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Polarization and localization in insulators: Generating function approach
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We develop the theory and practical expressions for the full quantum-mechanical distribution of the intrinsic
macroscopic polarization of an insulator in terms of the ground state wave function. The central quantity is a
cumulant generating function, which yields, upon successive differentiation, all the cumulants and moments of
the probability distribution of the center of massX/N of the electrons, defined appropriately to remain valid for
extended systems obeying twisted boundary conditions. The first moment is the average polarization, where we
recover the well-known Berry phase expression. The second cumulant gives the mean-square fluctuation of the
polarization, which defines an electronic localization lengthj i along each directioni: j i

25(^Xi
2&2^Xi&

2)/N. It
follows from the fluctuation-dissipation theorem that in the thermodynamic limitj i diverges for metals and is
a finite, measurable quantity for insulators. In noninteracting systemsj i

2 is related to the spread of the Wannier
functions. It is possible to define for correlated insulators maximally localized ‘‘many-body Wannier func-
tions,’’ which for largeN become localized in disconnected regions of the high-dimensional configuration
space, establishing a direct connection with Kohn’s theory of the insulating state. Interestingly, the expression
for j i

2 , which involves the second derivative of the wave function with respect to the boundary conditions, is
directly analogous to Kohn’s formula for the ‘‘Drude weight’’ as the second derivative of the energy.
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I. INTRODUCTION
An insulator is distinguished from a conductor at ze

temperature by its vanishing dc conductivity and its ability
sustain a macroscopic polarizationPmac, both with and with-
out an applied electric field.1,2 In the classical theory of elec
tromagnetism in materials this distinction is often cast
terms of the difference between ‘‘free charges’’ that ca
the dc current in a conductor and polarizable ‘‘bou
charges’’ in an insulator.2,3 Such a description conflicts with
the fact that, even in highly ionic solids, the electrons are
well localized near the ions, and there is appreciable in
penetration between the ionic charge densities.4–7 The inad-
equacy of such a textbook picture is particularly striking
the case of covalent insulators, whose charge density is
localized, as in metals.3 Therefore the qualitative differenc
between metals and insulators is not apparent from ins
tion of the charge distribution, and the correct notion of el
tronic localization in insulators versus delocalization in co
ductors must be sought elsewhere.

As shown by Kohn,8,9 localization is a property of the
many-electron wave function: insulating behavior aris
whenever the ground state wave function of an extended
tem breaks up into a sum of functionsCM , which are local-
ized in essentially disconnected regionsRM of the high-
dimensional configuration space. When using perio
boundary conditions on a supercell containingN electrons,
an insulating wave function can be written as

C~x1 , . . . ,xN!5 (
M52`

1`

CM~x1 , . . . ,xN!, ~1!

where for a large supercellCM andCM8 have an exponen
tially small overlap forM 85” M . Hence, electronic localiza
tion in insulators does not occur in real space~charge den-
PRB 620163-1829/2000/62~3!/1666~18!/$15.00
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sity! but in configuration space~wave function!. Kohn
argued that such disconnectedness is in fact the signatu
an insulating wave function.

The other aspect of insulators, macroscopic polarizat
is a subject about which there has been much debate.
confined system with open boundary conditions, it is sim
the dipole moment of the charge distribution divided by t
volume.1,2 In the case of an extended system, such as a
riodic crystalline solid, the situation is far less clear: a
though there exist well-known expressions for dielectric
sponse functions,10,11 the very definition of macroscopic
polarization as a bulk property independent of surface ter
nation remained controversial for a long time. Only in rece
years has a theory of polarization emerged—the so-ca
Berry phase formulation12–17—for the averagePmac in terms
of the bulk ground state wave function of an insulating cry
tal. This theory shows that in general the information ab
the macroscopic polarization of an extended insulating s
tem is not in the charge density, but in the wave functio
This important finding is consistent with the well-known fa
that the dipole moment of a periodic, continuous charge d
tribution is ill defined,18,19 since the expressions for the fir
moment of the charge distribution are valid for confined s
tems but do not have a well-defined thermodynamic lim
independent of the surface. The only instance where a m
ingful dipole moment per unit volume can be assigned to
extended crystal is when the charge distribution in the u
cell can be resolved into contributions that are localized
nonoverlapping regions and can be ascribed3 to identifiable
atoms ~ions, molecules! ~the so-called ‘‘Clausius-Mossott
limit’’ !. However, such a limit is rather unrealistic for mo
insulators, with the possible exception of some organic a
molecular crystals.

In this paper we present a comprehensive theory of e
tronic polarization and localization in bulk insulators th
generalizes the Berry phase theory and merges with Koh
1666 ©2000 The American Physical Society
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theory of localization in the insulating state. By introducin
the generating function formalism, we show the rigoro
connections between polarization and localization, estab
relations to experimentally measureable quantities, and
vide formulas for practical calculations.

The paper is organized as follows: in Sec. II we summ
rize some of the recent developments in the field, pointing
some of the open issues that will be addressed in this w
and collect relevant equations for later reference. In Sec
is introduced the central concept upon which the present
mulation is based, the generating function applied to
quantum probability distribution of the macroscopic pola
ization. The simple case of a confined system is discus
first, and then we show how to modify the expressions
deal with extended systems. In Sec. IV we establish
fluctuation-dissipation relation between the quadratic qu
tum fluctuations of the polarization and the absorptive par
the conductivity for an extended system. In Sec. V we d
cuss the qualitative differences between the quadratic fl
tuations in insulators and in conductors in terms of a pr
erly defined localization length; for insulators we derive
inequality involving the localization length and the optic
gap. In Sec. VI we introduce ‘‘many-body Wannier fun
tions’’ and establish the connection between the present
malism and Kohn’s theory of localization in the insulatin
state. Discretized formulas for the polarization and locali
tion length that can be used in numerical many-body ca
lations are derived in Sec. VII. A discussion of our results
presented in Sec. VIII.

II. OVERVIEW OF RECENT DEVELOPMENTS

A meaningful definition of average macroscopic polariz
tion that is generally applicable—to both confined and
tended insulating systems—and relates closely to the
polarization is experimentally measured can be obtained
taking as the more basic concept thechangein polarization
induced by a slow change in some parameterl in the
Hamiltonian.20,21 The resulting expressions are in terms
the derivative]Pmac

(l) /]l, and Resta21 proposed to calculate
the finite change in bulk polarization as

DPmac5E
0

1

dl
]Pmac

(l)

]l
. ~2!

Specializing to the case of extended systems and conside
the variation inl as an adiabatic time evolution,]Pmac

(l) /]l is
the spatially averaged adiabatic current flowing through
bulk; thus this equation givesDPmac as an integrated bulk
current. According to classical electrodynamics,1,2 this adia-
batic polarization current is

]Pmac
(l)

]l
5

1

VEV
dr j bulk

(l) 5
1

V
J(l), ~3!

whereV is the volume of the system andjbulk
(l) is the current

density in the bulk, wherel plays the role of time in the
usual expression for the current~for a derivation see, for
example, Ref. 14!. J(l) can be expressed as the adiaba
limit of a Kubo formula for the current.21,22 In its usual form
the Kubo formula involves a summation over all eigensta
s
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~ground state and excited states!, which not only makes it
impractical for actual calculations, but also fails to reflect t
fact that electric polarization is a ground state property.

In the Berry phase theory of polarization,12–16 the Kubo
formula is recast in a form that only depends on the grou
state wave function; in order to arrive at such an express
it is convenient to imposetwisted boundary conditionsover
the volumeV on the many-body wave function, which be
comes labeled byk:

Ck
(l)~x1 , . . . ,xi1L , . . . ,xN!

5eık•LCk
(l)~x1 , . . . ,xi , . . . ,xN!, ~4!

where N is the number of electrons in the system,L
5(L1,0,0), for example, and2p/Li<ki<p/Li ~in the case
of an orthorhombic supercell!. It is useful to introduce the
following wave function:

uFk
(l)&5e2ık•X̂uCk

(l)&, ~5!

whereX̂5( i 51
N x̂i , so thatX̂/N is the position operator for

the center of mass of theN electrons in the volumeV. Fk
(l)

can be regarded as the many-body analog of the cell-peri
part of the Bloch function in the single-electron case.
obeys periodic boundary conditions, and thek dependence is
transferred from the boundary conditions to the Hamiltoni
if Ck

(l) is the ground state of the HamiltonianĤ (l), then
Fk

(l) is the ground state of the Hamiltonian

Ĥ (l)~k!5e2ık•X̂Ĥ (l)eık•X̂, ~6!

which, for a nonrelativistic Hamiltonian without spin-orb
coupling, can be obtained fromĤ (l) by performing the
gauge transformationp̂i→p̂i1\k on the momentum opera
tor of each particle~for the single-particle analog, see Re
23.! Using the functionFk

(l) , the Kubo formula for the adia-
batic electronic currentJk

(l) for a particular choice of twisted
boundary conditions can be expressed as16,24,25

Jk
(l)52qe Im^]kFk

(l)u]lFk
(l)&, ~7!

which indeed only depends on the bulk ground state w
function. Substituting this expression into Eq.~3! and using
Eq. ~2!, it can be shown that the net change in electro
polarization along the path parametrized byl is

~DPel! i5
ıqe

~2p!3E dkE
0

1

dl@^]lFk
(l)u]ki

Fk
(l)&

2^]ki
Fk

(l)u]lFk
(l)&#, ~8!

where the integral ink is over all twisted boundary condi
tions.

As expected for a measurable quantity, the above exp
sion, as well as Eq.~7!, are invariant under gauge transfo
mations of the form

Ck
(l)→eıw(k,l)Ck

(l) , ~9!

wherew(k,l) is a smooth, real function. The ground sta
wave functionsC at k andk1G, whereG is a basis vector
of the reciprocal lattice of the cell of volumeV, can differ at
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most by an overall phase factor, since the boundary co
tions are the same and the ground state is assumed t
nondegenerate:25

Ck
(l)5eıQ(k,l;G)Ck1G

(l) . ~10!

