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Mean parameter model for the Pekar-Frahlich polaron in a multilayered heterostructure
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The polaron energy and the effective mass are calculated for an electron confined in a finite quantum well
constructed of GaAs/AGa, _,As layers. To simplify the study we suggest a model in which parameters of a
medium are averaged over the ground-state wave function. The rectangular and the Rosen-Morse potential are
used as examples. To describe the confined electron properties explicitly to the second order of perturbations
in powers of the electron-phonon coupling constant we use the exact energy-dependent Green’s function for
the Rosen-Morse confining potential. In the case of the rectangular potential, the sum over all intermediate
virtual states is calculated. The comparison is made with the often used leading term approximation when only
the ground state is taken into account as a virtual state. It is shown that the results are quite different, so the
incorporation of all virtual states and especially those of the continuous spectrum is essential. Our model
reproduces the correct three-dimensional asymptotics at both small and large widths. We obtained a rather
monotonous behavior of the polaron energy as a function of the confining potential width and found a peak of
the effective mass. The comparison is made with theoretical results by other authors. We found that our model
gives practically the sam@r very closg results as the explicit calculations for potential widths 10 A.

[. INTRODUCTION of the binding energy should be the same at large width of

the well. But when the width becomes too small, the energy

Quasi-two-dimensional2D) systems have attracted a lot level approaches the edge of the well, so that effectively the

of attention during the last decade because of their practicglarticle is spread over the 3D space. Thus the limiting value

realization. If a heterostructure is made of polar material®f the binding energy should coincide with the 3D limiting

such as GaAs, InAs, etc., the electron-phonon interactionalue rather than with the 2D one. This means that the bind-
modifies the properties of the electron confined to a 2Ding energy takes the vallﬁaﬂfﬁ;‘o:ozomfmout at small widths
structure resulting in a shift of the binding energy and thewhere the parameters,,; and a,,; are now related to the

effective band mass. barrier material. The binding energy evidently has a peak at
The polaron effects in a 2D electron gas have been extersome intermediate value of the widthBEy')<ESD) . If this

sively studied. At earlier stages the attention was paid to thg not the case, the existence of the peak should be checked
properties of a polaron confined to an infinite thin 2D jn more detail.
layer'~® The binding energy and the effective mass were Different rectangular quantum wells of a finite height
calculated for a GaAs/AGa, _,As infinitely deep quantum have been investigated by Hai, Peeters, and DeviéEse
well of a finite length® In these papers only the interaction and Shi, Zhuet al?° in the scope of the second-order per-
with the bulk LO-phonon mode has been taken into accounturbation theory in powers of the electron-phonon coupling
Actually, LO-phonon modes are modified in a 2D lay#ve  constantx with all phonon modes being incorporated. Peaks
so-called confined slab LO-phonon mopeBesides, there of the phonon induced energy shift and the polaron effective
exist interface optical-phonon modes as well as half-spacgass were found for some values of the confining potential
LO-phonon modes in a barrier materfat® For the review of  widths.
these modesalso in complicated multilayer structujesee In principle, the same approach can be used while dealing
the book by Pokatilov, Fomin, and Befiland also more with a quantum well constructed of layers of different mate-
recent publicationt$*® of this group. The influence of the rials. But the problem becomes then too complicated because
mentioned modes on polarons were studied in Refs. 14-1%ne has to take into account interface phonon modes at each
While different phonon modes were studied in details, thefrontier of different materials as well as quantized phonon
quantum well potential was supposed to be infinitely deep infmodes inside each of the layers. The main goal of the present
the cited papers. On the other hand, the properties of thgaper is to formulate a simplified model to take these effects
system would be quite different if a confining potential had ainto account and to deal with the effective confining potential
finite depth. Indeed, for an infinitely deep confining potentialand only one bulk phonon mode. We calculate polaron char-
the binding energy is the monotonous function of the potenacteristics for the same rectangular quantum well as in Refs.
tial width which varies between limiting value€{}  18-20 to compare the results. Another example is given of a
= a; hhw;, for the three-dimensional3D) space andEgB) quantum well of the finite depth for which the second-order
=(m/2) ajnhhwi,, Where «;, is the standard Fhdich  correction due to the electron-phonon interaction can be cal-
electron-phonon coupling constant anra, is the LO- culated explicitly. Namely, we take the Rosen-Morse poten-
phonons frequency for the quantum well material. If a par-tial to confine electrons to a 2D-multilayered heterostructure
ticle is confined to a finite potential well, the limiting value and calculate the shift of the ground-state energy and the
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effective mass perturbatively, that is, in the weak-coupling Finally, we accept the conventional form of the Hamil-
limit. In contrast with the rectangular potential we should nottonian describing the interaction of the electron with effec-
worry about the correct including of all virtual states becausedive phonons:
the Green’s function is known analytically for this system.
_ \/-aikr At —iKk-r
Il. FORMULATION OF THE MODEL Hint % (@™ +aVe T, 29

