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We present a model for the study of spin-orbit coupling in interacting quasi-one-dimensional electron
systemgQ1DES’9 and solve it exactly to find both single- and two-particle characteristics. We show that the
combination of spin-orbit coupling and electron-electron interactions results in the replacement of separate spin
and charge excitations with two kinds of bosonic mixed-spin-charge excitation, and a characteristic modifica-
tion of the spectral function and single-particle density of states. Analysis of the two-particle characteristics
indicates that as the strength of the spin-orbit coupling is increased it is likely that a Q1DES would undergo a
magnetic ordering phase transition. We also study the transport properties of a Q1DES and prove, in particular,
that its ballistic conductance is not renormalized by the spin-orbit interaction.

[. INTRODUCTION of the quantum-well SO coupling is dominant. It is therefore
reasonable to think of SO coupling in Q1D systems as re-
In contemporary condensed matter physics there are sulting mainly from macroscopic electric fields and being
great variety of electron systems that can be considered a®ntrollable by applying potentials to surface gates.
guasi-one-dimension&Q1D). Among them are semiconduc- In strictly 1D and 2D clean systems the single-particle
tor heterostructure’s,carbon nanotubés,and conducting wave functions are plane waves. Therefore the quantum-well
polymers® Q1D systems combine the richness of observablé&SO coupling, which is proportional to the electron momen-
physical properties with the possibility that exact solutions totum and to the electron spin, has a simple effect on the band
nontrivial interacting problems may be found. The major the-structure: the energy branches corresponding to spin-up and
oretical advance in this field was the formulation and solu-spin-down electron states split “horizontally” in momentum
tion of the Tomonaga-Luttinger mOd%lNthh revealed the space by a momentum-independent V&[E]%"‘] Q1D sys-
generic physical behavior expected in interacting Q1D syStems in the presence of a confining potential the transverse
tems: the separation of charge and spin degrees of freedomingle-particle wave functions are more complicatedy.,
and the anomalous scaling of correlation f“”Ct'B”S-_ ~the Hermite functions for a parabolic confinemems a
It is known that an electron moving in an electric field oq it~ along with the horizontal splitting of the spin
experiences not only an electrostatic force but also a relativgsnches. SO coupling leads to a deformation of each branch
istic influence that couples the spin and orbital degrees ok he single-particle dispersion relatiofsee Fig. 1 and Ref.
freedom of the electron and is referred to as spin-d®® 13 The most important feature of this deformation is that
interaction or spin-orbit coupling. Despite its purely relativ- ¢4 pranch loses its vertical symmetry axis and the electron
istic nature, the SO coupling appears to be important in Q1Q-g ;i velocities become different for different directions of
systems because it can result, e.g., in a 5|gr_1|f|cant modificgs otion. In other words, a breakdown of chiral symmetry
tion to tgﬁeg band structurésee, e.g., experimentdl and 0" Since this effect was predicted only recently, an ex-
theoretical™ papers. . erimental measurement of its strength is not available yet.
In most Q1D systems, there are two distinct sources ofeyertheless, our calculatidisndicate that the difference
electrical field that give rise to SO couplin@) MICroscopic ot the Fermi velocities monotonically increases as the SO

periodi<_: modulation arising from th_e cr_ystal poFentiaI andcoupling is enhanced, and in some Q1D semiconductor sys-
producing an observable SO coupling in materials lacking

inversion symmetryGaAs and many IlI-V and II-VI com-

pounds; (ii) macroscopic electric fields induced by nearby E()
unbalanced charge and potentials applied to surface gates.
The latter fields confine lateral motion of electrons and are
responsible for the very existence of Q1D systéprsquan-

tum wireg. The electric field at a heterojunction or metal-
oxide-semiconductokMOYS) interface produces a particu-
larly strong intrinsic SO coupling in 2D electron and hole
systems. Owing to the different density dependences of SO
couplings from these two sources of electric field they can be
distinguished experimentally:” In contrast to the crystal-
field SO coupling, the strength of the quantum-well-induced
coupling can be changed and controlled reliably by simulta-
neous adjustment of two surface gates, one above the 2D gas F|G. 1. Single-electron energy spectrum in a quantum wire with
and one below! In a variety of experimental systems in- spin-orbit interaction. The dotted line is the Fermi energy leel
cluding 2D electron and hole gases in Si-MOS field-effect=E; and +p, , are the Fermi momenta of respective groups of
transistor® and GaAs-AlGaAs heterostructufabe strength  electrons.
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tems it may reach 10—20 %. This is well within the range forof Sec. Il have been recently published in Ref. 16. In Sec.

possible experimental observatith. IV we study the effect of the SO coupling on two-particle
Semiconductor Q1D electron systems offer a unique opcharacteristics, such as the charge compressibility, the spin

portunity of varying and controlling their properties in a susceptibility, and the ballistic conductance of a finite sys-

wide range via chemical composition, band engineering, extem. Section V is a conclusion.

ternal fields, etc. In particular, by varying carrier concentra-

tion and effective width of the system one can change the Il. MODEL FORMULATION AND FORMALISM
strength of electron-electrofEE) interactions by orders of o o
magnitude. Apparently, a very interesting physical situation A. Fermionic Hamiltonian

occurs as the carrier concentration and the system width are |In constructing a Hamiltonian for a quasi-one-
made sufficiently small, such that EE interactions becomelimensional electron syste(@1DES with SO coupling, we
strong(up to a few meY and may not be neglected. In this consider the case where the Fermi enelgyis sufficiently
case one can expect that the properties of the system migbinall such that only the lowest-energy subband in a quantum
be drastically modifiedfor a relevant review see, e.g., Ref. wire is partly filled, while all the others are emptyee Fig.