If Q(k,l;G), which is at our disposal, is chosen to be ind
pendent ofl, then it can be shown that the net change
polarization becomes simply

DPel5Pel
(1)2Pel

(0) , ~11!

where

Pel
(l)5

ıqe

~2p!3E dk^Fk
(l)u]kFk

(l)&, ~12!

and again the integral ink is over all twisted boundary con
ditions. Equations~8!, ~11!, and~12! form the central result
of Ref. 14, which gives the many-body generalization of
Berry phase theory of polarization, originally formulated
King-Smith and Vanderbilt for independent electrons.12,13 In
the derivation it is assumed that the ground state is isola
from the excited states by a finite energy gap, and that th
are no long-range correlations.25 In the independent-electro
theory the Berry phase formula in terms of Bloch functio
can be recast in terms of localized Wannier functions26

yielding the intuitive result that the electronic polarization
given by the sum of the centers of charge of the occup
Wannier functions.12,13Unfortunately, Wannier functions ar
only defined in a one-electron framework. In Sec. VI B w
will introduce functions that are in some sense the ma
body counterpart of Wannier functions~we will term them
‘‘many-body Wannier functions’’!, and can be chosen to b
localized in configuration space. In terms of those functio
a localized description of polarization can be presented
the correlated case. Moreover, they establish the link
tween the Berry phase theory of polarization and Koh
theory of localization.8,9

The following comments should be made about the eq
tions above: unlike Eq.~8!, which involves an integral ove
l, Eqs. ~11! and ~12! only depend on the endpoints,l50
andl51. The tradeoff is that whereas the former gives
exact change in polarization along the path, the latter giv
only modulo a ‘‘quantum’’12–14 ~this ‘‘quantum of polariza-
tion’’ is discussed in Appendix C!. A related aspect is the
behavior of the equations under gauge transformations:
like Eqs.~7! and ~8!, Eqs.~11! and ~12! are not completely
gauge invariant. As mentioned previously, they were
tained by assuming]lQ(k,l;G)50, and therefore the re
sulting DPel is only invariant~modulo the quantum! under
transformations that preserve the conditionQ(k,l51;G)
5Q(k,l50;G). Moreover, in order to be able to interpr
Eq. ~12! at asinglel as the electronic polarization,13,27 one
has to impose the stronger conditionQ(k,l;G)[0, or
Ck1G

(l) 5Ck
(l) . Gauges that obey this condition are known

‘‘periodic gauges.’’12

It has been pointed out by Aligia28 that this analysis need
to be modified in cases where there is a fractional numbe
electrons per primitive cell. The idea of a ‘‘periodic gauge
needs to be extended to relate wave functions separate
multiples of the smallestG, and the integral in Eq.~12!
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needs to be extended accordingly. For the sake of simplic
in the main text we will assume integer filling, and in Ap
pendix D we indicate how to modify the formulas in order
deal with fractional filling.

We note that in its present form the theory of bulk pola
ization only gives theaverageof the quantum distribution of
Pmac. In Secs. III C and III D we will extended it to deal with
the full distribution. In particular, its quadratic spread w
turn out to be a very relevant quantity, since it is intimate
related to electronic localization. To our knowledge this w
first discussed by Kudinov,29 who proposed to measure th
degree of electronic localization in insulators precisely
terms of the mean-square quantum fluctuation of the gro
state polarization. Kudinov proposed a criterion to differe
tiate between insulators and conductors based on the sc
with sample volumeV of the mean-square quantum fluctu
tion of the net dipole moment,^Dd̂2&5^d̂2&2^d̂&2; hered̂ is
the dipole moment operator,^•••& means the expectatio
value over the ground state, andDd̂5d̂2^d̂&. Using the
fluctuation-dissipation theorem,30–32 Kudinov related this
quantity to the optical conductivity:

^Ddî
2&

V
5

\

pE0

`

dv Imx i i ~v!, ~13!

where x(v) is the electric susceptibility tensor andi
5x,y,z. Using Eq. ~13!, Kudinov showed that asV→`,

^Dd̂2&/V remains finite in insulators, whereas it diverges
conductors. Only confined systems with open boundary c
ditions were considered, and thus the issue of how to d
with Pmac in extended systems was not addressed. Our
mulation leads to similar expressions, but with carefully d
fined bulk quantities that have a well-defined thermodynam
limit.

The ideas from the Berry phase theory of polarizati
have recently been extended in order to address the prob
of localization. This effort was initiated in Ref. 33, wher
non-interacting electron systems with a band gap were c
sidered. For such systems it is natural to attempt to quan
the degree of localization of the electrons in terms of
spread of the occupied Wannier functions. Marzari a
Vanderbilt proposed to measure that spread via the quan

V5 (
n51

M

@^r 2&n2^r &n
2#, ~14!

where^•••&n means the expectation value over thenth oc-
cupied Wannier function in the unit cell~whose total number
M equals the number of filled bands.! Since the electronic
polarization is given by the sum of the centers of charge
the occupied Wannier functions,12,13 this expression is very
appealing in its interpretation as the spread of the cha
distribution of the Wannier functions. It should be note
however, that unlike the sum of the centers of charge,
sum of the quadratic spreads is not invariant under ga
transformations of the Wannier functions,33 and soV cannot
be used directly as a measure of any physical quantity. N
ertheless, Marzari and Vanderbilt were able to decompos
into a sum of two positive terms: a gauge-invariant part,V I ,
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plus a gauge-dependent term, which they minimized to
tain maximally localized Wannier functions.

We will show thatV I gives the mean-square fluctuatio
of the bulk polarization, thus obeying a relation analogous
Eq. ~13! ~see Appendix A!. Moreover, in the same way tha
V measures the spread of the Wannier functions, for in
pendent electronsV I measures the spread of Kohn’s fun
tions CM ,8,9 which can be interpreted as maximally loca
ized many-body Wannier functions; this is discussed in S
VI B and Appendix B.

In Ref. 33 it was shown thatV I be rewritten as

V I5
v

~2p!3EBZ
dk Tr g~k!, ~15!

where Tr denotes the trace,v is the volume of the unit cell,
the integral is over the Brillouin zone, andg(k) is the tensor

gi j ~k!5Re(
n51

M

^]ki
unku]kj

umk&

2 (
n51

M

(
m51

M

^]ki
unkuumk&^umku]kj

unk&, ~16!

where unk is the cell-periodic part of the Bloch function
This tensor is a metric that can be used to determine
‘‘quantum distance’’ along a given path in ink space.33 In
Sec. III D we generalize this tensor to the many-body ca
and in Sec. IV we relate it to the measurable polarizat
fluctuations via the fluctuation-dissipation relation.

All of the above expressions for the polarization and
calization involve integrals overk. More recently, alternative
expressions have been proposed which use only peri
boundary conditions (k50).16,17,34 These are sometime
called ‘‘single-point’’ formulas. The basic quantity in thi
formulation is, in one dimension,

zN5^Ck50ueı(2p/L)X̂uCk50&, ~17!

whereCk50 is the ground state many-body wave functi
obeying periodic boundary conditions over a cell of lengthL

with N electrons, and as beforeX̂5( i 51
N x̂i . Resta17 showed

that in the thermodynamic limit the electronic polarization
given by

Pel5 lim
N→`

qe

2p
Im ln zN . ~18!

However, the nature of the approximations involved at fin
L, and the precise relation between Eqs.~12! and ~18! as a
function of the size of the system, were not clarified; this i
matter of crucial importance for the usefulness of the exp
sions in practical calculations, and is discussed in Sec. VI

Resta and Sorella34 proposed to measure the electron
localization length in one-dimensional~1D! insulators as35

j5AD/~2pn0!, ~19!

wheren05N/L and

D52 lim
N→`

N lnuzNu2. ~20!
-
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They showed that if the electrons are uncorrelated, then
insulatorsj is simply related to the 1D version ofV I defined
in Eq. ~15! (j25V I /M ), and therefore it is finite, wherea
for metals it diverges~even before taking the limitN→`).
Then they proposed that a similar behavior should oc
when the electrons are correlated~with the difference that in
generalj diverges for correlated conductors only after taki
the thermodynamic limit!.

In the present work we generalize Eq.~19! to many di-
mensions~see Sec. VII B!, and give an explicit many-body
derivation that, similarly toV I in the uncorrelated case,j2

measures the polarization fluctuations in correlated exten
systems. Similarly to the continuum formulas involving a
average over twisted boundary conditions,28 these formulas
require modification when there is a noninteger number
electrons per cell36 ~see Appendix D!.

III. GENERATING FUNCTION FORMALISM

A. Definitions

Generating functions play a central role in the theory
statistics,37 and have been applied to many problems
physics.38,39 Loosely speaking, a generating function of
distribution is some function that yields, upon successive
ferentiation, the moments of the distribution, or some co
bination thereof. Two kinds of generating functions will b
of interest to us: thecharacteristic function CX(a), and its
logarithm, thecumulant generating function. If X is a vector
of d variablesX1 , . . . ,Xd with a normalized joint probability
distribution functionp(X1 , . . . ,Xd)5p(X), the characteris-
tic function is defined as

CX~a!5E
2`

1`

e2ıa•Xp~X!dX[^e2ıa•X&, ~21!

wherea•X5( i 51
d a iXi .40 The d-dimensional moments ca

be extracted directly fromCX(a):

^X1
n1
•••Xd

nd&5ın]
a

1

n1 . . . a
d

nd

n
CX~a!ua50 , ~22!

wheren5( i 51
d ni . The cumulants are obtained in a simil

way from lnCX(a):

^X1
n1
•••Xd

nd&c5ın]
a

1

n1
•••a

d

nd

n
ln CX~a!ua50 , ~23!

where, following the notation of Ref. 38,^•••&c denotes the
cumulant average, which in general is different from the
simple averagê•••& associated with the moments:

^Xi&c5^Xi&,

^Xi
2&c5^Xi

2&2^Xi&
25^DXi

2&,

^XiXj&c5^XiXj&2^Xi&^Xj&. ~24!

An important property of cumulants is that they can
explicitly represented solely in terms of the lower momen
and vice versa. More precisely—and this is very relevant
what follows—for n.1 they can be expressed in terms
the central momentŝ DX1

m1DX2
m2DX3

m3&, where DXi5Xi

2^Xi& andm11m21m3<n, and thus they are independe
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of the mean̂ Xi&. Moreover, provided that the characteris
function exists, the set of all the moments or cumulants co
pletely determines the distribution.