Let us consider a quantum well in tiedirection con- where the Fourier transforms of the electron-phonon interac-
structed of thexy plane layers of GaAs/AGa, _,As. Thatis, tion potential are specified as follows:
the AlAs mole fractionx depends on the coordinatex 112
=X(z). The energy gap between different materials forms Viz —iho (47Ta h )
the confining potentiaM(z) which serves us as the main . Ll Vi NV 2mae o
entity. Given the potential(z), one can find the correspond-
ing mole fractionsx(z) and a dependence a@of any of the
medium parameterisuch as the electron band masfz),

(2.7)

Here the use is made of a mean Idich coupling constant
which can be found from the relation

phonon frequencies(z), dielectric constantsy(z),e..(2), w(2) Moo 12
Frohlich coupling constants(z), etc]. \/Ezf dzy(2)|>—| a(2) m) .
To avoid difficulties with mass mismatch in different lay- “Lo @ 2.9

ers we suggest to user@eanband massn which is common . .
for all layers. Then we start with the following expression for Note that we define the mean parameters in E8), (2.9),

the electronic part of the Hamiltonian: and(2.8) according to the way they enter the Hamiltonian.
Thus we describe a complicated multilayered heterostruc-
Hei=HejtHei s ture by the Hamiltonian
52 2 H:He|+H ht Hint (29)
i p7 P
Hel| =5y Heli =5, +V(2), 2D with the bulk phonon mode only which inhabits an effective

) ) ~medium with mean characteristics defined above. The details
where the electron mean band mass is defined by the relatiqf ihe heterostructure are taken into account by the confining

1 |4 (2)]2 potentialV(z).
—:j dz 1 (2.2 Performing a unitary transformatiodl —H'=U "1HU
m m(z) with the operator
and the ground-state wave functian(z) for the electron
motion in z direction is a solution to the Schdimger equa- U =eXF{ _i(”z |2||aEaE , (2.10
tion K
Hei, 41=E i (2.3  We arrive at the Hamiltonian
with E; being a ground-state energy. As the wave function H’=Hé,,”+ Her +HpntHint (2.11a
i, also depends on the mean band nmasghe latter can be
found as a self-consistent solution of E¢®.2) and(2.3). . - . 2
In a similar way we define the free LO-phonon Hamil- Hell=5m p”—ﬁ% Kjaak| » (2.11b
tonian
I “\/ .kz' t S 7'kz‘
Hon=fioo D, alag, 2.4 Him—% (Ve w2 +aVie 7). (2,110
K

WhereaE(al;) are creationannihilation operators of a pho- The quantityp; is a c-number corresponding to the con-
served momentum in th&y plane and the Hamiltonians

Hei, ,Hpn are defined by Eq€2.1) and(2.4), respectively.
Keeping in mind the smallness of the electron-phonon
coupling constantr for most of the materials, we calculate
wLo:J dzw(2)|y1(2)|% (2.5  the second-order correction to the unperturbed Hamiltonian
H{):Hél,”+ Hei . +Hpn (note that the quantum-mechanical
Evidently, we have to address why the free phonon Hamilfirst-order correction is equal to zerarhe unperturbed en-
tonian is averaged with respect to the electron wave functiorergy levels are given by the expression
Our motivation is based on the fact that we are going to )
apply our model to calculate polaron effects. That is, our _ - = - - 3
effectivephonons will be considered only in a cloud around E(py ’nk’N)_ﬁ( p”—ﬁle KNk +hw'-ozlz Mt Ens
the electron, and the properties of this cloud depend on the (2.12
electron position. So, in our model the effective phonons _
replace numerous phonon modes whose frequencies depewtieren; is the number of phonons with the wave veckor
on the coordinate of the electron. The energy Ey is the Nth energy level of the one-

non with a wave vectok, and mean frequency o can be
found from the expression
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dimensional systeril., , of Eq. (2.1). HereN is the corre- ~and the normalization constant is given by

sponding quantum number not necessarily a discrete one: it >

stands for both the quantum numimewhich varies from 1 to Ng ;= |_“Pn _ (3.5
Nmax and the wave vectog of the continuous spectrum ' paL+2

states.