5). Since the strength of the SO coupling can be changed). Also we assume that EE interactions are not too strong to
independently;" it appears possible to create a strongly in-lead to noticeable hybridization of the two lowest subbands.
teracting Q1D electron system whose single-particle energyhis regime has proved to be the richest in nontrivial experi-
spectrum lacks chiral symmetry as in Fig. 1. In this case ong,antal resultd!” and the SO effects are expectedo be
faces the following fundamental question: how does such ag, st pronounced here. As a natural way of capturing the
interacting system respond to the asymmetry of the singleggsential physics in a quantum wire, we suggest the use of a
electron spectrum? In this paper we answer this questiopagified Tomonaga-Luttinger model that takes into account
theoretically and describe possible experimental manifestgs,o asymmetric single-particle spectrum in Fig. 1. That is, we

tions of the results we find. In Sec. Il we formulate a model.qnsider the model Hamiltonian of a Q1DES in the fafm
for the SO coupling in interacting Q1D systems and apply:HOJrH_nt where
] L

the bosonization technigtieto recast it in a solvable form.

The destruction of the spin-charge separation by the SO cou-

pling is demonstrated and discussed. In Sec. Il we calculate Ho= —ivlf AX(Ye 1 Ixtbm 1 — U i)

the retarded single-electron Green’s function, the spectral

function, and the density of electron states. We analyze the )

dependence of the spectral function and the density of states —'sz AX(g, It = L 1L, ) (1)
on the energy of elementary excitations for varying strength

of the SO coupling and EE interactions. Some of the resultand

’ AT g ’ - 1
Hint:f dXJ dx'gi(x—x )-wR,T(X)wL,T(X)wL,l(X )R | (X )'+E 2 [92)(q) ds,s 792, (A) 65—/ 1R s(A) L s (—Q)
q,s,s’

1
tor 2 (94085 +9a (D)5 s ]:0rs(Aers (~ @)+ (ReL). )

r.qg.ss’

HereHy is the kinetic part of the Hamiltoniafwe use units whereL is the length of the Q1DES. In our Hamiltonian we
wheref=1). The operatorg, ((x) (r=R,L;s=1,]) anni-  neglected the Umklapp scattering, which is not releVamt
hilate spin-up () and spin-down () electrons near the right quantum wires patterned in semiconductor heterostructures
(R) and left (L) Fermi points. In what follows, the indices where energy bands are far from being half filled. In this
ands will also be used as factors in equations and take thgaper we assume repulsive EE interactions.

values+1 (—1) forR(L) and?(]), respectively. The term The Hamiltonian(1) and(2) is reminiscent of that for the
H,p in the Hamiltonian describes the EE interactions and hagiulticomponent Tomonaga-Luttinger modéf which con-
the standard form:g;(x) is the backward scattering coeffi- sists of mutually interacting Luttinger liquids with different
cient, while the momentum-dependent functiogg(q), Fermi }/Selocities. However, in contrast to our case, the
92, (), 94)(a), andgy, (q) correspond to forward scatter- modeP® assumes that each liquid hasspmmetricsingle-
ing. The symbols ---: in Eq. (2) denote normal ordering. €lectron spectrumias occurs, for example, with Zeeman
The Fourier componerg, (q) of the chiral charge density splittinglg) and therefore, as we will show, it describes quali-

operator is defined as tatively different physical behavior.
B. Bosonization

L . . .
= | dxexo—igx) e (x X), 3 We study the Hamiltoniafil) and(2) with the help of the
@< fo P1a) g, s0) () ® bosonization technique:?° This technique is based on the
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following representation of the fermion operators in terms ofAlternatively, in terms of chargeg(, andIl,) and spin ¢,
boson operators: andlIl ;) phase fields defined as

j(1-np2

';br,s(x)_> \/m:exq_iq)r,s(x)]:y (4)

Cpi=(@: 20 )IN2, Tp»=(1,=11)/\2, (10

_ o _ the Hamiltonian(7) and (9) has the form
where A is an infinitesimal ultraviolet cutoff parameter and

X 1 2, Y 2 2
CDr,s(X):rQDs(X)_Wf HS(X’)dX,. (5) H:ZJ dx UPKP(WHP) +K—p(5x(pp) +UUK(,(’7TH(,)
The spin-up and spin-down phase operatpgsand I sat- + ﬁ(ax%y + ﬁf dx{(dxe,)(mI1,)
isfy the canonical commutation relatiofigs(x),I1¢ (x")] Ko 2m ?
=idsg 6(X—X"). 29
The bosonized form of bilinear combinations of the fer- +(9 M)+ 1 f dxcog 2+/2 11
mion operators and their derivatives can be obtdndéy (Oxpo) (L, )} (2mwA)? 22¢,). (11
expandingz//:rys(x) Y s(x+a) in powers ofa asa — 0. Pro-
ceeding in this way, we find where
T -
wr,s(x)wr,s(x)_ (r/ZW)ﬂxq)r’S(X), UP(U)IUO(li,B)llz, Kp(g)z(li,B)’”Z. (12)
t (i 2
iy s(X) dxipr o(X) = (ir [Am)[ 3P o(X)]%, ®  The second integral in E¢L1) is proportional to the velocity
+ . differencesv =v,—v, and therefore represents the strength
PRy, s PR s(X) = (27A) of the SO interaction. In the standard Tomonaga-Luttinger
: model, wherev;=v,, this term is absent and this results in
X expl = - : L U2 :
XA =[P (0 =Py ()]} a decoupling of the charge and spin degrees of freedom: the
Substituting these expressions into EL). we obtain so-calledspin-charge separation This decoupling inhibits

the existence of quasiparticles with spin 1/2 and charge

_ Vo ) ) ) ) —e, the basic excitations of a Fermi liquid, and gives rise to
HO_EJ dX{ (dxp) "+ (7)) "+ (g ) *+ (a1l )] a different state of matter, the Luttinger liquid, which has
bosonic excitations in the form of independent spin and

