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Mean parameter model for the Pekar-Fröhlich polaron in a multilayered heterostructure
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The polaron energy and the effective mass are calculated for an electron confined in a finite quantum well
constructed of GaAs/AlxGa12xAs layers. To simplify the study we suggest a model in which parameters of a
medium are averaged over the ground-state wave function. The rectangular and the Rosen-Morse potential are
used as examples. To describe the confined electron properties explicitly to the second order of perturbations
in powers of the electron-phonon coupling constant we use the exact energy-dependent Green’s function for
the Rosen-Morse confining potential. In the case of the rectangular potential, the sum over all intermediate
virtual states is calculated. The comparison is made with the often used leading term approximation when only
the ground state is taken into account as a virtual state. It is shown that the results are quite different, so the
incorporation of all virtual states and especially those of the continuous spectrum is essential. Our model
reproduces the correct three-dimensional asymptotics at both small and large widths. We obtained a rather
monotonous behavior of the polaron energy as a function of the confining potential width and found a peak of
the effective mass. The comparison is made with theoretical results by other authors. We found that our model
gives practically the same~or very close! results as the explicit calculations for potential widthsL>10 Å.
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I. INTRODUCTION

Quasi-two-dimensional~2D! systems have attracted a l
of attention during the last decade because of their prac
realization. If a heterostructure is made of polar mater
such as GaAs, InAs, etc., the electron-phonon interac
modifies the properties of the electron confined to a
structure resulting in a shift of the binding energy and
effective band mass.

The polaron effects in a 2D electron gas have been ex
sively studied. At earlier stages the attention was paid to
properties of a polaron confined to an infinite thin 2
layer.1–3 The binding energy and the effective mass we
calculated for a GaAs/AlxGa12xAs infinitely deep quantum
well of a finite length.4,5 In these papers only the interactio
with the bulk LO-phonon mode has been taken into acco
Actually, LO-phonon modes are modified in a 2D layer~the
so-called confined slab LO-phonon modes!. Besides, there
exist interface optical-phonon modes as well as half-sp
LO-phonon modes in a barrier material.6–10For the review of
these modes~also in complicated multilayer structures! see
the book by Pokatilov, Fomin, and Beril11 and also more
recent publications12,13 of this group. The influence of the
mentioned modes on polarons were studied in Refs. 14–

While different phonon modes were studied in details,
quantum well potential was supposed to be infinitely deep
the cited papers. On the other hand, the properties of
system would be quite different if a confining potential had
finite depth. Indeed, for an infinitely deep confining potent
the binding energy is the monotonous function of the pot
tial width which varies between limiting valuesE3D

( in)

5a in\v in for the three-dimensional~3D! space andE2D
( in)

5(p/2) a in\v in , where a in is the standard Fro¨hlich
electron-phonon coupling constant andv in is the LO-
phonons frequency for the quantum well material. If a p
ticle is confined to a finite potential well, the limiting valu
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of the binding energy should be the same at large width
the well. But when the width becomes too small, the ene
level approaches the edge of the well, so that effectively
particle is spread over the 3D space. Thus the limiting va
of the binding energy should coincide with the 3D limitin
value rather than with the 2D one. This means that the bi
ing energy takes the valueE3D

(out)5aout\vout at small widths
where the parametersvout and aout are now related to the
barrier material. The binding energy evidently has a peak
some intermediate value of the width ifE3D

(out)<E3D
( in) . If this

is not the case, the existence of the peak should be che
in more detail.

Different rectangular quantum wells of a finite heig
have been investigated by Hai, Peeters, and Devreese18,19

and Shi, Zhu,et al.20 in the scope of the second-order pe
turbation theory in powers of the electron-phonon coupl
constanta with all phonon modes being incorporated. Pea
of the phonon induced energy shift and the polaron effec
mass were found for some values of the confining poten
widths.

In principle, the same approach can be used while dea
with a quantum well constructed of layers of different ma
rials. But the problem becomes then too complicated beca
one has to take into account interface phonon modes at
frontier of different materials as well as quantized phon
modes inside each of the layers. The main goal of the pre
paper is to formulate a simplified model to take these effe
into account and to deal with the effective confining poten
and only one bulk phonon mode. We calculate polaron ch
acteristics for the same rectangular quantum well as in R
18–20 to compare the results. Another example is given
quantum well of the finite depth for which the second-ord
correction due to the electron-phonon interaction can be
culated explicitly. Namely, we take the Rosen-Morse pot
tial to confine electrons to a 2D-multilayered heterostruct
and calculate the shift of the ground-state energy and
16 692 ©2000 The American Physical Society
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PRB 62 16 693MEAN PARAMETER MODEL FOR THE PEKAR-FRO¨ HLICH . . .
effective mass perturbatively, that is, in the weak-coupl
limit. In contrast with the rectangular potential we should n
worry about the correct including of all virtual states becau
the Green’s function is known analytically for this system

II. FORMULATION OF THE MODEL

Let us consider a quantum well in thez direction con-
structed of thexy plane layers of GaAs/AlxGa12xAs. That is,
the AlAs mole fractionx depends on the coordinatez:x
5x(z). The energy gap between different materials for
the confining potentialV(z) which serves us as the ma
entity. Given the potentialV(z), one can find the correspond
ing mole fractionsx(z) and a dependence onz of any of the
medium parameters@such as the electron band massm(z),
phonon frequenciesv(z), dielectric constants«0(z),«`(z),
Fröhlich coupling constantsa(z), etc.#.