Antisymmetrical wave functions of the discrete spectrum

The wave functions of the unperturbed Hamiltonidg take the form

are given by the direct product

J singnz, z|<L/2
pysnc,NYy =)@ [N) (2.13 ) n
an— sn

Ok
of the corresponding wave functions of different terms in SQF(Z)SIH%E Pollzl=L12) - |z|>L/2

Ho . 3.6
Because of the structure of the interaction téify, only ) L ) 39
intermediate states with one phonon contribute to theVith the same normalization constant given by E5.
second-order correction to the ground-state energy. The latter 1N€ total numbemy,,, of the discrete energy levels is

is then given by the expression given by the expression

qmaxL

- IViIZIG(N,k,)|? Nmax= 1+ , 3.
AzE(p”):_Z (5 ﬁlzz)2 62 ' max T ( 7)
N,k - - . . .

Enﬁf“&&Fw—El where[A] is an integer part of a numbét. The expression
(2.14 for the discrete energy levels reads as follows:
where L 2 n—1
qL:arctan\/qmax—lwL m ), n=12,....
o _ 2 h 2

G(N:kz):f dzin(2) Pu(2) €7 (2.19 (3.9

Energies with oddeven n correspond to the symmetrical
and ¢(z) are the wave functions of the Hamiltoni&ty, | (antisymmetrical wave functions.
in Eq. (2.1). The concrete application of these formulas is The energyquﬁzqz/Zm of the continuous spectrum
given in the following section. state depends on the wave veafoiThe corresponding sym-
metrical wave functions are as follows:
I1l. RECTANGULAR POTENTIAL

. . p cosqz, |z<L/2,
A. Medium mean characteristics L
As an example we now consider the rectangular confining Nsq | P cosq7 cosp(|z| —L/2)—
potential S’q:_\/L—
‘ _qL
0, |zl=L/2 qsm7smp(|z|—L/2), |z|>L1/2,
V@=1y,, 14512 @1 (3.9
and where
- lmin, |z|=<L/2 32 P=0%= Ufax (3.10
m(z)= .
Mout,  |2|>L12 andL, is the(infinite) size of the system in the direction.

with m;, (my,,) being the electron band masses in the WeIIThe normalization constant is given by the expression

(barrien material, respectively. For concreteness we assume 2

GaAs to be the quantum well material and @8, _,As to be Ns,q= ) (3.1

the barrier material. qL
Symmetrical wave functions of the discrete spectrum in 2

the rectangular quantum well with the mean band nrass

L
p? cog q?+ g sir?

take the form The antisymmetrical wave functions are as follows:

c0sq,,Z, |z|<L/2 [ psinglz|, |Z]<L/2,

#sn=Nsn Onl —pn(lzl-L72) (3.3 gL _
' ' ——e Pn z|>L/2, p sin—cosp(|z|—L/2)+
cos—-e V4 ' NagSgr(2) 2 ||
a,q_ L
where VL, q cosq7sin p(|z| —L/2),
2mV, =
Pn= ‘/qﬁ]ax— q%, qlgnax: ﬁ2 (34) \ |Z| L/2, (312)
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where the normalization constant is given by the expressio2%; in the worst possible case when,/m, <1 the dis-
crepancy is still not large: 10099.844~8%.

2
Nag= (3.13 )
qL B. Electron-phonon correction to the polaron energy and the
p S|rr2—+q co§

effective mass

Summation over the wave vect@rin Eqg. (2.14 can be

The electron mean band mass is defined as reduced to integration in a conventional way:

1 Wln WOUt
+ o 2 ..
m mlﬂ mOUt ( )
Min Moyt
m= , 3.1 / dkidk,
Winmout+(1_win)min ( 4) _(thO) 2Mo o _Zf l—kz
L
whereW;, and W, ,=1—W,, are probabilities to find the
electron inside(outside the quantum well. The expression (3.20

for W;,, foll f Eq.(3. .
or Wiy follows from Eq. (3.3 Then, the integration oveyj in Eq. (2.14) can be performed

L/ (01 Umax)? explicitly. As we are interested in corrections to the ground-
= 2N? 2z=1—- ——%_  (3.15 ;
Win=2Ng, . dzcosq;z 1+p,L/2 "’ 3. state energy and the effective masgi~m+A,m of the

_ _ polaron motion in thexy plane, we expand , E(pH) A2E
whereq, is a solution to Eq(3.8) for the ground staten( — (A,m/2m? )p” in powers of the conserved momentulm

=1). Doing this the use is made of the integral
To finish this subsection, we note that the exact energy

levels in the rectangular potential with different massgs

and my,,; calculated for the GaAs/AGa, ,As heterostruc-
ture practically coincide with the levels obtained with the
electron mean band mass To obtain an inner criterion of
the validity of the anzatz concerning the mean band mass we
notice that the particle being on lowest energy levels is lo-
cated mostly inside the well which means that its band mass

is almost coincide witm, . As the next step we use dimensionless “polaronic” units
One can await the largest discrepancy for a level near thﬁerformlng the scaling  k,—k,\2mao/h, z

Eot?—rglva)ll 3vdt?;eThe1th discrete level appears at the width —.z#l2mw_g and using the notation

f d?k In(k%/0b?)
= = . ~Ir
(Kf+k2)[KP — 2Ky py /% +b?] k2—b?

