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Limits on phase separation for two-dimensional strongly correlated electrons
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From calculations of the high-temperature series for the free energy of the two-dimerisiomaidel we
construct a series for ratios of the free energy per hole. The ratios can be extrapolated very accurately to low
temperatures and used to investigate phase separation. Our results confirm that phase separation occurs only for
J/t=1.2. Also, the phase transition into the phase-separated stafie.+&@s25] for large J/t.

The Hubbard and-J models, though widely used to in- stable. Ife($) is constant or decreasing for a range of dop-
vestigate high-temperature superconductors, remain contrings the uniform phase is unstable for those value8.of
versigllyvhen doped away from one electro_n per site. The There are two main difficulties encountered in calculating
possibility that doped holes do not form a uniform phase bug(s) from numerical measurementexact diagonalization,
instead phase separate into distinct high- and low-densit§yantum Monte Carlo, or Green’s-function Monte Caib
regions on the lattice is an important issue that has proveg (s) The first is thaie(é) requires the subtraction of two
d|ff|(;:ullt to settle. Phai;:* _seplarart:on for phyS|ce1|! ch0|dces Odflarge number&,(5) andE,L" to determine a small number
mode parameter§ would imply that more complicated mo which is then divided bys, another small number. Given
els of two-dimensional2D) strongly correlated electrons are - . . . o

: ! ; statistical uncertainty in numerically determiningy(5)
required to describe high-temperature superconductors. St?I-EAF ) dall ‘i Sothis | difficult
bility of a uniform density phase would leave open the pos-'—0 IS essentially exact in comparls)o' IS 1S a difficu
sibility that simple models contain the relevant physics with-1Sk, especially fos<1. The second difficulty is that nu-
out additional terms. merical calculations are done on small clusters. Systematic

While experiments have clearly observed phase separ&'Tors inEq(5) are tough to estimate without knowing the
tion in a few highT, systems, notably oxygen overdoped finite-size scaling of the data and whether the cluster sizes
La,Cu0,. ; with mobile interstitial oxygen atorfsphase considered are large enough to be in the scaling firhin
separation does not seem to be a universal feature of irRdition to these difficulties, phase separation is favored on
cuprates. However, the mechanism of phase separatio?{na” clusters fqb‘<1. The reduction in grqund-.state energy
causes holes to feel a net attraction, a possible precursor fgi€ to the kinetic energy of the holes, which disfavors phase
the formation of stripe phases or superconductivity. Findingg€Paration, is not as large on a small cluster as it is for an
an attractive interaction for holes in models that have pre1nf|n|te lattice. On a small cluster the electron system reduces

dominantly strong repulsive interactions is not easy, and alts €nergy more through local interactions, which for the

known possibilities deserve thorough investigation. model are attractive interactions for antiparallel spins due to
To investigate the properties of phase separation we havg€J term in the Hamiltonian. _
calculated the high-temperature series for thetZDmodel High-temperature series provide a means to avoid these

free energy to 10th order in inverse temperature. The Hamildifficulties. We generalize(s) to T>0 by
tonian for thet-J model is

1 F(8,T)—FAR(T)
H=—t<; (c;‘chg+chUciU)+J% (&Sj—zninj), (1) floN=——5—", )
1]),0 1]
where the sums are over pairs of nearest-neighbor sites andh .
the Hilbert space is restricted to states with no doubly occuY/Nere we have replac_ed the ground-state energy per site by
pied sites. The series is generated for a 2D square lattice. the free energy per site af?d Hmof (4, T) =e(4). This re-
To determine the stability of the uniform phase we WOuldplaces the difficulties mentioned above by the need to ana-

: : : ; lytically continue the series to low temperatures. Bét
like to investigate the ground-state ener: er hole given b
g g P 9 ngl and 6<1 we find ratiosf(,)/f(5,) for two closely

Eo(8)— EQF spaced doping$; and d, are the best quantities to extrapo-
&) =——% . (2)  late. Series for ratios can be calculated exactly from the se-
ries for F, avoiding the need to subtract two large approxi-
introduced by Emery, Kivelson, and LirHereEy(d) is the  mate numbers. The series coefficients are also exact for an
ground-state energy per site of the uniform phase for holénfinite lattice so we have no explicit finite-size effects. The
doping 6 and EfF=—1.169 44 is the ground-state energy ratios are extrapolated using standard Pagproximants,
per site for the Heisenberg mofiéwheres=0. If e(8) isa  but only after the exact series for a given ratio is calculated.
monotonically increasing function af the uniform phase is The doping spacing we use 4s6=0.025.
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FIG. 1. Doping dependence of the energy per.hole normglized to fig. 2. Comparison of ground-state energy estimates/at
the energy per hole ai=0.01, plotted as a function af for dif-  _( 01, The solid line is a variational phase-separated state from
ferent values ofl/t. The J/t values from top to bottom aré/t Ref. 1 which extends td,=0.043 14. The data points are ground-
=0.0,02,04,0.6 038, 1.0, 1.1, and 1.2. The monotonic decreasgate energy estimates for a uniform state calculated by extrapolat-
of the ratio with increasing indicates the uniform phase is stable ing the high-temperature series for the free energy. The variational
for J/t=1.2. estimate lies above the uniform state estimate and is thus not suffi-

. . _ cient to show phase separationJat=0.01.

