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Polarization and localization in insulators: Generating function approach
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We develop the theory and practical expressions for the full guantum-mechanical distribution of the intrinsic
macroscopic polarization of an insulator in terms of the ground state wave function. The central quantity is a
cumulant generating function, which yields, upon successive differentiation, all the cumulants and moments of
the probability distribution of the center of ma¥sN of the electrons, defined appropriately to remain valid for
extended systems obeying twisted boundary conditions. The first moment is the average polarization, where we
recover the well-known Berry phase expression. The second cumulant gives the mean-square fluctuation of the
polarization, which defines an electronic localization lengthlong each directionn £2=((XZ)—(X;)?)/N. It
follows from the fluctuation-dissipation theorem that in the thermodynamic §pdiverges for metals and is
a finite, measurable quantity for insulators. In noninteracting sysgér'nsrelated to the spread of the Wannier
functions. It is possible to define for correlated insulators maximally localized “many-body Wannier func-
tions,” which for largeN become localized in disconnected regions of the high-dimensional configuration
space, establishing a direct connection with Kohn'’s theory of the insulating state. Interestingly, the expression
for fiz, which involves the second derivative of the wave function with respect to the boundary conditions, is
directly analogous to Kohn’s formula for the “Drude weight” as the second derivative of the energy.

[. INTRODUCTION sity) but in configuration spacdwave function. Kohn
An insulator is distinguished from a conductor at zeroargued that such disconnectedness is in fact the signature of
temperature by its vanishing dc conductivity and its ability toan insulating wave function.
sustain a macroscopic polarizatiBp,,, both with and with- The other aspect of insulators, macroscopic polarization,
out an applied electric fielti In the classical theory of elec- s a subject about which there has been much debate. In a
tromagnetism in materials this distinction is often cast inconfined system with open boundary conditions, it is simply
terms of the difference between “free charges” that carrythe dipole moment of the charge distribution divided by the
the dc current in a conductor and polarizable “boundyolumel? In the case of an extended system, such as a pe-
charges” in an insulato? Such a description conflicts with riodic crystalline solid, the situation is far less clear: al-
the fact that, even in highly ionic solids, the electrons are nothough there exist well-known expressions for dielectric re-
well localized near the ions, and there is appreciable intersponse function®! the very definition of macroscopic
penetration between the ionic charge densftiésThe inad-  polarization as a bulk property independent of surface termi-
equacy of such a textbook picture is particularly striking innation remained controversial for a long time. Only in recent
the case of covalent insulators, whose charge density is dgears has a theory of polarization emerged—the so-called
localized, as in meta%.Therefore the qualitative difference Berry phase formu|atidﬁ_17_f0r the averag@macin terms
between metals and insulators is not apparent from inspef the bulk ground state wave function of an insulating crys-
tion of the charge distribution, and the correct notion of electal. This theory shows that in general the information about
tronic localization in insulators versus delocalization in con-the macroscopic polarization of an extended insulating sys-
ductors must be sought elsewhere. tem is not in the charge density, but in the wave function.
As shown by Kohrf? localization is a property of the This important finding is consistent with the well-known fact
many-electron wave function: insulating behavior ariseshat the dipole moment of a periodic, continuous charge dis-
whenever the ground state wave function of an extended sysribution is ill defined!®'°since the expressions for the first
tem breaks up into a sum of functiolsy, , which are local-  moment of the charge distribution are valid for confined sys-
ized in essentially disconnected regioRs, of the high-  tems but do not have a well-defined thermodynamic limit
dimensional configuration space. When using periodidndependent of the surface. The only instance where a mean-
boundary conditions on a supercell containiNgelectrons,  ingful dipole moment per unit volume can be assigned to an
an insulating wave function can be written as extended crystal is when the charge distribution in the unit
cell can be resolved into contributions that are localized in
nonoverlapping regions and can be ascribedidentifiable
atoms (ions, molecules (the so-called “Clausius-Mossotti
VX, ... 'XN):M;% Pmxa, .. Xn), (1) limit” ). However, such a limit is rather unrealistic for most
insulators, with the possible exception of some organic and
molecular crystals.
where for a large supercell,, and¥,,, have an exponen- In this paper we present a comprehensive theory of elec-
tially small overlap forM’# M. Hence, electronic localiza- tronic polarization and localization in bulk insulators that
tion in insulators does not occur in real spacharge den- generalizes the Berry phase theory and merges with Kohn’s
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theory of localization in the insulating state. By introducing (ground state and excited stgtewhich not only makes it

the generating function formalism, we show the rigorousimpractical for actual calculations, but also fails to reflect the

connections between polarization and localization, establisfact that electric polarization is a ground state property.

relations to experimentally measureable quantities, and pro- In the Berry phase theory of polarizatitfi;'® the Kubo

vide formulas for practical calculations. formula is recast in a form that only depends on the ground
The paper is organized as follows: in Sec. Il we summastate wave function; in order to arrive at such an expression,

rize some of the recent developments in the field, pointing tat is convenient to imposewisted boundary conditionsver

some of the open issues that will be addressed in this workhe volumeV on the many-body wave function, which be-

and collect relevant equations for later reference. In Sec. Iltcomes labeled bk:

is introduced the central concept upon which the present for-

mulation is based, the generating function applied to the ‘P(k)\)(xli coeXitL,xy)

guantum probability distribution of the macroscopic polar- — ek Ly (V)

ization. The simple case of a confined system is discussed -€ KX X X, )

first, and then we show how to modify the expressions tayhere N is the number of electrons in the systefn,

deal with extended systems. In Sec. IV we establish the=(|, 0,0), for example, ang 7/L;<k;</L; (in the case

fluctuation-dissipation relation between the quadratic quanof an orthorhombic supercglllt is useful to introduce the

tum fluctuations of the polarization and the absorptive part ofollowing wave function:

the conductivity for an extended system. In Sec. V we dis- X

cuss the qualitative differences between the quadratic fluc- |OMy=e kX w My, (5)

tuations in insulators and in conductors in terms of a prop- R R R

erly defined localization length; for insulators we derive anwhereX=EiN=1xi , S0 thatX/N is the position operator for

inequality involving the localization length and the optical the center of mass of the electrons in the volum¥. &

gap. In Sec. VI we introduce “many-body Wannier func- can be regarded as the many-body analog of the cell-periodic

tions” and establish the connection between the present fopart of the Bloch function in the single-electron case. It

malism and Kohn'’s theory of localization in the insulating obeys periodic boundary conditions, and khdependence is

state. Discretized formulas for the polarization and localizatransferred from the boundary conditions to the Hamiltonian:

tion length tha_t can be used in nu_merlca_l many-body calc_urf \I,(kx) is the ground state of the Hamiltonidh®), then

lations are ldenved in Sec. VII. A discussion of our results |s(D(k>\) is the ground state of the Hamiltonian

presented in Sec. VIII.

ﬂ(x)(k):e—lk.iﬁ(x)euk.k, (6)

which, for a nonrelativistic Hamiltonian without spin-orbit
A meaningful definition of average macroscopic polariza—coup“ng’ can be obtained frofil®™ by performing the
tion that is generally applicable—to both confined and ex-
tended insulating systems—and relates closely to the wa;
polarization is experimentally measured can be obtained b
taking as the more basic concept ttlgangein polarization
induced by a slow change in some parametein the
Hamiltonian?>?! The resulting expressions are in terms of
:Eg ]fijr(]ai;i(;/actri]\;en&PE,ﬁ;J&)\, and Restd proposed to calculate IV =2q, (3, DM, DM, @
ge in bulk polarization as

II. OVERVIEW OF RECENT DEVELOPMENTS

auge transformatiop,—p;+7%k on the momentum opera-
or of each particlgfor the single-particle analog, see Ref.
¥3) Using the functionb(", the Kubo formula for the adia-

batic electronic curreni{™ for a particular choice of twisted

boundary conditions can be expressetf45®

which indeed only depends on the bulk ground state wave
1 PN function. Substituting this expression into H8) and using
APrac= Jo dx IN 2) Eqg. (2), it can be shown that the net change in electronic
polarization along the path parametrized ys
Specializing to the case of extended systems alzg considering
the variation in\ as an adiabatic time evolutiosP,,/ I\ is ~1Qe . N N
the spatially averaged adiabatic current flowing through the (APE')i_(Zw)af dkfo d)‘[<‘9>\(b(k )|(9kiq)(k )>
bulk; thus this equation giveAP,,,c @s an integrated bulk
current. According to classical electrodynamicghis adia- — (O, PN DM, (8)
batic polarization current is

where the integral irk is over all twisted boundary condi-

aPM 1 1 tions.
P :Vf drj mk:va’ (3) As expected for a measurable quantity, the above expres-
v sion, as well as Eq.7), are invariant under gauge transfor-

whereV is the volume of the system anff), is the current ~Mations of the form

density in the bulk, whera plays the role of time in the PN _, gl ek Dy (M) 9)
usual expression for the curreffor a derivation see, for K koo

example, Ref. 14 J™ can be expressed as the adiabaticwhere ¢(k,\) is a smooth, real function. The ground state
limit of a Kubo formula for the currert:??In its usual form  wave functions¥ atk andk+ G, whereG is a basis vector
the Kubo formula involves a summation over all eigenstate®f the reciprocal lattice of the cell of volumé can differ at
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most by an overall phase factor, since the boundary condiReeds to be extended accordingly. For the sake of simplicity,

tions are the same and the ground state is assumed to bethe main text we will assume integer filling, and in Ap-

nondegenerat& pendix D we indicate how to modify the formulas in order to
deal with fractional filling.