~\2 4 4 21,2 212
k- b*—2kZ2b?In(kZ/b
ﬂ)wz 2 I/, (3.2

h b?(k—b?)°

2Mw E
#i m(n—1 LA/ Lo N
L@ =7(n—1) = ( ), (3.16 =t nov N hoo’ (322
\/2mV0 Omax
and the analogous width for the exact solution reads as foLl[-E(:r}g?r?] units the correction to the ground-state energy takes
lows:
AE = In(K2/bR)
h 2= _ 2
L= (n—1) —. 3.1 = f k; [|G N,Kk,)|
n ( )m ( 7) ﬁw,_o TN kz N
2
Thus the ratio +]Ga(N, k)|, (3.23
(av) where
tn_ [ Din_ \/W- LW (318
L(nex) m n n mout. ’ bN: \/8N+ 1_81. (324)

can serve us as the numerical criterion of the validity of theThe correction to the effective mass reads as follows:
anzatz. The largest discrepancy happens=a2 and in this

case _Eqs(3.4), (3.9, and (3.15 lead to the following ex- Azm a E J' —2k2bZ In(K2/b3)
ression:
g bﬁ(ki—bﬁ)s
L (av) 2 2
- \/o 844+ 0156 (3.19 X[|Ga(N,kp) [2+]Ga(N k) 2] (329
out

QuantitiesG;(N,k,) in Egs.(3.23 and(3.29 are given in
Note that numerical coefficients here do not depend on thdimensionless units by the same E2.15; the indices &)s
material parameters. For the GaAg/Aba-As quantum are related tgantjsymmetrical wave functions being used in
well we havem;,/my,~0.7 and the discrepancy is about Eq. (2.15:
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FIG. 1. Total energy shifA,E is shown vs the rectangular
potential width L for x=0.3. The contribution of the discrete
(A4isE) and continuousA ., .E) spectra are presented separately as
well as the result of the leading term approximatiay)E).

-
(3.

Mass shift 5,m
o

o
o

Gu(N k) =2 f A2 n(2) s 1(2) cOSk,2,
0

* . 1 10 100 1000
Ga(vaz)ZZJO dzra N(2) Ps4(2) Sink,z, (3.2 Potential width L (A)

FIG. 2. The relative shiftd ,m/m and §,m=A,m/A,m;, of the
effective polaron mass for the rectangular potential-=a0.3. Con-
tributions of the discrete and continuous spectra are shown as well
as the result of the leading term approximation.

Evidently, the replacemerit—I| should be done in the
definition of the wave functions and their normalization con-
stants; in additior.,—1, in Egs.(3.9 and(3.12 as well as
in Eqg. (3.8 for the energy levels of the discrete spectrum.
Eg. (3.4 now reads as follows:

Pn= \/Uo_(ﬁa Vo

massm depends on the potential width we also plotted in
v Fig. 2(b) the ratio of the mass shift to those in the well
0 , qfnaxzvo_ (3.27 material, that is, the ratio

_ha)Lo
Equation(3.7) takes the form 5,m= = ’ Azmm:min%_ (3.30
\/—I 2Mip
Nmax=1+ l;o (3.28  The discussion of the numerical results is given in the last
section.
The relation of dimensionless energies of the discrete and
continuous spectra with subsequent wave vectors takes the IV. ROSEN-MORSE POTENTIAL
form snzqﬁ, sq=q2. All the changes mentioned should .
also be done in Eq3.15. A. Energy-dependent Green’s function
The final note of this section concerns summation dver In this section we present another example—a multilay-
in Egs.(3.23 and(3.25: ered heterostructure described by a confining poteN(ja)
which is chosen in the form of the Rosen-Morse potential

Mmax

N A
%(...):nzl(...)_g_“m o Odp(...)_

7= V(z) =V, tant? i)
(3.29 Lrm/ '
The replacing of the sum over the continuous spectrum by 5
the integration over the wave vecterfollows from Egs. Voe h K(k+1) @.1)
0o~ , .

(3.9 and(3.12 in the limit L ,—c. The wave vectorg and 2ml3,,
p are related to each other because of BqL0 which now
takes the form q=p?+v,. Note also that only where Lgrm Iis the parameter close to the half-width of the
Gs(N,k)[G4(N,k,)] has to be taken into account for odd Rosen-Morse quantum well andis the dimensionless pa-
(even nin the sum over the discrete quantum number rameter to govern the strength of the potential.