To avoid difficulties with mass mismatch in different la
ers we suggest to use ameanband massm which is common
for all layers. Then we start with the following expression f
the electronic part of the Hamiltonian:

Hel5Hel,i1Hel,' ,

Hel,i5
pW i

2

2m
, Hel,'5

pz
2

2m
1V~z!, ~2.1!

where the electron mean band mass is defined by the rela

1

m
5E dz

uc1~z!u2

m~z!
~2.2!

and the ground-state wave functionc1(z) for the electron
motion in z direction is a solution to the Schro¨dinger equa-
tion

Hel,'c15E1c1 ~2.3!

with E1 being a ground-state energy. As the wave funct
c1 also depends on the mean band massm, the latter can be
found as a self-consistent solution of Eqs.~2.2! and ~2.3!.

In a similar way we define the free LO-phonon Ham
tonian

Hph5\vLO (
kW

akW
†
akW , ~2.4!

whereakW
†(akW) are creation~annihilation! operators of a pho-

non with a wave vectorkW , and mean frequencyvLO can be
found from the expression

vLO5E dzv~z!uc1~z!u2. ~2.5!

Evidently, we have to address why the free phonon Ham
tonian is averaged with respect to the electron wave funct
Our motivation is based on the fact that we are going
apply our model to calculate polaron effects. That is, o
effectivephonons will be considered only in a cloud arou
the electron, and the properties of this cloud depend on
electron position. So, in our model the effective phono
replace numerous phonon modes whose frequencies de
on the coordinatez of the electron.
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Finally, we accept the conventional form of the Ham
tonian describing the interaction of the electron with effe
tive phonons:

Hint5(
kW

~akWVkWe
ikW•rW1akW

†
VkW

* e2 ikW•rW!, ~2.6!

where the Fourier transforms of the electron-phonon inter
tion potential are specified as follows:

VkW52 i\vLOS 4pa

Vk2A \

2mvLO
D 1/2

. ~2.7!

Here the use is made of a mean Fro¨hlich coupling constanta
which can be found from the relation

Aa5E dzuc1~z!u2
v~z!

vLO
S a~z!A mvLO

m~z!v~z!
D 1/2

.

~2.8!

Note that we define the mean parameters in Eqs.~2.2!, ~2.5!,
and ~2.8! according to the way they enter the Hamiltonian

Thus we describe a complicated multilayered heterostr
ture by the Hamiltonian

H5Hel1Hph1Hint ~2.9!

with the bulk phonon mode only which inhabits an effecti
medium with mean characteristics defined above. The de
of the heterostructure are taken into account by the confin
potentialV(z).

Performing a unitary transformationH→H85U21HU
with the operator

U5expF2 irW i(
kW

kW iakW
†
akWG , ~2.10!

we arrive at the Hamiltonian

H85Hel,i8 1Hel,'1Hph1Hint8 , ~2.11a!

Hel,i8 5
1

2m S pW i2\(
kW

kW iakW
†
akW D 2

, ~2.11b!

Hint8 5(
kW

~akWVkWe
ikz•z1akW

†
VkW

* e2 ikz•z!. ~2.11c!

The quantitypW i is a c-number corresponding to the co
served momentum in thexy plane and the Hamiltonian
Hel,' ,Hph are defined by Eqs.~2.1! and ~2.4!, respectively.

Keeping in mind the smallness of the electron-phon
coupling constanta for most of the materials, we calculat
the second-order correction to the unperturbed Hamilton
H085Hel,i8 1Hel,'1Hph ~note that the quantum-mechanic
first-order correction is equal to zero!. The unperturbed en
ergy levels are given by the expression

E~pW i ,nkW ,N!5
1

2m S pW i2\(
kW

kW inkW D 2

1\vLO(
kW

nkW1EN ,

~2.12!

wherenkW is the number of phonons with the wave vectorkW .
The energy EN is the Nth energy level of the one
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16 694 PRB 62M. A. SMONDYREV, B. GERLACH, AND M. O. DZERO
dimensional systemHel,' of Eq. ~2.1!. HereN is the corre-
sponding quantum number not necessarily a discrete on
stands for both the quantum numbern which varies from 1 to
nmax and the wave vectorq of the continuous spectrum
states.

The wave functions of the unperturbed HamiltonianH08
are given by the direct product

upW i ;nkW ,N&5unkW& ^ uN& ~2.13!

of the corresponding wave functions of different terms
H08 .

