ~12!

The second integral in Eq.~11! is proportional to the velocity
differencedv5v22v1 and therefore represents the streng
of the SO interaction. In the standard Tomonaga-Luttin
model, wherev15v2 , this term is absent and this results
a decoupling of the charge and spin degrees of freedom:
so-calledspin-charge separation.5 This decoupling inhibits
the existence of quasiparticles with spin 1/2 and cha
2e, the basic excitations of a Fermi liquid, and gives rise
a different state of matter, the Luttinger liquid, which h
bosonic excitations in the form of independent spin a
charge density waves.

As the SO interaction is switched on, i.e., atdv Þ 0, the
second integral in Eq.~11! starts to affect the dynamics o
the system. It couples together ther ands fields and thereby
destroysthe spin-charge separation. A similar effect is al
found in a Luttinger model with spin in a magnetic field.19 In
our case, the asymmetry of the single-electron spectrum
Fig. 1 results in a mechanism of violation of spin-char
separation different from that of Ref. 19.

The physical properties of our model can be deduc
from various correlation functions that can be calculated
ing functional integration formalism in imaginary~Matsub-
ara! time.21 In this formalism, observables are expressed
averageŝ (•••)& over the boson fieldsw(x,t) andP(x,t):

^~••• !& [
1

Z0
E DP↑DP↓Dw↑Dw↓~••• !exp$ iS@Ps ;ws#%.

~13!

HereZ0 is the partition function and the actionS is

iS5E
0

b

dt E
0

L

dx$ iP↑~]tw↑!1 iP↓~]tw↓!2H@Ps ;ws#%,

~14!

whereb5T21 is the inverse temperature andH is given by
Eqs. ~7! and ~9!. The real-time characteristics are then o
tained by analytical continuationt → i t .
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III. SINGLE-PARTICLE CHARACTERISTICS

To find single-particle characteristics, such as the spec
function and the density of states, we first calculate the
mion Green’s function.

A. Green’s function

The retarded single-particle Green’s function is defin
as21

Gr ,s
(ret)~x,t !52 iu~ t !^$c r ,s~x,t !,c r ,s

† ~0,0!%&

52 iu~ t !@Gr ,s~x,t !1Gr ,s~2x,2t !#, ~15!

where the curly brackets$•••% denote anticommutators,u(t)
is the step function, and

Gr ,s~x,t !5Gr ,s~x,t!ut→ i t , ~16!

Gr ,s~x,t!5^c r ,s~x,t!c r ,s
† ~0,0!&. ~17!
f

n
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To express the Green’s function in terms of the boson fie
we apply the representation~4! to Eq. ~17!, and make use of
the Campbell-Baker-Hausdorff formula exp(A)exp(B)
5exp(A1B)exp(@A,B#/2) and the commutation relation fo
F r ,s . As a result, we have

Gr ,s~x,t!5
1

2pL
^exp$2 i @F r ,s~x,t!2F r ,s~0,0!#%&.

~18!

The average in this equation can be rewritten in a more c
venient form with the help of the formulâ exp(A)&
5exp(̂ A2&/2) that is valid for a linear functionalA in boson
operators averaged with a quadratic action:

Gr ,s~x,t!5~2pL!21exp@ I r ,s~x,t!#, ~19!

I r ,s~x,t!5^F r ,s~x,t!F r ,s~0,0!&2^F r ,s
2 ~0,0!&.

According to the definition~5!,
^F r ,s~x,t!F r ,s~0,0!&5^ws~x,t!ws~0,0!&1p2E
2`

x E
2`

0

^Ps~x8,t!Ps~x9,0!&dx8dx9

2pr E
2`

0

^ws~x,t!Ps~x8,0!&dx82pr E
2`

x

^Ps~x8,t!ws~0,0!&dx8. ~20!
y.

the
From Eqs.~15!–~20! it follows that the calculation of the
Green’s functionGr ,s

(ret)(x,t) reduces to the calculation o
binary correlators of the phase boson fieldsw andP. How-
ever, the presence of the backscattering term~the first inte-
gral! in the Hamiltonian~9! prevents the action~14! from
being quadratic inw andP, and therefore the correlators i
Eq. ~20! cannot be found explicitly. In Sec. III C we show b
renormalization analysis that for repulsive EE interactio
the backscattering contribution to the action can be negle
in an infinitely long system. Therefore hereafter we assu
the limit L → ` ~if not stated otherwise! and drop the back-
scattering term in the Hamiltonian~9!. The details of calcu-
lation of the correlators~20! with the resulting quadratic ac
tion are given in the Appendix.