PN = OCNOWR) (10) We note that in its present form the theory of bulk polar-
ization only gives theverageof the quantum distribution of
Pmac In Secs. Il C and 11l D we will extended it to deal with
the full distribution. In particular, its quadratic spread will
turn out to be a very relevant quantity, since it is intimately

AP..=pd) _ pl0) (11) rglateq to electronic Iogalization. To our knowledge this was
el el Tel first discussed by Kudinof” who proposed to measure the
where degree of electronic localization in insulators precisely in
terms of the mean-square quantum fluctuation of the ground
n_ Ge o) o) state polarizat?on. Kudinov proposed a criterion to differen_—
Pel :?I dk(® V| @), (12 tiate between insulators and conductors based on the scaling
(2m) with sample volumeV of the mean-square quantum fluctua-

and again the integral ik is over all twisted boundary con- tion of the net dipole momentAd?)=(d?)—(d)?; hered is
ditions. Equationg8), (11), and(12) form the central result the dipole moment operatot, - -) means the expectation
of Ref. 14, which gives the many-body generalization of the,jye over the ground state, amd=d—(d). Using the

Berry phase theory of polarization, originally formulated by fjyctuation-dissipation theoreff;3? Kudinov related this
King-Smith and Vanderbilt for independent electrdAs® In guantity to the optical conductivity:

the derivation it is assumed that the ground state is isolate
from the excited states by a finite energy gap, and that there ~
are no long-range correlatiofsIn the independent-electron (Adi%)
theory the Berry phase formula in terms of Bloch functions \%
can be recast in terms of localized Wannier functiths,

yielding the intuitive result that the electronic polarization iswhere y(w) is the electric susceptibility tensor and
given by the sum of the centers of charge of the occupied-x,y,z. Using Eq.(13), Kudinov showed that a¥—,
Wannier functiond?*®Unfortunately, Wannier functions are (AG2)/V remains finite in insulators, whereas it diverges in

only defined in a one-electron framework. In Sec. VI B We 4 ctors. Only confined systems with open boundary con-
will introduce functions that are in some sense the manyyitions were considered, and thus the issue of how to deal
body counterpart 9“ Wanm.er functiorige will term them with P, In extended systems was not addressed. Our for-
many-body Wannier functions; and can be chosen to be , jati0n Jeads to similar expressions, but with carefully de-

localized in configuration space. In terms of those functionsgyaq bk quantities that have a well-defined thermodynamic
a localized description of polarization can be presented fo; it

the correlated case. Moreover, they establish the link be- The ideas from the Berry phase theory of polarization

tween the Berry phase theory of polarization and Kohn'syaye recently been extended in order to address the problem
theory of localizatiorf: of localization. This effort was initiated in Ref. 33, where
_ The following comments should be made about the equas o jnteracting electron systems with a band gap were con-
tions above: unlike Eq(8), which involves an integral over gjjereq. For such systems it is natural to attempt to quantify
A, Egs.(11) and(12) only depend on the endpoints=0 o gegree of localization of the electrons in terms of the
and\ =1. The tradeoff is that whereas the former gives thespread of the occupied Wannier functions. Marzari and

exact change in polarization along the path, the latter give i{/5nderbilt proposed to measure that spread via the quantity
only modulo a “quantum®?~1(this “quantum of polariza-

tion” is discussed in Appendix IC A related aspect is the M
behavior of the equations under gauge transformations: un- 0= E [(r2) —<r>2]
like Egs.(7) and(8), Egs.(11) and(12) are not completely = n n-
gauge invariant. As mentioned previously, they were ob-
tained by assumin@)\(@(k,)\;G):O, and therefore the re- Where<. . '>n means the expectation value over tiif oc-
sulting AP is only invariant(modulo the quantuinunder  cupied Wannier function in the unit celivhose total number
transformations that preserve the conditi®{k,\=1;G) M equals the number of filled baniiSince the electronic
=0(k,\=0;G). Moreover, in order to be able to interpret polarization is given by the sum of the centers of charge of
Eq. (12) at asingle\ as the electronic polarizatior?’ one  the occupied Wannier functiod&23 this expression is very
has to impose the stronger conditidn(k,A;G)=0, or  appealing in its interpretation as the spread of the charge
TN =vM. Gauges that obey this condition are known asdistribution of the Wannier functions. It should be noted
“periodic gauges.™? however, that unlike the sum of the centers of charge, the
It has been pointed out by Aligiithat this analysis needs sum of the quadratic spreads is not invariant under gauge
to be modified in cases where there is a fractional number dfansformations of the Wannier functiofisand so) cannot
electrons per primitive cell. The idea of a “periodic gauge” be used directly as a measure of any physical quantity. Nev-
needs to be extended to relate wave functions separated leytheless, Marzari and Vanderbilt were able to decompose it
multiples of the smallesG, and the integral in Eq(12) into a sum of two positive terms: a gauge-invariant p@jt,

If ®(k,\;G), which is at our disposal, is chosen to be inde-
pendent ofA, then it can be shown that the net change in
polarization becomes simply

h o
:;jo demXii(w), (13)

(14)
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plus a gauge-dependent term, which they minimized to obThey showed that if the electrons are uncorrelated, then for
tain maximally localized Wannier functions. insulatorsé is simply related to the 1D version 6f, defined
We will show that(), gives the mean-square fluctuation in Eq. (15) (¢2=,/M), and therefore it is finite, whereas
of the bulk polarization, thus obeying a relation analogous tdor metals it divergeseven before taking the limil— ).
Eq. (13 (see Appendix A Moreover, in the same way that Then they proposed that a similar behavior should occur
) measures the spread of the Wannier functions, for indewhen the electrons are correlatenith the difference that in
pendent electron§); measures the spread of Kohn's func- general¢ diverges for correlated conductors only after taking
tions ¥, ,%° which can be interpreted as maximally local- the thermodynamic limjt
ized many-body Wannier functions; this is discussed in Sec. In the present work we generalize Ed9) to many di-
VI B and Appendix B. mensions(see Sec. VII B, and give an explicit many-body
In Ref. 33 it was shown thd®, be rewritten as derivation that, similarly ta), in the uncorrelated casé?
measures the polarization fluctuations in correlated extended
systems. Similarly to the continuum formulas involving an
fBdeTrg(k), (15 average over twisted boundary conditiGRghese formulas
require modification when there is a noninteger number of
where Tr denotes the trace,is the volume of the unit cell, electrons per celf (see Appendix D
the integral is over the Brillouin zone, andk) is the tensor

Q =
" (2m)3

M IIl. GENERATING FUNCTION FORMALISM

gij(k)zReEl <3kiUnk|(7ijmk> A. Definitions
) Generating functions play a central role in the theory of
MM statistics}’ and have been applied to many problems in
=2 2 (O Unl Ui (Ui Unk), (18)  physics®®3 Loosely speaking, a generating function of a
n=1 m=1 ! J Lo . . . .
distribution is some function that yields, upon successive dif-
where u,, is the cell-periodic part of the Bloch function. ferentiation, the moments of the distribution, or some com-
This tensor is a metric that can be used to determine thkination thereof. Two kinds of generating functions will be
“quantum distance” along a given path in knspace®® In  of interest to us: theharacteristic function G(a), and its
Sec. Il D we generalize this tensor to the many-body casdogarithm, thecumulant generating functiorf X is a vector
and in Sec. IV we relate it to the measurable polarizatiorof d variablesXy, . .. X4 with a normalized joint probability
fluctuations via the fluctuation-dissipation relation. distribution functionp(Xy, ... ,Xg)=p(X), the characteris-
All of the above expressions for the polarization and lo-tic function is defined as
calization involve integrals ovee. More recently, alternative .
expressions have been proposed which use only periodic _ —1a-X —/alaX
boundary conditions K=0).10173* These are sometimes Cx(a) f € PO dX=(e™H, @D
called “single-point” formulas. The basic quantity in this
formulation is, in one dimension,

—oo

where a- X=3¢_, &;X; .*° The d-dimensional moments can
be extracted directly fronCy(a):

ZN:<\Pk=0|el(2W/L)>A(|\Pk=O>v (17

whereWV,_, is the ground state many-body wave function
obeying periodic boundary conditions over a cell of length  \wheren==3{_ n;. The cumulants are obtained in a similar
with N electrons, and as befode=3! ,x;. Restd’ showed way from InCy(a):

that in the thermodynamic limit the electronic polarization is

X Xg) =10, nCx(@laco, (22
1 d

given by (XL X0y = |“a2n1_”azd INCy(@)| a0, (23
1
i e where, following the notation of Ref. 38; - - ). denotes the
Pel ,\Illinm 27r|m|nZN' (18 cumulant averagewhich in general is different from the

simple averagé- - -} associated with the moments:
However, the nature of the approximations involved at finite

L, and the precise relation between E¢(2) and (18) as a (Xi)e=(Xi),
function of the size of the system, were not clarified; this is a
matter of crucial importance for the usefulness of the expres- (XY= (X = (X)2=(AX?),
sions in practical calculations, and is discussed in Sec. VII C.
Resta and Soreff4 proposed to measure the electronic (XiXj)e={(XiX;) = (Xi){X;). (29

localization length in one-dimensionélD) insulators a®
An important property of cumulants is that they can be
&= \/5/(27-rn0), (19 explicitly represented solely in terms of the lower moments,
and vice versa. More precisely—and this is very relevant for
what follows—forn>1 they can be expressed in terms of
D=— lim NIn|zy|2 (200  the central moments{AX"AX72AX7%), where AX;=X;
N—oe —(X;) andm,+m,+msy=<n, and thus they are independent

whereny=N/L and
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of the mean(X;). Moreover, provided that the characteristic ~ Again let us consider a finite system withelectrons in a
function exists, the set of all the moments or cumulants comvolume V, but now with twisted boundary conditiof&q.