Because of the structure of the interaction termHint8 only
intermediate states with one phonon contribute to
second-order correction to the ground-state energy. The l
is then given by the expression

D2E~pW i!52(
N,kW

uVkWu2uG~N,kz!u2

EN1\vLO1
~pW i2\kW i!

22pW i
2

2m
2E1

,

~2.14!

where

G~N,kz!5E
2`

`

dzcN~z!c1~z!eikzz ~2.15!

andcN(z) are the wave functions of the HamiltonianHel,'
in Eq. ~2.1!. The concrete application of these formulas
given in the following section.

III. RECTANGULAR POTENTIAL

A. Medium mean characteristics

As an example we now consider the rectangular confin
potential

V~z!5H 0, uzu<L/2

V0 , uzu.L/2
~3.1!

and

m~z!5H min , uzu<L/2

mout , uzu.L/2
~3.2!

with min (mout) being the electron band masses in the w
~barrier! material, respectively. For concreteness we assu
GaAs to be the quantum well material and AlxGa12xAs to be
the barrier material.

Symmetrical wave functions of the discrete spectrum
the rectangular quantum well with the mean band masm
take the form

cs,n5Ns,nH cosqnz, uzu<L/2

cos
qnL

2
e2pn(uzu2L/2), uzu.L/2,

~3.3!

where

pn5Aqmax
2 2qn

2, qmax
2 5

2mV0

\2 ~3.4!
: it

e
ter

g

ll
e

n

and the normalization constant is given by

Ns,n5A 2pn

pnL12
. ~3.5!

Antisymmetrical wave functions of the discrete spectru
take the form

ca,n5Ns,nH sinqnz, uzu<L/2

sgn~z!sin
qnL

2
e2pn(uzu2L/2), uzu.L/2

~3.6!

with the same normalization constant given by Eq.~3.5!.
The total numbernmax of the discrete energy levels i

given by the expression

nmax511FqmaxL

p G , ~3.7!

where@A# is an integer part of a numberA. The expression
for the discrete energy levels reads as follows:

qnL

2
5arctanAqmax

2

qn
2

211
p~n21!

2
, n51,2, . . . .

~3.8!

Energies with odd~even! n correspond to the symmetrica
~antisymmetrical! wave functions.

The energyEq5\2q2/2m of the continuous spectrum
state depends on the wave vectorq. The corresponding sym
metrical wave functions are as follows:

cs,q5
Ns,q

ALz 5
p cosqz, uzu<L/2,

p cos
qL

2
cosp~ uzu2L/2!2

q sin
qL

2
sinp~ uzu2L/2!, uzu.L/2,

~3.9!

where

p5Aq22qmax
2 ~3.10!

andLz is the ~infinite! size of the system in thez direction.
The normalization constant is given by the expression

Ns,q5A 2

p2 cos2
qL

2
1q2 sin2

qL

2

. ~3.11!

The antisymmetrical wave functions are as follows:

ca,q5
Na,q sgn~z!

ALz 5
p sinquzu, uzu<L/2,

p sin
qL

2
cosp~ uzu2L/2!1

q cos
qL

2
sinp~ uzu2L/2!,

uzu.L/2,
~3.12!
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where the normalization constant is given by the express

Na,q5A 2

p2 sin2
qL

2
1q2 cos2

qL

2

. ~3.13!

The electron mean band mass is defined as

1

m
5

Win

min
1

Wout

mout
→

m5
minmout

Winmout1~12Win!min
, ~3.14!

where Win and Wout512Win are probabilities to find the
electron inside~outside! the quantum well. The expressio
for Win follows from Eq.~3.3!

Win52Ns,1
2 E

0

L/2

dzcos2q1z512
~q1 /qmax!

2

11p1L/2
, ~3.15!

whereq1 is a solution to Eq.~3.8! for the ground state (n
51).

To finish this subsection, we note that the exact ene
levels in the rectangular potential with different massesmin
and mout calculated for the GaAs/AlxGa12xAs heterostruc-
ture practically coincide with the levels obtained with t
electron mean band massm. To obtain an inner criterion o
the validity of the anzatz concerning the mean band mass
notice that the particle being on lowest energy levels is
cated mostly inside the well which means that its band m
is almost coincide withmin .

One can await the largest discrepancy for a level near
potential edge. Thenth discrete level appears at the wid
L5Ln

(av) , where

Ln
(av)5p~n21!

\

A2mV0

5
p~n21!

qmax
, ~3.16!

and the analogous width for the exact solution reads as
lows:

Ln
(ex)5p~n21!

\

A2minV0

. ~3.17!

Thus the ratio

Ln
(av)

Ln
(ex)

5Amin

m
5AWin1~12Win!

min

mout
. ~3.18!

can serve us as the numerical criterion of the validity of
anzatz. The largest discrepancy happens atn52 and in this
case Eqs.~3.4!, ~3.8!, and ~3.15! lead to the following ex-
pression:

L (av)

L (ex)
5A0.84410.156

min

mout
. ~3.19!

