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Limits on phase separation for two-dimensional strongly correlated electrons
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From calculations of the high-temperature series for the free energy of the two-dimensionalt-J model we
construct a series for ratios of the free energy per hole. The ratios can be extrapolated very accurately to low
temperatures and used to investigate phase separation. Our results confirm that phase separation occurs only for
J/t*1.2. Also, the phase transition into the phase-separated state hasTc'0.25J for largeJ/t.
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The Hubbard andt-J models, though widely used to in
vestigate high-temperature superconductors, remain con
versial when doped away from one electron per site. T
possibility that doped holes do not form a uniform phase
instead phase separate into distinct high- and low-den
regions on the lattice is an important issue that has pro
difficult to settle.1–7 Phase separation for physical choices
model parameters would imply that more complicated m
els of two-dimensional~2D! strongly correlated electrons ar
required to describe high-temperature superconductors.
bility of a uniform density phase would leave open the p
sibility that simple models contain the relevant physics wi
out additional terms.

While experiments have clearly observed phase sep
tion in a few high-Tc systems, notably oxygen overdope
La2CuO41d with mobile interstitial oxygen atoms,8 phase
separation does not seem to be a universal feature of
cuprates. However, the mechanism of phase separa
causes holes to feel a net attraction, a possible precurso
the formation of stripe phases or superconductivity. Find
an attractive interaction for holes in models that have p
dominantly strong repulsive interactions is not easy, and
known possibilities deserve thorough investigation.

To investigate the properties of phase separation we h
calculated the high-temperature series for the 2Dt-J model
free energy to 10th order in inverse temperature. The Ha
tonian for thet-J model is

H52t (
^ i j &,s

~cis
† cj s1cj s

† cis!1J(̂
i j &

S Si•Sj2
1

4
ninj D , ~1!

where the sums are over pairs of nearest-neighbor sites
the Hilbert space is restricted to states with no doubly oc
pied sites. The series is generated for a 2D square lattic

To determine the stability of the uniform phase we wou
like to investigate the ground-state energy per hole given

e~d!5
E0~d!2E0

AF

d
, ~2!

introduced by Emery, Kivelson, and Lin.1 HereE0(d) is the
ground-state energy per site of the uniform phase for h
doping d and E0

AF521.169 44J is the ground-state energ
per site for the Heisenberg model6,9 whered50. If e(d) is a
monotonically increasing function ofd the uniform phase is
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stable. Ife(d) is constant or decreasing for a range of do
ings the uniform phase is unstable for those values ofd.

There are two main difficulties encountered in calculati
e(d) from numerical measurements~exact diagonalization,
quantum Monte Carlo, or Green’s-function Monte Carlo! of
E0(d). The first is thate(d) requires the subtraction of two
large numbersE0(d) andE0

AF to determine a small numbe
which is then divided byd, another small number. Give
statistical uncertainty in numerically determiningE0(d)
(E0

AF is essentially exact in comparison! this is a difficult
task, especially ford!1. The second difficulty is that nu
merical calculations are done on small clusters. System
errors inE0(d) are tough to estimate without knowing th
finite-size scaling of the data and whether the cluster s
considered are large enough to be in the scaling limit.6,7 In
addition to these difficulties, phase separation is favored
small clusters ford!1. The reduction in ground-state energ
due to the kinetic energy of the holes, which disfavors ph
separation, is not as large on a small cluster as it is for
infinite lattice. On a small cluster the electron system redu
its energy more through local interactions, which for thet-J
model are attractive interactions for antiparallel spins due
the J term in the Hamiltonian.

High-temperature series provide a means to avoid th
difficulties. We generalizee(d) to T.0 by

f ~d,T!5
F~d,T!2FAF~T!

d
, ~3!