The numerical results obtained are plotted in Fig. 1 for The summatiori2.14) over the quantum numbé can be
A,E and in Fig. 2a) for A,m/m. Because the mean effective represented through the Green’s function which is known
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second-order correction to the ground-state energy can be

analytically for the Rosen-Morse potential. Namely, the \/ (
v=1\/—2
written in the form

(x 1)) 2212, (410

The polaron effective mass can be represented in a similar

I .
AE=—fiowoa— dkﬂf dzaf dz, way:
V2 Jo
Xe_kH\Za—Zb|¢’l‘(Za)zﬁl(zb)G(Za,Zb;E), (4.2 f dk”k”f dZaJ' dz,
where we made a scalimg-zLgy ,K— K/L gy to use dimen-
sionless variableg,k and integrated ovek, and angles of e Kilza— Zbll/f (2,) (2 ) G(z 2, :E).
- 1 1(Zp) 77 1Zp s
K. The dimensionless parameter : JE :
(4.1)
meO
lem=Lrm \V (4.3 To simplify numerical calculations we may replace the

derivative with respect t& by the derivative with respect to
is the width of the confining potential in polaronic units 5,
while the potential strength can now be written as follows:

k(k+1 TEZT 3527 T3 (4.12
Vo=toLo (|2 ) (4.4) JE ve dve  v° v

and perform once the integration by parts. As the result, we
The quantityG(z,,z,;E) is the Green's function of the arrive at the following representation equivalent to Eq.

dimensionless Hamiltoniaf2.1) which takes the form (4.11:
. 1 d®> k(k+1) 2 A,m
=2t @z (49 W—a—f dkuf dzaf dzy(1—ky|za—2s))
that is G(z,,2y;E) =(za(Hz, . —E) ~Y|zp), while y(2) is P
the ground-state wave function of the potent&b) ><e*"H|Za*Zb‘<//’l*(za) P1(zp)| — Py G(z,,24;E).
r(k+12) " 1 (4.13

1 (2)= (4.6

coshz’

\/;F(K) Note thatm,«,w o in all these formulas stand for the

The ground-state energy of the Hamiltoni@n) is given by ~ Mean characteristics of the medium. The wave function in

their definitions is given by Eq4.6). The numerical results

P are plotted in Fig. 3 and discussed in the last section.

Elzz. (47)
B. Effective width

The energ)E in Eq. (4.2 reads as follows: If we decide to compare the results for the rectangular and

K2 Rosen-Morse potentials, we have to define a parameter
E=— i_|§M+ ~ (4.8  Which plays the role of the effective width of the Rosen-
2 2 Morse potential. That is, this parametéor which we use a

notationL) should be close to 23, of Eq. (4.1) being also
The energy-dependent Green’s function of the system cafelated to the rectangular potential. We accept the following

be represented in the foffr’? definition: let us call the effective width of the Rosen-Morse
potential the widthL of the rectangular well of the same
F'v+x+1)I'(v—k) 1 height with the same ground-state energy in the absence of
G(za.2y:E)= T2(v+1) (4 costz, coshz,)” the electron-phonon interactigithat is, ata=0). The ad-
a b vantage of this definition is that while calculating the polaron
1—tanhz- binding energy for the Rosen-Morse and rectangular poten-
X 2':1( vk, vtrtlivtl; > ) tials we subtract the same quantity in both the cases and can

compare only energy shifts due to the electron-phonon inter-
1+tanhz_ action.
2 ' The ground-state energy of a rectangular potential with

X 2F1( v—k,v+k+1lv+1;
the heightV, and widthL is given by the relations

4.9

wherez.. (z.) denotes the maximurgminimum) of z, and E :ﬁzkz
z,. The parameter is defined by the relation RC™ 2m
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Lam 2V,

Lo tho.

At small Lgy<<Lo we obtainL~2Lg), from Eg.(4.16), that
is indeed the parametérg), plays a role of the half-width of
the Rosen-Morse potential in this case. WHag,>L,, it
follows from Eq.(4.16 thatL~ 7 LguLo.

The effective widthL defined in this subsection allows us
to apply the results for the rectangular potential to the Rosen-
Morse quantum well. The example is given in Fig. 3 where
we plotted also the energy and the mass shifts for the rect-
angular potential vs the parametegy related toL as is
described.