By substituting Eqs.~A7!–~A9! for the boson correlators
into Eq. ~20! we have

I r ,s~x,t!52pv0E
vn ,q

@exp~ iqx2 ivnt!21#

3exp~2Luqu!
br ,s~q,vn!

vn
2D~q,vn!

, ~21!

where

br ,s~q,vn!5F0~r ,s!S v0q

vn
D 2

1 iF 1~r ,s!S v0q

vn
D1F2~r ,s!

1 ir S vn

v0qD , ~22!
s
ed
e

F0~r ,s!512
b2

2
1rs

e

2
2

e2

4
2rs

e3

8
,

~23!

F1~r ,s!5r 1se1r
e2

4
, F2~r ,s!512rs

e

2
.

In Eq. ~21! we used the standard5 ultraviolet cutoff at q
; L21 to avoid divergence in our long-wavelength theor

To perform the Fourier transformation in Eq.~21! we first
differentiateI r ,s(x,t) with respect tox. We restrict ourselves
to the case of zero temperature, so that the sum over
discrete Matsubara frequenciesvn transforms into an inte-
gral that can be taken explicitly and gives the result

]

]x
I r ,s~x,t!5

i

2

1

h2
22h1

2

3H j1
1~r ,s!h1

L2 ix1h1v0t
2

j1
2~r ,s!h1

L1 ix1h1v0t

2
j2

1~r ,s!h2

L2 ix1h2v0t
1

j2
2~r ,s!h2

L1 ix1h2v0tJ ,

~24!

where

j i
6~r ,s!5F0~r ,s!h i

226F1~r ,s!h i
212F2~r ,s!7rh i

~25!

and
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h1,2
2 511e2/47Ab21e2. ~26!

We next integrate Eq.~24! over x and take into accoun
the boundary conditionI r ,s(x50,t50)50 to obtain

exp@ I r ,s~x,t!#5S L

L2 ix1h1v0t D u1
1S L

L1 ix1h1v0t D u1
2

3S L

L2 ix1h2v0t D u2
1S L

L1 ix1h2v0t D u2
2

.

~27!

Here

u i
6~r ,s!5~21! ij i

6~r ,s!
h i

2~h1
22h2

2!
. ~28!

Finally, we substitute Eq.~27! into Eq. ~19!, replace the
complex time t with i t , and find the Green’s function
Gr ,s(x,t):

Gr ,s~x,t !5
1

2pL F L

L1 i ~u1t2x!G
u1

1F L

L1 i ~u1t1x!G
u1

2

3F L

L1 i ~u2t2x!G
u2

1F L

L1 i ~u2t1x!G
u2

2

. ~29!

The total retarded Green’s functionGr ,s
(ret)(x,t) can easily be

reconstructed from this formula using the definition~15!.
From Eq.~29! it follows that, although the SO coupling de
stroys the spin-charge separation, it nevertheless prese
the anomalous scaling of correlation functions. As the
coupling is switched off, i.e., whene50, Eq.~29! reduces to
the known expression that can be found in the review Re

The quantitiesu1,2[u1,2(e) in Eq. ~29! defined by

u1,25h1,2v0 , ~30!

are velocities of theindependentbosonic excitations that re
place the spin and charge density waves, respectively, a
single-electron spectrum becomes asymmetric (e Þ 0). Each
of these excitations is a superposition of the previous on
they carryboth charge and spin, and have a soundlike sp
trum v5u1,2q. For e50, we haveu1,25vs(r) and return to
the spin-charge separation. Equation~26! and Fig. 2 demon-
strate that increasinge at constantb pushesu1 andu2 away
from vs andvr as well as from each other: one of the ex
tations monotonically accelerates (u2 grows! while the other
monotonically slows down (u1 decreases!. This effect be-
comes more pronounced in systems with stronger EE in
action, i.e., with largerb ~see Fig. 2!.

Since the parametere is controlled by the SO interactio
and therefore by the lateral electrical confinement,
strength of this confinement must drastically affect the
namics of elementary excitations in quantum wires. Incre
ing e eventually results in the velocityu1 vanishing at a
‘‘critical’’ point e052(vs /v0). As we will see in Sec. IV A,
the spin succeptibility tends to diverge as the critical poin
approached, thereby indicating a possible phase trans
~see, e.g., the review Ref. 5 and references therein!.
ves
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B. Spectral function and density of states

The most profound effect of the SO coupling on intera
ing Q1D systems can be seen in the behavior of sing
particle characteristics, such as the spectral funct
r r(q,v),

r r~q,v!52
1

p (
s

Im Gr ,s
(ret)~q,v!, r 5R,L, ~31!

and the density of electron statesN(v),

N~v!5(
r
E

2`

` dq

2p
r r~q,v!