Note that numerical coefficients here do not depend on
material parameters. For the GaAs/Al0.3Ga0.7As quantum
well we havemin /mout'0.7 and the discrepancy is abo
n

y

e
-

ss

e

l-

e

e

2%; in the worst possible case whenmin /mout!1 the dis-
crepancy is still not large: 100%A0.844'8%.

B. Electron-phonon correction to the polaron energy and the
effective mass

Summation over the wave vectorkW in Eq. ~2.14! can be
reduced to integration in a conventional way:

(
kW

uVkWu2~••• !5
V

~2p!3E dkW uVkWu2 ~••• !

5~\vLO!2A \

2mvLO

a

2p2E dkW idkz

ki
21kz

2 ~••• !.

~3.20!

Then, the integration overkW i in Eq. ~2.14! can be performed
explicitly. As we are interested in corrections to the groun
state energy and the effective massme f f'm1D2m of the
polaron motion in thexy plane, we expandD2E(pW i)'D2E

2(D2m/2m2)pW i
2 in powers of the conserved momentumpW i .

Doing this the use is made of the integral

E d2kW i

~kW i
21kz

2!@kW i
222kW i•pW i /\1b2#

'p
ln~kz

2/b2!

kz
22b2

1S pW i

\
D 2

p
kz

42b422kz
2b2 ln~kz

2/b2!

b2~kz
22b2!3

. ~3.21!

As the next step we use dimensionless ‘‘polaronic’’ un
performing the scaling kz→kzA2mvLO /\, z
→zA\/2mvLO and using the notation

l 5LA2mvLO

\
, «N5

EN

\vLO
. ~3.22!

In these units the correction to the ground-state energy ta
the form

D2E

\vLO
52

a

p(
N

E
0

`

dkz

ln~kz
2/bN

2 !

kz
22bN

2 @ uGs~N,kz!u2

1uGa~N,kz!u2#, ~3.23!

where

bN5A«N112«1. ~3.24!

The correction to the effective mass reads as follows:

D2m

m
5

a

p (
N

E
0

`

dkz

kz
42bN

4 22kz
2bN

2 ln~kz
2/bN

2 !

bN
2 ~kz

22bN
2 !3

3@ uGs~N,kz!u21uGa~N,kz!u2#. ~3.25!

QuantitiesGj (N,kz) in Eqs. ~3.23! and ~3.25! are given in
dimensionless units by the same Eq.~2.15!; the indices (a)s
are related to~anti!symmetrical wave functions being used
Eq. ~2.15!:
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Gs~N,kz!52E
0

`

dzcs,N~z!cs,1~z! coskzz,

Ga~N,kz!52E
0

`

dzca,N~z!cs,1~z! sinkzz, ~3.26!

Evidently, the replacementL→ l should be done in the
definition of the wave functions and their normalization co
stants; in additionLz→ l z in Eqs.~3.9! and ~3.12! as well as
in Eq. ~3.8! for the energy levels of the discrete spectru
Eq. ~3.4! now reads as follows:

pn5Av02qn
2, v05

V0

\vLO
, qmax

2 5v0 . ~3.27!

Equation~3.7! takes the form

nmax511FAv0l

p G . ~3.28!

The relation of dimensionless energies of the discrete
continuous spectra with subsequent wave vectors takes
form «n5qn

2 , «q5q2. All the changes mentioned shou
also be done in Eq.~3.15!.

The final note of this section concerns summation oveN
in Eqs.~3.23! and ~3.25!:

(
N

~••• !5 (
n51

nmax

~••• !1 lim
l z→`

l z

2p E
0

`

dp~••• !.

~3.29!

The replacing of the sum over the continuous spectrum
the integration over the wave vectorp follows from Eqs.
~3.9! and~3.12! in the limit Lz→`. The wave vectorsq and
p are related to each other because of Eq.~3.10! which now
takes the form q5Ap21v0. Note also that only
Gs(N,kz)@Ga(N,kz)# has to be taken into account for od
~even! n in the sum over the discrete quantum numbern.

The numerical results obtained are plotted in Fig. 1
D2E and in Fig. 2~a! for D2m/m. Because the mean effectiv

FIG. 1. Total energy shiftD2E is shown vs the rectangula
potential width L for x50.3. The contribution of the discret
(DdisE) and continuous (DconE) spectra are presented separately
well as the result of the leading term approximation (D l tE).
-

.

d
he

y

r

massm depends on the potential width we also plotted
Fig. 2~b! the ratio of the mass shift to those in the we
material, that is, the ratio

d2m5
D2m

D2min
, D2min5min

a in

6
. ~3.30!

The discussion of the numerical results is given in the l
section.

IV. ROSEN-MORSE POTENTIAL

A. Energy-dependent Green’s function

In this section we present another example—a multil
ered heterostructure described by a confining potentialV(z)
which is chosen in the form of the Rosen-Morse potentia

V~z!5V0 tanh2S z

LRM
D ,

V05
\2

2mLRM
2

k~k11!, ~4.1!

where LRM is the parameter close to the half-width of th
Rosen-Morse quantum well andk is the dimensionless pa
rameter to govern the strength of the potential.