ov charge density waves.
+ o | Al (dxer) = (Il ) (dxe )], @) As the SO interaction is switched on, i.e.,&t # 0, the
second integral in Eq(ll) starts to affect the dynamics of
vo=(v1+0)/2, Sv=v,—0;. (8) the system. It couples together thendo fields and thereby

destroysthe spin-charge separation. A similar effect is also

Without losing the essential features of SO effects infound in a Luttinger model with spin in a magnetic fiéfdn
Q1DES's, from now on we assume that the EE interaction®Ur case, the asymmetry of the single-electron spectrum in
are of the density-density type only. Microscopically this as-Fig- 1 results in a mechanism of violation of spin-charge
sumption mearfsthat in the model Hamiltoniar2) one  Separation different from that of Ref. 19.
should putg;=g,=g,, whereg, , are taken in the coordi- The physmal propertles o_f our model can be deduced
nate representation. In addition, we consider only pointlikeffom various correlation functions that can be calculated us-
interactions(e.g., well-screened Coulomb repulsipwhen  ing functional integration formalism in imaginaatsub-
all the g's are constants. Then all EE interaction processe&rd time™ In this formalism, observables are expressed as
involving only one spin orientation become forbidden by theaverageg(- - -)) over the boson fieldg(x,7) andII(x,7):
Pauli principle. As applied to the Hamiltoni&®), this means
that the terms proportional @, andg, cannot exist and we 1 _
must put g, =g, =0. Eventually, for pointlike density- ((--+)) EZ_OI DI, DI Do Do (- - - )expliS[11s; ¢s]}-
density interactions witly;=g,, =g9,, =g the Hamiltonian (13)
(2) reduces to

5 HereZ, is the partition function and the actidis

01

Hint:mf dxcod2(¢;—¢))] ; )

is= [Mar [ axiinn (. +i11 (2,0 - HIT e

Vo

+B— f dxX(dyp1) (), ) (14)
where =T ! is the inverse temperature ahtis given by

= 2_9 Egs. (7) and (9). The real-time characteristics are then ob-
™0 tained by analytical continuation— it.
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lll. SINGLE-PARTICLE CHARACTERISTICS To express the Green’s function in terms of the boson fields,
To find single-particle characteristics, such as the spectr% € apply the representatiad) to Eq. (17), and make use of

. . ! the Campbell-Baker-Hausdorff formula  eX)exp@®)
fu_nct|on anq the de_nsny of states, we first calculate the fer:exp@+B)exp{A,B]/2) and the commutation relation for
mion Green'’s function.

®, ;. As a result, we have

A. Green’s function

1 .
52The retarded single-particle Green’s function is defined Grs(xm)= 27TA<6Xp{_'[q)"S(X’T)_CD’*S(O’O)]D'
ast (18)

Gl (x.t)= —i6(t x.t), 47 (0.0 The average in this equation can be rewritten in a more con-
s (00 O 097 0.0} venient form with the help of the formulaexp@))
=—i0(1)[G; s(X,1) + G, o(—x,—1)], (15 =exp(A?)/2) that is valid for a linear functionah in boson

where the curly brackefs - -} denote anticommutatorg(t) operators averaged with a quadratic action:

is the step function, and Gr (X, 7)=(2mA) " texd 1, o(x, 7], (19)

Cralx)=Grs i (10 (X, 7) = (P (X, D, (0,0) — (B2 (0,0).

Gy (X, 7) = (¥ (X, 7) i (0,0)). (170 According to the definition(5),

<q)r'S(X,T)CDLS(O,O»:<<pS(X,T)<pS(0,O)>+’772J’i< fj) <HS(X’,T)HS(X”,O»dX,dX”

0 X
—er <¢S(X,T)HS(X',O)>dX'—7Trf (TTg(x",7) 0<(0,0))dx". (20
|
From Egs.(15)—(20) it follows that the calculation of the 2 € €2 3
Green's functionG{"¢Y(x,t) reduces to the calculation of Fo(r,s)=1-7+rs5— - —rs,
binary correlators of the phase boson fieldsindIT. How- 23)
ever, the presence of the backscattering téme first inte- &2 c
gral) in the Hamiltonian(9) prevents the actiofl4) from F.(r,s)=r+se+r Fo(r,s)=1-rs5.

being quadratic inp andIlI, and therefore the correlators in 4" 2

Eq. (20) cannot be found explicitly. In Sec. lll C we show by |, Eq. (21) we used the standatdiltraviolet cutoff atq
renormalization analysis that for repulsive EE interactions_ A -1 {o avoid divergence in our long-wavelength theory.
the backscattering contribution to the action can be neglected 1, perform the Fourier transformation in E&1) we first

in an infinitely long system. Therefore hereafter we assumgjifferentiatel, (x,7) with respect to. We restrict ourselves
the limit L — < (if not stated otherwiseand drop the back- {5 the case of zero temperature, so that the sum over the
scattering term in the Hamiltoniai®). The details of calcu-  yiscrete Matsubara frequencies, transforms into an inte-

Igtion of the cqrrelatorSZO) wi.th the resulting quadratic ac- gral that can be taken explicitly and gives the result
tion are given in the Appendix.