B. Polarization distribution in confined systems

Let us consider a neutral 3D system of finite volumeV
containingN electrons andNn nuclei, on which we impose
open boundary conditions. The dipole moment operato
d̂5qeX̂1qnX̂n , whereX̂5( i 51

N x̂i andX̂n5( i 51
Nn x̂i

n . The av-

erage dipole moment of the system isd5^Cud̂uC&
5*rr(r )dr5VPmac. Since the center of massX/N of the
electrons is not perfectly localized, the ground state w
functionC is not an eigenstate ofX̂. Therefore the Cartesia
components of the dipole moment undergo quantum fluc
tions, having a joint probability distributionp(d) dictated by
C. For simplicity we will assume that the nuclei can b
treated classically as ‘‘clamped’’ point charges; then th
only contribute to the average of the distribution, and
quantum fluctuations come solely from the electrons. Hen
in what follows we will neglect the nuclear contribution
focusing on the distribution of the electronic center of ma
If C is the many-electron wave function~parametrized by
the nuclear coordinates! with normalization^CuC&51, that
distribution is given by

p~X!5^Cud~X̂2X!uC&. ~25!

Similarly, for a given component, say,X1, the distribution is

p~X1!5E
2`

1`

p~X!dX2dX35^Cud~X̂12X1!uC&. ~26!

The characteristic functionCX(a) is obtained by substituting
Eq. ~25! into Eq. ~21!:

CX~a!5^Cue2ıa•X̂uC&. ~27!

It is clear that if we define ^X̂1
n1X̂2

n2X̂3
n3&

5^CuX̂1
n1X̂2

n2X̂3
n3uC& we find, using Eq.~22!, ^X1

n1X2
n2X3

n3&

5^X̂1
n1X̂2

n2X̂3
n3&.40 The electronic polarization operator

( P̂el) i5qeXî /V, and the moments of its distribution ar
given by

^~Pel!1
n1~Pel!2

n2~Pel!3
n3&5S qe

V D n

^X̂1
n1X̂2

n2X̂3
n3&, ~28!

wheren5n11n21n3.

C. Polarization distribution in extended systems

In the case of a confined system the characteristic fu
tion CX(a) was introduced as a purely formal device f
obtaining the moments of the distribution, since in practic
was completely equivalent to a direct evaluation of the m
ments. In the case of an extended system the situatio
rather different since, as discussed in the Introduction,
very definition of polarization needs to be reexamined, an
naive generalization of the direct method of calculating
moments does not apply.
-

is

e

a-

y
e
e,
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-
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e
a
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Again let us consider a finite system withN electrons in a
volume V, but now with twisted boundary conditions@Eq.
~4!#, which eliminate the surface. The difficulties in definin
the macroscopic bulk polarization can be seen from the
that X̂i

n is not a valid operator in the Hilbert space defined

Eq. ~4!: indeed, if uCk& is a vector in that space,X̂i
nuCk& is

not ~it is not even normalizable!, and thus ^X̂i
n&k

5^CkuX̂i
nuCk& is ill defined. We will now show that al-

though theoperator X̂ is ill-defined, one can nevertheles
define a meaningful joint probabilitydistribution p(X) for
the electronic center of mass in an extended insulating
tem. This distribution will have the same physical interpr
tation as Eq.~25! for a confined system, i.e., the moments
the variables (Pel) i5qeXi /V are the moments of the distri
bution of the electronic polarization:

^~Pel!1
n1~Pel!2

n2~Pel!3
n3&5S qe

V D n

^X1
n1X2

n2X3
n3&. ~29!

Our main interest will be in the averagêXi& and in the
quadratic spread̂Xi

2&c which, according to Ref. 29, mea
sures the electronic localization. More precisely, we will d
fine the localization lengthj i(N) along thei th direction as

j i
2~N!5

1

N
^Xi

2&c5
V2

q2
2N

^~DPmac! i
2&, ~30a!

and show that for insulators it has a well-defined thermo
namic limit

j i
25 lim

N→`

j i
2~N!. ~30b!

The desired distributionp(X) can be obtained via a
proper modification of the characteristic functionCX(a), de-
fined in Eq.~27! for a confined system. We start by intro
ducing the quantityC(k,a), which is aprecursorto the char-
acteristic function for the extended system:

C~k,a!5^Ckue2ıa•X̂uCk1a&5^FkuFk1a&, ~31!

where in the last equality we used Eq.~5!. In the first form
the similarity to Eq.~27! is evident;41 notice, however, that
this is not an expectation value over a single ground s
Ck , since the boundary conditions on thebra (k) and on the
ket (k1a) are different. That is required in order to com
pensate for the shift by2a in the boundary condition on the
ket caused by the operatore2ıa•X̂; in this way the states
uCk& and uC̃k(a)&5e2ıa•X̂uCk1a& obey the same boundar
conditions even fora i5” 2pn/Li , so that their dotproduc

^CkuC̃k(a)& does not vanish andC(k,a) can be chosen to
be a differentiable function~we are assuming that the groun
state insulating wave functionCk is nondegenerate and i
separated in energy from the excited states by a finite ga!.

ThatC(k,a) is not yet the characteristic function forp(X)
in the extended system can be seen from the fact that the
‘‘moment’’ that it generates is not gauge invariant, as
quired from any physical quantity.42 If C(k,a) were the char-
acteristic function, the first moment would be, according
Eq. ~22!, ^Xi&k5ı]a i

C(k,a)ua505ı^Fku]ki
Fk&. But this is

nothing other than theBerry connection, which is a gauge-
dependent quantity~see, for instance, Ref. 16!.
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D. Gauge-invariant cumulants

Gauge-invariant moments and cumulants for an exten
insulating system can be obtained from the following cum
lant generating function, which is the central quantity in th
work:

ln C~a!5
V

~2p!3E dk ln C~k,a!, ~32!

where the average is over all twisted boundary conditi
~see Appendix D for special cases where the number of e
trons per primitive cell is not an integer!. The cumulants are
then obtained in the same way as in Eq.~23!:

^X1
n1
•••Xd

nd&c5ın]
a

1

n1 . . . a
d

nd

n
ln C~a!ua50 , ~33!

and likewise for the moments. Before we continue, we po
out thatC(a) is in general different from the function

CW~a!5
V

~2p!3E dk C~k,a!. ~34!

This is also a characteristic function, but of a differe
gauge-dependent distribution, whose interpretation and r
tion to C(a) will be discussed in Sec. VI B.

As mentioned in Sec. II, Eq.~12! is most easily inter-
preted when using a periodic gauge:Ck1G5Ck . Since we
will recover Eq.~12! starting from lnC(a), a periodic gauge
will be assumed in what follows; thus what is meant here
gauge invariance is invariance under transformations
preserve the phase in Eq.~10!. The most generalw(k) in Eq.
~9! that complies with this requirement is12,43

w~k!5b~k!2k•R, ~35!

whereR is an arbitrary lattice vector andb(k1G)5b(k).
The gauge invariance of the cumulants generated by lnC(a)
can now be seen as follows: According to Eqs.~9!, ~23!, and
~32!, the cumulants change under a general gauge tran
mation as

^X1
n1X2

n2X3
n3&c→^X1

n1X2
n2X3

n3&c1ın11
V

~2p!3

3E dk ]
k

1

n1k
2

n2k
3

n3

n
w~k!. ~36!

Substitution of Eq.~35! into Eq. ~36! shows that for
n51 the cumulants change as^X&→^X&1R, whereas for
n.1 they remain unchanged. The change in^X& but not in
the higher cumulants~which do not depend on the mea!
indicates a rigid shift byR of the whole distributionp(X),
and is related to the quantum of polarization12,14~see Appen-
dix C!.

The cumulants are also real, as expected: defin
f n1n2n3

(k)5ın]
a

1

n1a
2

n2a
3

n3

n
ln^FkuFk1a&ua50 and b52a, we

obtain

f n1n2n3
~2k!5~21!nın]

b
1

n1b
2

n2b
3

n3

n
ln^F2kuF2(k1b)&ub50.
d
-

s
c-

t

,
la-

y
at

or-

g

Choosing a gauge such thatF2k5Fk* , which can always be
done due to time-reversal symmetry,43 leads to
^F2kuF2(k1b)&5^Fk1buFk&, and thus f n1n2n3

(2k)

5@ f n1n2n3
(k)#* . That completes the proof, since accordi

to Eqs. ~31!, ~32!, and ~33!, ^X1
n1X2

n2X3
n3&c is given by the

average overk of f n1n2n3
(k). ~Since gauge invariance wa

previously established, the choiceF2k5Fk* can be made
without loss of generality.!

Let us now look at explicit expressions for the first fe
cumulants. Combining Eqs.~31! and~32! and taking the first
derivative, we find

]a i
ln C~a!ua505

V

~2p!3E dk^Fku]ki
Fk&. ~37!

Together with Eq.~23!, this gives

^Xi&c5
ıV

~2p!3E dk^Fku]ki
Fk&, ~38!

which, with the help of Eq.~29!, is seen to be precisely th
Berry phase expression for the average electronic polar
tion @Eq. ~12!#. Our formulation in terms ofC(a) therefore
agrees with the Berry phase theory of polarization. It is, ho
ever, more general, since it also provides the higher m
ments: forn52, similar steps as before lead to

^XiXj&c52
V

~2p!3E dk@^Fku]kikj

2 Fk&

2^Fku]ki
Fk&^Fku]kj

Fk&#. ~39!

Integrating the first term by parts~using the periodic gauge
condition! and noting that̂ Fku]ki

Fk&52^]ki
FkuFk&, this

becomeŝ XiXj&c5V/(8p3)*dk Ti j (k), where

Ti j ~k!5^]ki
Fku]kj

Fk&2^]ki
FkuFk&^Fku]kj

Fk& ~40!

is the gauge-invariantquantum geometric tensor44 @see also
Eq. ~C9! of Ref. 33#. The real part ofTi j (k) is the metric
tensorGi j (k) first introduced by Provost and Vallee:45

Gi j ~k!5Rê ]ki
Fku]kj

Fk&2^]ki
FkuFk&^Fku]kj

Fk&,
~41!

where the second term is automatically real.Gi j (k) is the
many-body analog of the tensorgi j (k) defined in Eq.~16!.
Using Eq. ~24! and the fact that the cumulants are re
^XiXj&c can be rewritten as

^XiXj&c5
V

~2p!3E dk Gi j ~k!, ~42!

which becomes, after taking the trace, the many-body co
terpart of Eq.~15!. Together with Eq.~30a!, the above equa-
tion establishes the physical interpretation of thek-averaged
metric tensor as the mean-square fluctuation of the ma
scopic bulk polarization~see also the next section!. The gen-
eral connection between such ‘‘quantum metrics’’ and qu
tum fluctuations was pointed out already in Ref. 45.
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IV. FLUCTUATION-DISSIPATION RELATION

We have seen that the first cumulant agrees with the B
phase expression for the average macroscopic polariza
Here we will show that the expression for the second cum
lant, Eq. ~42!, is consistent with the fluctuation-dissipatio
relation30–32 between the fluctuations inPmac and the optical
conductivity Imx i j (v)5(1/v)Re s i j (v).