The summation~2.14! over the quantum numberN can be
represented through the Green’s function which is kno

s

FIG. 2. The relative shiftsD2m/m andd2m5D2m/D2min of the
effective polaron mass for the rectangular potential atx50.3. Con-
tributions of the discrete and continuous spectra are shown as
as the result of the leading term approximation.
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analytically for the Rosen-Morse potential. Namely, t
second-order correction to the ground-state energy can
written in the form

D2E52\vLO a
l RM

A2
E

0

`

dki E
2`

`

dzaE
2`

`

dzb

3e2kiuza2zbuc1* ~za!c1~zb!G~za ,zb ;E!, ~4.2!

where we made a scalingz→zLRM ,kW→kW /LRM to use dimen-
sionless variablesz,kW and integrated overkz and angles of
kW i . The dimensionless parameter

l RM5LRMAmvLO

\
~4.3!

is the width of the confining potential in polaronic uni
while the potential strength can now be written as follow

V05\vLO

k~k11!

2l RM
2

. ~4.4!

The quantityG(za ,zb ;E) is the Green’s function of the
dimensionless Hamiltonian~2.1! which takes the form

Hel,'9 52
1

2

d2

dz2 1
k~k11!

2
tanh2z, ~4.5!

that is G(za ,zb ;E)5^zau(Hel,'9 2E)21uzb&, while c1(z) is
the ground-state wave function of the potential~4.5!

c1~z!5FG~k11/2!

ApG~k!
G 1/2

1

coshkz
. ~4.6!

The ground-state energy of the Hamiltonian~4.5! is given by

E15
k

2
. ~4.7!

The energyE in Eq. ~4.2! reads as follows:

E52
ki

2

2
2 l RM

2 1
k

2
. ~4.8!

The energy-dependent Green’s function of the system
be represented in the form21,22

G~za ,zb ;E!5
G~n1k11!G~n2k!

G2~n11!

1

~4 coshza coshzb!n

3 2F1S n2k,n1k11;n11;
12tanhz.

2 D
3 2F1S n2k,n1k11;n11;

11tanhz,

2 D ,

~4.9!

wherez. (z,) denotes the maximum~minimum! of za and
zb . The parametern is defined by the relation
be

n

n5A22S E2
k~k11!

2 D5Aki
21k212l RM

2 . ~4.10!

The polaron effective mass can be represented in a sim
way:

D2m

m
5a

l RM
3

2A2
E

0

`

dkiki
2E

2`

`

dzaE
2`

`

dzb

3e2kiuza2zbuc1* ~za!c1~zb!
]2

]E2 G~za ,zb ;E!.

~4.11!

To simplify numerical calculations we may replace t
derivative with respect toE by the derivative with respect to
n,

]2

]E2 5
1

n2

]2

]n2 2
1

n3

]

]n
, ~4.12!

and perform once the integration by parts. As the result,
arrive at the following representation equivalent to E
~4.11!:

D2m

m
5a

l RM
3

2A2
E

0

`

dki E
2`

`

dzaE
2`

`

dzb~12kiuza2zbu!

3e2kiuza2zbuc1* ~za!c1~zb!F2
1

n

]

]nGG~za ,zb ;E!.

~4.13!

Note thatm,a,vLO in all these formulas stand for th
mean characteristics of the medium. The wave function
their definitions is given by Eq.~4.6!. The numerical results
are plotted in Fig. 3 and discussed in the last section.

B. Effective width

If we decide to compare the results for the rectangular
Rosen-Morse potentials, we have to define a param
which plays the role of the effective width of the Rose
Morse potential. That is, this parameter~for which we use a
notationL) should be close to 2LRM of Eq. ~4.1! being also
related to the rectangular potential. We accept the follow
definition: let us call the effective width of the Rosen-Mor
potential the widthL of the rectangular well of the sam
height with the same ground-state energy in the absenc
the electron-phonon interaction~that is, ata50). The ad-
vantage of this definition is that while calculating the polar
binding energy for the Rosen-Morse and rectangular po
tials we subtract the same quantity in both the cases and
compare only energy shifts due to the electron-phonon in
action.

The ground-state energy of a rectangular potential w
the heightV0 and widthL is given by the relations

ERC5
\2k2

2m
,
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tan
kL

2
5A V0

ERC
21, ~4.14!

while the RM ground-state energy looks like

ERM5
\2

mLRM
2

k

2
~4.15!

and the heightV0 of the potential is given by Eq.~4.1!. With
the equalityERM5ERC we arrive at the relation between th
parameterLRM of the Rosen-Morse potential and its effe
tive width defined as has been discussed:

L

L0
52Al arctanAl21,

l5k115
1

2
@11A11~2LRM /L0!2#. ~4.16!

Here we introduce the distance scale

L05A \2

2mV0
. ~4.17!

The relation to the other dimensionless parameterl RM of Eq.
~4.3! is given by

FIG. 3. Polaron energy and effective mass shifts for the Ros
Morse potential~solid curves!. The dashed lines present results f
the rectangular potential atx50.3 as functions of 2LRM recalcu-
lated from the widthL as is described in the text.
LRM

L0
5 l RMA 2V0

\vLO
. ~4.18!