By substituting Eqs(A7)—(A9) for the boson correlators i 1
into Eq. (20) we have — 1, (X, 7)=5

2 2
2 2 M~ M

|r'S(X,T):2’7TU0f

wp,

[expigx—iwyr) —1] HE09m  E09n
q X - - -
A—iX+nwer  A+iX+ nuor

«exqt — A| gy st en) (21 gErom 5097

2
0, A(g, ) A—ix+ 7]2007+A+ix+ 72007)’
where (24)

2 where
. vod
+|F1(r,s)(w—)+F2(r,s)

n

voq
br,s(q,wn>=Fo(r,s)(—af
n

& (r,8)=Fo(r,8)m 2=F4(r,8)n "—Fy(r,s) Fro,
(25)

Wp
—) : (22)

and
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75 =1+ 247 %+ €2, (26)

We next integrate Eq24) over x and take into account
the boundary conditiot, ((x=0,7=0)=0 to obtain

05 A 0y
eXF[Ir'S(X'T)]:(A—iX-i- 7711)07') A+ix+ 771007')
A 0, A 05
X(A—ix—i-nzvor) A+ix+772vo7'>
(27)
Here
RO R ek ) o romenc

(above the horizontal line correspond tg; (7).
Finally, we substitute Eq(27) into Eq. (19), replace the

complex time 7 with it, and find the Green’s function B. Spectral function and density of states
Gy s(x,1): The most profound effect of the SO coupling on interact-
N ~ ing Q1D systems can be seen in the behavior of single-
1 A 1 A 0 particle characteristics, such as the spectral function
Grsxt)= 2aA | A+i(uit—x)| |A+i(ut+x) (4, ),
0y 0, 1
X A+i([L\12t—x) 2 A+i(ust+x) 2' @9 pf(q""):_?z mGrY(q.w), r=RL, (3D

The total retarded Green’s functi@nﬁfgt)(x,t) can easily be and the density of electron stati§w),

reconstructed from this formula using the definiti¢hb).

From Eq.(29) it follows that, although the SO coupling de- > dg

stroys the spin-charge separation, it nevertheless preserves N(“’)ZZ le > Pr(Q.0)

the anomalous scaling of correlation functions. As the SO

coupling is switched off, i.e., whea=0, Eq.(29) reduces to 1 * . (ret)

the known expression that can be found in the review Ref. 5. = ;'mrz; __dtexpliot) Gy P (x=04),
The quantitiest; ;=Uu; (€) in Eq. (29) defined by ' -

U1.2= .20, (30 where G{"¢Y(q, ) is the Fourier transform of the retarded

are velocities of théndependenbosonic excitations that re- Green’s function(15) and (29) and w is the energy of an
place the spin and charge density waves, respectively, as tledementary excitation. Both quantitips(q, w) andN(w) are
single-electron spectrum becomes asymmetri¢ (0). Each  meaningful experimental observables and can be obtained in
of these excitations is a superposition of the previous onegifferent tunneling experiments. For example, in measure-
they carryboth charge and spin, and have a soundlike specments of magnetotunneling between 1D and 2D systéfAis
trum w=u, .. For e=0, we haveu; ,=v,, and return to  the tunneling current is proportional to the overlap between
the spin-charge separation. Equati@6) and Fig. 2 demon- the spectral functions of the 1D and 2D systems and can be
strate that increasing at constanj3 pushesu; andu, away used to reconstrugi,(q,w) for the 1D system since the 2D
fromv, andv, as well as from each other: one of the exci- spectral function is accurately known. The density of states
tations monotonically accelerates,(grows while the other ~ can be extracted from, e.g., tunneling current measurements
monotonically slows downy; decreases This effect be- between a wid¢3D) metal and an interacting quantum wire,
comes more pronounced in systems with stronger EE inteecause in this case the tunneling current is proportional to
action, i.e., with largeB (see Fig. 2 N(eV), whereV is an applied voltagésee Ref. 2B It can
Since the parametaris controlled by the SO interaction also be determined in angle-integrated photoemission
and therefore by the lateral electrical confinement, theexperiments?
strength of this confinement must drastically affect the dy- Since the exponent&fz in Eqg. (29) are, in general, non-
namics of elementary excitations in quantum wires. Increasinteger for finite EE interactions, the calculation of
ing e eventually results in the velocity; vanishing at a Gﬁfgt)(q,w) and hencep,(q,w) is a rather cumbersome
“critical” point eg=2(v,/vp). As we will see in Sec. IVA, mathematical problem. In the case of zero SO coupling the
the spin succeptibility tends to diverge as the critical point isdetailed solution was presented in Ref. 25. The presence of a
approached, thereby indicating a possible phase transitidinite SO coupling does not affect qualitative properties of
(see, e.g., the review Ref. 5 and references thgrein the spectral function but modifies its quantitative character-
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pR(q,({))

FIG. 3. Spectral functiopg(q, ) (in arbitrary unitsg for a fixed
g=0.01A "1 and several values af and for 3=0.5 (wg=vo/A).
Only the intervalw>0 is shown, where all the singularities relevant
to magnetotunneling experiments are located. Note phéd], »)

=pr(Q, ~ ).

istics. Therefore we can use the results of Ref. 25 for
pr(g,w), into which we substitute the SO-dependent expo-
nentsef2 [Eqg. (28)]. In doing so, we see that the most re- o . .
markable feature op,(q,w) as a function ofw is the pres- 0.00 0.01 0.02 0.03 0.04 0.05

ence of two singular points corresponding to the bosonic FIG. 4. Normalized single-electron density of statéa) e
excitations with velocitiesi; andu, (see Fig. 3 The behav- _qg and@=0.0,0.1 . ..,0.9; (b) B=0.6 ande=0.0,0.1 . ..,1.1.

ior of p;(q,w) in the vicinity of these points is governed by The dashed curves correspondete 0.5 andg=0.6.
the power laws

cause ak=0 the Green’s functio(29) reduces to the prod-
- _ 51Ar,9)—1/12 33 uct of only two factors and the integral ovecan be taken
pr(a.) 2s (0=quy2) ’ 33 with the use of Ref. 26. The first nonvanishing term of the
expansion oN(w) in @ — 0 (the limit of low-lying excita-
81.AT,S)=—1/2— 0, A1,5)— 03(r,S)— 6, (1,5) tions) has the following form:

for the left and right point, respectively. Since bathy(r,s) N(w) 1 (lwg) 1%t b= o+ 0
and the velocities; , depend on the parameter{see Egs. Ny, 4 %% 77917702F(01+ 0,)’ i i
(26) and (28)], the positions and the sharpness of the singu- 172 (34)

