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We use a recently introduced classical mapping of the Coulomb interactions in a quantum electron liquid
[Phys. Rev. Lett84, 959(2000)] to present a unified treatment of the thermodynamic properties and the static
response of thdinite-temperatureelectron liquid, valid for arbitrary coupling and spin-polarization. The
method is based on using a “quantum temperatufgsuch that the distribution functions of tlassical
electron liquid atT, leads to the same correlation energy as the quantum electron liquid-=at The
functional form of To(rs) is presented. The electron-electron pair-distribution functi@isF's) calculated
using T, are in good quantitative agreement with availaliie=0) quantum Monte Carlo results. The method
provides a means of treating strong-coupling regimes,®f and{ currently unexplored by quantum Monte
Carlo or Feenberg-functional methods. The exchange-correlation free energies, distribution fungions
01r), goo(r) and the local-field corrections to the static response functions as a function of density
temperaturel, and spin polarizatiord are presented and compared with any available fihitesults. The
exchange-correlation free enerfp(n,T,?), is given in a parametrized form. It satisfies the expected analytic
behavior in various limits of temperature, density, and spin polarization, and can be used for calculating other
properties like the equation of state, the exchange-correlation potentials, compressibility, etc. The static local-
field correction provides a static response function which is consistent with the PDF’s and the relevant sum
rules. Finally, we use the finit€-xc-potentials to examine the Kohn-Sham bound- and continuum states at an
Al nucleus immersed in a hot electron gas to show the significance of the xc-potentials.

[. INTRODUCTION approximation(RPA) provide useful “benchmarks” for cal-
culations of the properties of the interacting UEG at finite
Recent advances in materials science, experiments usifg'® "> RPA is a reasonable approximation when the “cou-
intense lasers, etc., have created a need for improved thephng parameter’I’, the ratio of the potential energy to the
retical tools for treating electronic systems at arbitrarykinetic energy of the Coulomb fluid, is smaller than unity.
(strong coupling and for a wide range of densities and tem-The I" for the UEG atT=0 reduces to the mean-sphere
peratures. Similarly, electrons and other fermions in astroradiusrg per electron, i.e., for the three-dimensior{aD)
physical plasmas, white dwarfs, etcare at densities and caseI =r = (3/4wn), with n the number density per a.u.
temperatures such that they range from full degeneracy t8ince electronic interactions involve exchange effects, the
high-temperature Maxwellian distributions. The Maxwellian spin-polarization{=(n;—n,)/n, where n; is the number
limit of the uniform electron gasUEG) is usually studied density of spin speciesof the system, brings in a multicom-
under the name “one-component plasm@®CBP. Since itis  ponent aspect to the theory. The RPA holds in the high-
a classical system, its properties have been studied extetemperature low-density limit where it reduces to Debye-
sively using integral-equations methods as well as classicafiikel theory, and in thd =0 high-density limit, since these
simulations> The zero-temperature UEG is generally suffi- are both weak-coupling regimes. However, for typical re-
cient for metal physics, and has been the object of an enogimes of physical interest, the electron-electron pair-
mous effort. The UEG at finit& is important not only for the distribution functions(PDF’s), g(rg,r), calculated in the
reasons already mentioned, but also because it providesRPA are not found to be positive definite. Improving the
model exchange-correlation potential for the density-RPA is nontrivial if the theory is expected to satisfy sum
functional theory(DFT) of finite-T inhomogeneous elec- rules and provide physically realistig(r). Diagrammatic
tronic system$:®> Many other applications of the finif€- methods look for resummations that conserve the sum rules,
UEG arise in understanding new materfatioped semicon- Ward identities, et¢*!” These methods become quite un-
ductors and nanostructures, as well as with respect to th&ieldy for finite-T strong coupling. Hence most attempts to
older topics like liquid metals, etc., discussed some time aggo beyond the weak-coupling regime are based on the con-
in Ref. 8. Recent studies on compressed hydrdgesth in  struction of local-field correctionéLFC’s) to the RPA re-
the solid and liquid phase, have demonstrated the need &ponse function$!®-22The equations of motiofEQM) of
treat the protons on an equal footing with the electrons anthe density operator beyond the RPA require an “ansatz” to
the methods discussed here should be of interest. “close” the equations. Singwiet al (STLS, used a
The Hartree-Fock approximatidrand the random-phase physically-motivated closure by introducing the electron
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PDF determined self-consistentf§yA finite-T application of ~ exchange-correlation free energy and several derived proper-
STLS was given by Tanaket al?! The STLS-type method ties are presented in Sec. IV. The local-field corrections to
was also used by the Cornell gro(Ref. 8), in the form of a  the static response at finifeare discussed in Sec. V. In Sec.
finite-T extension of the Vashista and SingMS) approach VI we use the new xc-potentials to study the Kohn-Sham
at T=0."° They provided parametrized forms for the electronic structure of an Al-ion immersed in a hot electron
exchange-correlation free enerfyy, and various thermody- gas and show that there are significant differences from the
namic properties of the UEG without spin polarization. Com-results obtained from the lyetomi-lchimaru xc-potential.
prehensive studies of the finite-T electron fluid were pre-
sented by Ichimaru and collaborators. They used extension
of the STLS method as well as methods based on a modifiedﬁ' THE CLASSICAL MAP FOR QUANTUM ELECTRONS
convolution approximation and provide parametrized forms The thermodynamics and static-response functions of a
for the spin-polarized UEG'-3All these treatments do not system of interacting particles can be calculated if the pair-
overcome the underlying difficulty that thg(r) becomes distribution functions and the interaction potentials are
negative for some values of for sufficiently largerg (e.g.,  known. The PDF’s of classical fluids are easily obtainable
r«~5, or even 2 in some cagem the metallic range, al- from classical Monte Carlo simulations or using the hyper-
though the situation is much improved compared to RPAnetted-chain(HNC) equation and its extensiof$We use
Further, very often the smalki-and largek limits of the  the HNC method in our work as it is not computer intensive
model LFC’s used in these theories are fittecatbhocval-  and also provides a formal language suitable for conceptual
ues or values obtained from theoretical resultésidethe  analysis. In Ref. 35 we showed that there exists a tempera-
method used. Nevertheless, these methods have been mauee T, such that, at that temperature, the PDF’s alassi-
successful than straight diagrammatic methods in obtainingal Coulomb fluid are in very close agreement with the
practical results for the regime beyond weak coupling, espePDF'’s of thequantumelectron gas and yield the same cor-
cially because the energy could be calculated with good acaelation energy. In effect, we asked for the temperalyyat
curacy even if the PDF’s were unsatisfactory. which the PDF’s of a Coulomb fluid, obeying tlutassical