For a confined system with open boundary conditio
which is the case discussed by Kudinov,29 the Kubo-
Greenwood formula for the conductivity can be written
terms of the off-diagonal position matrix elements,Xnm

i

5^CnuX̂i uCm&:

Res i j
n ~v!5

pqe
2

me
2\vV

(
m5” n

vmn
2 Re@Xnm

i Xmn
j d~vmn2v!

2Xnm
j Xmn

i d~vmn1v!#, ~43!

where\vmn5Em2En . Alternatively, the well-known rela-
tion

Pnm
i 5ımevnmXnm

i ~m5” n! ~44!

can be used to rewrite Eq.~43! in terms of momentum matrix
elements. Whereas for a confined system the two form
are interchangeable, for an extended system the position
trix elements become ill defined, and therefore only the la
form remains valid.

At this point it is convenient to introduce the notation

Xnm,k
i 5ı^Fnku]ki

Fmk&5~Xmn,k
i !* . ~45!

The single-body analog of such quantities is discussed
Refs. 23 and 46. Our motivation for introducing them is t
following: if P̂5( i 51

N p̂( i ) is the many-body momentum op

erator for the extended system, andPnm,k5^CnkuP̂uCmk&, in
the case of a nonrelativistic Hamiltonian without spin-or
coupling Eqs.~5! and ~6! lead to

Pnm,k
i 5

me

\
^Fnku@]ki

,Ĥ~k!#uFmk&

5ımevnm~k!Xnm,k
i ~mÞn!, ~46!

which is formally identical to Eq.~44!. Notice, however, that
we are now dealing with anextendedsystem with twisted
boundary conditions, for which the proper position mat
elements,̂ CnkuX̂i uCmk&, are ill defined; the above relatio
shows that they should be replaced by the quantitiesXnm,k

i .
Substituting Eq.~46! into the Kubo-Greenwood formula in
the form valid for an extended system, we are left with
expression for Res i j

nk(v) formally identical to Eq.~43!, with
Xnm

i replaced byXnm,k
i andvmn replaced byvmn(k).

Let us now specialize to the ground state (n50), assum-
ing that it is nondegenerate; thenvm0(k).0, and we obtain
ry
n.
-

,

as
a-
r

in

t

n

E
0

`dv

v
Res i j

0k~v!5
pqe

2

\V
ReH (

m.0
X0m,k

i Xm0,k
j J

5
pqe

2

\V
ReH ^]ki

F0kuS (
m.0

uFmk&^Fmku D
3u]kj

F0k&J . ~47!

Using the completeness relation to eliminate the exci
states on the right-hand side~rhs!, and comparing with Eq.
~40!, we find Ti j (k)5(m.0X0m,k

i Xm0,k
j . Together with

Gi j (k)5ReTi j (k), this yields

E
0

`dv

v
Res i j

0k~v!5
pqe

2

\V
Gi j ~k!. ~48!

Averaging over all twisted boundary conditions and usi
Eqs.~33! and ~42!, we arrive at the desired relation:

2
1

N
]a ia j

2 ln C~a!ua505
1

N
^XiXj&c

5
\

pqe
2n0

E
0

`dv

v
Res̄ i j ~v!, ~49!

where n05N/V and s̄ i j (v)5(V/8p3)*dk s i j
0k(v). Equa-

tion ~49! is precisely the fluctuation-dissipation relation f
more than one variable31,32 for the extended system atT
50 @compare with Eq.~13!, using Eq. ~30a! and setting
VPmac5d].

V. LOCALIZATION LENGTH

A. Relation to the conductivity

Here we will generalize to extended systems Kudino
analysis of the fluctuations inPmac as a way to distinghish
insulators from conductors29 and discuss it in terms of a lo
calization length. It is convenient for that purpose to class
solids into three categories, according to the low-freque
behavior of the conductivity atT50 asV→`:

lim
v→0

Res~v!50, insulators

Res~v!5~2pqe
2/\2!Dd~v!1Res reg~v!,

ideal conductors ~50!

lim
v→0

Res~v!5s0 , nonideal conductors .

Insulators are characterized by a vanishing dc conductiv
in contrast to conductors. The singular contributi
(2pqe

2/\2)Dd(v) occurs in ideal conductors—those with
out any scattering mechanism—andD is called the ‘‘Drude
weight’’ or ‘‘charge stiffness.’’39,47 If there is scattering, the
d function peak is smeared out to a Lorentzian, so thatD
50 and the dc conductivity of nonideal conductors, such
disordered metallic alloys, has a finite values0 ; s reg(v) is
the regular finite-frequency part ofs(v) in perfect conduc-
tors.
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TABLE I. Comparison between the formulas for the Drude weight and for the localization length,
relation to the optical conductivity, and their asymptotic values in the thermodynamic limit for insulator
conductors atT50.

Drude weight Localization length

Formula in terms of
twisted boundary conditions

Di5
1

2V

]2E~k!

]ki
2 U

k50

j i
2~N!52

1

N

]2 ln C~a!

]a i
2 U

a50

Relation to conductivity Di52
1

2
lim
v→0

v Im s i i ~v! j i
2~N!5

\

pqe
2n0

E
0

`dv

v
Res i i ~v!

Asymptotic value
(N,V→`)
Insulators Zero Finite
Nonideal conductors Zero Infinite
Ideal conductors Finite Infinite
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The only possible divergence of the integral on the rhs
Eq. ~49! is around v50,48 because asv→` Im x i i (v)
;v23.2 Substituting Eq.~50! into Eq. ~49! we see that the
quantity j i in Eq. ~30b! is finite for insulators and diverge
for conductors. By the same token, using the zero-freque
limit of the Kramers-Kro¨nig relation,1,2 one finds the familiar
result that the static susceptibility is finite for insulators a
divergent for conductors. Hence, assuming Eq.~50!, at T
50 the following three conditions are equivalent:~i!
Rex i i (0) is finite, ~ii ! limv→0 Res i i (v)50, and~iii ! j i is
finite.

The quantityj i has the dimensions of length. Since it
finite for insulators and infinite for conductors, it is natural
interpret it as an electronic localization length along thei th
direction. According to Eq.~49!, for extended systems with
finite volumej i(N) can be written in the form given in Tabl
I in terms of the cumulant generating function. This formu
has a striking similarity to the Drude weight formula deriv
by Kohn in terms of the total energyE(k),8,47,49given also
in Table I: both are second derivatives of some quantity w
respect to the twisted boundary conditions@in the case of
j i(N) the twisting of the boundary conditionk is followed
by an averaging over allk, hence the parametera instead of
k#.

It is clear from Table I that unlike the localization lengt
the Drude weight does not provide a universal criterion
discern insulators from conductors.8,9 However, the combi-
nation of the two quantities in principle enables us to dist
guish between the three categories. In the same way tha
Drude weight measures the ‘‘degree of conductivity’’ of
ideal conductor, 1/j i measures the degree of localization
the electrons in an insulator. Insofar as localization—in
properly defined sense—is an essential property of the in
lating state,8,9 this can be viewed as a meaningful measure
the ‘‘degree of insulation,’’ one which is expected to app
to all types of insulators.

Although we have managed to expressj i in terms of the
measurable optical conductivity via the fluctuatio
dissipation relation, it is not yet clear how it relates to t
notion of localization put forward by Kohn, in terms of th
localization properties of the insulating wave function
configuration space. That will be discussed in Sec. VI B.
f

cy
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o

-
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a
u-
f

B. Relation to the optical gap

In an insulator optical absorption starts at a threshold
ergy Eg , below which Res i i (v)50 ~we are neglecting
phonon-assisted transitions, so that the gapEg is the mini-
mum gap for optical transitions!. From this it follows that

E
0

`dv

v
Res i i ~v!<

\

Eg
E

0

`

dv Res i i ~v!. ~51!

With the help of the sum rule for oscillator strengths1,2,50

*0
`dv Res i i (v)5(1/8)vp

2 (vp is the plasma frequency!, to-
gether with Eqs.~30! and ~49!, we conclude that

j i
2<

\2

2meEg
. ~52!

This inequality shows that the polarization fluctuations@Eqs.
~30!# are controlled by the optical gap, lending support to t
intuitive notion that the larger the gap, the more localized
electrons. It strongly resembles an inequality previously
rived by Kivelson51 for noninteracting electrons in one d
mension, wherej i

2 is replaced by the quadratic spread
properly chosen Wannier functions. As discussed in App
dix A, in fact in one dimensionj i

2 equals the average sprea
of the maximally localized Wannier functions.

VI. MANY-BODY WANNIER FUNCTIONS

The expression for the cumulant generating function,
~32!, involves an average over all twisted boundary con
tions, which was introduced in a somewhatad hocmanner in
order to render the resulting distributionp(X) gauge invari-
ant ~modulo a rigid shift by a quantum!. We will now shed
some light on the physical significance of the averaging p
cedure, by showing how it can be rationalized in terms of
notion of electronic localization in insulators developed
Kohn.8,9 This will be achieved by introducing many-bod
Wannier functions and will allow us to tie together th
theory of bulk polarization and Kohn’s theory of localiza
tion.



on

ns
i

n
sio
ly
s,

-
on

on

i-
e
u
o

s
-
r-

g
ex-

-
he
s is

un-
r-
s.
of
e
cu-

ystal
l-

o-
is

n
e
s

e
n
tron

ice
g

er a

on
r

f
e

1674 PRB 62IVO SOUZA, TIM WILKENS, AND RICHARD M. MARTIN
A. Confined system: Localization in real space

It is instructive to start by discussing the case of a c
fined system of linear dimensions;a ~e.g., a molecule with
N electrons!. Instead of the usual open boundary conditio
we can choose to impose periodic boundary conditions on
wavefunction@k50 in Eq. ~4!#, choosingL@a. The result-
ing N-electron wave function is periodic in configuratio
space, as depicted schematically in Fig. 1 for one dimen
and N52; it is a sum of partial wave functions that on
differ from one another by a translation of the coordinate

Ck50~x1 , . . . ,xN!5(
m1

••• (
mN

Cm1 ••• mN
~x1 , . . . ,xN!,

~53!

where the integer vectors$mi% label the partial wave func
tions. These are localized in geometrically equivalent regi
Rm1 . . . mN

in configuration space~shaded regions in Fig. 1!,

which for L@a are essentially nonoverlapping:

Cm1 ••• mN
Cm

18 ••• m
N8
80

for ~m1 , . . . ,mN!Þ~m18 , . . . ,mN8 !, ~54!

where, using the notation of Refs. 8 and 9, the symbol8
denotes equality apart from exponential small correcti
that vanish in a manner such ase2L/j, wherej is a localiza-
tion length~in this examplej;a).