larities of p,(q,w) should be sensitive to the strength of the
SO coupling. Indeed, Fig. 3 demonstrates that the distandderewy=uvy/A is the natural energy unit of the order of the
between the singular points grows wih This factis in full ~ Fermi energy,Ny=2/7v, is the density of states at the
accordance with the behavior of the dimensionless velocitieSermi level for3=e=0, andI'(x) is the Gamma function.
71,= 11 €) shown in Fig. 2. Increasing has a different Figure 4a) demonstrates the effect of the EE interaction
effect on the sharpness of each singularity. It turns out thabn the density of state(w) at a fixed strength of the SO
the left singularity becomes sharper while the right one becoupling. At zero EE interactiond=0), the functionN(w)
comes smoother asgrows. Ase approacheg,, the diver- is a constantN(w)/Ny=1/(1— €2/4). As the EE interaction
gence exponent for the left singularity tends+t@, while for  is switched on § # 0), it starts to affect the formation of
the right singularity it tends te- 1. the lowest-lying excitations and(w) takes on a power-law

Figure 3 shows how the spectral functipn(g,w) de-  behavior in the vicinity ofw=0. The width of this power-
pends onw and e at fixed g. It is worth noting that the law interval becomes progressively larger as the strength of
dependence opgr on q at fixed w is very similar to that the EE interaction grows and leads to a monotonic suppres-
shown in Fig. 3 and exhibits the same tendencies as a funsion of the density of states. This effect is also present for
tion of e. We mention that fore<0 the presence of SO zero SO coupling.
coupling does not bring about any peculiaritiespifq, w). Figure 4b) shows the evolution of the functidl(w) for

The calculation of the single-particle density of statesfixed 8 as the SO coupling is varied. For large valueswof
N(w) [Eq. (32)] is much simpler than that gb,(g,w) be-  where the role of EE interactions is not significant, the mag-
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nitude of N(w) increases a¥ grows. However, at small tor A\cos with A, being a scaling exponent. Therefore the

values ofw, where the nature of the elementary excitationsscaling dimensionalityA , of y is

is essentially dictated by EE interactions, the effect of the SO

coupling onN(w) is qualitatively the same as that of the EE

interaction, that is, increasingleads to a suppression of the

density of states. We emphasize that in the standard multi-

component Tomonaga-Luttinger moti& as well as in spin- To define the scaling dimensionality,,s we exploit the

polarized Luttinger liquid$? there is no interval ofs where  fact that in Luttinger liquids correlators like that in EG.8)

the density of states is suppressed by increasing the velocigxhibit power-law scaling i [see Eq.(29)]. Therefore we

difference between spectral branches. The existence of sufiist ~calculate the binary  correlator (cog§2[;(r)

an interval is a unique manifestation of the SO coupling in—¢,(r)J}cog2[¢;(0)— ¢ (0)]}) and find how it scales withn.

guantum wires. Then, following reasoning suggested in Ref. 28, we simply
The explicit dependence of the dimensionless velocitieslefineA,sas one-half of the scaling exponent of this binary

71,2 [see Eq.(26)] on the microscopic parameteesand 8 correlator.

should enable one to extraetand 8 from experiment and From the definitiongA2) and (A5) it follows that

thus determine how strong the EE and SO interactions are.

For example, one can use magnetotunneling — _ _

measurement$?to find the values ofy, , for a given Q1D K(r)=(cod2le(r)~e,(n]icod2[¢1(0) = ¢, (O)])

system. Knowing these two quantities should be sufficient to 1 i .

deduce the constantsand 8 from Eq. (26). The results of = Eexp{ _4L [exp(igx—iw7)—1]exp(—Alq])

such experiments can be substantiated and verified by per- i

forming measurements of the density of stdtés) (e.g., by

AL=2+Ages. (36)

angle-integrated photoemissf@hon the same system with X[B11(0, w) + B2, w) = B1x(q, w) = Boy(q,0) ] { -
different strengths of the SO coupling. This can be achieved

by changing the SO coupling directly by varying an electric (37
field perpendicular to a quantum witguantum-well fieldl

as was done, e.g., in Ref. 11. The integrals in this equation can be calculated similarly to

Our calculation®’ of the electron band structure modified those in Eq.(21) and give a power-law dependence of the
by SO coupling indicate that the value efin typical Q1D  correlator (37) on r and therefore the scalind<(\r)
semiconductor systems should be0.1-0.2 and appears =\2?coK(r), where A.,<<0. Extracting from this depen-
sufficiently large to observe the principal tendencies in thedence the scaling dimensionality.,s and substituting it into
behavior ofp(q,») andN(w) caused by the SO coupling. EQ. (36), we have

C. Role of backscattering g+ p—1)—1— B+ €24

We now discuss conditions under which the backscatter- Afep)=2 71m2( 71+ 712)
ing term in the Hamiltoniar{9) can be neglected so that the
action (14) becomes quadratic in the boson fields. In theynere 5, , are defined in Eq(26). This expression is con-
absence of SO coupling.e., when the spin-charge separa- sistent with the restfitA,=2(1—K,) obtained fore=0.
tion holds, a consistent treatment of backscattering based on The analysis of the function proves that for3<0 the
renormalization group analysis of the action can be foundscaling exponent\ , remains pgsitive for alle<ey. This
e.g., in Ref. 27. There it was shown that in infinitely 1ong eans that under Eyhe boast- A with X — % (thermody-
systems with attractive EE interactions the backscatteringamic limit, or infinitely long systemL — =) the back-
contribution to the action renormalizes to infinity, Whereasscattering constant scales up to infinity and we fall into the
for repulsive interactions it vanishes. In other words, for re-so-called strong-coupling limit where the effect of the back-
pulsive (e.g., Coulomb interactions the backscattering may scattering becomes dominant and essentially
be safely neglected. In our situation, when the SO Co“plin91onperturbativé.7
destroys the spin-charge separation, the validity of this o the other hand, in systems with repulsive EE interac-
result’ is not obvious and requires additional analysis. Withiions (8>0) the quéntityA always remains negative
the backscattering taken into account, our action has thena efore the constamvanisﬁes in the limit. — o and the '
form [see Eqs(9), (14), and (A3)] backscattering processes become negligible. Since in this pa-

per we always assume repulsive EE interactions, the back-

, (39

iS[er,@1=1So[@1,¢,]1— 'yf dxdrcog2(ei—¢))], scattering term in the actiof85) can be left out.
(35
2 IV. TWO-PARTICLE CHARACTERISTICS
y=20:/(2wA)". AND TRANSPORT
We now apply a uniform boost in the space-time We now discuss the influence of the SO coupling on some