52
1

p
Im(

r ,s
E

2`

`

dt exp~ ivt !Gr ,s
(ret)~x50,t !,

~32!

whereGr ,s
(ret)(q,v) is the Fourier transform of the retarde

Green’s function~15! and ~29! and v is the energy of an
elementary excitation. Both quantitiesr r(q,v) andN(v) are
meaningful experimental observables and can be obtaine
different tunneling experiments. For example, in measu
ments of magnetotunneling between 1D and 2D systems14,22

the tunneling current is proportional to the overlap betwe
the spectral functions of the 1D and 2D systems and can
used to reconstructr r(q,v) for the 1D system since the 2D
spectral function is accurately known. The density of sta
can be extracted from, e.g., tunneling current measurem
between a wide~3D! metal and an interacting quantum wir
because in this case the tunneling current is proportiona
N(eV), whereV is an applied voltage~see Ref. 23!. It can
also be determined in angle-integrated photoemiss
experiments.24

Since the exponentsu1,2
6 in Eq. ~29! are, in general, non-

integer for finite EE interactions, the calculation
Gr ,s

(ret)(q,v) and hencer r(q,v) is a rather cumbersom
mathematical problem. In the case of zero SO coupling
detailed solution was presented in Ref. 25. The presence
finite SO coupling does not affect qualitative properties
the spectral function but modifies its quantitative charac

FIG. 2. The dimensionless velocitiesh1,2(e) of the bosonic ex-
citations vse for three fixedb50.0,0.4,0.8. The curves below
~above! the horizontal line correspond toh1 (h2).
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istics. Therefore we can use the results of Ref. 25
r r(q,v), into which we substitute the SO-dependent exp
nentsu1,2

6 @Eq. ~28!#. In doing so, we see that the most r
markable feature ofr r(q,v) as a function ofv is the pres-
ence of two singular points corresponding to the boso
excitations with velocitiesu1 andu2 ~see Fig. 3!. The behav-
ior of r r(q,v) in the vicinity of these points is governed b
the power laws

r r~q,v!; (
s

~v2qu1,2!
d1,2(r ,s)21/2, ~33!

d1,2~r ,s!521/22u1,2
2 ~r ,s!2u2,1

1 ~r ,s!2u2,1
2 ~r ,s!

for the left and right point, respectively. Since bothd1,2(r ,s)
and the velocitiesu1,2 depend on the parametere @see Eqs.
~26! and ~28!#, the positions and the sharpness of the sin
larities of r r(q,v) should be sensitive to the strength of t
SO coupling. Indeed, Fig. 3 demonstrates that the dista
between the singular points grows withe. This fact is in full
accordance with the behavior of the dimensionless veloc
h1,25h1,2(e) shown in Fig. 2. Increasinge has a different
effect on the sharpness of each singularity. It turns out
the left singularity becomes sharper while the right one
comes smoother ase grows. Ase approachese0 , the diver-
gence exponent for the left singularity tends to22, while for
the right singularity it tends to21.

Figure 3 shows how the spectral functionr r(q,v) de-
pends onv and e at fixed q. It is worth noting that the
dependence ofrR on q at fixed v is very similar to that
shown in Fig. 3 and exhibits the same tendencies as a f
tion of e. We mention that forv,0 the presence of SO
coupling does not bring about any peculiarities inr r(q,v).

The calculation of the single-particle density of sta
N(v) @Eq. ~32!# is much simpler than that ofr r(q,v) be-

FIG. 3. Spectral functionrR(q,v) ~in arbitrary units! for a fixed
q50.01L21 and several values ofe and forb50.5 (v0[v0 /L).
Only the intervalv.0 is shown, where all the singularities releva
to magnetotunneling experiments are located. Note thatrL(q,v)
5rR(q,2v).
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cause atx50 the Green’s function~29! reduces to the prod
uct of only two factors and the integral overt can be taken
with the use of Ref. 26. The first nonvanishing term of t
expansion ofN(v) in v → 0 ~the limit of low-lying excita-
tions! has the following form:

N~v!

N0
5

1

4 (
r ,s

~v/v0!u11u221

h1
u1h2

u2G~u11u2!
, u i5u i

11u i
2 .

~34!

Herev05v0 /L is the natural energy unit of the order of th
Fermi energy,N052/pv0 is the density of states at th
Fermi level forb5e50, andG(x) is the Gamma function.