At small LRM!L0 we obtainL;2LRM from Eq.~4.16!, that
is indeed the parameterLRM plays a role of the half-width of
the Rosen-Morse potential in this case. WhenLRM@L0, it
follows from Eq.~4.16! that L;pALRML0.

The effective widthL defined in this subsection allows u
to apply the results for the rectangular potential to the Ros
Morse quantum well. The example is given in Fig. 3 whe
we plotted also the energy and the mass shifts for the r
angular potential vs the parameterLRM related toL as is
described.

V. NUMERICAL RESULTS AND DISCUSSION

To proceed to the numerical calculations we need now
dependence of medium parameters on the AlAs mole fr
tion x. At first we present the parametrization from the r
view by Adachi:23

a~z!50.06810.058x, ~5.1a!

m~z!5me•~0.066510.0835x!, ~5.1b!

\v~z!5~36.2511.83x117.12x225.11x3! meV,
~5.1c!

which was used in numerical calculations by Hai, Peete
and Devreese.18,19 Here me is the electron mass in vacuum
andm(z)—its band mass in the subsequent layer; the val
of the electron-phonon coupling constanta(z) and the LO-
phonon frequencyv(z) are also related to this layer.

Some comments are to the point. The expression for
electron band mass is nothing else but the linear interpola
between the valuesm50.0665me for GaAs and m
50.150me for AlAs. As to the LO-phonon frequency ther
are two phonon modes with different frequenciesv (G)(z)
and v (A)(z) for the GaAs-like and AlAs-like modes in
Al xGa12xAs crystal. Experimental results of Ref. 24 are i
terpolated by the following formulas:

\v (G)~z!5~36.2526.55x11.79x2! meV, ~5.2a!

\v (A)~z!5~44.6318.78x23.32x2! meV. ~5.2b!

Because the exact theory of the two-phonon interaction
alloys where there are two-mode phonons present has
been reported, Adachi suggested to use the effective pho
frequencyv5(12x)v (G)1xv (A), that is the linear interpo-
lation between these two modes. Inserting here the exp
sions~5.2! one arrives at the result~5.1c!.

As to the interpolation formula~5.1a! for the Fröhlich
coupling constanta, the situation seems to be a bit incons
tent. Indeed,a depends on the values of the static«0 and the
high-frequency«` dielectric constants:

a5
1

\v

ē2

A2
Amv

\ S 1

«`
2

1

«0
D

5116.643S 1

«`
2

1

«0
DAm

me
A1 meV

\v
. ~5.3!
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Earlier measurements of«0 of GaAs have yielded widely
different values ranging from 9.8 to 13.3~see Ref. 25 and
references therein!. For instance, Kartheuser26 reports the
values «`510.9 and«0512.83 and\v536.75 meV for
GaAs. This leads to the resulta50.068, which is widely
known and used by many people.

On the other hand, Adachi used the more recent res
for GaAs:27 «0513.1860.40 and «`510.89, and for
AlAs:28 «0510.0660.04 and«`58.1660.02. This gives
birth to his interpolation formulas:23

«0513.1823.12x, ~5.4a!

«`510.8922.73x, ~5.4b!

Inserting formulas~5.1b!, ~5.1c! and~5.4! into Eq.~5.3! Ada-
chi declared the resulta50.126 for AlAs. Together with the
valuea50.068 reported in Ref. 26 this leads to the interp
lation formulas~5.1a!. The problem is that both these valu
for a do not follow from the parametrizations mentione
above.

Taking the same values for AlAs as Adachi did take (m
50.150me , \v550.09 meV, «058.16, «`510.06)
we arrive at the resulta50.1477. Moreover, if one takes th
same interpolation formulas~5.4! at x50 one obtains the
valuea50.0797 for GaAs. That is, Adachi had to obtain t
formula

a~z!50.079710.0680x ~5.5!

as a linear interpolation between the values ofa in GaAs and
AlAs. Note, that this formula can be presented in the fo
a(z)51.172(0.06810.058x). The expression between th
brackets coincide~probably occasionally! with the Adachi
interpolation formulas fora @cf. Eq. ~5.1a!#. That is, the
discrepancy of~5.1a! and of our interpolation~5.5! is about
17% and do not depend onx. To be consistent we have t
accept the parametrization~5.5! in what follows.

For the confining potential we take the expression deri
from the band-gap energy fit of Ref. 29 and used in Refs
and 19:

V~z!5600•~1.155x10.37x2! meV. ~5.6!

Thus we use the parametrization~5.1b!, ~5.1c!, ~5.4a!, ~5.4b!,
~5.5!, and the potential~5.6! in our numerical calculations.