— \r, wherer=(x,7). Under this boost the initial back- two-particle characteristics of Q1DES's, such as the charge
scattering constany transforms intoy’ =\2"%cesy, where  compressibility, the spin susceptibility, and the transport
we assume that the field ¢@%p,—¢)] acquires the prefac- properties.
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A. Charge compressibility and spin susceptibility

_ Yo _olc
The charge compressibiliti¢ (g, ») is defined as Xo— NOK”UU’ €5=2 vy’
Kp(9,0)=K,(a,@n)]iw, ~w+i0s (390  where x, is the spin succeptibility for zero SO coupling.

' _ . Like « [Eq. (44)], the quantityy is an increasing function of
where/C, (0, wy) is the charge density correlator in the Mat- ¢ and diverges at the critical value ef=¢,. Remarkably,
subara representation. The charge density operator in the coincides withe,. This fact suggests that asapproaches

bosonized form is given by the point ¢, the spin subsystem exhibits critical behavior
2 which manifests itself, in particular, in “freezing” the
o(x,7)=— —07x<}>p- (40) slqwer boson excitationu(lﬂq) .that is mainly formed by
™ spin waves. In other words, it is very probable that the al-
Then leged phase transition at= ¢, has a spin nature.

B. Ballistic conductance

2
=_— 2 —q —
Ko(@, ) qu {ep(=a=one,(@0n). (4D It is well known' that the conductance of a clean Q1D

. _ .. mesoscopic system is quantized in multiplesedfh (per
To calculate this correlator we make use of the deflnltlonsspin) as a function of the Fermi energy. This property is so
(10), (A2), and (A5) to replaceg,— (@1 +¢|)/\2 and ex-  ropyst that even arbitrarily strong repulsive EE interactions

presskC, (g, w,) via the functionsB;;(q, w,): are not capable of renormalizing the conductance quantiza-
) tion steps?® As was shown in Sec. Il B, a finite SO coupling
K,(q,0,) = q_[Bll(quwn)+ Boo(d, ) + Bio 0, @) destroys the spin-charge separation in an interacting Q1DES
g w2 and thereby makes the processes of charge and spin transfer

through the system correlated. To understand whether this
+Bai(0, wn)]. (42) can affect the conductance, let us define the conduct@nce
Given the explicit form oBj;(q,»,) [Eq. (A6)], itis easy to  in a static external electric field @s
find that

1 (L L
20002 G= —zf dxf dx' o ,(X,X")| w_0- (48
Kp(d,op) = — [Rev(q,0n) —£(d,@p)]. L=oJo
Tw,A(Q, w,) h
(43  Where
By taking the limitsiw,— w+i0 andw — 0, we obtain the , e’ (= _
static charge compressibility: T,(X,X") =~ w_nfo d7expiw,7)
=K yw=0)= 1— (el 2 71, 44 2 2 ,
K =KolOhw=0)=rd 1= (ele,)] 44 (T 3D Oy i (49
Ko= NOKP?, €,= 25—”, is the nonlocal ac conductivity. The current opereig(lx,r)
p 0

_ o is related to the charge density operatgk, 7) by the charge
where kg is the charge compressibility in the absence of SCcontinuity equation in the Matsubara representation:

coupling. We see that increases as grows and diverges as i(90/d7)+ 3] ,/dx=0. We integrate this equation over
€ — €,. However, under the assumption of repulsive EE in- P

teractions wheig>0, €, turns out to be larger than the value
€9 at which ,(€) vanishes. This means that it is unlikely
that a possible phase transition occurring at the peink,

is caused by critical behavior of the charge subsystem.

substitutej »(X,7) obtained into the current-current correlator
in Eq. (49), and take into account the boson representation

(40) for o(x,7). As a result, Eq(49) transforms into

. ey . e2
The spin succeptibilityC,(q, w) is T (X )= —zanZ’;(X,X') , (50)
o . .
]CO'(qlw):Ka(qlwn)|iwn~>w+i01 (45) IwnﬁerIO
where K ,(q,w,) is the Matsubara spin density correlator. 1 (=
The spin density operator is defined as Ghr(x,x")= _2J drexpliw,7)
n wn O
R 2 .
T 7)== — 0P, (46) X(T,0,0,(x,)dpp(x',0) (51

It is easy to verify thakC,(q, ;) is given by Eq.(42) with with gfu’r’](x,x’) being the propagator of the boson fiety .
B0, w)— —B1x(0q, @) and Bay(q, w,)— — Boy(q, wp,). We note that the conductivit§p0) and (51) has exactly the
Using the definitions(A6) and taking the limitsiw,— @  S&me appearance as it has for zero SO coupfifge pres-

+i0 andw — 0, we obtain the static spin susceptibility: ~ €nce of the SO coupling in Eq51) is hidden within the
thermodynamic averagé- - -) which should be calculated

X=K,(q,0=0)=xo[1—(ele,)?] . (47)  with the SO-dependent actidA3).
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From the experimental point of view the most realistic g¢*(x,x’")= /2w, at w,— 0. Substituting this result into Eq
wn 1 . .