(4.18

RM

V. NUMERICAL RESULTS AND DISCUSSION

To proceed to the numerical calculations we need now the
dependence of medium parameters on the AlAs mole frac-
tion x. At first we present the parametrization from the re-
view by Adachi?

a(2)=0.068+0.05%, (5.13

m(z) = m,- (0.0665+ 0.0835%), (5.1b

fiw(z)=(36.25+1.8X%+17.1%%>—5.11x%) meV,
(5.10

which was used in numerical calculations by Hai, Peeters,

FIG. 3. Polaron energy and effective mass shifts for the Rosenand Devrees& ' Herem, is the electron mass in vacuum

Morse potentialsolid curve$. The dashed lines present results for
the rectangular potential at=0.3 as functions of Rgy, recalcu-
lated from the widthL as is described in the text.

tan - \/ Vo (4.14
an—=\/—-1, .
2 Erc
while the RM ground-state energy looks like
L. (4.15
RMT™ 5 5 .
mL3, 2

and the heighV, of the potential is given by Eq4.1). With
the equalityEgy= Egc We arrive at the relation between the
parameterl,, of the Rosen-Morse potential and its effec-
tive width defined as has been discussed:

L
—= 2\/Xarctan/)\ -1,

Lo

1
N=rtl=S[1+ Vi1+(2Lgm/Lo)?]. (4.16
Here we introduce the distance scale
ﬁ2
Lo=1\/ MV, 4.1

The relation to the other dimensionless paramkigrof Eq.
(4.9 is given by

andm(z)—its band mass in the subsequent layer; the values
of the electron-phonon coupling constantz) and the LO-
phonon frequencyw(z) are also related to this layer.

Some comments are to the point. The expression for the
electron band mass is nothing else but the linear interpolation
between the valuesm=0.066%n, for GaAs and m
=0.150m, for AlAs. As to the LO-phonon frequency there
are two phonon modes with different frequencie$(z)
and 0™ (z) for the GaAs-like and AlAs-like modes in
Al,Ga, _,As crystal. Experimental results of Ref. 24 are in-
terpolated by the following formulas:

hw(®)(2)=(36.25-6.55+1.7%%) meV, (5.29

(5.2b

Because the exact theory of the two-phonon interaction in
alloys where there are two-mode phonons present has not
been reported, Adachi suggested to use the effective phonon
frequencyw=(1—X) w(® +xw™®, that is the linear interpo-
lation between these two modes. Inserting here the expres-
sions(5.2) one arrives at the resulb.10.

As to the interpolation formulg5.19 for the Frdilich
coupling constant, the situation seems to be a bit inconsis-
tent. Indeed@ depends on the values of the statjcand the
high-frequencye., dielectric constants:

e

Ex €o

1 1 /fm /1 meV 5.3
g_s_o He ho -3

ho™W(z)=(44.63+8.7%—3.3%%) meV.

1 ¢e?

:%E

a

= 116.64%
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Earlier measurements af, of GaAs have yielded widely papers that the leading term approximation is not adequate to
different values ranging from 9.8 to 13(8ee Ref. 25 and describe this system and leads to wrong asymptotics at both
references therejn For instance, Kartheusérreports the small and large potential widtlsee the dashed lines in Figs.
valuese.,,=10.9 ande,=12.83 andiw=36.75 meV for 1 and 3.
GaAs. This leads to the result=0.068, which is widely An example of a multilayered heterostructure is pre-
known and used by many people. sented. The results for the energy and the effective mass for
On the other hand, Adachi used the more recent resultdhe polaron in the Rosen-Morse potential well are shown in
for GaAs?’ £,=13.18:0.40 and £,=10.89, and for Fig. 3. For the numerical calculations we fix the vaMg
AlAs:® £,=10.06+0.04 ande.,.=8.16+0.02. This gives =227.9 meV in Eqs(4.1) and (4.4) which corresponds to

birth to his interpolation formula& the limiting mole fraction at large distance,,
=lim,_,.x(z)=0.3. Thus we obtain the dependence of the
g0=13.18-3.1%, (548  mole fractionx on the coordinate:
£,=10.89-2.7%, (5.4b

600 (1.155+ 0.3%2)=227.9 tanfz. (5.7
Inserting formulag5.1b), (5.19 and(5.4) into Eq.(5.3) Ada-
chi declared the resut=0.126 for AlAs. Together with the N Egs. (5.1b), (5.10, and (5.5 allow one to define the
value «=0.068 reported in Ref. 26 this leads to the imerpo'dependence of parameters on the coordiaaad to calcu-
lation formulas(5.13. The problem is that both these values |5te the mean characteristics of the heterostructure.
for a do not follow from the parametrizations mentioned  The calculations were completely different in comparison
above. o with the rectangular potential: instead of the direct summa-