Next we switch from periodic to twisted boundary cond
tions @k5” 0 in Eq. ~4!#. From the confined character of th
system it follows, by a simple generalization of the arg
ments outlined in Sec. 2 of Ref. 8, that the periodic part
the wavefunction,Fk5e2ık•XCk , can be written with an
exponentially small error as

Fk~x1 , . . . ,xN!8e2ık•QFk50~x1 , . . . ,xN!. ~55!

Here we have introduced the quantity

FIG. 1. Schematic representation of the regionsRm1 ••• mN
in the

many-electron configuration space where the wave function o
confined system obeying periodic boundary conditions is localiz
The system has linear dimensions;a, and the periodic boundary
conditions are over a lengthL@a, so that the regionsRm1 ••• mN

are
essentially nonoverlapping.
-

,
ts

n

s

s

-
f

Q5H (
i 51

N

~xi2Lmi
!in Rm1 ••• mN

F~x1 , . . . ,xN!outside allRm1 ••• mN

~56!

whereF is a largely arbitrary, periodic function, which join
smoothly with the values ofQ at the boundaries of the re
gionsRm1•••mN

. Let us now look at the precursor characte

istic function C(k,a) for such a confined system obeyin
twisted boundary conditions: substituting the previous
pressions into Eq.~31!, we find

C~k,a!8^Fk50ue2ıa•Q̂uFk50&8^C0 ••• 0ue2ıa•X̂uC0 . . . 0&,
~57!

which has the form of Eq.~27!, obtained using open bound
ary conditions. It is clear that as a result of localization of t
electrons in real space the choice of boundary condition
immaterial. In particular,C(k,a) becomes independent ofk,
and thus from Eqs.~32! and ~34! we conclude that

C~k,a!8CW~a!8C~a!. ~58!

Hence, averaging over boundary conditions becomes red
dant, andC(k,a) is already the correct, gauge-invariant cha
acteristic function. Finally, it is interesting to note that Eq
~55! and ~57! can be viewed as a particular realization
Eqs.~2.22! and ~2.23! of Ref. 45, which were used to relat
the quantum metric to the quantum fluctuations for a parti
lar class of manifolds.

B. Extended insulator: Localization in configuration space

Let us now consider an extended system, such as a cr
with twisted boundary conditions over a large but finite vo
umeV. Although in general the charge density will be del
calized in real space, Kohn has argued that if the system
insulating the wave function is localized in configuratio
space.8,9 Kohn’s notion of localization is weaker than the on
implied by Eq.~54! and Fig. 1; however, as we will see, it i
sufficient to recover Eq.~58!, after making a judicious choice
of gauge.

We start by introducing a localized description of th
many-electron insulating wave function in configuratio
space. In the noninteracting case, a localized one-elec
description ~in real space! is provided by the Wannier
functions.23,26,43The Wannier functionuRn& associated with
bandn and centered around the unit cell labeled by the latt
vector R is related to the Bloch functions by the followin
unitary transformation:

uRn&5
1

ANc
(

k
e2ık•Rucnk&, ~59!

where a periodic gauge is assumed, and the sum is ov
uniform grid ofNc points in the Brillouin zone.52 Due to the
discretization of the integral overk, uRn& is actually periodic
in a large cell of volumeNcv (v is the volume of the unit
cell!. The many-body analog of a periodic Wannier functi
~many-body Wannier function! can be defined in a simila
way in terms of the many-body wave functionCk ~again
assuming a periodic gauge!:

a
d.
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uWM&5
1

ANc
(

k
e2ık•RMuCk&, ~60!

so that, using Eq.~5!,

uFk&5
1

ANc
(
M

e2ık•(X̂2RM)uWM&. ~61!

Here RM5( i 51
3 MiL i , where theMi are integers, and the

vectors$L1 ,L2 ,L3% define the volumeV containingN elec-
trons ~notice thatV is the volume of a supercell, typically
large multiple of the unit cell volumev). Fk is periodic and
Ck obeys k boundary conditions over the volumeVN in
configuration space, and bothCk andWM are periodic over
the volume (NcV)N. The normalization conventions are th
following: Fk is normalized to one over a volumeVN, and
WM is normalized to one over a volume (NcV)N. Similarly
to the uRn&, the uWM& form an orthonormal set.

From the same type of general considerations which
used to show that Wannier functions can be cho
localized,26 it follows that we can chooseWM localized in
the variableX5( i 51

N xi , with a distribution

pW~X!5^WMud~X̂2X!uWM&. ~62!

Substituting Eq.~61! in Eq. ~31!, averaging overk, and com-
paring with Eq.~34!, after discretizing the integral overk,
yields

CW~a!5
1

Nc
(

k
C~k,a!5^WMue2ıa•X̂uWM&, ~63!

which shows that the functionCW(a) introduced in Sec.
III D is the characteristic function of the distributionpW(X).
It is straightforward to check that the first moment of th
distribution equals the first moment of the gauge-invari
polarization distributionp(X) generated byC(a); this is
similar to the independent-electron case, where the ave
polarization is given by the sum of the centers of charge
the gauge-dependent Wannier functions.12 Likewise, the
many-body Wannier functionsWM are gauge dependent, an
as a result so are the higher cumulants ofpW(X), in particu-
lar, the quadratric spread. Notice that the gauge depend
of the WM implies that in general they overlap with on
another,53 and only in certain gauges are they localized to
point of being essentially nonoverlapping~provided that the
system is insulating!. This is different from the usual single
body Wannier functions, which in general remain overla
ping in any gauge~even though they are orthogonal, so th
the overlap integrals vanish!; in the many-body case we ar
free to choose the volumeV large enough so that with
judicious choice of gauge theWM become nonoverlapping in
the high-dimensional configuration space.

We are now in a position to provide the link between t
present formalism~and, therefore, the Berry phase theory
polarization! and Kohn’s theory of localization.8,9 A major
result of Kohn’s work is the conjecture that a general ma
body insulating wave functionCk50, with periodic bound-
ary conditions over a large volumeV, breaks up into a sum
of nonoverlapping partsCM , localized in disconnected re
gionsRM in configuration space@Eq. ~1!#. Upon inspection,
re
n

t

ge
f

ce

e

-
t

f

-

one finds that the present many-body Wannier functions
nothing other than Kohn’s functions,WM5ANcCM @com-
pare Eq.~61! with Eq. ~6.1! of Ref. 8#, except that Kohn only
considered gauges where they are localized in such a
that the overlap becomes exponentially small:

CM~x1 , . . . ,xN!CM8~x1 , . . . ,xN!80 for M 85” M ,
~64!

so that theCM are uniquely defined apart from exponentia
small variations and an overall phase. Transposing the
guage of Ref. 33 to a many-body framework, Kohn’s fun
tions CM can be viewed as the maximally localized man
body Wannier functionsWM ~see Appendix B!.

In such ‘‘nonoverlapping gauges,’’ the precusor chara
teristic function, Eq.~31!, becomes, using Eqs.~61! and~64!,

C~k,a!8Nc^CMue2ıa•X̂uCM& ~nonoverlapping gauge!,
~65!

which is independent ofk, since thek dependence ofC(k,a)
in a general gauge arises from the cross terms between
ferent WM . Therefore in such gauges we recover Eq.~58!,
which for a confined system obeying twisted boundary c
ditions was valid in any gauge:

C~k,a!8CW~a!8C~a! ~nonoverlapping gauge!.
~66!

Finally, from the gauge invariance ofC(a) we conclude that
in any gauge

C~a!8Nc^CMue2ıa•X̂uCM&, ~67!

FIG. 2. Schematic representation of the essentially disconne
regionsRM in the many-electron configuration space where
wave function of an extended insulator is localized~adapted from
Ref. 9!. For d real-space dimensionsM5(M1 , . . . ,Md), and
shown is the case of two electrons andd51, for which the con-
figuration space is (x1 ,x2). The system is composed of possib
strongly overlapping units in real space~e.g., a covalent insulator!
and yet, because it is insulating, in configuration space the w
function C breaks up into a sum of partial functionsCM , each
localized in a regionRM , which have an exponentially small ove
lap with one another, if the system is large.
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which is the desired relation. It should be stressed tha
deriving this equation weassumedKohn’s conjecture regard
ing the existence of nonoverlapping many-body Wann
functions in the insulating state.

We interpret Eq.~67! as follows: in each regionRM in the
configuration space of the variables$xi% ~Fig. 2!, the variable
X5( i 51

N xi takes on a range of values with a distributio
generated byC(a),

p~X!8Nc^CMud~X̂2X!uCM&, ~68!

which, together with Eq.~29!, gives the bulk polarization
distribution. The previous equation can therefore be view
as the generalization to extended insulating systems of
~25! for the distribution of the electronic center of mass
confined systems.