Figure 4~a! demonstrates the effect of the EE interacti
on the density of statesN(v) at a fixed strength of the SO
coupling. At zero EE interaction (b50), the functionN(v)
is a constant,N(v)/N051/(12e2/4). As the EE interaction
is switched on (b Þ 0), it starts to affect the formation o
the lowest-lying excitations andN(v) takes on a power-law
behavior in the vicinity ofv50. The width of this power-
law interval becomes progressively larger as the strengt
the EE interaction grows and leads to a monotonic supp
sion of the density of states. This effect is also present
zero SO coupling.5

Figure 4~b! shows the evolution of the functionN(v) for
fixed b as the SO coupling is varied. For large values ofv,
where the role of EE interactions is not significant, the ma

FIG. 4. Normalized single-electron density of states:~a! e
50.5 andb50.0,0.1, . . . ,0.9; ~b! b50.6 ande50.0,0.1, . . . ,1.1.
The dashed curves correspond toe50.5 andb50.6.



l
n
S
E
e
ul

c
su
in

tie

ar
in

t t

p

h
ve
ric

d

s
th

te
e
he
a-
o

nd
g

rin
a
re
y

lin
h
ith
th

-

-

e

ply
ry

to
he

-

-

k-
lly

ac-
.

pa-
ck-

me
rge
ort

16 906 PRB 62A. V. MOROZ, K. V. SAMOKHIN, AND C. H. W. BARNES
nitude of N(v) increases ase grows. However, at smal
values ofv, where the nature of the elementary excitatio
is essentially dictated by EE interactions, the effect of the
coupling onN(v) is qualitatively the same as that of the E
interaction, that is, increasinge leads to a suppression of th
density of states. We emphasize that in the standard m
component Tomonaga-Luttinger model5,18 as well as in spin-
polarized Luttinger liquids,19 there is no interval ofv where
the density of states is suppressed by increasing the velo
difference between spectral branches. The existence of
an interval is a unique manifestation of the SO coupling
quantum wires.

The explicit dependence of the dimensionless veloci
h1,2 @see Eq.~26!# on the microscopic parameterse and b
should enable one to extracte and b from experiment and
thus determine how strong the EE and SO interactions
For example, one can use magnetotunnel
measurements14,22 to find the values ofh1,2 for a given Q1D
system. Knowing these two quantities should be sufficien
deduce the constantse andb from Eq. ~26!. The results of
such experiments can be substantiated and verified by
forming measurements of the density of statesN(v) ~e.g., by
angle-integrated photoemission24! on the same system wit
different strengths of the SO coupling. This can be achie
by changing the SO coupling directly by varying an elect
field perpendicular to a quantum wire~quantum-well field!
as was done, e.g., in Ref. 11.

Our calculations13 of the electron band structure modifie
by SO coupling indicate that the value ofe in typical Q1D
semiconductor systems should be; 0.1–0.2 and appear
sufficiently large to observe the principal tendencies in
behavior ofr(q,v) andN(v) caused by the SO coupling.

C. Role of backscattering

We now discuss conditions under which the backscat
ing term in the Hamiltonian~9! can be neglected so that th
action ~14! becomes quadratic in the boson fields. In t
absence of SO coupling~i.e., when the spin-charge separ
tion holds!, a consistent treatment of backscattering based
renormalization group analysis of the action can be fou
e.g., in Ref. 27. There it was shown that in infinitely lon
systems with attractive EE interactions the backscatte
contribution to the action renormalizes to infinity, where
for repulsive interactions it vanishes. In other words, for
pulsive ~e.g., Coulomb! interactions the backscattering ma
be safely neglected. In our situation, when the SO coup
destroys the spin-charge separation, the validity of t
result27 is not obvious and requires additional analysis. W
the backscattering taken into account, our action has
form @see Eqs.~9!, ~14!, and~A3!#

iS@w↑ ,w↓#5 iS0@w↑ ,w↓#2gE dxdt cos@2~w↑2w↓!#,

~35!

g52g1 /~2pL!2.

We now apply a uniform boost in the space-timer
→ lr , where r[(x,t). Under this boost the initial back
scattering constantg transforms intog85l21Dcosg, where
we assume that the field cos@2(w↑2w↓)# acquires the prefac
s
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tor lDcos with Dcos being a scaling exponent. Therefore th
scaling dimensionalityDg of g is

Dg521Dcos. ~36!

To define the scaling dimensionalityDcos we exploit the
fact that in Luttinger liquids correlators like that in Eq.~18!
exhibit power-law scaling inr @see Eq.~29!#. Therefore we
first calculate the binary correlator ^cos$2@w↑(r)
2w↓(r)#%cos$2@w↑(0)2w↓(0)#%& and find how it scales withr.
Then, following reasoning suggested in Ref. 28, we sim
defineDcos as one-half of the scaling exponent of this bina
correlator.