Another approach, well known im=0 applications, as- HNC-integral equation, yielded thE. of the UEG at the
sumes a trial wave function of the forg=FD, whereF is  same density and dt=0. The suffixq in T, signifies that
a correlation factor an® is a Slater determinant. This typi- this temperature reflects the quantum many-body interactions
cally leads to the Feenberg energy functionals which arén the UEG. Using the temperatufg at eachr s we obtained
handled in several way4-2° Quantum Monte Carl6QMC)  g;;(r), spin-polarized correlation energi&(rs,¢), LCF’s
techniques also use suchjeand lead, e.g., to the variational etc., for theT=0 case.
Monte Carlo(VMC) method?’~3°The QMC estimate of the The physical motivation for our method comes from DFT
exchange-correlation enerdy,(rs), atT=0 is now avail- where interacting electrons are replaced by noninteracting
able in several parametrized fordts>**While it is easy to  Kohn-Sham(KS) particles whose wave function is a simple
get goodE,(r.), the opposite is true for other properties determinant. This is conceptually very different to the Feen-
like the PDF’s and LFC’s. There is at present a very considberg approach which uses a correlated wave function of the
erable interest in extending these methods for the UEG dborm #=FD.??® In DFT, the many-body potential is re-
finite T and ¢, as well as for dense hydrogéh. placed by a one-body KS potentidlys, obtained from the