pletely determines the distribution. (4)], which eliminate the surface. The difficulties in defining
the macroscopic bulk polarization can be seen from the fact
B. Polarization distribution in confined systems that)A(in is not a valid operator in the Hilbert space defined by

Let us consider a neutral 3D system of finite volume Ed- (4): indeed, if| W) is a vector in that spac&(| V) is
containingN electrons andN,, nuclei, on which we impose not (it is not even normalizable and thus (X{)y
open AbounoAIary condi}ionsNTrJe diI09|e mgmgnt operator is=(y | X" W¥,) is ill defined. We will now show that al-
d=qgeX+0nX,, whereX=Z3;L,x andX,=2;",x'. The av-  though theoperator X is ill-defined, one can nevertheless
erage dipole moment of the system ©=(¥|d/¥) define a meaningful joint probabilitgistribution p(X) for
=[rp(r)dr=VP,,. Since the center of mas$/N of the the electronic center of mass in an extended insulating sys-
electrons is not perfectly localized, the ground state wavéem. This distribution will have the same physical interpre-
function W is not an eigenstate &. Therefore the Cartesian tation as Eq(25) for a confined system, i.e., the moments of
components of the dipole moment undergo quantum fluctugN variables Re); =deX; /V are the moments of the distri-
tions, having a joint probability distributiop(d) dictated by ~ Pution of the electronic polarization:

V. For simplicity we will assume that the nuclei can be

treated clz_issically as “clamped” point gha_rge_s; then they <(Pel):1( Pe|)22(Pe|)23>:
only contribute to the average of the distribution, and the

quantum fluctuations come solely from the electrons. HenceQur main interest will be in the averageX;) and in the

in what follows we will neglect the nuclear contribution, quadratic spreadX?). which, according to Ref. 29, mea-
focusing on the distribution of the electronic center of masssyres the electronic localization. More precisely, we will de-

If W is the many-electron wave functioiparametrized by fine the localization lengtt§;(N) along theith direction as
the nuclear coordinatgsvith normalization{ W|W)=1, that

distribution is given by

n
qve (XPX2XE3). (29)

2(N)= = (X2 v APad?
&(N)= N( i>c_agﬂ<( man‘)i>! (30a

P(X)=(¥|a(X=X)[¥). (25 and show that for insulators it has a well-defined thermody-

Similarly, for a given component, sa¥,, the distribution s~ namic limit
o ) &= lim &(N). (30b)
P(X1)= J, P(X)dXod Xs=(W[8(X1—X1)|¥). (26) N
The desired distributiorp(X) can be obtained via a
The characteristic functioBy( a) is obtained by substituting Proper modification of the characteristic functiGg(«), de-

Eg. (25) into Eq.(21): fined in Eq.(27) for a confined system. We start by intro-
ducing the quantitZ(k, &), which is aprecursorto the char-
Cx(a)z(\lf|e"""§(|\lf)_ 27 acteristic function for the extended system:

Ok, @)= (Wl X W,, S =(Dy|Py. ), (31

It is clear that if we define <X21X22X23> here i (th al) t< d it | k+a>d < k|| k,:ha> i tf( :

= (VIR we find, using EQ(22), (GHGHE) e seniarty 1 Eq.27) s evident® matice, however, tht
=(X11X52X3%).%° The electronic polarization operator is this is not an expectation value over a single ground state
(Pe)i=0eXi/V, and the moments of its distribution are W«. since the boundary conditions on thea (k) and on the
given by ket (k+ ) are different. That is required in order to com-
pensate for the shift by & in the boundary condition on the

ket caused by the oper@tcar"“‘x; in this way the states

|¥,) and|¥(a))=e"'**|¥,, ,) obey the same boundary
conditions even fore;#2mn/L;, so that their dotproduct

(¥, |¥ (@) does not vanish and(k,a) can be chosen to
I be a differentiable functiofwe are assuming that the ground
C. Polarization distribution in extended systems state insulating wave functio®, is nondegenerate and is

In the case of a confined system the characteristic funcSeparated in energy from the excited states by a finite. gap
tion Cy(a@) was introduced as a purely formal device for ~ ThatC(k,a) is not yet the characteristic function fp(X)
obtaining the moments of the distribution, since in practice itih the extended system can be seen from the fact that the first
was completely equivalent to a direct evaluation of the mo-"moment” that it generates is not gauge invariant, as re-
ments. In the case of an extended system the situation Ruired from any physical quantify.Iif C(k, @) were the char-
rather different since, as discussed in the Introduction, th@cteristic function, the first moment would be, according to
very definition of polarization needs to be reexamined, and &0- (22), (Xi)k=134,C(K,@)|a=0=1(Py| 9 Py). But this is
naive generalization of the direct method of calculating thenothing other than th&erry connectionwhich is a gauge-
moments does not apply. dependent quantit{see, for instance, Ref. 16

<<Peo21<Pe|>22<Peo§3>=(%) (XPXPXS), (29

wheren=n;+n,+n,.
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D. Gauge-invariant cumulants Choosing a gauge such thht = ®} , which can always be
Gauge-invariant moments and cumulants for an extendeone due  to  time-reversal symmetfy, leads to
insulating system can be obtained from the following cumu{® kP -+ ) =(Px+ glPi), and thus f, . (=K)

lant generating function, which is the central quantity in this=[fnln2n3(k)]*. That completes the proof, since according

work: to Egs.(31), (32), and (33), (XX}2X%), is given by the
Vv average ovek of fnlnzng(k)- (Since gauge invariance was

In C(a)=—3J dk InC(k, a), (32 previously established, the choide_,=®} can be made

(2) without loss of generality.

where the average is over all twisted boundary conditions L€t us now look at explicit expressions for the first few

(see Appendix D for special cases where the number of ele€Umulants. Combining Eqé31) and(32) and taking the first
trons per primitive cell is not an integefThe cumulants are derivative, we find

then obtained in the same way as in E2Q):

\%
(XD X =170, INC(@ao,  (33) ﬁ“i'”c(“”“:(’:(zTﬁJdk@k")ki%' 37
1 d

and likewise for the moments. Before we continue, we point' °9ether with Eq(23), this gives
out thatC( ) is in general different from the function

Y,
Cwla)= 3j dk C(k, ). (39
(2m) which, with the help of Eq(29), is seen to be precisely the

This is also a characteristic function, but of a different, By phase expression for the average electronic polariza-

gauge-dependent distribution, whose interpretation and reldi®" [Ed. (12)]. Our formulation in terms o(a) therefore
tion to C(a) will be discussed in Sec. VI B. agrees with the Berry phase theory of polarization. It is, how-

As mentioned in Sec. Il, Eq(12) is most easily inter- ever, more general, since it also provides the higher mo-

preted when using a periodic gaugg; . c=V,. Since we ments: forn=2, similar steps as before lead to

will recover Eq.(12) starting from InC(«), a periodic gauge

will be assumed in what follows; thus what is meant here by (XX )= — v f AK[( D] 32, D)

gauge invariance is invariance under transformations that e 2m)3 Kl %kik; =k

preserve the phase in Ed.0). The most generap(k) in Eq.

(9) that complies with this requirement's* —<‘I’k|07kiq>k><q)k|5kj¢k>]- (39

v
<Xi>c:(27)3f dk(® | oy i), (38)

o(k)=B(k)—k-R, (35) Integ_rgting the firs_t term by partsising the periodic gauge
_ _ _ condition and noting thal(<bk|akid>k>: —(akifka(Dk), this
whereR is an arbitrary lattice vector and(k+ G) = B(k). becomes{XiX->c=V/(87-r3)fdk T, (k), where
The gauge invariance of the cumulants generated KB(d) ! !

can now be seen as follows: According to E@, (23), and i (K) = () Pl Iy Pie) = (I Pic| Py )( D] Iy D) (40)
(32), the cumulants change under a general gauge transfor- ' ! ! !
mation as is the gauge-invarianquantum geometric tensr[see also

Eq. (C9) of Ref. 33. The real part ofT;;(k) is the metric
tensorG;; (k) first introduced by Provost and Vallée:

XXX (XX 7
Gij (k) =Re(di, Pil i Pic) — (9 Pul P} D[ 91 P

(41)

where the second term is automatically re@j;(k) is the
many-body analog of the tensgy;(k) defined in Eq.(16).
Using Eq. (24) and the fact that the cumulants are real,
(XiXj) can be rewritten as

X f Ak Gy, s @ (K). (36)
12 3

Substitution of Eq.(35) into Eq. (36) shows that for
n=1 the cumulants change 8X)—(X)+R, whereas for
n>1 they remain unchanged. The chang&X) but not in
the higher cumulantgwhich do not depend on the mean v
indicates a rigid shift byR of the whole distributiorp(X), <xixj>cz_f dk Gy (k), (42)
and is related to the quantum of polarizafibtf (see Appen- (2m)®
dix C).