Taking the same values for AlAs as Adachi did take (' tjon over all intermediate states we used the analytical ex-
=0.150n,, % ©=50.09 meV, £,=8.16, £.=10.06)  pression for the Green’s function of the Rosen-Morse poten-
we arrive at the resuli=0.1477. Moreover, if one takes the tja) The results obtained demonstrate a similar behavior
same interpolation formulags.4) at x=0 one obtains the which is also close numerically to the results for the rectan-
valuea=0.0797 for GaAs. That is, Adachi had to obtain the gylar potential. The polaronic energy and mass shifts for the
formula rectangular quantum well are also plotted h@tashed ling

vs the Rosen-Morse widthg), obtained fromL as is de-
*(2)=0.079#0.068k (5.9 scribed above. We see that both the energies almost coincide,

as a linear interpolation between the valuesrdf GaAs and ~ Which gives the opportunity to approximate different quan-
AlAs. Note, that this formula can be presented in the formtum wells by the rectangular potential. The discrepancy in
«(2)=1.172(0.068-0.05%). The expression between the the effective mass is larger but not so crucial. This serves
brackets coincidgprobably occasionallywith the Adachi  also as an additional internal criterion of the validity of our
interpolation formulas fora [cf. Eq. (5.1a8]. That is, the calculations.

discrepancy of5.13 and of our interpolatiorf5.5) is about Thus we obtained a monotonous behavior ofE be-
17% and do not depend on To be consistent we have to tween the correct 3D limiting valuasg i wj, and aqdi 0oy
accept the parametrizatids.5) in what follows. both for the rectangular and the Rosen-Morse poteritsas

For the confining potential we take the expression derivedrigs. 1 and 8)]. Actually the peaks are “hidden” and they
from the band-gap energy fit of Ref. 29 and used in Refs. 18eveal themselves if we plot the dimensionless energy shift

and 19: ALE/(hw oa) which has the same 3D limithe unity at
both small and large potential widths. But in the “real” units
V(z)=600 (1.155%+0.37%?) meV. (5.6  (meV) the peaks are smoothed.

To compare our results with the calculations performed
for the one-layer heterostructure we refer to the pdpérs
where the authors took into account the contributions of dif-
ferent phonon modes as well as mass and dielectric constant
mismatches in the materials of the barrier and the well. Note

fShO;ﬁn n 'I:'g' 1 f?fr tT.e polaronlctej\[ﬂer%\)llAshlft a}ndf n Flg. 2that the analytical formulas of Ref. 18 contain a mistake —
or the pofaron eftective mass at the S mole fraction .o wrong expression for the density of states. Namely, in

=0.3. The contribution of the discrete and continuous spec: ; o :
) . . some parts of the continuous spectrum contribution the inte-
tra are plotted separately for this potential. In Figa)Zhe P P

relative mass shifh.m/m is shown where the mean mass gration is performed not over the wave vecpaout over the
2 is [ )i -
also depends on the potential width Thus the ratiod,m wave vectorg [that |sf\,0d E,/\E,(- ) in the notations of

=A,m/A,m;, of the mass shifts in the potential and in GaAs thooat paper _instead of the correct integration
is presented also in Fig.(1® for the same AlAs mole frac- Jv dEz/VE;—Vo(---)]. Itis clear that this mistake results
tion. Evidently, the asymptotics of this curve is equal to thein lowering of the resulting curve for the energy, and the
unity at largeL and to the rationg ot/ Min @, atL—0. discrepancy is larger when the energy is closer to the poten-

We may conclude that the continuous spectrum dominatesal edge, that is at small widths. This is just what we see in
at small potential widths. At large widths its contribution Fig. 4(@) comparing the result of Ref. 1@he curveA ppE)
could also be significant although it is smaller than the conwith the new calculations of the same authdgtise curve
tribution of the discrete spectrufespecially in deep poten- AyE) which came to our knowledge when the present paper
tial wells). We also confirm the conclusion of the precedingwas already submitted for the publication.

Thus we use the parametrizatiBl1b), (5.10, (5.43, (5.4b),

(5.5, and the potential5.6) in our numerical calculations.
The results of our study for the rectangular potential

(which is formed by a layer of GaAs/fBa _,As) are
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FIG. 4. Comparison of the results of the present papelid FIG. 5. Comparison of the results of the present paper and those
lines and those of Ref. 18dotted ling and of Ref. 19(dashed ©f Ref. 20 for the rectangular potential generated by the
lines for the rectangular potential generated by the CaAS/AL2sGa 75As heterostructure. For this plot we used the pa-
GaAs/Al -Ga, -As heterostructure. For this plot we used in our cal- rametrization of these authors as is described in the text.

culations the same parametrizatitt1) and (5.6) as these authors . L. .
did. P 0 (9 curves with peaks and dips in contrast with our residee

Fig. 4(b)]. The maximal discrepancy for the mass is about

1% atL~3 A which is beyond the region available for

Thus our modef does not reproduce the more Comphcateéxperiments. Our results are very close to those of Ref. 19 at

structure with the peak and the dip which was obtained i . o :
Ref. 19. Some hints on the existence of peaks can also Béz 10 A and practically coincide with them &&=20 A.