where we have replaced the ground-state energy per sit
the free energy per site and limT→0f (d,T)5e(d). This re-
places the difficulties mentioned above by the need to a
lytically continue the series to low temperatures. ForJ/t
&1 and d!1 we find ratiosf (d2)/ f (d1) for two closely
spaced dopingsd1 andd2 are the best quantities to extrap
late. Series for ratios can be calculated exactly from the
ries for F, avoiding the need to subtract two large appro
mate numbers. The series coefficients are also exact fo
infinite lattice so we have no explicit finite-size effects. T
ratios are extrapolated using standard Pade´ approximants,
but only after the exact series for a given ratio is calculate
The doping spacing we use isDd50.025.
1684 ©2000 The American Physical Society
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By extrapolating f (d2)/ f (d1) to T50 we obtain esti-
mates fore(d2)/e(d1) in the uniform phase. Since high
temperature series start at infinite temperature and only h
information for the phase above a nonzeroTc , all of our
results are for the uniform phase. A description of what h
pens if we try to extrapolate belowTc.0 is given below.
Results for a range of dopings andJ/t values are shown in
Fig. 1. For the parameters considered heree(d),0 so that if
d2.d1 and the system phase separates we should
e(d2)/e(d1).1 if Tc.0 or e(d2)/e(d1)51 if Tc50. If the
uniform phase is stable we havee(d2)/e(d1),1. The 2D
t-J model phase separates into a phase withd50 and a
doped phase withd5d0. For phase separation we therefo
expecte(d)/e(0.01)>1 immediately upon doping.

In Fig. 1, e(d)/e(0.01),1 and falls monotonically with
increasingd for all J/t shown, indicating no instability to-
wards phase separation in the 2Dt-J model forJ/t&1.2.

In Ref. 1 a variational argument is used to support
presence of phase separation forJ/t!1. A variational phase-
separated state was constructed from two pieces occup
different parts of the lattice: a Heisenberg antiferromag
for the d50 phase and a gas of spinless fermions for thd
5d0 phase. The energy of this state is then minimized w
respect to d, giving E0(d)5E0

AF24td(12ABpJ/t) for
the phase-separated state andd05ABJ/pt, where B
51.169 44/250.584 72. This energy was then compared
ground-state energy estimates for the uniform phase fo
by considering a single hole in an antiferromagnet. The
ergy for the phase-separated state was found to lie below
unform state energy for small enoughJ/t, and since the
variational energy lies above the true ground-state energy
conclusion of Ref. 1 was that the phase-separated sta
stable. Extrapolating the result for a single hole to a fin
density of holes assumes the energy bands remain rig
feature not obvious for a strongly correlated system.

In Fig. 2 we compare our estimates for the unifor
ground-state energy to the phase-separated variati
ground-state energy atJ/t50.01. We find that our energie
lie below the variational energy ford,d0. Note that from
this result we cannot conclude that the uniform state
stable, but only that the variational state discussed in Re
is not sufficient to show phase separation atJ/t!1.

In Fig. 3 we show the temperature dependence

FIG. 1. Doping dependence of the energy per hole normalize
the energy per hole atd50.01, plotted as a function ofd for dif-
ferent values ofJ/t. The J/t values from top to bottom areJ/t
50.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.1, and 1.2. The monotonic decr
of the ratio with increasingd indicates the uniform phase is stab
for J/t&1.2.
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f (0.02)/f (0.01) for a range ofJ/t values. Estimating the
low-T behavior of this function is our only approximation
The weak temperature dependence for the ratio leads u
believe our results are reliable. The general trends of the
shown in Figs. 1 and 3 are due to the minimum inE0(d)
moving to smallerd as J/t is increased, causinge(d) to
decrease in magnitude faster thane(0.01), though for the
parameters showne(d) and e(0.01) remain negative. Fo
values ofJ/t larger than shown in Figs. 1 and 3 the rat
f (d2)/ f (d1) develops a spurious pole due to the crossing
FAF andF(d1) at T.0. This pole greatly degrades the a
curacy of extrapolations of the ratios at lower temperatur
To investigate largerJ/t we need another method.

The chemical potentialm52]F/]d provides another
means to investigate phase separation. We typically findm is
more difficult to extrapolate thanf (d2)/ f (d1), with the error
in the extrapolations form considerably larger than for th
ratio. ForJ/t*1.2 we do seem(d) becoming quite flat for
d!1, as expected for a first-order phase transition into
phase-separated state. As the temperature is lowered,m near
the critical point~critical dopingdc and temperatureTc) be-
comes flat, giving a diverging compressibilityk at the criti-
cal point. Results form are shown in Fig. 4. The flat regio
found in m(d) can be used to estimate the boundary
phase separation. However, for largerd distinguishing where

to

se

FIG. 2. Comparison of ground-state energy estimates atJ/t
50.01. The solid line is a variational phase-separated state f
Ref. 1 which extends tod050.043 14. The data points are groun
state energy estimates for a uniform state calculated by extrap
ing the high-temperature series for the free energy. The variatio
estimate lies above the uniform state estimate and is thus not s
cient to show phase separation atJ/t50.01.