The cumulants are also real, as expected: definin hich becomes, after taking the trace, the many-body coun-

Ch.n B erpart of Eq.(15). Together with Eq(30a, the above equa-
Fryngng(K) = Inaa:1a22a23 D[Py o)|a=0 @nd B=—a, We o establishes the physical interpretation of khaveraged

obtain metric tensor as the mean-square fluctuation of the macro-
scopic bulk polarizatiorisee also the next sectipmhe gen-
f (—K)=(=1)""3"n, n, n,IN D |D_ s )] po- eral connec;ion between such “gquantum metrics” and quan-
1723 BBy S < (+m)lp-0 tum fluctuations was pointed out already in Ref. 45.
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IV. FLUCTUATION-DISSIPATION RELATION odw T

q2 S

e 0k _ € i j
We have seen that the first cumulant agrees with the Berry Jo Reaij(0)=3y Re{ mzo Xom"‘xmo"‘]
phase expression for the average macroscopic polarization. )
Here we will show that the expression for the second cumu- B quR P S WD
lant, Eq.(42), is consistent with the fluctuation-dissipation Y {9, oK m>0| i (P mi
relatiorr~32 between the fluctuations iR,,. and the optical
conductivity Im x;; () = (L/w)Re ojj(w).

For a confined system with open boundary conditions,
which is the case discussed by Kudirfdvthe Kubo- ) } o ]
Greenwood formula for the conductivity can be written in Using the completeness relation to eliminate the excited

terms of the off-diagonal position matrix elements, ~ States on the right-hand sidehs), and comparing with Eq.
(40, we find Tj;(k)=2m-0XomXhok- Together with

X |f7qu)0k>] : (47

=Yl Xl Wr): Gy (k)=ReT, (Kk), this yields
2 *dw 7Tq2
7q o bt Ok, \_."He
Reo'inj(w): 2 z wﬁ’mRe{XlnmXJmn&wmn_w) f() wReU'] (a)) A G”(k)' (48)
meth m#n
| vl Averaging over all twisted boundary conditions and using
~ XnmXmnd(@mnt @)1, (43 Egs.(33) and(42), we arrive at the desired relation:
wheref wq,,=E,— E, . Alternatively, the well-known rela- ot 2 :i .
tion Nﬁ“i“j |I’1C(a)|a:0 N<XIXJ>C
i i f o —
Phm=1Me@nmXpm  (M#N) (44) =— —Reoij(w), (49
mQeNg/0 @

can be used to rewrite EGA3) in terms of momentum matrix where ny=N/V and ;”.(w) =(V/87°) fdk ng(w)_ Equa-
elements. Whereas for a confined system the two formulagon (49) is precisely the fluctuation-dissipation relation for
are interchangeable, for an extended system the position Mayore than one variable® for the extended system &t
trix elements become ill defined, and therefore only the lattet=0 [compare with Eq.(13), using Eq.(30a and setting
form remains valid. VP, .=d].

At this point it is convenient to introduce the notation

V. LOCALIZATION LENGTH
Inm,k: '(q)nk|l”7ki‘bmk>:(xlmn,k)*- (49) A. Relation to the conductivity

Here we will generalize to extended systems Kudinov's
The single-body analog of such quantities is discussed imnalysis of the fluctuations iR,,. as a way to distinghish
Refs. 23 and 46. Our motivation for introducing them is theinsulators from conductof$and discuss it in terms of a lo-
following: if I5=2iN:1|6(i) is the many-body momentum op- calization length. It is convenient for that purpose to classify
erator for the extended system, aﬁﬂnk=<‘1’nk||5|‘1’mk>' in sollds_lnto three catego_rlgs, according to the low-frequency
the case of a nonrelativistic Hamiltonian without spin-orbit °€havior of the conductivity af=0 asV—c:

coupling Egs.(5) and(6) lead to lim Reo(w)=0, insulators

w—0

P;mykz%@nkuaki K| ) Reo(w)=(2mq%/7?)D8(w)+Reoef w),

_ |mewnm(k)xinm,k (m#n). (46) ideal conductors (50)
lim Reo(w)=0y, nonideal conductors .

which is formally identical to Eq(44). Notice, however, that =0
we are now dealing with aextendedsystem with twisted |5 1ators are characterized by a vanishing dc conductivity,
boundary conditions, for which the proper position matriXi, contrast to conductors. The singular contribution
elements{W | Xi| W), are ill defined; the above relation (27q%#2)D s(w) occurs in ideal conductors—those with-
shows that they should be replaced by the quantiigs,.  out any scattering mechanism—abdis called the “Drude
Substituting Eq.(46) into the Kubo-Greenwood formula in  weight” or “charge stiffness.®%4’ If there is scattering, the
the form valid for an extended system, we are left with ans function peak is smeared out to a Lorentzian, so fhat
expression for Re () formally identical to Eq(43), with =0 and the dc conductivity of nonideal conductors, such as
Xnm replaced byX(, .. and wpy, replaced bywp,q(k). disordered metallic alloys, has a finite valug; oef ) is

Let us now specialize to the ground state<0), assum- the regular finite-frequency part of(w) in perfect conduc-
ing that it is nondegenerate; then,(k) >0, and we obtain tors.
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TABLE |. Comparison between the formulas for the Drude weight and for the localization length, their
relation to the optical conductivity, and their asymptotic values in the thermodynamic limit for insulators and
conductors aff=0.

Drude weight Localization length
i 1 #PE(K) 1 #%InC(a)
Formula in terms of T E(N)=— =
twisted boundary conditions ARG o : N ga? S
. . 1 f *dw
Relation to conductivity Di=— 5 lim oImoj(w) 2(N)= — Reoji(w)
2 w—0 quno 0 W
Asymptotic value
(N,V—x)
Insulators Zero Finite
Nonideal conductors Zero Infinite
Ideal conductors Finite Infinite
The only possible divergence of the integral on the rhs of B. Relation to the optical gap
. _ A 48 . . .
Eq. (49 is around w=0," because asv—o Im y;(«w) In an insulator optical absorption starts at a threshold en-

~af3f.2 Su.bstituting EqLSQ).into Eq. (49 we see that the ergy Ey, below which Rer;(w)=0 (we are neglecting
quantity & in Eq. (30b) is finite for insulators and diverges phonon-assisted transitions, so that the §ggs the mini-

for conductors. By the same token, using the zero-frequencihum gap for optical transitiopsFrom this it follows that
limit of the Kramers-Krmig relation’? one finds the familiar

result that the static susceptibility is finite for insulators and

divergent for conductors. Hence, assuming Eif), at T d—wRea”(w)sif do Reoji(w). (51
=0 the following three conditions are equivalen) o @ EgJo

Rey:;i(0) is finite, (ii) lim,_oReo;(w)=0, and(ii) & is

finite. With the help of the sum rule for oscillator strengths®

The quantity¢ has the dimensions of length. Since it is Jodw Redii(w)=(1/8)w} (wj is the plasma frequengyto-
finite for insulators and infinite for conductors, it is natural to gether with Eqs(30) and(49), we conclude that
interpret it as an electronic localization length along itie
direction. According to Eq49), for extended systems with a 5 K2
finite volumeé(N) can be written in the form given in Table §<5mE. (52
I in terms of the cumulant generating function. This formula €9
has a striking similarity to the Drude weight formula derived
by Kohn in terms of the total energg(k),%*"*°given also
in Table I: both are second derivatives of some quantity wit
respect to the twisted boundary conditigms the case of

This inequality shows that the polarization fluctuatipgs|s.
h(30)] are controlled by the optical gap, lending support to the
Intuitive notion that the larger the gap, the more localized the

£(N) the twisting of the boundary conditiok is followed electrons. It strongly resembles an inequality previously de-

by an averaging over ak, hence the parameterinstead of rived _by K|velsorz _for noninteracting electron§ in one di-
K], mension, where is replaced by the quadratic spread of

It is clear from Table | that unlike the localization length, proper_ly chos_en Wannler fgnctzlons. As discussed in Appen-
the Drude weight does not provide a universal criterion todiX A, in factin one dimensiog;” equals the average spread
discern insulators from conductdt€.However, the combi- ©f the maximally localized Wannier functions.
nation of the two quantities in principle enables us to distin-
guish between the three categories. In the same way that the
Drude weight measures the “degree of conductivity” of an
ideal conductor, 14, measures the degree of localization of  The expression for the cumulant generating function, Eq.
the electrons in an insulator. Insofar as localization—in a(32), involves an average over all twisted boundary condi-
properly defined sense—is an essential property of the insuions, which was introduced in a somewlathocmanner in
lating staté®® this can be viewed as a meaningful measure obrder to render the resulting distributi@{X) gauge invari-
the “degree of insulation,” one which is expected to apply ant (modulo a rigid shift by a quantumWe will now shed
to all types of insulators. some light on the physical significance of the averaging pro-

Although we have managed to expreéssn terms of the  cedure, by showing how it can be rationalized in terms of the
measurable optical conductivity via the fluctuation- notion of electronic localization in insulators developed by
dissipation relation, it is not yet clear how it relates to theKohn®® This will be achieved by introducing many-body
notion of localization put forward by Kohn, in terms of the Wannier functions and will allow us to tie together the
localization properties of the insulating wave function intheory of bulk polarization and Kohn's theory of localiza-
configuration space. That will be discussed in Sec. VIB. tion.

VI. MANY-BODY WANNIER FUNCTIONS
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X, N
i , 2, (= Lm)in Ry .o
. % v Q=4 =1 | Lo (56)
F(Xq, ... Xy)outside aIIle... my
SO PR : whereF is a largely arbitrary, periodic function, which joins
: : ~a smoothly with the values of at the boundaries of the re-
— .
: X gionsR . ...m.. Let us now look at the precursor character-
:’////% ;/%:% ! % 1 . . 1. N . .
[/} 24, ' istic function C(k,a) for such a confined system obeying
LEQ twisted boundary conditions: substituting the previous ex-
_______________________ i pressions into Eq31), we find
C(k,d)i<¢’k:o|e_'a'Q|‘bk:0>i<‘l’o~~~o|e_'a'x|‘1’o...(o>a7)
% VA % 5
which has the form of Eq27), obtained using open bound-
ary conditions. It is clear that as a result of localization of the

. . . . electrons in real space the choice of boundary conditions is
FIG. 1. Schematic representation of the regi@ ... m, in the immaterial. In particularC(k, @) becomes independent bkf

many-electron configuration space where the wave function of And thus from E §32) and(34) we conclude that
confined system obeying periodic boundary conditions is localized. as.