situation is one with a Q1DES occupying a finite range 0(50) and then into Eq(48) gives the dc conductance of a
<x=<VL and connected adiabatically to two- or three'finite Q1DES:

dimensional Fermi leads where EE and SO effects are neg-

ligible. In this case we follow the procedure suggested in e?
Ref. 29, namely, we exploit the following differential equa- G=— (®&=1. (55)
tion for the propagato@wn(x,x’) of the boson fields, and

This formula coincides with the usual conductance quantiza-
tion step in ballistic Q1DES’s. Thus, we conclude that the
N b , SO coupling doesot renormalize the conductance, which is
Gy o, (X X) =1 8(X=X"), (520 still formed solely by the contact resistance at the ends of the
. interacting region. We stress that this conclusion applies only
wherel is the identity operator in the ) space. The dif- o the static situation witlb =0, whereas the ac conductivity
ferential operatOQ;n1 is obtained from the matrixA4) by  and the ac conductanc® depend on the strength of the SO

rotating it to the basis¢, ,¢,) and replacing] — idy. The coupling. This dependence is_ expected to be quadratsiga'm
function G¢# (x,x") is the left uppermost element of the ma- € — 0. Also we should mention that the lengdthof the in-

. , ._teracting region should be sufficiently large to ensure negli-
trix gwn(x,x ). In contrast to Ref. 29, the charge and Sp'ngibility of the EE backscattering.
degrees of freedom are coupled in our case and therefore the

equation forgfui(x,x’) turns out to be coupled to the equa-
tion for gg’;(x,x’):

Pot

C. Single-impurity scattering

We now consider the effect of a singéfunction impu-
rity on current passing through a Q1D system in the presence
of SO coupling. For the case of zero SO coupling this prob-
lem was originally solved in Ref. 30.

For an impurity with the potential/5(x) the action in

d
G (XX )+ € 0 GIP(X,X')

d d] ?
~Vogy| T+ X gx +U_o

= o(X—x"), (53 terms of the boson fields has the usual form from Refs. 5 and
30:
[ @l o0 L]+ 90l gmatsy e n L ) 2v
—voo=| F_(X) 5= |+ — X,X")+ € wp 5= GP (X, X )

Pdx| T dx] wo) T Tdx e iSimp=— W—AJ d7cog \2e,(x=0,1)]co§ V2¢,(x=0,7)].

=0. (54 (56)
Here SinceS;;,, depends on both charge and spin degrees of free-
dom, one might expect the SO coupling to be important in
f.(x)=1= B(X)— €3(x)/4, determining the effect of impurity scattering on the system.

To figure out the scaling properties of the impurity poten-
and the parameter8 and e are assumed to be coordinate tial V we follow the same method as we used in analyzing
dependent according to the model of a finite Q1DES, i.e.the EE backscattering in Sec. lll C. In doing so, we define
B(x)=p and e(x)=€ for 0=<x <L and zero otherwise. the scaling dimensionalit};, of V/A as
Equations(53) and (54) lead to the following boundary 3
conditions: the functions G2 (x,x'), GiP(x,x'), and Ajmp=1+Acos, (57)
f_(x)(dggﬁ/dx) are continuous ak=0,L and x=x'; the
functionf+(x)(dg’;’:/dx) is continuous ak=0,L but under- 5
goes a jump ak=x', i.e., o(7)=cog\2¢,(x=0,7)]co§ V2¢,(x=0,7],

which can be deducé@from its binary correlator.

Obviously, the variable is dummy for the local action
Simp [EQ. (56)]. Therefore, for the calculation af .o it ap-
pears natural to integrate out the variablén the action
The functiong?” (x,x") that satisfies Eq¢53) and(54) has a  (A3), so that the resulting effective action includes the fields

whereA . is the scaling dimensionality of the field

d x=x"+0
—v0f+—xg’jfr’](x,x’) =1r.
x=x"—-0

simple exponential form ¢p(o) L the pointx=0 only:
ry — ! ! 1 ” ~ (P
G 00X') = As(X")exXpt | @n|x/uy) +Ag(x') IS~ 5T X (qopwg)(—wn)g‘l(wm((P”)wn),
X exp(— |wp|X/uq) + Az(X") exp(| wn|x/uy) (58)
+AL(X ) exp — | wn|x/uy) where ¢,)(w,) are Fourier transforms of the local fields

©,0)(X=0,7) andg(w,) is given by
in all regions ofx, where A;_,(x’) are deduced from the P "

boundary conditions. As a resuﬂfjr’](x,x’) within the inter-

R © dq.
acting region 0<x=<L is described by the asymptotic g(w”)_f 27 o0 @n).
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The Green'’s functioo(q, ) is obtained from Eq(A4) by  tional Luttinger liquid is destroyed by the SO couplin@)
matrix inversion and subsequent transformation from the bal he independent bosonic spin and charge excitations of the
sis (¢;,¢,) 10 (¢,,¢,) according to Eq(10). It is easy to Tomonaga-Luttinger model are replaqed by two independent
verify that diagonal elements &O(Q'wn) are even functions bosonicmixedspin and charge excitations in our model. As

f both and whereas i of agonal clemens are o1 SIS191 1 12 SO CoUPIg nereases e weocty e
in gandw, . As a result, off-diagonal elements of the matrix P

- o dominantly a spin excitation. This indicates the possibility
g(wn) are zeros, while diagonal ones have the form for the occurrence of a phase transition involving some kind

i 2 of magnetic ordering. We support this view with calculations

é“=1+[1+(_1) B-elMlmn, =12 of the charge compressibility and spin succeptibilitiji.)