The results of our study for the rectangular poten
~which is formed by a layer of GaAs/AlxGa12xAs) are
shown in Fig. 1 for the polaronic energy shift and in Fig.
for the polaron effective mass at the AlAs mole fractionx
50.3. The contribution of the discrete and continuous sp
tra are plotted separately for this potential. In Fig. 2~a! the
relative mass shiftD2m/m is shown where the mean massm
also depends on the potential widthL. Thus the ratiod2m
5D2m/D2min of the mass shifts in the potential and in GaA
is presented also in Fig. 2~b! for the same AlAs mole frac-
tion. Evidently, the asymptotics of this curve is equal to t
unity at largeL and to the ratiomoutaout /mina in at L→0.

We may conclude that the continuous spectrum domin
at small potential widths. At large widths its contributio
could also be significant although it is smaller than the c
tribution of the discrete spectrum~especially in deep poten
tial wells!. We also confirm the conclusion of the precedi
lts

-

d
8

l

c-

es

-

papers that the leading term approximation is not adequa
describe this system and leads to wrong asymptotics at
small and large potential widths~see the dashed lines in Fig
1 and 2!.

An example of a multilayered heterostructure is p
sented. The results for the energy and the effective mass
the polaron in the Rosen-Morse potential well are shown
Fig. 3. For the numerical calculations we fix the valueV0
5227.9 meV in Eqs.~4.1! and ~4.4! which corresponds to
the limiting mole fraction at large distancesx`

5 limz→`x(z)50.3. Thus we obtain the dependence of t
mole fractionx on the coordinatez:

600•~1.155x10.37x2!5227.9 tanh2z. ~5.7!

Now Eqs. ~5.1b!, ~5.1c!, and ~5.5! allow one to define the
dependence of parameters on the coordinatez and to calcu-
late the mean characteristics of the heterostructure.

The calculations were completely different in comparis
with the rectangular potential: instead of the direct summ
tion over all intermediate states we used the analytical
pression for the Green’s function of the Rosen-Morse pot
tial. The results obtained demonstrate a similar behav
which is also close numerically to the results for the rect
gular potential. The polaronic energy and mass shifts for
rectangular quantum well are also plotted here~dashed line!
vs the Rosen-Morse widthLRM obtained fromL as is de-
scribed above. We see that both the energies almost coin
which gives the opportunity to approximate different qua
tum wells by the rectangular potential. The discrepancy
the effective mass is larger but not so crucial. This ser
also as an additional internal criterion of the validity of o
calculations.

Thus we obtained a monotonous behavior ofD2E be-
tween the correct 3D limiting valuesa in\v in andaout\vout
both for the rectangular and the Rosen-Morse potentials@see
Figs. 1 and 3~a!#. Actually the peaks are ‘‘hidden’’ and the
reveal themselves if we plot the dimensionless energy s
D2E/(\vLOa) which has the same 3D limit~the unity! at
both small and large potential widths. But in the ‘‘real’’ uni
~meV! the peaks are smoothed.

To compare our results with the calculations perform
for the one-layer heterostructure we refer to the papers18,19

where the authors took into account the contributions of d
ferent phonon modes as well as mass and dielectric cons
mismatches in the materials of the barrier and the well. N
that the analytical formulas of Ref. 18 contain a mistake
the wrong expression for the density of states. Namely
some parts of the continuous spectrum contribution the in
gration is performed not over the wave vectorp but over the
wave vectorq @that is*V0

` dEz /AEz(•••) in the notations of

that paper instead of the correct integrati
*V0

` dEz /AEz2V0(•••)#. It is clear that this mistake result

in lowering of the resulting curve for the energy, and t
discrepancy is larger when the energy is closer to the po
tial edge, that is at small widths. This is just what we see
Fig. 4~a! comparing the result of Ref. 18~the curveDHPDE)
with the new calculations of the same authors~the curve
DHE) which came to our knowledge when the present pa
was already submitted for the publication.
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Thus our model does not reproduce the more complica
structure with the peak and the dip which was obtained
Ref. 19. Some hints on the existence of peaks can als
seen in our plots but the maximal values are so close to
asymptotics that the peaks are almost invisible. Probably,
dip appears because of the presence of several phonon m
~bulk, interface, etc.!. At widths L>50 Å our results for the
energy practically coincide with those of Ref. 19. The d
crepancy at smaller widths seems to be more crucial. But
difference between the values in the peak and in the dip
the curveDHE in Fig. 4~a! is about 0.1 eV~3%!. This phe-
nomenon hardly can be seen experimentally and this disc
ancy is in the limits of the accuracy of our model estima
above. This gives indeed a strong support to our model
we may conclude that the latter provides us with the rat
accurate approximation and can be used for more com
cated calculations in multilayered heterostructures.