The system has linear dimensionsa, and the periodic boundary . -
conditions are over a length>a, so that the region’le... m,, are C(k,@)=Cw(@)=C(a). (58
essentially nonoverlapping. Hence, averaging over boundary conditions becomes redun-
dant, and’(k, @) is already the correct, gauge-invariant char-
A. Confined system: Localization in real space acteristic function. Finally, it is interesting to note that Egs.

It is instructive to start by discussing the case of a con{55 and (57) can be viewed as a particular realization of
fined system of linear dimensionsa (e.g., a molecule with  EGs.(2.22 and(2.23 of Ref. 45, which were used to relate
N electrons. Instead of the usual open boundary conditions the quantum metric to the quantum fluctuations for a particu-
we can choose to impose periodic boundary conditions on itir class of manifolds.
wavefunction[k=0 in Eqg. (4)], choosingL>a. The result-
ing N-electron wave function is periodic in configuration B. Extended insulator: Localization in configuration space
space, as depicted schematically in Fig. 1 for one dimension
and N=2; it is a sum of partial wave functions that only wit
differ from one another by a translation of the coordinates

Let us now consider an extended system, such as a crystal
h twisted boundary conditions over a large but finite vol-
"umeV. Although in general the charge density will be delo-
calized in real space, Kohn has argued that if the system is
W o(Xs e X =2 o 2 W m (Xes e X)), insulating the wave function is localized in configuration
my N ! N space® Kohn’s notion of localization is weaker than the one
(53) implied by Eq.(54) and Fig. 1; however, as we will see, it is
where the integer vectofsn;} label the partial wave func- sufficient to recover E(58), after making a judicious choice
tions. These are localized in geometrically equivalent regionsf gauge.

R, ...my, in configuration spacéshaded regions in Fig.),1 We start by introducing a localized description of the
which for L>a are essentially nonoverlapping: many-electron insulating wave function in configuration
space. In the noninteracting case, a localized one-electron

=0 description (in real spacg is provided by the Wannier
functions?>2°43The Wannier functiodRn) associated with
, bandn and centered around the unit cell labeled by the lattice
.my), (54 ) ) .
vectorR is related to the Bloch functions by the following
where, using the notation of Refs. 8 and 9, the symbol unitary transformation:
denotes equality apart from exponential small corrections
that vanish in a manner such @s“/¢, where¢ is a localiza- 1
tion length(in this examplet~a). |R”>=\/—— > e Ry, (59
Next we switch from periodic to twisted boundary condi- Ne &
tions[k#0 in Eq. (4)]. From the confined character of the \here a periodic gauge is assumed, and the sum is over a
system it follows, by a simple generalization of the argu-ypiform grid of N, points in the Brillouin zon&? Due to the
ments outlined in Sec. 2 EfXRef- 8, that the periodic part Ofyjscretization of the integral ovér, |Rn) is actually periodic
the wavefunction®,=e™""W, can be written with an i 3 |arge cell of volumeN.v (v is the volume of the unit
exponentially small error as cell). The many-body analog of a periodic Wannier function
ke (many-body Wannier functigncan be defined in a similar
Pi(xa, . X =T P gxg, - Xy). (85) way in terms of the many-body wave functioh, (again
Here we have introduced the quantity assuming a periodic gauge

‘Pml'”qujmi'”ml’u

for (mq, ... ,my)#(mg, ..
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1
|WM>:w Ek: e K Ru|p,), (60)
C
so that, using Eq(5),
1 —1k-(X—Ry)
0= 2 e WWy). (61
Cc

Here Ry=32 ,M;L;, where theM, are integers, and the
vectors{L,L,,L3} define the volumé/ containingN elec-
trons (notice thatV is the volume of a supercell, typically a
large multiple of the unit cell volume). ®, is periodic and
¥, obeysk boundary conditions over the volumé" in
configuration space, and bot, andW,, are periodic over
the volume N V)N. The normalization conventions are the
following: @, is normalized to one over a volum&', and
Wy, is normalized to one over a volum&l{V)N. Similarly

to the|Rn), the|W,,) form an orthonormal set.

1675

FIG. 2. Schematic representation of the essentially disconnected
regions Ry in the many-electron configuration space where the

From the same type of general considerations which ar@ave function of an extended insulator is localizedapted from

used to show that Wannier functions can be chosemef. 9. For d real-space dimension®M=(M,, ...

localized?® it follows that we can choos®,, localized in
the variablex=3! ,x;, with a distribution

Pw(X) = (Wi | (X = X)[Wy). (62)

Substituting Eq(61) in Eq.(31), averaging ovek, and com-
paring with Eq.(34), after discretizing the integral ovéy,
yields

1 -
Cula)=§- Zk C(k,@)=(Wyle '"*X|Wy), (63

which shows that the functio®(a) introduced in Sec.
[l D is the characteristic function of the distributigmy,(X).

It is straightforward to check that the first moment of this
distribution equals the first moment of the gauge-invariant

polarization distributionp(X) generated byC(ea); this is

My, and
shown is the case of two electrons asie 1, for which the con-
figuration space isXj,X,). The system is composed of possibly
strongly overlapping units in real spa¢eg., a covalent insulatpr
and yet, because it is insulating, in configuration space the wave
function ¥ breaks up into a sum of partial functions,,, each
localized in a regiorRy, , which have an exponentially small over-
lap with one another, if the system is large.

one finds that the present many-body Wannier functions are
nothing other than Kohn’s function&Vy,= N.¥,, [com-
pare Eq(61) with Eq. (6.1) of Ref. 8|, except that Kohn only
considered gauges where they are localized in such a way
that the overlap becomes exponentially small:
Wu(Xg, .. forM’#M,
(64)

XN (X, - X)) =0

similar to the independent-electron case, where the averagm® that theV', are uniquely defined apart from exponentially
polarization is given by the sum of the centers of charge oémall variations and an overall phase. Transposing the lan-

the gauge-dependent Wannier functidhsLikewise, the
many-body Wannier functiond/,, are gauge dependent, and
as a result so are the higher cumulantpg{X), in particu-

guage of Ref. 33 to a many-body framework, Kohn'’s func-
tions ¥, can be viewed as the maximally localized many-
body Wannier function®V,, (see Appendix B

lar, the quadratric spread. Notice that the gauge dependence In such “nonoverlapping gauges,” the precusor charac-

of the Wy, implies that in general they overlap with one

teristic function, Eq(31), becomes, using Eq&1) and(64),

another’® and only in certain gauges are they localized to the

point of being essentially nonoverlappirovided that the
system is insulating This is different from the usual single-

body Wannier functions, which in general remain overlap-

Ck,a)= NC<\PM|e"“'5‘|\PM) (nonoverlapping gauge
(65)

ping in any gaugéeven though they are orthogonal, so thatwhich is independent df, since thek dependence dai(k, «)

the overlap integrals vanighin the many-body case we are
free to choose the volum¥ large enough so that with a
judicious choice of gauge th#&,, become nonoverlapping in
the high-dimensional configuration space.

We are now in a position to provide the link between the
present formalisntand, therefore, the Berry phase theory of

polarization and Kohn’s theory of localizatioh® A major

in a general gauge arises from the cross terms between dif-
ferentW,, . Therefore in such gauges we recover Esf),
which for a confined system obeying twisted boundary con-
ditions was valid in any gauge:
C(k,a)=Cy(a)=C(a) (nonoverlapping gauge
(66)

result of Kohn’s work is the conjecture that a general many-

body insulating wave functiof’,_ o, with periodic bound-
ary conditions over a large volumé breaks up into a sum
of nonoverlapping part¥,,, localized in disconnected re-
gions Ry, in configuration spacgEq. (1)]. Upon inspection,

Finally, from the gauge invariance @f( @) we conclude that
in any gauge

Cla)=N(Wyle ' “X|w,), 67)
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p(X) cently discussed in Ref. 17. We recall that the source of the
M= -1 M=0 M=1 problem is that in such systems the usual center-of-mass po-
sition operatotX is ill-defined (see Sec. Il ¢ Kohrf*° pro-
posed the following operator as the substitute Xofor tak-

ing expectation values over the ground state wave function
of an extendednsulator.

~ | X=Ry inRy

. (69)
F(Xq,...Xy) outside allRy,,

where F is defined in a similar way as in E@56). It is
-+ 0 E X straightforward to check that the moments calculated f@m
FIG. 3. Localized distributiom(X;) along theith direction ofN coincide with those derived from the characteristic function:
. 3. i X )
times the electronic center of massX:éEJ-N:lxj) for a with the help of Egs(1), (67), and(69), we find

d-dimensional insulator wittN electrons in a periodic volume®

(based on Fig. 6 of Ref.)8Although each individual electron co- <‘I’k:0|Q?|‘1’k:o>iNc<q’M:o|X?|‘I’M:o>

ordinatex; , as well as the electronic charge dengitpt shown, is

spread over the whole system, because the system is insulating a il“aan(a)|a:o. (70
j

localized distributionp(X;) of width 2y/N¢& can be uniquely de-
fined in terms of the partial wave functiohy, in a singlediscon-  The connection with Ref. 17 will be made in Sec. VIl B.
nected regioriky, in the dN-dimensional configuration spa¢Eig.
2). Choosing a different regioRy,. simply shifts the center of the
distribution, if M{ #M;. The solid lines correspond =1, for
which the peaks coming from differeft,, do not overlap with one We now have an adequate framework for discussing the
another for large., whereas ford=3 (dotted line$ they overlap  implications of localization for the dependence on boundary
strongly (but the regionsR,, are still essentially disconnected, for conditions of the bulk properties of insulators. As a first ex-
largeL.) ample, consider the adiabatic currgift’ . Since it is gauge
invariant, we may evaluate it in any gauge, in particular in a

which is the desired relation. It should be stressed that imonoverlapping gauge. Substituting E§1) into Eq.(7) we
deriving this equation wassumedohn’s conjecture regard- find, because of the exponential decrease of the overlap as
ing the existence of nonoverlapping many-body Wannieithe sizel is increased:
functions in the insulating state.