In a recent letter we showed that the many-body interacexchange-correlation enerdy,.. Since the natural energy
tions in theT=0 UEG are such that its static properties, e.g.,parameter of the classical ensemble is the temperature, we
g(r), E,(rs,{), static LFC’s, may be extracted from a look for a temperature mapping of tig, .
study of theclassicalCoulomb fluid at a “quantum” tem- Our objective is to construct a classical Coulomb fluid at
peratureT,,, and presented a parametrizationTgfas a func- ~ some temperatur& ¢ such that its correlation energy and
tion of rg.%® In parallel with the Fermi-hypernetted-chain SPin-dependent distribution functions are those of a quantum
and Bose-hypernetted-chain methods, we will call this lectron gas at some given temperaflir€onsider a fluid of
classical-map hypernetted-chain meth6@HNC), although ~ Mean densityn containing two spin species with concentra-
of course, the HNC igpso factoa classical method. Other tionsxij=n;/n. We deal with the physical temperatuifeof
classical integral equations or molecular dynamics may ofhe UEG, while the temperature of the classical flliid is
course be used instead of the HNC, within the classical map/Bcs- Since the leading dependence of the energy on tem-
presented here, and in Ref. 35. In this study we extend theerature is quadratic, we assume that a suitable formula in-
CHNC calculations to the finite-temperature electron liquid,terpolating between the loW-and highT regimes is given is
assuming that the same conceptual basis holds herd. At given byT (= \/(T2+Tq2). This is clearly valid forT=0 and
=0, the method could be checked against results from QMdor high T. The cas& =0 was examined in Ref. 35 whefg
and other studies. At finit& we do not have QMC results, was determined as a function of, and the agreement be-
but a variety of previous studies as well as the behavior atween the quantum pair distributions with those calculated
various limiting situations of ¢, T, and ¢ are available to from the classical model was established in detail. In this
provide a check on the methods used. In Sec. Il we revievgtudy we present detailed calculations at fiffitetssing our
the classical map for quantum electrons for the conveniencguadratic interpolation. A physical interpretation ®f; is
of the reader and provide additional results for The0 case given in Appendix A, where it is shown to agree with the
not reported in our previous publication, viz., Ref. 35. Inclassical temperature which gives the correct quantum ki-
Sec. Il we present results for the pair-distribution functionsnetic energy per electron. Comparison with results from
of the finiteT electron gas. The parametrized form of the other available methods suggests that it provides a suitable
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interpolationfor all T, while being valid for lowT and high- However, the robustness of the method is such that the
T regimes by construction. At this point we may note thatcorrelation-energy estimates are found to be accurate even at
every singletheory of the finite¥ electron liquid that at- r =20, i.e., well outside the fitted regime. The HNC ap-
tempts to provide numerical results that go beyond RPA ar@roximation suffers from a compressibility inconsistency
essentially based on sorassumednterpolation between the (Cl), i.e., the excess compressibility calculated from the
T=0 and highT regimes. Thus Tanaket al,?® interpolate  smallk limit of the short-ranged part af(k) does not agree
between two types of modified-convolution approximations,with that obtained from the excess free energy. The RPA,
while ours is between two regimes of the HNC equation. TheHubbard!* and also STLS methods suffer from such a ClI
method of Dandreat al.. uses the STLS “ansatz,” assumes even for coupling regimes much smaller than those where
that the Vashista-Singwi static LFC can be used with interthe HNC holds good. In fact, the Vashista-Singwi model was
polations (unspecified in the papeiof the compressibility —an attempt to correct the Cl in the original STLS method and
between th& =0 and highT limits, and carry out frequency extend it to the metallic regime of,. The CI in the HNC
integrations over the static LFC’s. Since the compressibilityscheme can be corrected by including a suitable bridge term.
is related to the density gradient of the xc-potentials, usindn this study we retain the simple-HNC scheme since the
the compressibility as an input clearly poses some questionsange ofl" involved is such that the Cl is not at all serious.
The results are justified by DAC by noting that their “calcu-  Consider the noninteracting system at temperafureith
lations of the excess free energy of the intermediate degens=0.5 for the paramagnetic case. The parallel-spin PDF,
eracy regime find good agreement with the more exact rete., gﬁ(r,T), will be denoted b)g?(r) for simplicity, since
sults of Tanakaet al.” In a similar sense, the validation of gioj(r'T), i # jis unity. Denoting (;—r,) byr, it is easy to
our interpolation procedure is based on the general consishow that
tency of our results with previous methods, as well as the
positivity and other favorable aspects of our pair- 2 _
distributions functions, other properties etc., that we present gd(r)= —22k1,k2n(kl)n(k2)[1—e'("lka)'r]. (4)
in this work, but not found in other methods. A more com- N
plgte validation of th_e results from existing_theories of theHeren(k) is the Fermi occupation number at the temperature
finite-T UEG, including ours, has to await results from 4 Equation(4) reduces to
complementary methods which use different assumptions
(e.g., stochastic simulatiohs Ory=1_F2

The pair-distribution functions for a classical fluid at an gr(r)=1-F+(1) ©
inverse temperaturg;s can be written as

213 sin(kr) kdk
gij (1) = el ~Ferdi () +hij (1) =€ (1) +Biy(1)], 1) Fr(r)=(6m /kp)f n(k)

r 212

©6)