FIG. 3. Temperature dependence off (0.02)/f (0.01) for a range
of J/t values. From top to bottomJ/t50.2, 0.4, 0.6, 0.8, and 1.0
The overall temperature dependence is fairly small, making
temperature extrapolations more reliable.
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the flat region ends is difficult, leading to errors in the po
tion of the phase-separation boundary.2,4

Further evidence of phase separation at largeJ/t can be
found by directly extrapolatingF(d,T) to estimateE0(d).
Figure 5 shows results forJ/t52.0. The characteristic signa
ture of phase separation is the reversed curvature obse
from d50 to d'0.45. The reversed curvature ofE0(d) ~giv-
ing an unphysical negative compressibility! results from ex-
trapolating the high-temperature uniform phaseF(d,T)
through theTc.0 phase transition for phase separation.
Tc50 we would find instead thatE0(d) became linear ind
in the phase-separated region.

The reversed curvature shown in Fig. 5 indicatesTc.0,
but Tc is probably quite low. An indirect estimate ofTc can
be made at largeJ/t, aboveJ/t53.4367 where the 2Dt-J
model phase separates at all densities10 into regions withd
50 andd51. Here we knowE0(d) for all d, sinceE0(d) is
the linear interpolation betweenE0(0)521.16944J and
E0(1)50.

The ground-state chemical potential in this parame
range is the constant slope ofE0(d) with the valuem/t5
21.169 44J/t. The chemical potential hits the bottom of th
tight-binding band atJ/t53.4367 and asJ/t is further re-
duced the gain in kinetic energy eventually limits the pha

FIG. 4. Chemical potential atT50.2t as a function of doping
for a range ofJ/t values. From top to bottomJ/t50.4, 1.0, 1.2, 1.3,
1.4, 1.6, 1.8 and 2.0. For eachJ/t*1.3 a range of dopings exist
where the chemical potential is approximately constant, as woul
expected near a critical point.

FIG. 5. Ground-state energy estimated by high-temperature
ries as a function of doping atJ/t52.0. The reverse curvature fo
d&0.45 is due to extrapolating the high-temperature free ene
throughTc.0 into the low-temperature phase-separated state.
reverse curvature gives a negative compressibility, indicating
uniform phase is unstable towards phase separation.
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separated state toJ/t*1.2. In Fig. 6 we compareE0 to F(T)
in the limit J/t→` with d50.5.

Comparing the extrapolatedF(T) to E0 we see they tend
to cross atT'0.25J. SinceF(T) must be less thanE0 and a
monotonic function ofT this crossing cannot occur. We in
terpret the tendency to cross as a phase transition to p
separation withTc'0.25J.

Calculations for the 2Dt-J model currently give a wide
range of minimumJ/t values for the presence of phase sep
ration. Minimum J/t values reported in the literature are
~Refs. 1 and 4!, 0.5–0.6~Refs. 3, 5, and 6!, and our result of
1.2.2 The latter results are in qualitative agreement in t
there is a minimumJ/t.0 for phase separation. The reaso
for these differences are not clear at present. However, w
statistical errors are well under control, systematic errors
ground-state energy calculations due to small cluster s
are much more difficult to control. Calculations investigati
phase separation in the 2D Hubbard model7 find e(d) equal
to a constant for a range of dopings near half filling for t
U50 tight-binding model. This spurious indication of pha
separation is due to finite-size effects and is reduced
larger clusters. Resolving the different reported results
phase sepraration will probably require significantly larg
cluster sizes.

In conclusion, by using an analysis of the hig
temperature series for the free energy per holef (d) at dif-
ferent values ofJ/t we find that phase sepration in thet-J
model is limited toJ/t*1.2. In addition, we find by indirect
arguments thatTc;0.25J for the first-order phase transitio
into the phase-separated state. Combining this with the d
onstration that phase separation can only occur atT50 for
the 2D Hubbard model on a square lattice11 supports the
conjecture that the 2D Hubbard model does not phase s
rate for any positiveU. Our results suggest phase separat
in the 2D t-J model is a classical phase transition similar
a lattice gas with an attractive interaction12 and that phase
separation is not important for physical choices of thet-J
model parameters.
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FIG. 6. Comparison of the free energyF(T) as a function of
temperature to the known ground-state energyE0 for d50.5, J/t
→`. The crossing of these two curves we interpret as a ph
transition atTc'0.25J into a phase-separated state.
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