From the definitions~A2! and ~A5! it follows that

K~r ![^cos$2@w↑~r !2w↓~r !#%cos$2@w↑~0!2w↓~0!#%&

5
1

2
expH 24E

v,q
@exp~ iqx2 ivt!21#exp~2Luqu!

3@B11~q,v!1B22~q,v!2B12~q,v!2B21~q,v!#J .

~37!

The integrals in this equation can be calculated similarly
those in Eq.~21! and give a power-law dependence of t
correlator ~37! on r and therefore the scalingK(lr )
5l2DcosK(r), where Dcos,0. Extracting from this depen
dence the scaling dimensionalityDcos and substituting it into
Eq. ~36!, we have

Dg~e,b!52
h1h2~h11h221!212b1e2/4

h1h2~h11h2!
, ~38!

whereh1,2 are defined in Eq.~26!. This expression is con
sistent with the result5 Dg52(12Ks) obtained fore50.

The analysis of the functionDg proves that forb,0 the
scaling exponentDg remains positive for alle,e0 . This
means that under the boostr → lr with l → ` ~thermody-
namic limit, or infinitely long systemL → `) the back-
scattering constantg scales up to infinity and we fall into the
so-called strong-coupling limit where the effect of the bac
scattering becomes dominant and essentia
nonperturbative.27

On the other hand, in systems with repulsive EE inter
tions (b.0) the quantity Dg always remains negative
Therefore the constantg vanishes in the limitL → ` and the
backscattering processes become negligible. Since in this
per we always assume repulsive EE interactions, the ba
scattering term in the action~35! can be left out.

IV. TWO-PARTICLE CHARACTERISTICS
AND TRANSPORT

We now discuss the influence of the SO coupling on so
two-particle characteristics of Q1DES’s, such as the cha
compressibility, the spin susceptibility, and the transp
properties.
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A. Charge compressibility and spin susceptibility

The charge compressibilityKr(q,v) is defined as

Kr~q,v!5Kr~q,vn!u ivn→v1 i0 , ~39!

whereKr(q,vn) is the charge density correlator in the Ma
subara representation. The charge density operator in
bosonized form is given by

%̂~x,t!52
A2

p
]xŵr . ~40!

Then

Kr~q,vn!5
2

p2
q2^wr~2q,2vn!wr~q,vn!&. ~41!

To calculate this correlator we make use of the definitio
~10!, ~A2!, and ~A5! to replacewr→(w↑1w↓)/A2 and ex-
pressKr(q,vn) via the functionsBi j (q,vn):

Kr~q,vn!5
q2

p2
@B11~q,vn!1B22~q,vn!1B12~q,vn!

1B21~q,vn!#. ~42!

Given the explicit form ofBi j (q,vn) @Eq. ~A6!#, it is easy to
find that

Kr~q,vn!5
2v0q2

pvn
2D~q,vn!

@Ren~q,vn!2z~q,vn!#.

~43!

By taking the limitsivn→v1 i0 andv → 0, we obtain the
static charge compressibility:

k [Kr~q,v50!5k0@12~e/er!2#21, ~44!

k05N0Kr

v0

vr
, er52

vr

v0
,

wherek0 is the charge compressibility in the absence of
coupling. We see thatk increases ase grows and diverges a
e → er . However, under the assumption of repulsive EE
teractions wheng.0, er turns out to be larger than the valu
e0 at which h1(e) vanishes. This means that it is unlike
that a possible phase transition occurring at the pointe5e0
is caused by critical behavior of the charge subsystem.

The spin succeptibilityKs(q,v) is

Ks~q,v!5Ks~q,vn!u ivn→v1 i0 , ~45!

where Ks(q,vn) is the Matsubara spin density correlato
The spin density operator is defined as

ŝ~x,t!52
A2

p
]xŵs . ~46!

It is easy to verify thatKs(q,vn) is given by Eq.~42! with
B12(q,vn)→2B12(q,vn) and B21(q,vn)→2B21(q,vn).
Using the definitions~A6! and taking the limitsivn→ v
1 i0 andv → 0, we obtain the static spin susceptibility:

x[Ks~q,v50!5x0@12~e/es!2#21. ~47!
he

s

-

x05N0Ks

v0

vs
, es52

vs

v0
,

where x0 is the spin succeptibility for zero SO coupling
Like k @Eq. ~44!#, the quantityx is an increasing function o
e and diverges at the critical value ofe5es . Remarkably,
es coincides withe0 . This fact suggests that ase approaches
the point e0 the spin subsystem exhibits critical behavi
which manifests itself, in particular, in ‘‘freezing’’ the
slower boson excitation (u1→0) that is mainly formed by
spin waves. In other words, it is very probable that the
leged phase transition ate5e0 has a spin nature.