As to the shift of the electron band mass we found cl
peaks for both the rectangular and the Rosen-Morse po
tials ~see Figs. 2 and 3!. As is seen in Fig. 2 the effectiv
mass shift for the polaron in the rectangular quantum w
has a peak atL'20 Å (x50.3). Calculations show als
that the larger isx the smaller is the potential width corre
sponding to the peak. For the Rosen-Morse potentia
x`50.3 the peaks in the effective mass occur at 2LRM
'20 Å. Note that again the authors of Ref. 19 obtain

FIG. 4. Comparison of the results of the present paper~solid
lines! and those of Ref. 18~dotted line! and of Ref. 19~dashed
lines! for the rectangular potential generated by t
GaAs/Al0.3Ga0.7As heterostructure. For this plot we used in our c
culations the same parametrization~5.1! and ~5.6! as these authors
did.
d
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li-

r
n-

ll

at

d

curves with peaks and dips in contrast with our results@see
Fig. 4~b!#. The maximal discrepancy for the mass is abo
11% at L'3 Å which is beyond the region available fo
experiments. Our results are very close to those of Ref. 1
L>10 Å and practically coincide with them atL>20 Å.

To compare our results with those of Ref. 20 we ne
now another parametrization used by these authors~although
they refer also to the paper by Adachi23!. Namely, they took
a slightly different expression for the confining potential:

V~z!5600•~1.266x10.26x2! meV, ~5.8!

which follows from the band gap of Ref. 30. Furthermor
instead of the effective LO-phonon frequency they used
expression~5.2a! for the energy of the GaAs-like phonon
The Fröhlich coupling constanta was calculated then usin
also the parametrization~5.1b! and ~5.4!. Note, that these
numerical calculations, as we found, can be approximated
the interpolation formula

a~z!50.079710.0772x10.0295x2. ~5.9!

The results of the comparison are shown in Fig. 5~we used
in our calculations for this plot the same parametrization
was used in Ref. 20!.

The curveDChE in Fig. 5~a! for the energy shift taken
from Ref. 20 has also a small dip~qualitatively similar to this
of Ref. 19!. But the discrepancy between energy shifts
much more drastic in this case, and we have no explana
for this.

FIG. 5. Comparison of the results of the present paper and th
of Ref. 20 for the rectangular potential generated by
GaAs/Al0.25Ga0.75As heterostructure. For this plot we used the p
rametrization of these authors as is described in the text.
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It is clear that at large potential width only a bulk phon
mode inside the quantum well contributes so these cu
should have the same limiting valuea in\v in . Numerically
we founda in50.0797 and\v in536.25 meV, soa in\v in
52.89 meV. Moreover, the behavior of the curves at largL
should be qualitatively and quantitatively the same wh
was the case when we compared our model with Refs
and 19. In contrast with our model and the cited results
Hai, Peeters, and Devreese the curveDChE in Fig. 5~b! ap-
proaches the asymptotics from below and the subseq
mechanism remains unclear. On the other hand, there
some reasons why the curve have to approach its asympt
from above. Indeed, at large potential width the particle d
not feel yet the finite height of the potential, and the ene
shift takes the same value as in the infinitely high poten
which is a bit larger than the free polaron energy.

As to the opposite limit of the small width of the confin
ing potential, it is surprising that the asymptotic value is n
reached even atL;0.3 Å, as is found in Ref. 20. Numeri
cally we obtainedaout50.1014 in this scheme and\vout
534.72 meV, soaout\vout53.52 meV.

Both asymptotic values coincide with what was obtain
by the authors of Ref. 20. Looking at the behavior of t
mass shift, we see that both curves coincide at large wid
as it should be. At widths smaller than 100 Å the discre
ancy becomes evident. But we may conclude that somet
is wrong with the numerical job of Ref. 20 because th
curve approaches the wrong limit atL→0. Indeed, in this
limit the asymptotical value of the plotted ratio should
equal toaoutmout /a inmin . As it follows from our analysis of
the energy shift, we obtained the same values for the F¨h-
lich coupling constants. The values for the band masses
low from Eq.~5.1b!: min50.0665me andmout50.0874me at
x50.25. Then, the asymptotical value of the plotted ra
should be equal to 1.67, instead of 1.83 what was found
Ref. 20. That is, the discrepancy is about 10% in this lim
and we cannot explain its origin as well.

It would be highly desirable to include a comparison
our results and the results by other authors with correspo
ing experiments. To the best of our knowledge, no such
periments do exist at the moment.
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VI. CONCLUSIONS

To conclude, we suggested an approximate model to
scribe a multilayered GaAs/AlxGa12xAs heterostructure as
an effective medium with one~bulk! phonon mode. The fun-
damental entity is the confining potential generated by th
layers which we take into account explicitly. Then we calc
late the mean characteristics of the electron in the effec
medium ~such as its band mass, phonon frequencies, e!
which depend on the form of the confining potential. Wi
these parameters we calculated the energy and the effe
mass of a polaron confined to a quasi-2D quantum w
GaAs/AlxGa12xAs for different AlAs mole fractions. The
calculations include the full energy spectrum as intermed
states. Peaks are found for the effective mass at some po
tial widths while the energy demonstrates rather monoton
behavior between the correct 3D-limits. Finally, some d
crepancies in the interpolation formulas for the experimen
results are discussed as well as discrepancies with the p
ously obtained theoretical results. We demonstrated that
model gives practically the same~or very close! results as the
explicit calculations of Ref. 19 for potential widthsL
>10 Å.
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