In Fig. 3 is represented the distributionp(Xi) along the
i th direction. According to Eq.~30!, its width is ANj i(N).
The solid lines describe what happens in a 1D insulator,
which the width of each of the peaksp(X) labeled byM is
ANj(N)}AL and the distance between the centers of c
secutive peaks isL, so that for largeL they are well sepa-
rated. In the case of a 3D insulator where all the linear
mensions are similar (V;L3), the peaksp(Xi) overlap for
largeL, since their width isANj i(N)}L3/2 ~dashed lines in
Fig. 3!. The important observation is that, according to E
~64! and~68!, even if they areoverlapping, the distributions
p(X) are well-defined ‘‘projections’’ into real space of e
sentially disconnecteddistributions uCMu2 in configuration
space.54

At this point we shall reconsider the problem of how
define a meaningful many-body position operator for
electrons in extended systems, an issue which has bee

FIG. 3. Localized distributionp(Xi) along thei th direction ofN
times the electronic center of mass (X5( j 51

N xj ) for a
d-dimensional insulator withN electrons in a periodic volumeLd

~based on Fig. 6 of Ref. 8!. Although each individual electron co
ordinatexj , as well as the electronic charge density~not shown!, is
spread over the whole system, because the system is insulat
localized distributionp(Xi) of width 2ANj i can be uniquely de-
fined in terms of the partial wave functionCM in a singlediscon-
nected regionRM in the dN-dimensional configuration space~Fig.
2!. Choosing a different regionRM8 simply shifts the center of the
distribution, if Mi85” Mi . The solid lines correspond tod51, for
which the peaks coming from differentRM do not overlap with one
another for largeL, whereas ford53 ~dotted lines! they overlap
strongly ~but the regionsRM are still essentially disconnected, fo
largeL.!
in

r

d
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e
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cently discussed in Ref. 17. We recall that the source of
problem is that in such systems the usual center-of-mass
sition operatorX̂ is ill-defined ~see Sec. III C!. Kohn8,9 pro-
posed the following operator as the substitute forX̂ for tak-
ing expectation values over the ground state wave func
of an extendedinsulator:

Q̂5H X̂2RM in RM

F~x1 , . . . ,xN! outside allRM ,
~69!

where F is defined in a similar way as in Eq.~56!. It is
straightforward to check that the moments calculated fromQ̂
coincide with those derived from the characteristic functio
with the help of Eqs.~1!, ~67!, and~69!, we find

^Ck50uQ̂j
nuCk50&8Nc^CM50uX̂j

nuCM50&

8ın]a
j
n

n
C~a!ua50 . ~70!

The connection with Ref. 17 will be made in Sec. VII B.

C. Insensitivity of bulk properties to the boundary conditions

We now have an adequate framework for discussing
implications of localization for the dependence on bound
conditions of the bulk properties of insulators. As a first e
ample, consider the adiabatic currentJk

(l) . Since it is gauge
invariant, we may evaluate it in any gauge, in particular in
nonoverlapping gauge. Substituting Eq.~61! into Eq. ~7! we
find, because of the exponential decrease of the overla
the sizeL is increased:

Jk
(l)8qeNc]l^CM

(l)uX̂uCM
(l)&8qe]l^X& (l), ~71!

where for the last equality Eqs.~33! and ~67! were used.
Thus for a large system sizeJk

(l) is essentiallyk independent
~this was demonstrated in Ref. 25 using a different reas
ing, for insulators with an energy gap!.

As a second example, let us look at the quantum geom
ric tensorTi j (k) and its real part, the metric tensorGi j (k).
Evaluating Eq.~40! in a nonoverlapping gauge with the he
of Eq. ~61!, we find Ti j (k)8^XiXj&c, which again is essen
tially independent ofk for large systems@it is also real, so
that Ti j (k)8Gi j (k)#. Thus we conclude that the
k-independent metric tensor gives the mean-square fluc
tion of the polarization. This is a stronger statement than
one made at the end of Sec. III D, which pertained to
k-averaged metric@by contrast, the single-electron metr
tensorgi j (k) given by Eq.~16! is in generalk dependent,
since the one-electron Wannier functions remain overlapp
even when they are maximally localized; as a conseque
the quadratic polarization fluctuations are related to itsaver-
ageover the Brillouin zone, as shown in Appendix A.#

These two examples illustrate an important point: t
physically measurable bulk quantities, such as the polar
tion current and the polarization fluctuations, are well d
fined for any single boundary conditionk, and the choice of
k becomes immaterial for large system sizes. It may the
fore seem bizarre that in the generating function formali
one needs to average over allk before obtaining gauge
invariant quantities, as shown in Sec. III D. A concrete e

g a
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ample helps to clarify this state of affairs: in the case of
second cumulant, had we taken the second derivative of
precursorcumulant generating function, lnC(k,a), without
afterwards averaging overk, we would be left with a quan-
tity @the integrand of Eq.~39!#, which is different from the
desired one,2Ti j (k), and is gauge dependent. However, t
k average of that gauge-dependent quantityis gauge invari-
ant and equals thek average of2Ti j (k)82Gi j (k) @com-
pare Eqs.~39! and~42!#. A similar situation occurs with the
adiabatic polarization current.

The insensitivity of the bulk properties of insulators to t
choice of boundary conditions on a large system seems t
a very general property. Indeed, ifÔ is any well-defined
operator acting on the ground state of the extended sys
~e.g., the HamiltonianĤ), then from Eqs.~5!, ~61!, and~64!

it follows that ^CkuÔuCk&8^Ck50uÔuCk50&, which helps
to understand why, for instance, in insulators the Dru
weight ~see Table I! goes to zero exponentially with the sy
tem size.8 This has been confirmed by numeric
simulations47 and calculations on exactly solvable models49

More precisely, in Ref. 49 it was found that the Dru
weight for the half-filled Hubbard model in one dimensio
scales as;L1/2e2L/ j̃, which yields a localization lengthj̃. It
would be worthwhile to investigate whetherj̃ is the same as
the localization lengthj used in the present work.

VII. DISCRETIZED FORMULAS

Until now we have dealt with a continuum formalism,
which the cumulants are obtained by differentiating lnC(a)
at a50. Heuristically, this can be viewed as a measure
the k-averaged change inFk as the boundary conditionk is
twisted adiabatically@see Eqs.~31!, ~32!, and ~33!#. In nu-
merical calculations it is often more natural to performinde-
pendentcalculations on a discrete mesh ofk points and then
use the resulting wave functions to estimate the derivat
by finite differences.12,33 Since the overall phases of th
wave functions on the grid are unrelated, useful discreti
expressions must remain invariant under arbitrary change
those phases. The derivation of such discretized form
becomes particularly transparent in the present formalism
we will now show.

A. Formulas involving an average over k

We will find it convenient to work with scaled coord
nates: let the simulation cell be defined by the vect
$L1 ,L2 ,L3%, to which correspond the reciprocal lattice ve
tors $G1,G2,G3% (L i•Gj52pd i

j ). The scaled coordinatesSi

are defined byX5SiL i , where a sum over repeated indic
is implied; similarly we havek5qiG

i anda5t iG
i ~and thus

a•X52pt iS
i). In terms of these variables, Eqs.~31! and

~32! become

C~q,t!5^Cque2ı2pt iS
i
uCq1t&5^FquFq1t&, ~72!

and

ln C~ t!5E
0

1

dq1E
0

1

dq2E
0

1

dq3 ln C~q,t!, ~73!
e
he

be

m

e

f

s

d
of

as
as

s

so thatC(t) is the joint characteristic function for the var
ables 2pSi .

The average is

^Sl&5
ı

2pE dq ] t l
ln C~q,t!u t50 . ~74!

Next we discretize the derivative in the integrand as

dql] t l
ln C~q,t!u t50. ln C~q,dql !2 ln C~q,0!

.ı Im ln C~q,dql !, ~75!

where we made use of Eq.~31!. This expression is gaug
dependent, just like its continuum counterpart, the Be
connection. As in the continuum case, gauge invarianc
recovered by averaging overk; that is done by choosing a
row of J11 k points along the direction ofGl such that the
endpoints are separated byGl ; then we find

^Sl&.2
1

2pE dqidqj (
g50

J21

Im ln^Fkg
uFkg11

&, ~76!

where (i , j ,l ) is some permutation of (1,2,3), and the pe
odic gauge is enforced by settingFkJ

5e2ıGl
•XFk0

. The av-
erage polarization is then given by

^Pel&•Gl5
2pqe

V
^Sl&

.2
qe

V E dqidqj Im ln)
g50

J21

^Fkg
uFkg11

&, ~77!

which is the many-body analog of the discretized Be
phase formula proposed in Ref. 12. It is straightforward
verify that it is gauge invariant modulo the quantum of p
larization. This property hinges upon~i! choosing a periodic
gauge, and~ii ! having a logarithm in the expression, whic
in the present derivation appears quite naturally, com
from the cumulant generating function, Eq.~73!.55

To compute the variance we discretize the second lo
rithmic derivative:

~dql !
2] t

l
2

2
ln C~q,t!u t50

. ln C~q,dql !1 ln C~q,2dql !22 lnC~q,0!

5 ln@C~q,dql !C~q,2dql !#, ~78!

which is gauge dependent, similarly to Eq.~75!.56 After
some manipulations we obtain the following gauge-invaria
k-averaged formula:

^~Sl !2&c.2
J

~2p!2E dqidqj lnu )
g50

J21

^Fkg
uFkg11

&u2.

~79!

The evaluation of the covariance requires taking cross
rivatives, which can be discretized as
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]xy
2 f .

1

2dxdy
@ f ~x1dx,y1dy!1 f ~x2dx,y2dy!

2 f ~x1dx,y!2 f ~x2dx,y!2 f ~x,y1dy!

2 f ~x,y2dy!12 f ~x,y!#, ~80!

leading to

^SjSl&c.2
1

2~2p!2E dqiF ln )
n50

Jj 21

)
g50

Jl21

u^Fkng
uFkn11,g11

&u2

2 ln )
n50

Jj 21

)
g50

Jl21

u^Fkng
uFkn11,g

&u2

2 ln )
n50

Jj 21

)
g50

Jl21

u^Fkng
uFkn,g11

&u2G , ~81!

wherekng5k'1 (n/Jj ) Gj1 (g/Jl) Gl .
In order to convert back to Cartesian coordinates we

the transformation law for a second-rank contravariant t
sor, ^XiXj&c5Hil ^S

lSm&cH jm , where H5$L1 ,L2 ,L3%.
Equations~77!, ~79!, and~81! are all that is needed to calcu
late the average polarization and its quadratic fluctuations
well as the correlations along different Cartesian directio
~if the cell symmetry is orthorhombic or higher, Eq.~81! is
not needed for computing the fluctuations.! In Appendix D
we give the required modifications to deal with fraction
filling.

B. Formulas involving a single k

We now turn to a different kind of discretized formula
the so-called ‘‘single-point’’ formulas, such as Eq.~17!. In
the case of localization they were previously given for o
dimension only.34 In the present formalism the generalizatio
to higher dimensions becomes straightforward. We will
rive at the ‘‘single-point’’ formulas starting from the expre
sions derived in the previous section, which involve avera
over a grid ofk points. The basic idea is to perform th
many-body analog of a ‘‘Brillouin zone folding.’’16 Let us
start by discretizing the remaining integrals in Eqs.~77!,
~79!, and ~81!; the expression for the average polarizatio
for example, becomes

^Pel&•Gl.2
qe

V

1

JiJj
Im ln )

m50

Ji21

)
n50

Jj 21

)
g50

Jl21

^Fkmng
uFkmn,g11

&.