By extrapolatingf(46,)/f(6;) to T=0 we obtain esti-
mates fore(d,)/e(4,) in the uniform phase. Since high- ¢ 02)#(0.01) for a range ofi/t values. Estimating the
temperature series start at infinite temperature and only hayg,. 1 hehavior of this function is our only approximation.
information for the phase above a nonzéfp, all of our The weak temperature dependence for the ratio leads us to

results are for the uniform phase. A description of what hapygjieve our resuits are reliable. The general trends of the data
pens if we try to extrapolate below,>0 is given below. shown in Figs. 1 and 3 are due to the minimume(5)

Results for a range of dopings adét values are shown in moving to smallers as J/t is increased, causing(s) to

Fig. 1. For the parameters considered h&r&) <0 so that if _decrease in magnitude faster thaf0.01), though for the
d,>0, and the system phase separates we should f'naarameters showe(s) and e(0.01) remain negative. For
e(§2)/e(51)>1 '.f Tc>0 ore(d,)/e(6,) =1 if Te=0. Ifthe |65 of 3/t larger than shown in Figs. 1 and 3 the ratio
uniform phase is stable we _ha\afa‘z)/e(al)<1_ The 2D f(68,)/f(61) develops a spurious pole due to the crossing of
t-J model phas.e separates into a phase.vﬂ#ho and a FAF andF(5,) at T>0. This pole greatly degrades the ac-
doped phase witls=&,. For phase separation we therefore o, of extrapolations of the ratios at lower temperatures.
expecte(9)/e(0.01)=1 immediately upon doping. To investigate larged/t we need another method.

In Fig. 1, e(6)/e(0.01)<1 and falls monotonically with The chemical potentialu=—JF/38 provides another

increasings for all J/'g shpwn, indicating no instability to- means to investigate phase separation. We typicallyifisi
wards p?ase sepa'rat'lon :n the 2D mpdel forJ/t=1.2. h more difficult to extrapolate thaf( 5,)/f(5,), with the error
In Ref. 1 a variationa grgument IS use_d _to support thgy, e extrapolations foj. considerably larger than for the
presence of phase separationJfr<1. A variational phase- ratio. ForJ/t=1.2 we do see:(5) becoming quite flat for
separated state was constructed from two pieces occupyin

. o . . Bl<1, as expected for a first-order phase transition into a
different parts of the lattice: a Heisenberg antlferromagnebhase_separated state. As the temperature is lowgredar
for the 6=0 phase and a gas of spinless fermions for éhe

. . - the critical point(critical doping s, and t turé.) be-
= 6y phase. The energy of this state is then minimized with e critical point(critical doping 5, and temperaturg) be

. CCAF comes flat, giving a diverging compressibiligyat the criti-
respect 04, giving Eo(8)=Ep —4to(1—yBm/t) for 5 noint. Results fop are shown in Fig. 4. The flat region

the phase-separated state a@g=yBJ/7t, where B found in 4(5) can be used to estimate the boundary for

=1.16944/2-0.58472. This energy was then compared t0pnhase separation. However, for largedistinguishing where
ground-state energy estimates for the uniform phase found

by considering a single hole in an antiferromagnet. The en-

ergy for the phase-separated state was found to lie below the 1.00 7
unform state energy for small enoug}tit, and since the
variational energy lies above the true ground-state energy the 0.95 i
conclusion of Ref. 1 was that the phase-separated state is F002)
stable. Extrapolating the result for a single hole to a finite 7 0.0 3
density of holes assumes the energy bands remain rigid, a Jioon)
feature not obvious for a strongly correlated system. 0.85

In Fig. 2 we compare our estimates for the uniform
ground-state energy to the phase-separated variational 0.80 L
ground-state energy dft=0.01. We find that our energies 0.0 05 1.0 1.5 2.0 25 3.0 35 4.0
lie below the variational energy fof<&,. Note that from T

this result we cannot conclude that the uniform state is FIG. 3. Temperature dependencef (0.02)/f(0.01) for a range

stable, but only that the variational state discussed in Ref. f J/t values. From top to bottord/t=0.2, 0.4, 0.6, 0.8, and 1.0.