B. Ballistic conductance

It is well known1 that the conductance of a clean Q1
mesoscopic system is quantized in multiples ofe2/h ~per
spin! as a function of the Fermi energy. This property is
robust that even arbitrarily strong repulsive EE interactio
are not capable of renormalizing the conductance quant
tion steps.29 As was shown in Sec. II B, a finite SO couplin
destroys the spin-charge separation in an interacting Q1D
and thereby makes the processes of charge and spin tra
through the system correlated. To understand whether
can affect the conductance, let us define the conductancG
in a static external electric field as29

G5
1

L2E0

L

dxE
0

L

dx8sv~x,x8!uv→0 , ~48!

where

sv~x,x8!52
e2

vn
E

0

`

dt exp~ ivnt!

3^Tt ĵ r~x,t! ĵ r~x8,0!&u ivn→v1 i0 ~49!

is the nonlocal ac conductivity. The current operatorĵ r(x,t)
is related to the charge density operator%̂(x,t) by the charge
continuity equation in the Matsubara representati
i (]%̂/]t)1] ĵ r /]x50. We integrate this equation overx,
substituteĵ r(x,t) obtained into the current-current correlat
in Eq. ~49!, and take into account the boson representat
~40! for %̂(x,t). As a result, Eq.~49! transforms into

sv~x,x8!5
2e2

p2
vnGvn

rr ~x,x8!U
ivn→v1 i0

, ~50!

Gvn

rr ~x,x8!5
1

vn
2E0

`

dt exp~ ivnt!

3^Tt]twr~x,t!]twr~x8,0!& ~51!

with Gvn

rr (x,x8) being the propagator of the boson fieldwr .

We note that the conductivity~50! and ~51! has exactly the
same appearance as it has for zero SO coupling.29 The pres-
ence of the SO coupling in Eq.~51! is hidden within the
thermodynamic averagê•••& which should be calculated
with the SO-dependent action~A3!.
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From the experimental point of view the most realis
situation is one with a Q1DES occupying a finite range
< x < L and connected adiabatically to two- or thre
dimensional Fermi leads where EE and SO effects are n
ligible. In this case we follow the procedure suggested
Ref. 29, namely, we exploit the following differential equ
tion for the propagatorĜvn

(x,x8) of the boson fieldswr and

ws :

Ĝvn

21Gvn
~x,x8!5 Îd~x2x8!, ~52!

where Î is the identity operator in thewr(s) space. The dif-
ferential operatorĜvn

21 is obtained from the matrix~A4! by

rotating it to the basis (wr ,ws) and replacingq → i ]x . The
function Gvn

rr (x,x8) is the left uppermost element of the m

trix Gvn
(x,x8). In contrast to Ref. 29, the charge and sp

degrees of freedom are coupled in our case and therefor
equation forGvn

rr (x,x8) turns out to be coupled to the equ

tion for Gvn

sr(x,x8):

H 2v0

d

dx F f 1~x!
d

dxG1
vn

2

v0
J Gvn

rr ~x,x8!1e vn

d

dx
Gvn

sr~x,x8!

5p d~x2x8!, ~53!

H 2v0

d

dx F f 2~x!
d

dxG1
vn

2

v0
J Gvn

sr~x,x8!1e vn

d

dx
Gvn

rr ~x,x8!

50. ~54!

Here

f 6~x!51 6 b~x!2e2~x!/4,

and the parametersb and e are assumed to be coordina
dependent according to the model of a finite Q1DES, i
b(x)5b and e(x)5e for 0 <x <L and zero otherwise
Equations ~53! and ~54! lead to the following boundary
conditions: the functions Gvn

rr (x,x8), Gvn

sr(x,x8), and

f 2(x)(dGvn

sr/dx) are continuous atx50,L and x5x8; the

function f 1(x)(dGvn

rr /dx) is continuous atx50,L but under-

goes a jump atx5x8, i.e.,

2v0f 1

d

dx
Gvn

rr ~x,x8!U
x5x820

x5x810

5p.

The functionGvn

rr (x,x8) that satisfies Eqs.~53! and~54! has a

simple exponential form

Gvn

rr ~x,x8!5A1~x8!exp~ uvnux/u1!1A2~x8!

3exp~2uvnux/u1!1A3~x8!exp~ uvnux/u2!