~82!

In the following we will assume a uniform spacing along
the reciprocal lattice directions: kmng5 k̃1(m/Ji)G

i

1(n/Jj )G
j1(g/Jl)G

l and k̃ is fixed ~usually k̃50). Next
we build anansatzwave function34 C̃ k̃ contaningÑ5JN
electrons as the antisymmetrized product of theJ5J1J2J3
separateN-electron wave functionsCkmng

:

C̃ k̃5
1

AÑ!N! J
(
P

~21!PPC~1, . . . ,Ñ!, ~83!

where the sum is over all the permutationsP of the Ñ par-
ticle coordinates, (21)P is the parity of the permutation, an
e
-

as
s

l

e

-

s

,

C(1, . . . ,Ñ)5)mngCkmng
. It is easy to verify thatC̃ k̃ obeys

k̃ boundary conditions on the larger cell containingÑ elec-
trons. Using the fact that the grid is uniform, it can be sho
that for evenN this leads to@compare with Eq.~16! in Ref.
34, which deals with the 1D case#:

)
mng

^Fkmng
uFkmn,g11

&5^C̃ k̃ue2ıG̃l
• X̂̃uC̃ k̃&, ~84!

where G̃l5Gl /Jl is a basis vector of the reciprocal of th

larger cell, andX̂̃ is the center of mass position operator
the Ñ-electron system. Comparison with Eq.~82! yields

^Pel&•G̃l.2
qe

Ṽ
Im ln^C̃ k̃ue2ıG̃l

• X̂̃uC̃ k̃&. ~85!

Similarly, discretizing the integrals in Eq.~79! and using
Eq. ~84!, we find

^~Sl !2&c.2
1

~2p!2

Jl

JiJj
lnu^C̃ k̃ue2ıG̃l

• X̂̃uC̃ k̃&u2. ~86!

The quantity on the lhs pertains to theN-particle system,
whereas those on the rhs pertain to theÑ-particle system.
However, if we chooseJ15J25J3 and use ^XiXj&c /N
.^X̃i X̃j&c /Ñ together with the transformation law betwee
Cartesian and scaled coordinates, we find̂S̃i S̃j&c
5J1^S

iSj&c . Equation~86! then becomes

^~S̃l !2&c.2
1

~2p!2
lnu^C̃ k̃ue2ıG̃l

• X̂̃uC̃ k̃&u2, ~87!

where all the quantities are now explicitly written for th
Ñ-particle system.

The following relation can be derived along the sam
lines as Eq.~84!:

)
mng

^Fkmng
uFkmn11,g11

&5^C̃ k̃ue2ıG̃j
• X̂̃e2ıG̃l

• X̂̃uC̃ k̃&.

~88!

Discretizing the remaining integral in Eq.~81! and again
settingJ15J25J3, we obtain, using Eqs.~84! and ~88!,

^S̃j S̃l&c.2
1

2~2p!2
@ lnz^C̃ k̃ue2ıG̃j

• X̂̃e2ıG̃l
• X̂̃uC̃ k̃& z2

2 lnz^C̃ k̃ue2ıG̃j
• X̂̃uC̃ k̃& z2

2 lnz^C̃ k̃ue2ıG̃l
• X̂̃uC̃ k̃& z2#. ~89!

Equations~85!, ~87!, and~89! are the desired ‘‘single-point’’
formulas. In Appendix D we modify them for the case
fractional filling.

In one dimension the above formulas become particula
simple, and we recover the results of Refs. 17 and 34
Cartesian coordinates (X̃5S̃L̃ andG̃52p/L̃) they are

^X̃&.2
L̃

2p
Im ln^C̃ k̃ue2ı(2p/L̃) X̂̃uC̃ k̃&, ~90!
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which is equivalent to Eq.~18!, and

^DX̃2&.2
L̃2

~2p!2
lnz^C̃ k̃ue2ı ~2p/L̃ !X̂̃uC̃ k̃& z2, ~91!

which, together with Eq.~30!, gives Eq.~19!.

C. Interpretation of the ‘‘single-point’’ formulas

In the previous section we derived ‘‘single-point’’ formu
las for the first two moments of the polarization, starti
from discrertized expressions involving an average o
boundary conditions. In order to switch between the two
scriptions, anansatzwave functionC̃ k̃ given by Eq.~83!

was used. However, this is strictly valid only if theÑ par-
ticles are not correlated with each other. In that caseC̃ k̃
becomes a Slater determinant of one-electron orbitals,
the procedure leading to the ‘‘single-point’’ formulas~‘‘Bril-
louin zone folding’’! does not involve any further approx
mations~see Refs. 16 and 17!.

For a correlated state of many particles the situation
rather different. In that context the single-point formul
were originally proposed in one dimension for anarbitrary

correlated Ñ-electron wave functionC̃ k̃50 with periodic
boundary conditions over a cell of sizeL̃;17,34however, such
a wave function in general will not obey Eq.~83!. The deri-
vation of the previous section allows us to assess the
proximations involved: these have to do with the extent
which a wave function given by Eq.~83! differs from the
fully correlated wave function. The key quantity to consid
is the correlation lengthLcorr, which quantifies the range
over which the particles are correlated~in addition to any
long range order which is included in the mean field pot
tials ‘‘seen’’ by each particle!. The fact that the correlation
are short ranged has been termed ‘‘nearsightedness’
Kohn in a recent paper;57 in fact, in an insulator, for ex-
ample, one expects the longest range correlations to be o
van der Waals type, which decay as 1/r 6 in the energy and as
1/r 3 in the wave function.39,58 The basic assumption unde
lying Eq. ~83!, namely that theÑ electrons only correlate in
groups ofN at a time,34 is consistent with the principle o
nearsightedness. This is the justification for applying
single-point formulas to a correlated insulating wave fun
tion, provided that the cell is large enough.

From this perspective it becomes clear that the two ty
of formulas derived in Secs. VII A and VII B constitute di
ferent approximations to the same continuum expressi
which involve an average over all twisted boundary con
tions. In both approaches one must choose cells with lin
dimensions greater thanLcorr: in the latter approach on
must use a single large cell with sizeJV in order to have the
same level of accuracy asJ independent calculations each
sizeV using the former approach.

From a practical point of view, there are two possib
ways to proceed: either perform several calculations w
different twisted boundary conditions on a smaller cell a
then use the formulas of Sec. VII A, or perform a sing
calculation on a large cell and then use the formulas of S
VII B. Although the two approaches are comparable in ter
of accuracy, the former approach should be more effici
r
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because the available many-body algorithms do not s
linearly with the number of particles. On the other hand,
averaging over boundary conditions may be more cumb
some to implement in practice.

VIII. CONCLUSIONS

We have presented in this work a unified theory of ele
tronic polarization and localization in bulk insulators. Th
central quantity in the formalism is the cumulant generat
function lnC(a) defined in Eq.~32!; it provides a systematic
procedure for extracting from thek-dependence of the
ground state insulating wave functionCk the moments of a
properly defined distributionp(X) for the electronic center
of mass. In complete analogy with the case of a confin
system, this distribution is simply related to the quantu
distribution of the ground state polarization, via Eq.~29!.

Several seemingly disparate ideas regarding electronic
larization and localization in insulators8,29,34 are brought to-
gether quite naturally using the generating function a
proach. In particular, it shows the connection between
Berry phase theory of polarization,12–16as well as the related
approach to localization,33,34,36and Kohn’s theory of local-
ization in the insulating state.8,9 A key quantity is the elec-
tronic localization lengthj i , which is defined in terms of the
experimentally measurable mean-square fluctuation of
polarization@Eqs. ~30! and Table I!#, making contact with
the work of Kudinov.29 In the thermodynamic limit it agree
with the localization length defined in Ref. 34 for 1D sy
tems @Eq. ~19!#. Furthermore, the generating function fo
malism also reveals a very close formal analogy betw
Kohn’s localized many-electron functionsCM and the maxi-
mally localized one-electron Wannier functions defined
Marzari and Vanderbilt:33 the former can be viewed as max
mally localized many-body Wannier functions~see Sec.
VI B and Appendix B!. Moreover, in the same way that th
quadratic spread of the functionsCM is a measure of the
mean-square fluctuations of the bulk polarization, the gau
invariant part of the spread of the Wannier functions~which
in 1D systems equals the spread of the maximally locali
Wannier functions! measures the same quantity for uncor
lated insulators. The fluctuation-dissipation relation can
used to derive an inequality@Eq. ~52!# between the polariza
tion fluctuations and the minimum energy gap for optic
absorption in an insulator. The present approach also
vides some extra insight into the appearence of a ‘‘quan
of polarization’’ in periodic insulators,12 which is seen to be
related to the localized nature of the insulating wave funct
~see Appendix C!.

The localization length seems to play a role in the the
of insulators similar to that of the Drude weight in the theo
of ideal conductors: the latter measures how ‘‘free’’ t
‘‘free charges’’ in a perfect conductor are, whereas t
former measures how localized the ‘‘bound charges’’ in
insulator are. Interestingly, both quantities can be expres
as second derivatives with respect to the twisted bound
conditions ~see Table I!, which play a crucial role in the
formalism. As discussed in Sec. VI C,bulk propertiesof
insulators are rather insensitive to the boundary conditio
unlike the properties of conductors. Nevertheless, the in
lating wave functionitself is not insensitive to the boundar
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conditions;25 on the contrary, the derivatives of lnC(a),
which measure thek-averaged change withk in Fk
5e2ık•XCk as the boundary condition onCk is twisted,
contain quantitative information about basic properties of
insulator: in particular, the first derivative gives the avera
macroscopic polarization, and the second derivative give
mean-square fluctuation. Both quantities have a geomet
interpretation: the former is a Berry phase on a manifold
quantum states parametrized by the twisted bound
conditions12,14 @Eq. ~38!#, and the latter is a metric on th
same manifold@Eq. ~42!#.