We interpret Eq(67) as follows: in each regioRy, in the J(k)‘)ﬁquc(9A<\II'(\/)|‘)|)A(|\I}§V>I‘)>iqe(g}\<x>()\), (72
configuration space of the variablps} (Fig. 2), the variable .
X=3N x takes on a range of values with a distribution Where for the last equality Eq$33) and (67) were used.

C. Insensitivity of bulk properties to the boundary conditions

generz;ted byC(a), Thus for a large system siz]é”) is essentiallyk independent
(this was demonstrated in Ref. 25 using a different reason-
p(X)iNC<\IIM|5(>A(_X)|\IIM>, (68) ing, for insulators with an energy gap

As a second example, let us look at the quantum geomet-

which, together with Eq(29), gives the bulk polarization ric tensorT;;(k) and its real part, the metric tens6; (k).
distribution. The previous equation can therefore be viewedtvaluating Eq(40) in a nonoverlapping gauge with the help
as the generalization to extended insulating systems of Egf Eq. (61), we find Tij(K)=(X;X;), which again is essen-
(25) for the distribution of the electronic center of mass intially independent ok for large systemsit is also real, so
confined systems. that T;;(k)=G;;(k)]l. Thus we conclude that the

In Fig. 3 is represented the distributigr{X;) along the  k-independent metric tensor gives the mean-square fluctua-
ith direction. According to Eq(30), its width is VN&(N).  tion of the polarization. This is a stronger statement than the
The solid lines describe what happens in a 1D insulator, fopne made at the end of Sec. lll D, which pertained to the
which the width of each of the peakgX) labeled byM is  k-averaged metridby contrast, the single-electron metric
VN&(N)=c L and the distance between the centers of contensorg;;(k) given by Eq.(16) is in generalk dependent,
secutive peaks i§, so that for largel they are well sepa- since the one-electron Wannier functions remain overlapping
rated. In the case of a 3D insulator where all the linear di-even when they are maximally localized; as a consequence,
mensions are similar(~L?3), the peakg(X;) overlap for  the quadratic polarization fluctuations are related taitsr-
large L, since their width isyN& (N)«L%? (dashed lines in ageover the Brillouin zone, as shown in Appendix]A.
Fig. 3). The important observation is that, according to Eqs. These two examples illustrate an important point: the
(64) and(68), even if they areverlapping the distributions  physically measurable bulk guantities, such as the polariza-
p(X) are well-defined “projections” into real space of es- tion current and the polarization fluctuations, are well de-
sentially disconnectedlistributions | W | in configuration  fined for any single boundary conditidn and the choice of
space”* k becomes immaterial for large system sizes. It may there-

At this point we shall reconsider the problem of how to fore seem bizarre that in the generating function formalism
define a meaningful many-body position operator for theone needs to average over &llbefore obtaining gauge-
electrons in extended systems, an issue which has been lievariant quantities, as shown in Sec. Ill D. A concrete ex-
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ample helps to clarify this state of affairs: in the case of theso thatC(t) is the joint characteristic function for the vari-
second cumulant, had we taken the second derivative of thables 27S'.

precursorcumulant generating function, {itk, @), without The average is

afterwards averaging ovér, we would be left with a quan-

tity [the integrand of Eq(39)], which is different from the | I

desired one;-Tj;(k), and is gauge dependent. However, the (S)= %f dq dy, INC(q,1)1=o- (74)

k average of that gauge-dependent quansitgauge invari-

ant and equals thk average of—T;;(k)=—G;;(k) [com-  Next we discretize the derivative in the integrand as
pare Eqs(39) and(42)]. A similar situation occurs with the

adiabatic polarization current. Sa1d. InCla.t)l._a=Inc(a.sa)—InC(q.0
The insensitivity of the bulk properties of insulators to the Ay InC(a.Bli-o (a.oq) (.0
choice of boundary conditions on a large system seems to be =1ImInC(q,5q,), (75)

a very general property. Indeed, @ is any well-defined _ o

operator acting on the ground state of the extended systethere we made use of E¢31). This expression is gauge
(e.g., the Hamiltoniam), then from Eqs(5), (61), and(64) dependgnt, Just like its continuum counterpart, thg Berry
it foll that (T O = (W, (Ol hich hel connection. As in the continuum case, gauge invariance is
it follows that (W] k>._< k=0l _| ‘_<20>’ Wwhich NEIPS racovered by averaging ové that is done by choosing a
to understand why, for instance, in insulators the Drud

weight(see Table)lgoes to zero exponentially with the sys ow of J-+1 k points along the direction db' such that the
- ; I :
tem size This has been confirmed by numerical endpoints are separated By; then we find

simulationé’ and calculations on exactly solvable mod&ls. L -1
More precisely, in Ref. 49 it was found that the Drude | 2__J' .
weight for the half-filled Hubbard model in one dimension (S) 27 dq'dq';o Imln<q)ky|q)ky+1>’ (76)

scales as-L"%e~¢, which yields a localization length. It

would be worthwhile to investigate whethéiis the same as Where t.] 'l). is some permuta‘Fion of (i’Gzl{i)’ and the peri-
the localization lengti used in the present work. odic gauge is enforced by settidg, =e @ . The av-
erage polarization is then given by

VII. DISCRETIZED FORMULAS

Until now we have dealt with a continuum formalism, in (%}GE%(S')
which the cumulants are obtained by differentiating{ia)
at a=0. Heuristically, this can be viewed as a measure of Jo -1
the k-averaged change i, as the boundary conditidk is =— Vf dgidg; Im Inyl_[o <(Dky|q)ky+1>v (77

twisted adiabaticalljsee Eqs(31), (32), and(33)]. In nu-
merical calculations it is often more natural to perfarde-
pendentcalculations on a discrete meshlopoints and then
use the resulting wave functions to estimate the derivative
by finite differences?*3 Since the overall phases of the
wave functions on the grid are unrelated, useful discretize

expressions must remain inyariantunder grbitra}ry changes in the present derivation appears quite naturally, coming
those phases. The derivation of such discretized formulafsrorn the cumulant generating function, Eg3).5° ’

becor_nes particularly transparent in the present formalism, as To compute the variance we discretize the second loga-
we will now show. . . e
rithmic derivative:

which is the many-body analog of the discretized Berry
ghase formula proposed in Ref. 12. It is straightforward to
Verify that it is gauge invariant modulo the quantum of po-
(I]arization. This property hinges upd@i choosing a periodic
gauge, andii) having a logarithm in the expression, which

A. Formulas involving an average over k 2
o Vg % _ (801)%321n C(a,1)] 1o
We will find it convenient to work with scaled coordi- '

nates: let the simulation cell be defined by the vectors =InC(q,8q,) +InC(q,— 89;)—2 InC(q,0)
{L1,L5,L3}, to which correspond the reciprocal lattice vec-
tors{G*,G?,G®} (L;-G/=274!). The scaled coordinate® =In[C(q,46q,)C(d,—4q))], (79

are defined b)x=SL;, where a sum over repeated indices
is implied; similarly we hav&=q;G' anda=1;G' (and thus
a-X=27t;S). In terms of these variables, Eg®1) and

which is gauge dependent, similarly to E(5).%% After
some manipulations we obtain the following gauge-invariant,

(32) become k-averaged formula:

i J-1
D =(V e 2| W, N=(D|Dy.,), (72 J

an=C¥de Ward=(PelPqe. (72 ((8h?)e=— (2m)? dgidg;in| HO (D [P, )2
y=
and 79
InC(t)= fldqlfldquldq3 Inc(qg,t), 73 ' The evaluation of the qovarignce requires taking cross de-
0 0 0 rivatives, which can be discretized as
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V(l,... N):Huvvq’k,m- It is easy to verify thatPy obeys

1
ot = 5y LT (X XY+ 8y) +f(x— dx.y— 8y) - K
oy k boundary conditions on the larger cell containMgelec-

—f(x+ %,y) — f(x—X,y)— f(X,y+ dY) trons. Using the fact that the grid is uniform, it can be shown
' ’ ' that for evenN this leads td compare with Eq(16) in Ref.
—f(x,y—8y)+2f(x,y)], (800 34, which deals with the 1D cake
leading to ~ 8 &=
— ~la—! . ~
1 3-13-1 ;!_v[y <q)kwy|(bkwyy+l>—<‘1’k|e PR, (84)
SIS e=— f dglIn Dy |® 2 ~
(550 2(2m)? q'{ 1;[o 71;[0 (P, | P00 where G'=G'/J, is a basis vector of the reciprocal of the
J-19-1 larger cell, andX is the center of mass position operator of
—InJT T K@y Dy n NE the N-electron system. Comparison with E&2) yields
=0 7:0 vy vr Ly

(Pa)-B=— Tm in(e @Ay, @9

Jj-19-1
}, (81)