1A4~x8!exp~2uvnux/u2!

in all regions ofx, whereA124(x8) are deduced from the
boundary conditions. As a result,Gvn

rr (x,x8) within the inter-

acting region 0< x < L is described by the asymptoti
g-
n

the

.,

Gvn

rr (x,x8).p/2vn at vn→0. Substituting this result into Eq

~50! and then into Eq.~48! gives the dc conductance of
finite Q1DES:

G5
e2

p
~\51!. ~55!

This formula coincides with the usual conductance quant
tion step in ballistic Q1DES’s. Thus, we conclude that t
SO coupling doesnot renormalize the conductance, which
still formed solely by the contact resistance at the ends of
interacting region. We stress that this conclusion applies o
to the static situation withv50, whereas the ac conductivit
and the ac conductancedo depend on the strength of the S
coupling. This dependence is expected to be quadratic ine as
e → 0. Also we should mention that the lengthL of the in-
teracting region should be sufficiently large to ensure ne
gibility of the EE backscattering.

C. Single-impurity scattering

We now consider the effect of a singled-function impu-
rity on current passing through a Q1D system in the prese
of SO coupling. For the case of zero SO coupling this pro
lem was originally solved in Ref. 30.

For an impurity with the potentialVd(x) the action in
terms of the boson fields has the usual form from Refs. 5
30:

iSimp52
2V

pLE dt cos@A2wr~x50,t!#cos@A2ws~x50,t!#.

~56!

SinceSimp depends on both charge and spin degrees of f
dom, one might expect the SO coupling to be important
determining the effect of impurity scattering on the syste

To figure out the scaling properties of the impurity pote
tial V we follow the same method as we used in analyz
the EE backscattering in Sec. III C. In doing so, we defi
the scaling dimensionalityD imp of V/L as

D imp511D̃cos, ~57!

whereD̃cos is the scaling dimensionality of the field

w̃~t![cos@A2wr~x50,t!#cos@A2ws~x50,t!#,

which can be deduced28 from its binary correlator.
Obviously, the variablex is dummy for the local action

Simp @Eq. ~56!#. Therefore, for the calculation ofD̃cos it ap-
pears natural to integrate out the variablex in the action
~A3!, so that the resulting effective action includes the fie
wr(s) at the pointx50 only:

iS0→2
1

2
T (

n52`

`

~wrws!~2vn!ĝ21~vn!S wr

ws
D ~vn!,

~58!

where wr(s)(vn) are Fourier transforms of the local field
wr(s)(x50,t) and ĝ(vn) is given by

ĝ~vn!5E
2`

` dq

2p
Ĝ0~q,vn!.
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The Green’s functionĜ0(q,vn) is obtained from Eq.~A4! by
matrix inversion and subsequent transformation from the
sis (w↑ ,w↓) to (wr ,ws) according to Eq.~10!. It is easy to
verify that diagonal elements ofĜ0(q,vn) are even functions
of bothq andvn , whereas its off-diagonal elements are o
in q andvn . As a result, off-diagonal elements of the matr
ĝ(vn) are zeros, while diagonal ones have the form

ĝi i 5
11@11~21! ib2e2/4#/h1h2

h1h2

p

2uvnu
, i 51,2.

~59!

We now calculate the binary correlator^w̃(t)w̃(0)& as a
product of two independent binary correlators of ther ands

fields, extract the scaling dimensionalityD̃cos from it, and
substituteD̃cos into the definition~57!:

D imp~e,b!512
h1h2112e2/4

h1h2~h11h2!
. ~60!

For e50 the result30 D imp512(Kr1Ks)/2 is recovered.
The analysis of Eq.~60! indicates thatD imp remains nega-

tive for all positive and negativeb and for alle,e0 . Thus,
we conclude that the impurity potentialV in Eq. ~56! is ir-
relevant in the thermodynamic limit and the backscatter
from a single impurity can always be neglected. We note t
this is true for both zero and finite values ofe, i.e., after all,
the SO coupling turns out to have no essential effect on
interaction of bosons with an impurity scatterer.

It is worth noting that a conclusion about scaling prop
ties of the impurity potential crucially depends on the a
proximation used to describe EE interactions. Indeed, if
starts with the traditional model Hamiltonian~1! and does
not assume any specific microscopic mechanism for EE
teractions, then one can use all four parametersvr(s) and
Kr(s) ~or equivalentlyg2i , g2' , g4i , andg4') as indepen-
dent. Then in analyzing the result5,30 D imp512(Kr1Ks)/2
one can consider the spin-symmetric caseKs51 and con-
clude thatD imp,0 for Kr.1 andD imp.0 for Kr,1. In this
paper we consider only pointlike density-density interactio
and therefore end up with the single parameterb describing
EE interactions. The stiffness constantsKr and Ks are ex-
pressed in terms ofb @see Eq.~12!# and are not independen
of each other. In this case there isno range of values ofb
ande whereD imp.0. In other words, for pointlike density
density EE interactions the backscattering from a single
purity is unlikely to lock a quantum wire, no matter wheth
the SO coupling is present or not.