The generating function approach also leads naturally
discretized formulas that can be used to compute the po
ization and the localization in many-body numerical calcu
tions in any number of dimensions. Two alternative kinds
expressions exist: those involving wave functions compu
on a uniform grid ofk points@Eqs.~77!, ~79!, and~81!#, and
those involving a single wavefunction with a fixed bounda

condition k̃ @Eqs. ~85!, ~87!, and ~89!#. The present deriva
tion clearly shows how the two types of formulas are rela
to one another.
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APPENDIX A: LOCALIZATION LENGTH AND SPREAD
OF THE ONE-ELECTRON WANNIER FUNCTIONS

In Sec. VI B it was shown that the width of the electron
center of mass distributionp(Xi), arising from the
maximally-localized many-body Wannier functionCM , is
ANj i . In this Appendix we work in the independent-electr
framework, in which the usual one-electron Wannier fun
tions are defined, and investigate the relation between t
spread and the localization lengthj i ~i.e., the root-mean-
square fluctuation of the polarization!. It is clear that since
the spread@Eq. ~14!# is gauge-dependent, it cannot rela
directly to any measurable quantity. One might have gues
that, as happens with the many-body Wannier functions,
physically meaningful quantity would be the spread of t
maximally localized Wannier functions. Building upon th
results of Ref. 33, we show here that the gauge-invariant
V I of the spread of the occupied Wannier functions@Eq.
~15!# measures the mean-square fluctuation of the bulk
larization.

The proof follows from the fluctuation-dissipation the
rem: for a crystalline insulator in the independent-elect
approximation, the real part of the optical conductivity d
to interband vertical transitions is given by50
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Res i j ~v!5
p f qe

2

me
2\v

(
n51

M

(
m5M11

`

3E
BZ

dk

~2p!3
pnm,k

i pmn,k
j d~vmn

k 2v!, ~A1!

where f is the occupation number of states in the valen
band ~in spin-degenerate systemsf 52), pnm,k5
2ı\^cnku“ucmk&, and \vmn

k 5emk2enk is the difference
between single-particle energies. Instead of Eq.~46! we now
havepnm,k5mevmn

k ^unku]kumk&, and following similar steps
as in Sec. IV for the many-body case we find, using Eq.~16!,

\

p f qe
2E0

`dv

v
Res i j ~v!5

1

~2p!3EBZ
dk gi j ~k!. ~A2!

Combining with Eqs.~15! and ~49!, using v/( f V)5M /N,
and taking the trace, we obtain the fluctuation-dissipat
relation:59

V I5
\v

p f qe
2E0

`dv

v
Tr Res~v!5M lim

N→`

^DX2&
N

. ~A3!

Comparison with Eqs.~30! shows thatV I /M5( i 51
3 j i

2 ,
which is the multidimensional generalization of a result o
tained in Ref. 34. It has been found that typicallyV I ac-
counts for most of the spreadV; for instance, in semicon-
ductors it usually accounts for more than 90%.33 Thus it is
justifiable to viewj i

2 as an estimate of the average spre
along thei th direction of the occupied Wannier functions~in
one dimension it is actually the average spread of the m
mally localized functions33!. This conclusion agrees with th
analysis in Appendix 1 of Ref. 8: there, the distributionp(X)
of the electronic center of mass of a 1D noninteracting in
lating system was studied, with the result thatX is localized
in an interval of widthANb, where ‘‘b is a length of the
order of the range of the Wannier function.’’ It is clear fro
the results of Sec. VI B and the previous discussion that
gauge-invariantj is precisely that lengthb.

It is straightforward to check that for noninteracting cry
talline insulators, Eq.~52! becomes, after summing over alld
Cartesian directions,V I /M<d\2/(2meEg), whereEg is the
minimum direct gap over the Brillouin zone. Hence in ge
eral the inequality involves the gauge-invariant part of t
spread. Since in one dimension this equals the aver
spread of the maximally localized Wannier functions, w
recover Kivelson’s original result.60

APPENDIX B: SPREAD OF THE MANY-BODY WANNIER
FUNCTIONS

In Sec. VI B we introduced the functionsWM , which play
a role in the many-body theory of polarization similar to th
of the Wannier functions in the independent-electron theo
Here we will show that this formal analogy carries over
considerations about the spread of those functions. As m
tioned in Sec. II, in the independent-electron framework
quadratic spreadV of the occupied Wannier functions can b
decomposed into a sum of two positive terms, one of th
(V I) gauge-invariant;33 henceV I<V in any gauge. Follow-
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ing similar steps as in Ref. 33, here we will derive the c
responding result for the many-body functionsWM . First we
define their gauge-dependent spread by analogy with
~14!:

V (W)5^W0uX̂2uW0&2^W0uX̂uW0&
252]a2

2 ln CW~a!ua50 ,
~B1!

whereCW(a) is given by Eq.~63!. Next we show that the
role of V I is played by^DX2&52]a2

2 ln C(a)ua50: taking
this derivative inside the integral in Eq.~32!, discretizing that
integral,52 and comparing with Eq.~63!, this becomes

^DX2&5^W0uX̂2uW0&2
1

Nc
(

k
~ ı^Fku]kFk&!2. ~B2!

Now we use the relation

ı^Fku]kFk&5(
M

e2ık•RM^WMuX̂uW0&, ~B3!

which is the many-body analog of Eq.~5! of Ref. 33 and can
be derived in the same way. Substituting into Eq.~B2! gives

^DX2&5^W0uX̂2uW0&2(
M

u^WMuX̂uW0&u2, ~B4!

and comparison with Eq.~B1! yields the desired result
^DX2&<V (W).

There is, however, an important difference with respec
the single-electron Wannier functions: in Ref. 33 it w
shown that it is only in one dimension that the maxima
localized one-electron Wannier functions have a spr
min@V#5VI , whereas in higher dimensions min@V#.VI ,
i.e., V I is strictly a lower bound toV. As discussed in Sec
VI B, according to Kohn8,9 a gauge can be chosen where t
functionsWM have an exponentially small overlap with on
another in the high-dimensional configuration space,
which case only the termM50 survives in the sum on th
rhs of Eq.~B4!. Therefore we conclude that for an insulat
in any number of dimensions we have min@V(W)#8^DX2&,
where for any finite size the corrections due to the expon
tially small overlaps make the lhs slightly larger than the
Thus Kohn’s functionsCM are the maximally localized
many-body Wannier functionsWM , since asV→` the
spread^DX2& of the gauge-invariant distributionp(X) ob-
tained fromCM @Eq. ~68!# becomes the minimum of th
spreadV (W) of the gauge-dependent distributionpW(X) ob-
tained fromWM @Eq. ~62!#. This point can be further eluci
dated by noting, in the spirit of Refs. 33 and 51, that in t
limit of V→` the functionsCM become eigenfunctions o
the operatorX̂ projected onto the occupied manifold.61

APPENDIX C: THE QUANTUM OF POLARIZATION

Here we will discuss the relation between the quantum
polarization12–16and the localized nature of a bulk insulatin
wave functions8,9 ~see Fig. 2! ~a related discussion, regard
ing the closely related phenomenom of quantized cha
transport in insulators, can be found in Ref. 62.! Let us con-
sider a periodic system of volumeL3, which for simplicity
we take to be cubic. If the external potential acting on
-

q.

o

d

n

n-
s

e

f

e

e

electrons is changed adiabatically along an insulating clo

path parametrized byl (Ĥ (l51)5Ĥ (l50)), then, since the
hamiltonian comes back to itself, the net effect, as far as
wave function is concerned, has to be either~i! eachCM
returns to itself or~ii ! there is a rigid translation of all the
CM in configuration space by the same amount, which c
be described by a uniform shift of their indices:M→M
1(n1 ,n2 ,n3).

As far as charge transport is concerned, the import
observation is that, since the system remains insula
throughout the path, the regionsRM remain disconnected, s
that no charge can flow between them during the adiab
motion. The resulting integrated current flowing through t
system during the cycle@which, according to Eqs.~2! and
~3!, measures the change in polarization# can then be inferred
from Figs. 2 and 3, which show that the regionsRM are
labeled by the center of mass of the electrons, and that
can go from one region to the next by moving any one el
tron across the lengthL of the periodic system. The smalle
nonzero change in the average polarization along thei th di-
rection is given by the smallest nonzero shift in the distrib
tion p(Xi) (ni561), and is seen to equaluqeuL/V
5uqeu/L2, which is the quantum.12,14

It should be noted that strictly speaking the exact qua
zation of charge transport in an insulating system with pe
odic boundary conditons only occurs in the thermodynam
limit.24,25 In fact, the quantization was established for a fin
system only after averaging over all twisted boundary c
ditions; when using periodic boundary conditions, there
exponentially small corrections.25 This is consistent with
Kohn’s picture that for any finiteV the regionsRM are not
completely disconnected but have an exponentially sm
overlap, which allows for a correspondingly small char
flow between neighboring regions, thus destroying the ex
quantization.

APPENDIX D: THE CASE OF FRACTIONAL FILLING

The formulas given in the text need to be generalized
order to deal with correlated systems which have in
ground state a noninteger number of electrons per primi
cell, and yet are insulating. This can happen in many
models,36,63but it appears that in higher dimensions the M
transition to an insulating state is usually accompanied b
breaking of the symmetry~e.g., a charge-density wave! that
restores integer filling.64 Therefore we shall restrict the en
suing analysis to one dimension, as done in Refs. 28 and

Aligia28 has shown that in cases where there is a fr
tional number of electrons per primitive cell, the limits o
integration overk in the Berry phase formula for the pola
ization difference@Eq. ~12!# need to be modified, from which
it follows that the ‘‘single-point’’ formulas for the polariza
tion and localization derived in Refs. 17 and 34 also need
be changed. For the purposes of the present paper
straightforward to modify the integral overk in the definition
of ln C(a), and from that derive the required modifications
the discretized numerical formulas.

Let us consider a 1D system with a simulation cell of s
L andn/ l electrons per unit cell, wheren/ l is an irreducible
fraction. Following Ref. 28, we modify the cumulant gene
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ating function, Eq.~32!, as follows:

ln C~a!5
1

l E0

2p l /L

dk ln C~k,a!. ~D1!

In order to obtain the discretized formulas, we just need
retrace the steps taken in Secs. VII A and VII B, with t
above modification. Discretizing the interval 0<k<2p l /L
into a uniform row ofJ11 pointskg , we find that Eq.~77!
changes to

^X&.2
L

2p l
Im ln)

g50

J21

^Fkg
uFkg11

&, ~D2!
s

s

s

t

m
a

on
is
o

which agrees with the result quoted in Ref. 28. Similarly, E
~79! becomes:

^DX2&.2
JL2

~2p l !2
lnU)

g50

J21

^Fkg
uFkg11

&U2

. ~D3!

As for the modified single-point formulas,36 it is straightfor-
ward to verify, applying the approach of Sec. VII B to th
previous two equations, that they are the same as Eqs.~90!

and ~91!, except for the substitutionL̃→L̃/ l .
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