is not sufficient to show phase separatiordft<1. The overall temperature dependence is fairly small, making the
In Fig. 3 we show the temperature dependence ofemperature extrapolations more reliable.
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FIG. 4. Chemical potential af=0.2 as a function of doping ) T )
for a range of)/t values. From top to bottod/t=0.4, 1.0, 1.2, 1.3, FIG. 6. Comparison of the free ener§(T) as a function of

1.4, 1.6, 1.8 and 2.0. For eadiit=1.3 a range of dopings exists temperature to the known ground-state enefgyfor 6=0.5, J/t
where the chemical potential is approximately constant, as would be>*. The crossing of these two curves we interpret as a phase
expected near a critical point. transition atT.~0.25] into a phase-separated state.

i o ) , _ separated state tHt=1.2. In Fig. 6 we comparg, to F(T)

the flat region ends is difficult, leading to errors in the posi-in the limit J/t— o with §=0.5.
tion of the phase-separation boundéfy. Comparing the extrapolate®(T) to E, we see they tend

Further evidence of phase separation at lafgecan be  to cross aff~0.25). SinceF(T) must be less thaB, and a
found by directly extrapolating=(6,T) to estimateEq(J).  monotonic function ofT this crossing cannot occur. We in-
Figure 5 shows results fa/'t=2.0. The characteristic signa- terpret the tendency to cross as a phase transition to phase
ture of phase separation is the reversed curvature observedparation withl;~0.25J.
from 6=0 to 6~0.45. The reversed curvature B§( 5) (giv- Calculations for the 20-J model currently give a wide
ing an unphysical negative compressibilitgsults from ex- range of minimuml/t values for the presence of phase sepa-
trapolating the high-temperature uniform phab€¢3s,T) ration. MinimumJ/t values reported in the literature are 0
through theT,>0 phase transition for phase separation. If(Refs. 1 and % 0.5-0.6(Refs. 3, 5, and 6 and our result of

T.=0 we would find instead tha,(5) became linear ins 1.22 The latter results are in qualitative agreement in that
in the phase-separated region. there is a minimund/t>0 for phase separation. The reasons

The reversed curvature shown in Fig. 5 indicafes 0, for these differences are not clear at present. However, while
but T, is probably quite low. An indirect estimate @f, can statistical errors are well under control, systematic errors in
be made at largé/t, abovel/t=3.4367 where the 2-J  dround-state energy calculations due to small cluster sizes
model phase separates at all densifiésto regions withd are much more d|ﬁ_‘|cult to control. Calculat'lons investigating
—0 andé=1. Here we knovEq(d) for all 5, sinceEq( ) is phase separation in the 2D Hubbard médield e(s) equal
the linear interpolation betweek,(0)=—1.16944 and toa cqnstant f(?r a range of glopmg; near half flllmg for the
Eo(1)=0 U =0 tight-binding model. This spurious indication of phase

OThe g.round-state chemical potential in this parameteseparation is due to finite-size effects and is reduced for
range is the constant slope B6(5) with the valuey/t= iarger cIusters._Reso_Ivmg the dlfferent re_por_tgd results for
—1.169 44/t. The chemical potential hits the bottom of the phase sepraration will probably require significantly larger

tight-binding band atl/t=3.4367 and agd/t is further re- cluster sizes.

SO T - In conclusion, by using an analysis of the high-
duced the gain in kinetic energy eventually limits the phaseiemperature series for the free energy per Hgle) at dif-

ferent values ofl/t we find that phase sepration in thed

O model is limited toJ/t=1.2. In addition, we find by indirect
o5 L Ji=2.0 s | arguments thal .~0.25] for the first-order phase transition
' ) - into the phase-separated state. Combining this with the dem-
40t - ) onstration that phase separation can only occur-ad for
Ejt ' = the 2D Hubbard model on a square latticsupports the
ra " * i conjecture that the 2D Hubbard model does not phase sepa-
i rate for any positiveJ. Our results suggest phase separation
ook =t j in the 2Dt-J model is a classical phase transition similar to
- a lattice gas with an attractive interactférand that phase
.25 - - - - separation is not important for physical choices of thk
00 02 04 5 06 08 10 model parameters.

FIG. 5. Ground-state energy estimated by high-temperature se- 1his work was supported in part by a faculty travel grant
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8=0.45 is due to extrapolating the high-temperature free energyJniversity (W.O.P), the Swiss National Science Foundation
throughT.>0 into the low-temperature phase-separated state. TheWV.O.P), and by EPSRC Grant No. GR/L868%®.U.L.).
reverse curvature gives a negative compressibility, indicating th&V.O.P. thanks the ETH-Zich for hospitality while part of
uniform phase is unstable towards phase separation. this work was being completed.
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