We should mention that in solving the single-impuri
problem we assumed zero EE-induced backscattering in
action, i.e., we putg150. It is uncleara priori what the
region of applicability of this assumption is. The correspon
ing analysis is beyond the scope of this paper.

V. CONCLUSIONS

In conclusion, we have formulated and solved analytica
the problem of the interplay between electron-electron
spin-orbit interactions in Q1D electron systems and fou
the following. ~i! The spin-charge separation of the trad
a-
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e
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he

-

y
d
d

tional Luttinger liquid is destroyed by the SO coupling.~ii !
The independent bosonic spin and charge excitations of
Tomonaga-Luttinger model are replaced by two independ
bosonicmixedspin and charge excitations in our model. A
the strength of the SO coupling increases, the velocity of
of these excitations decreases to zero where it becomes
dominantly a spin excitation. This indicates the possibil
for the occurrence of a phase transition involving some k
of magnetic ordering. We support this view with calculatio
of the charge compressibility and spin succeptibility.~iii !
The single-particle characteristics, such as the spectral fu
tion and the density of states, are essentially modified
controlled by the strength of the SO coupling so that exp
mental varying of the SO coupling with the external elect
field could be used to extract the microscopic parameter
quantum wires. The magnitude of the predicted effects
well within the reach of existing experimental technique
~iv! The electron backscattering is irrelevant in the therm
dynamic limit for repulsive EE interactions and relevant f
attractive EE interactions.~v! The properties of a Q1D sys
tem in the presence of a single impurity are not affected
SO coupling: the impurity potential renormalizes to zero
all strengths of EE and SO interactions.~vi! The conductance
of a finite-length ballistic quasi-one-dimensional channel
the presence of both SO coupling and EE interactions is
renormalized from the noninteracting value.
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APPENDIX: BOSON CORRELATORS

To find the correlators in Eq.~20!, we introduce the gen-
erating functionalZ@U,V#,

Z@U,V#[K expH E
0

b

dtE
0

L

dx

3@U↑w↑1U↓w↓1V↑P↑1V↓P↓#J L , ~A1!

with U5$U↑ ,U↓% andV5$V↑ ,V↓% being arbitrary functions
of x andt. Obviously, all the correlators in Eq.~20! can be
expressed as variational derivatives ofZ@U,V# with respect
to the functionsU↑↓ and/orV↑↓ , e.g.,

^ws~x,t!ws~0,0!&5
d2Z@U,V#

dUs~x,t!dUs~0,0!
U

U5VÄ0

. ~A2!

The averaging here is assumed to be taken over the quad
part of the action~14!. To calculate this average we first tak
Gaussian integrals overP↑ andP↓ @see the definitions~13!
and ~14!#. After this integration the action takes the follow
ing form:



y

in

y

s

T.

n-

.
e

.
ev.

v.
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iS0@w↑ ,w↓#52
1

2
T (

n52`

` E
2`

` dq

2p
~w↑w↓!

3~2q,2vn!Ĝ0
21~q,vn!S w↑

w↓
D ~q,vn!,

~A3!

wherews(q,vn) are Fourier transforms of the fieldsws(x,t).
In Eq. ~A3! vn52pnT is the boson Matsubara frequenc
andĜ0 is the Green’s function given by

Ĝ0
21~q,vn!5

vn
2

pv0
S n~q,vn! z~q,vn!

z~q,vn! n* ~q,vn!
D , ~A4!

where

n~q,vn!511S 12
e2

4 D S v0q

vn
D 2

2 i eS v0q

vn
D ,

z~q,vn!5bS v0q

vn
D 2

, e5dv/v0 .

The functional integrals overw↑↓ in Eq. ~A1! can be sim-
ply taken to give the result

Z@U,V#5expH 1

2Evn ,q
~UV!~2q,2vn!

3B̂~q,vn!S U

VD ~q,vn!J . ~A5!

The integral here stands for summation overvn and integra-
tion overq. The elements of the matrixB̂(q,v) are given by
@the arguments (q,vn) are assumed where necessary#

B115
pv0n*

vn
2D

, B1252
pv0z

vn
2D

,

B135
n* j

vnD
, B1452

zj*

vnD
,

*Permanent address: L. D. Landau Institute for Theoretical Ph
ics, Kosygina Street 2, 117940 Moscow, Russia.
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