seen in our plots but the maximal values are so close to thﬁov-l\—loar?(c))'[rltl]gl’arear(z)il;:e;?isz’:ltﬁ?)nwlztgefjhgsihggelqaesté%s\(l)vj Eeed
asymptotics that the peaks are almost invisible. Probably, th P y g

dip appears because of the presence of several phonon mo a8y refer also to the paper by Adathi Namely, they took

(bulk. interface, eta. At widthsL=50 A our results for the a slightly different expression for the confining potential:
energy practically coincide with those of Ref. 19. The dis- V(z)=600- (1.266¢+0.26k2) meV, (5.9
crepancy at smaller widths seems to be more crucial. But the
difference between the values in the peak and in the dip fowhich follows from the band gap of Ref. 30. Furthermore,
the curveA4E in Fig. 4(@) is about 0.1 eM3%). This phe- instead pf the effective LO-phonon frequency_ they used the
nomenon hardly can be seen experimentally and this discre§XPressions.2a for the energy of the GaAs-like phonons.
ancy is in the limits of the accuracy of our model estimated!he Frdilich coupling constan& was calculated then using
above. This gives indeed a strong support to our model and@lso the parametrizatiotb.1b and (5.4). Note, that these
we may conclude that the latter provides us with the rathePumerical calculations, as we found, can be approximated by
accurate approximation and can be used for more complithe interpolation formula
cated calculations in multilayered heterostructures. _ P

As to the shift of the electron band mass we found clear (2)=0.07970.077%+0.0295" (5.9
peaks for both the rectangular and the Rosen-Morse potefhe results of the comparison are shown in Figwe used
tials (see Figs. 2 and)3As is seen in Fig. 2 the effective in our calculations for this plot the same parametrization as
mass shift for the polaron in the rectangular quantum wellvas used in Ref. 20
has a peak at~20 A (x=0.3). Calculations show also The curveAchE in Fig. 5a) for the energy shift taken
that the larger i the smaller is the potential width corre- from Ref. 20 has also a small digualitatively similar to this
sponding to the peak. For the Rosen-Morse potential abf Ref. 19. But the discrepancy between energy shifts is
X,,=0.3 the peaks in the effective mass occur atrg much more drastic in this case, and we have no explanation
~20 A. Note that again the authors of Ref. 19 obtainedfor this.
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It is clear that at large potential width only a bulk phonon VI. CONCLUSIONS
mode inside the quantum well contributes so these curves
should have the same limiting valug,% w;, . Numerically To conclude, we suggested an approximate model to de-

we found a;,=0.0797 andi wj,=36.25 meV, soaj,iwi,  scribe a multilayered GaAs/Aba,_,As heterostructure as
=2.89 meV. Moreover, the behavior of the curves at ldrge an effective medium with onéulk) phonon mode. The fun-
should be qualitatively and quantitatively the same whichqamental entity is the confining potential generated by these
was the case when we compared our model with Refs. 1fyers which we take into account explicitly. Then we calcu-
and 19. In contrast with our model and the cited results byate the mean characteristics of the electron in the effective
Hai, Peeters, and Devreese the cutgE in Fig. Sb) ap-  medium (such as its band mass, phonon frequencies) etc.
proaches the asymptotics from below and the subsequeéfyich gepend on the form of the confining potential. With

mechanism remains unclear. On the other h"?‘”d’ there Atfese parameters we calculated the energy and the effective
some reasons why the curve have to approach its asymptotics . ¢ 4 polaron confined to a quasi-2D quantum well

from above. Indeed, at large potential width the particle doe,(ﬁ3 SIALGa, ,As for different AlAs mole fractions. The
e ; . aA - .
not feel yet the finite height of the potential, and the energy alculations include the full energy spectrum as intermediate

shift takes the same value as in the infinitely high potentiaF .
which is a bit larger than the free polaron energy. states. Peaks are found for the effective mass at some poten-

As to the opposite limit of the small width of the confin- tial widths while the energy demonstrates rather monotonous

ing potential, it is surprising that the asymptotic value is notP€havior between the correct 3D-limits. Finally, some dis-

reached even dt~0.3 A, as is found in Ref. 20. Numeri- Ccrepancies in the interpolation formulas for the experimental

cally we obtaineda,,=0.1014 in this scheme anblw, results are'discussed as well as discrepancies with the previ-

=34.72 meV, savy,fiwoy=3.52 meV. ously obtained theoretical results. We demonstrated that our
Both asymptotic values coincide with what was obtainedmodel gives practically the santer very closgresults as the

by the authors of Ref. 20. Looking at the behavior of theexplicit calculations of Ref. 19 for potential widthk

mass shift, we see that both curves coincide at large width&10 A.

as it should be. At widths smaller than 100 A the discrep-

ancy becomes evident. But we may conclude that something

is wrong with the numerical job of Ref. 20 because their ACKNOWLEDGMENTS
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