72 2w The single-particle characteristics, such as the spectral func-

(59 tion and the density of states, are essentially modified and

-~ controlled by the strength of the SO coupling so that experi-

We now calculate the binary correlatop(7)¢(0)) as a  mental varying of the SO coupling with the external electric
product of two independent binary correlators of thando field could be used to extract the microscopic parameters of
fields, extract the scaling dimensionality.,s from it, and  quantum wires. The magnitude of the predicted effects is

substituteA .o into the definition(57): well within the reach of existing experimental techniques.
(iv) The electron backscattering is irrelevant in the thermo-
M+ 1— €4 dynamic limit for repulsive EE interactions and relevant for

Aimp(€,8) =1~ Tt ) (60)  attractive EE interactiongv) The properties of a Q1D sys-

tem in the presence of a single impurity are not affected by

For e=0 the resuft’ Aimp=1—(K,+K,)/2 is recovered. SO coupling: the impurity potential renormalizes to zero for
The analysis of E¢(60) indicates that\;,, remains nega- all strengths of EE and SO interactioi(g) The conductance

tive for all positive and negativg and for alle<e,. Thus, Of a finite-length ballistic quasi-one-dimensional channel in

we conclude that the impurity potentislin Eq. (56) is ir-  the presence of both SO coupling and EE interactions is not

relevant in the thermodynamic limit and the backscatteringenormalized from the noninteracting value.

from a single impurity can always be neglected. We note that

this is true for both zero and finite values af i.e., after all,

the SO coupling turns out to have no essential effect on the ACKNOWLEDGMENTS

interaction of bosons with an impurity scatterer. A.V.M. thanks the ORS, COT, and Corpus Christi Col-

It is worth noting that a conclusion about scaling proper-jgqe for financial support. K.V.S. and C.H.W.B. thank the
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proximation used to describe EE interactions. Indeed, if one
starts with the traditional model Hamiltonigit) and does

not assume any specific microscopic mechanism for EE in- APPENDIX: BOSON CORRELATORS
teractions, then one can use all four parametefs, and . . _
K, (o) (or equivalentlyg,, g2, , 9, andg,,) asindepen- To find the correlators in E¢20), we introduce the gen-

dent Then in analyzing the restft® A;,,=1— (K, +K,)/2  €ratng functionalZ[U,V],

one can consider the spin-symmetric c&sge=1 and con-

clude thatA,,,<0 for K,>1 andA;,,>0 for K,<1. In this B L

paper we consider only pointlike density-density interactions Z[U,V]E<exp[ f dq-f dx

and therefore end up with the single paramegatescribing 0 0

EE interactions. The stiffness constahts andK, are ex-

pressed in terms g8 [see Eq(12)] and are not independent X[U;@+ Ul‘pL+VTHT+VLHl]} > (A1)
of each other. In this case thererie range of values of3

and € whereA;,,>0. In other words, for pointlike density-

density EE interactions the backscattering from a single imith U={U,,U } andv={V,,V } being arbitrary functions
purity is unlikely to lock a quantum wire, no matter whether of x and r. Obviously, all the correlators in E¢20) can be

the SO coupling is present or not. - expressed as variational derivativesZ§iU,V] with respect
We should mention that in solving the single-impurity tg the functiondJ,, and/orV, , e.g.,

problem we assumed zero EE-induced backscattering in the

action, i.e., we pufg;=0. It is uncleara priori what the

region of applicability of this assumption is. The correspond- 5%°Z[U,V]

ing analysis is beyond the scope of this paper. (@s(X,7) p5(0,0)) = 50.(x.7)5U0,0

. (A2)
U=Vv=0

V. CONCLUSIONS . . .
The averaging here is assumed to be taken over the quadratic

In conclusion, we have formulated and solved analyticallypart of the actior(14). To calculate this average we first take
the problem of the interplay between electron-electron an@aussian integrals ovéi; andlIl [see the definition§l3)
spin-orbit interactions in Q1D electron systems and foundand (14)]. After this integration the action takes the follow-
the following. (i) The spin-charge separation of the tradi- ing form:
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dqg

. 1_< (*
'50[<PT,<P¢]=—§TH:Z% wz(%m)

~A_q b1
><(_q!_wn)(BO (qawn)< @l)(q’wn)'

(A3)
wherep4(q,w,) are Fourier transforms of the fields(x, 7).

In Eqg. (A3) w,=2#nT is the boson Matsubara frequency

and GO is the Green’s function given by

{(d,wy)
V*(Qawn)

e
1——||—| —iel—],
4\ w, wp

2
, €=dvlvg.

v(q,wy)

851 (quom) = -1
0 (@) =0 (g

) . (Ad)

where

v(g,w,)=1+

g(Qawn):,B

vod
wWn

The functional integrals ovep, | in Eq. (A1) can be sim-
ply taken to give the result

Z[U,VJ=exp{%f

. U
XB(Q:wn)(V)(Q-wn)]-

q(UV)(—q,—wn)

n:

(A5)

The integral here stands for summation owgrand integra-

tion overg. The elements of the matrﬁ(q,w) are given by
[the argumentsq,w,) are assumed where necessgary

TV v* TV od
11~ ) 1207 " 5
w2A w2A
* *
v (¢
Bis= Byy=———+
13 wnA ’ 14 nA ’
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23 nA' 24 (I)nA'

A—v+ & g€
833_ 7TUOA ’ 34— 7TU0A1 (A6)

BZZ(q!wn):le’fl(q!wn)v B44(q,wn)=B§3(q,a)n),

Bij(d,wn) =Bji(—d,— wy).
Here

£(9,0) =1l €(vo0/wy)/2,

A(,@q) = (0, 00) >~ £%(q, 1)

We now return to the coordinate-time representatio
Eqg. (A5) and obtain for the correlators in ERO)

(1%, 79100)= [ exHiax-0y7)B(G,00),

(A7)
0
f_de'<<,DT(X,T)HT(X’,0)>
:fjmdx,<HT(X,,T)@T(O,O)>
=if expligx—iw,7)q ™ 'B1a(d, @p),
wn .4
(A8)

X 0
f, dx’fﬁ dx"(IL(x", 7)I1(x",0))

=f expligx—iw,7)q ?Bsx(q,w,). (A9)
wp,q

The correlators fois=| can be deduced from Eq6A7)—
(Ag) by I’ep|aCIngBll—> 822, 8134824, and B33—>B44.
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