_ 2
[T T1 K Jo, )

wherek,, =k, + (v/J)) Gi+ (4/3) G Similarly, discretizing the integrals in E479) and using
In order to convert back to Cartesian coordinates we us&9- (84), we find

the transformation law for a second-rank contravariant ten- 3

sor, (XiX;)c=Hi(S'S™H;m, where H={L;,L, L3} ()2 = — o

Equations(77), (79), and(81) are all that is needed to calcu- © (2m)2 3

late the average polarization and its quadratic fluctuations, . . .
well as the correlations along different Cartesian direction?s‘F'he quantity on the Ihs pertains to théparticle system,

(if the cell symmetry is orthorhombic or higher, E@1) is ~ Whereas those on the rhs pertain to tieparticle system.

not needed for computing the fluctuationsy Appendix D~ However, if we choosel;=J,=J; and use(XX;)c/N

we give the required modifications to deal with fractional =(X;X;)./N together with the transformation law between

filling. Cartesian and scaled coordinates, we fin&'S),
=J,(S'9).. Equation(86) then becomes

In|(Tle X T2 (86)

B. Formulas involving a single k

We now turn _to a diff_erent kind of discretized formulas, <(§|)2>c:_ 1 2In|(@p|e"él'§|ﬁf;>|2, (87)
the so-called “single-point” formulas, such as Ed.7). In
the case of localization they were previously given for one . . .
dimension only** In the present formalism the generalization !vhere all the quantities are now explicitly written for the
to higher dimensions becomes straightforward. We will arN-particle system. _
rive at the “single-point” formulas starting from the expres-  1he foIIowmg relation can be derived along the same
sions derived in the previous section, which involve averagednes as Eq(84):

over a grid ofk points. The basic idea is to perform the

many-body analog of a “Brillouin zone folding?® Let us H (B | Dy )=<@E|e—'éj'§e"é"i|fl’f@,
start by discretizing the remaining integrals in EG#7), pry Ay el
(79), and (81); the expression for the average polarization, (89)
for example, becomes Discretizing the remaining integral in E¢81) and again

0 1 3191 3-1 settingJ,=J,=J3, we obtain, using Eqg84) and(88),
<Pel>'G|:_ Veﬁlm In 1_‘[0 HO J]]O <(I)k,uuy|q)k;w y+1>. i 1 _ & ; & ;A( -

™ pem v ’ SS).=— Inj{WPgle™'= e "Wy
(82 ( >c 2(277)2[ |< k| | k>|

In the following we will assume a uniform spacing along all

- > _ Tl A 1G] X T [2
the reciprocal lattice directions:K,,,=k+(u/J;)G' Inf(Wi[e™'™ W)l
+(v/J,~)G'+(y/J,)G' andk is fixed (usually k=0). Next —|n|<‘T’E|e_'a';|‘T’E>|Z]- 89)

we build anansatzwave functiod* ¥ contaningN=JN , o o
electrons as the antisymmetrized product of dhed,J,J;  Eduations(85), (87), and(89) are the desired “single-point
separateN-electron wave functionﬂfkﬂw: formulas. In Appendix D we modify them for the case of

fractional filling.
In one dimension the above formulas become particularly

Jr= 2 (—1)PPW(1,...N) (83) simple, and we recover the results of Refs. 17 and 34. In
NNIERG Cartesian coordinateX(SL andG=2m/L) they are
where the sum is over all the permutatidhf the N par- U £ Tl a1 (27D)X|
ticle coordinates, € 1)F is the parity of the permutation, and {(X)= 2 Im In(¥le V50, (90)
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which is equivalent to Eq18), and because the available many-body algorithms do not scale
linearly with the number of particles. On the other hand, the
~ L2 _ . averaging over boundary conditions may be more cumber-
(AX?)= BT )2|n|<‘I’T<|ef' CTUXPE, (91)  some to implement in practice.
T
which, together with Eq(30), gives Eq.(19). VIIl. CONCLUSIONS

We have presented in this work a unified theory of elec-
] ) ] ] ] tronic polarization and localization in bulk insulators. The

In the previous section we derived “single-point” formu- central quantity in the formalism is the cumulant generating
las for _the flr_st two moments o_f the.polarlzatlon, startingfunction InC() defined in Eq(32); it provides a systematic
from dlscrertlz_e_d expressions |nv<_)IV|ng an average OVeprocedure for extracting from th&-dependence of the
boundary conditions. In order to SV\ftCh between the two deground state insulating wave functioh, the moments of a
scriptions, anansatzwave functionWy given by Eq.(83)  properly defined distributiop(X) for the electronic center
was used. However, this is strictly valid only if the par- of mass. In complete analogy with the case of a confined
ticles are not correlated with each other. In that cdge  System, this distribution is simply related to the quantum
becomes a Slater determinant of one-electron orbitals, ar@fStribution of the ground state polarization, via E29).
the procedure leading to the “single-point” formul&ril- Several seemingly disparate ideas regfrdmg electronic po-
louin zone folding) does not involve any further approxi- larization and localization in insulatcré” are brought to-
mations(see Refs. 16 and 17 gether quite n_aturally_ using the generating function ap-

For a correlated state of many particles the situation i€roach. In particular, it shows thialeconnectlon between the
rather different. In that context the single-point formulasBerry phase theory of polgrlgzaanc}ﬁ, as yvell as the related
were originally proposed in one dimension for arbitrary ~ @PProach to localizatiot,****and Kohn's theory of local-

~ = ) .~ ization in the insulating stafe’ A key quantity is the elec-
correlatedN-electron wave functiom¥i—o with periodic 0+ calization lengttE; , which is defined in terms of the

boundary conditions over a cell of size'"**however, such  experimentally measurable mean-square fluctuation of the
a wave function in general will not obey E3). The deri- polarization[Egs. (30) and Table )], making contact with
vation of the previous section allows us to assess the agne work of Kudinov?? In the thermodynamic limit it agrees
proximations involved: these have to do with the extent tith the localization length defined in Ref. 34 for 1D sys-
which a wave function given by Ed83) differs from the  (ems[Eq. (19)]. Furthermore, the generating function for-
fully correlated wave function. The key quantity to consider palism also reveals a very close formal analogy between
is the correlation lengti.c,,, which quantifies the range Kohn's localized many-electron functionisy, and the maxi-
over which the particles are correlatéd addition to any  paly |ocalized one-electron Wannier functions defined by
long range order which is included in the mean field potenarzari and Vanderbilt® the former can be viewed as maxi-
tials “seen” by each particle The fact that the correlations mally localized many-body Wannier functionsee Sec.
are short ranged has been termed “nearsightedness” by| g'and Appendix B. Moreover, in the same way that the
Kohn in a recent papéf; in fact, in an insulator, for €x- quadratic spread of the functionts, is a measure of the
ample, one expects the longest range correlations to be of thgaan-square fluctuations of the bulk polarization, the gauge-
van der Waals type, Wh'cg %ecay as% the energy and as  jpyariant part of the spread of the Wannier functigwich
1r® in the wave functior” The basic assumption under- jn 1p systems equals the spread of the maximally localized
lying Eq. (83), namely that théN electrons only correlate in - Wannier functions measures the same quantity for uncorre-
groups ofN at a time3* is consistent with the principle of lated insulators. The fluctuation-dissipation relation can be
nearsightedness. This is the justification for applying theused to derive an inequaliffgq. (52)] between the polariza-
single-point formulas to a correlated insulating wave func-tion fluctuations and the minimum energy gap for optical
tion, provided that the cell is large enough. absorption in an insulator. The present approach also pro-
From this perspective it becomes clear that the two typesides some extra insight into the appearence of a “quantum
of formulas derived in Secs. VII A and VII B constitute dif- of polarization” in periodic insulator? which is seen to be
ferent approximations to the same continuum expressionselated to the localized nature of the insulating wave function
which involve an average over all twisted boundary condi-(see Appendix €
tions. In both approaches one must choose cells with linear The localization length seems to play a role in the theory
dimensions greater thahg,,: in the latter approach one of insulators similar to that of the Drude weight in the theory
must use a single large cell with sid¥ in order to have the of ideal conductors: the latter measures how “free” the
same level of accuracy dsndependent calculations each of “free charges” in a perfect conductor are, whereas the
sizeV using the former approach. former measures how localized the “bound charges” in an
From a practical point of view, there are two possibleinsulator are. Interestingly, both quantities can be expressed
ways to proceed: either perform several calculations withas second derivatives with respect to the twisted boundary
different twisted boundary conditions on a smaller cell andconditions (see Table ), which play a crucial role in the
then use the formulas of Sec. VII A, or perform a singleformalism. As discussed in Sec. VI ®ulk propertiesof
calculation on a large cell and then use the formulas of Sednsulators are rather insensitive to the boundary conditions,
VIl B. Although the two approaches are comparable in termaunlike the properties of conductors. Nevertheless, the insu-
of accuracy, the former approach should be more efficientating wave functioritself is not insensitive to the boundary

C. Interpretation of the “single-point” formulas
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conditions®® on the contrary, the derivatives of G{a), g2 M2
which measure thek-averaged change wittk in @&, Recij(w)=
=e 'X¥, as the boundary condition oW, is twisted,

contain quantitative information about basic properties of the dk _
insulator: in particular, the first derivative gives the average xf —p}]mkpgnkﬁ(a)fm— w), (A1)
macroscopic polarization, and the second derivative gives its Bz(2m)® '

mean-square fluctuation. Both quantities have a geometricg|heref is the occupation number of states in the valence
interpretation: the former is a Berry phase on a manifold ofyang (in  spin-degenerate  systemsf=2), pomx=
quantum states parametrized by the twisted boundary. . . |V|y..), and ok = emc— € is the difference
conditions®** [Eq. (38)], and the latter is a metric on the petween single-particle energies. Instead of @) we now
same manifoldEq. (42)]. havepn m k= Me®k (Un| dxUme), and following similar steps

The generating function approach also leads naturally t@g jn Sec. IV for the many-body case we find, using @),
discretized formulas that can be used to compute the polar-

ization and the localization in many-body numerical calcula- i (=do 1
tions in any number of dimensions. Two alternative kinds of f ?Reaij(w):—gf dkgij(k). (A2)
expressions exist: those involving wave functions computed 0 (2m)* )82

on a uniform grid ofk points[Egs.(77), (79), and(81)], and  Combining with Egs.(15) and (49), usingv/(fV)=M/N,
those involving a single wavefunction with a fixed boundaryand taking the trace, we obtain the fluctuation-dissipation
conditionk [Egs. (85), (87), and (89)]. The present deriva- relation>®

tion clearly shows how the two types of formulas are related

mZhw A=1 m=N+1

o}

hv (*dw AX?
to one another. = | =2TrRed(w)=M lim (AX?) (A3)
7que 0 w N— o N
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APPENDIX A: LOCALIZATION LENGTH AND SPREAD order of the range of the Wannier function.” It is clear from
OF THE ONE-ELECTRON WANNIER FUNCTIONS the results of Sec. VI B and the previous discussion that the
) ) ~ gauge-invariant is precisely that length.

In Sec. VI B it was shown that the width of the electronic ~ |t js straightforward to check that for noninteracting crys-
center of mass distributionp(X;), arising from the tajline insulators, Eq(52) becomes, after summing over dll
maximally-localized many-body Wannier functiobly, is  Cartesian directions;/M <d#?%/(2m.E,), whereEy is the
VN . In this Appendix we work in the independent-electron minimum direct gap over the Brillouin zone. Hence in gen-
framework, in which the usual one-electron Wannier func-eral the inequality involves the gauge-invariant part of the
tions are defined, and investigate the relation between thegpread_ Since in one dimension this equals the average
spread and the localization length (i.e., the root-mean- spread of the maximally localized Wannier functions, we
square fluctuation of the polarizatiprit is clear that since recover Kivelson’s original resuff
the spread Eq. (14)] is gauge-dependent, it cannot relate
directly to any measurable quantity. One might have guessedppenDIX B: SPREAD OF THE MANY-BODY WANNIER
that, as happens with the many-body Wannier functions, the FUNCTIONS
physically meaningful quantity would be the spread of the
maximally localized Wannier functions. Building upon the In Sec. VI B we introduced the function), , which play
results of Ref. 33, we show here that the gauge-invariant pa# role in the many-body theory of polarization similar to that
Q, of the spread of the occupied Wannier functidiixy.  of the Wannier functions in the independent-electron theory.
(15)] measures the mean-square fluctuation of the bulk poHere we will show that this formal analogy carries over to
larization. considerations about the spread of those functions. As men-

The proof follows from the fluctuation-dissipation theo- tioned in Sec. Il, in the independent-electron framework the
rem: for a crystalline insulator in the independent-electromquadratic spreaf) of the occupied Wannier functions can be
approximation, the real part of the optical conductivity duedecomposed into a sum of two positive terms, one of them
to interband vertical transitions is given By (Q,) gauge-invariant® henceQ,< in any gauge. Follow-
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ing similar steps as in Ref. 33, here we will derive the cor-electrons is changed adiabatically along an insulating closed
responding result for the many-body functioig, . Firstwe  path parametrized by (H®=D=H®=9)  then, since the
define their gauge-dependent spread by analogy with Ethamiltonian comes back to itself, the net effect, as far as the
(14): wave function is concerned, has to be eitligreach¥,,
returns to itself or(ii) there is a rigid translation of all the

W) — X 2 — X 2_ _ 42 . . . .
Q (Wol X*|Wo) = (Wol X|Wo) T2 C( @] a0, ¥\ in configuration space by the same amount, which can

(B1) be described by a uniform shift of their indicest—M
whereCy(a) is given by Eq.(63). Next we show that the +(N1,n,,n3).
role of Q, is played by(AX2)=—aizln C(a)|,_o: taking As far as charge transport is concerned, the important
this derivative inside the integral in E€2), discretizing that OPServation is that, since the system remains insulating
integral®? and comparing with Eq(63), this becomes throughout the path, the regiofig, remain disconnected, so

that no charge can flow between them during the adiabatic
. 1 motion. The resulting integrated current flowing through the
(AX2>=<W0|XZ|W0>—N— > ({P P )2 (B2)  system during the cycléwhich, according to Eqs(2) and
c K (3), measures the change in polarizafioan then be inferred
Now we use the relation from Figs. 2 and 3, which show that the regioRg, are
labeled by the center of mass of the electrons, and that one
can go from one region to the next by moving any one elec-
tron across the length of the periodic system. The smallest
nonzero change in the average polarization along ttneli-
which is the many-body analog of E(p) of Ref. 33 and can rection is given by the smallest nonzero shift in the distribu-
be derived in the same way. Substituting into E8R) gives  tion p(X;) (n;=*+1), and is seen to equalqeL/V
=|qe|/L2, which is the quantun?!*

2\ _ 32 _ v 2 It should be noted that strictly speaking the exact quanti-
(AX5) = (Wol X[ Wo) % (Wl X[ ol B4 zation of charge transport in an insulating system with peri-

|<d>klak<bk>=%e"k'RM<WM|>2|Wo>, (B3)

) ] . ) odic boundary conditons only occurs in the thermodynamic
and comparison with Eq(B1) yields the desired result: jimjt.2425|n fact, the quantization was established for a finite
(Ax?)=0W, _ _ . system only after averaging over all twisted boundary con-

There is, however, an important difference with respect tQjitions; when using periodic boundary conditions, there are
the single-electron Wannier functions: in Ref. 33 it wasexponentially small correctiorfS. This is consistent with
shOV\_/n that it is only in one d_imension_ that the maximally kohn's picture that for any finit&/ the regionsR,, are not
localized one-electron Wannier functions have a spreadompletely disconnected but have an exponentially small
min[Q]=();, whereas in higher dimensions fih>(,  overlap, which allows for a correspondingly small charge

i.e., ), is strictly a lower bound td). As discussed in Sec. fiow between neighboring regions, thus destroying the exact
VI B, according to Kohft® a gauge can be chosen where theqantization.

functionsW,, have an exponentially small overlap with one
another in the high-dimensional configuration space, in
which case only the teriv=0 survives in the sum on the
rhs of Eq.(B4). Therefore we conclude that for an insulator
in any number of dimensions we have ") ]=(AX?), The formulas given in the text need to be generalized in
where for any finite size the corrections due to the exponenerder to deal with correlated systems which have in the
tially small overlaps make the |hs slightly larger than the rhsground state a noninteger number of electrons per primitive
Thus Kohn's functionsW,, are the maximally localized cell, and yet are insulating. This can happen in many 1D
many-body Wannier functiondV,,, since asV—= the models®®®3but it appears that in higher dimensions the Mott
spread(AX?) of the gauge-invariant distributiop(X) ob-  transition to an insulating state is usually accompanied by a
tained fromW¥,, [Eq. (68)] becomes the minimum of the breaking of the symmetr¢e.g., a charge-density wavthat
spreadQ™ of the gauge-dependent distributipg,(X) ob-  restores integer filling* Therefore we shall restrict the en-
tained fromW,, [Eq. (62)]. This point can be further eluci- suing analysis to one dimension, as done in Refs. 28 and 36.
dated by noting, in the spirit of Refs. 33 and 51, that in the Aligia®® has shown that in cases where there is a frac-
limit of V— the functions¥,, become eigenfunctions of tional number of electrons per primitive cell, the limits of

APPENDIX D: THE CASE OF FRACTIONAL FILLING

the operatoiX projected onto the occupied manifdt. integration overk in the Berry phase formula for the polar-
ization differencd Eq. (12)] need to be modified, from which
APPENDIX C: THE QUANTUM OF POLARIZATION it follows that the “single-point” formulas for the polariza-

tion and localization derived in Refs. 17 and 34 also need to

Here we will discuss the relation between the quantum obe changed. For the purposes of the present paper it is
polarizatior’? *and the localized nature of a bulk insulating straightforward to modify the integral ov&iin the definition
wave functiong?® (see Fig. 2 (a related discussion, regard- of In C(a), and from that derive the required modifications to
ing the closely related phenomenom of quantized chargéhe discretized numerical formulas.
transport in insulators, can be found in Ref.)82et us con- Let us consider a 1D system with a simulation cell of size
sider a periodic system of volurre®, which for simplicity L andn/I electrons per unit cell, when/| is an irreducible
we take to be cubic. If the external potential acting on thefraction. Following Ref. 28, we modify the cumulant gener-
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ating function, Eq(32), as follows:

2l

|nc:(a):|3f0 /LdenC(k,a). (D1)

In order to obtain the discretized formulas, we just need to
retrace the steps taken in Secs. VII A and VII B, with the

above modification. Discretizing the intervak&=2l/L
into a uniform row ofJ+ 1 pointsk,,, we find that Eq(77)
changes to

J-1

L
(X)=—5Im |n71;[0 (P [Py, ), (D2)
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which agrees with the result quoted in Ref. 28. Similarly, Eq.
(79) becomes:

J-1

I (@ o)

2 2

(AX?)=— In (D3)

(2m1)?

As for the modified single-point formulds,it is straightfor-
ward to verify, applying the approach of Sec. VII B to the
previous two equations, that they are the same as @@s.

and (91), except for the substitution—L/I.
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