Here ¢;;(r) is the pair potential between the spedigs For
two electrons this is just the Coulomb potentiél, (r). If ) ) .
the spins are parallel, the Pauli principle prevents them fronﬁrom the Fourier transform of the Fermi function. Thet(r)

0 . .
occupying the same spatial orbital. Following earlier work, 3" be evaluated fromy(r) using the_ OZ relatlon_s. The
notably by Ladd” we also introduce a “Pauli potential,” —0 case can be evaluated analyticdllyAssuming that

Here ke is the Fermi momentum. Thug?(r) is obtained

P(r). Thus ¢ (r) becomesP(r) &+ Veour). gﬂ(r) can be modeled by an HNC fluid with the pair inter-
action 8.¢P(r) (and dropping the indicéswe have
®ij(r)="P(r)5ij + Veou(r). (2 o o o
g (r)=exp — BerP(r)+h7(r)—c’(r)]. (7

The Pauli potentiaP(r) will be discussed with the PDF’s of
the noninteracting UEG, i.eg%(r). The functionh(r) is  Thek-space DCF, i.eg%(k), decays as Ke/3k for small k
g(r)—1; itis related to the structure facts¢k) by a Fourier ~and for T=0, showing that the-space formc°(r) is long
transform. Thec(r) is the “direct correlation function ranged. The “Pauli potential’P(r) is given by
(DCF)” of the Ornstein-Zernike(OZ) equations:

BP(r)=—log[g°(r)]+h°(r)—c(r). 8

hij(f)=Cij(f)+§snsf dr'h; (J[r=r'])csj(r’).  (3)  We can determine only the prodygt,P(r). The “classical-
fluid temperature” 18 is still undefined and isot the

TheB;;(r) term in Eq.(1) is the “bridge” term arising from  thermodynamic temperatufe The Pauli potential is a uni-
certain cluster interactions. If this is neglected Ed$—(3)  versal function ofkg at T=0. It is long ranged and mimics
form a closed set providing the HNC approximation to thethe exclusion effects of Fermi statistics. At finifdts range
PDF of a classical fluid. Various studies have clarified theis about a thermal wavelength and is increasingly hard-
role of B(r) and its treatment via “reference” HNC sphere-like. Plots oB7(r) and related functions are given in
equations® B(r) is important when the coupling constdnt Fig. 1 of Ref. 35.
exceeds, say, 20. The rangelbfelevant to this work can be The next step is to use the full pair potentigj(r), and
estimated oncdl is known. Thus, using the results from solve the coupled HNC and OZ equations for the binagy
Ref. 35,'~4.5, ~7.2 and~15.2 forrg=10, 20, and 50, and down spinsinteractingfluid. For the paramagnetic case,
respectively. Hence the HNC approximation holds in most,=n/2, we have:
cases of interest. In fact, in this study we consider the range
r«<<10 to construct the parametrized energy expressions. gij (1) =~ Aer(PN 3 Vel ) +hij (1) =cij (1), (9)
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ET smallrg, standard perturbation methods are adequate and the
hij(q)=—h;;(r), (10)  techniques presented here are really not necessary.
The T4(rs) function given by Eq(14), suitably scaled, is
h(g)=c +(n/2)3 ¢ h , (11 of general applicability for all spin-half fermions interacting
(@) =Cr @)+ L D@ ‘ via a Coulomb potential. Thus it may be applied to a spin-1/2
hiA @) =Cao(@) + (/23,1 (@)h.o(q). (12) gas of protons for which the a.u. length scalea.u.M, and

the au.. energy scale> Hartree My), where M is the
The Coulomb potentiaV/.,,(r) needs some discussion. For mass of the proton. In contrast, it is not applicable to liquid
two point-charge electrons this isr1/However, depending He® since the rare-gas interaction is not Coulombic. The
on the temperaturd, an electron is localized to within a form of T, applicable to liquid H& can be derived easily
thermal wavelength. Thus, following Minoo, Gombert, andusing the methods of Ref. 35 and the He-He pair potential.

Deutsch®® we use a “diffraction corrected” form: The only quantum many-body input to this analysis is the
paramagnetic E(rg) at T=0. Since even theories which
Veou(N)=(UN)[1—e "n]: Np=(27mTy) Y2 give PDF’s which are not positive definite provide accept-

(13 able estimates dE.(rg), our CHNC can be incorporated to
. any such method for obtaining a first prediction of a positive
Here m is the reduced mass of the electron pair, i.e.definiteg(r) within any such theory. It is found that tfg, ,
m* (rg)/2 a.u., wherem*(r,) is the electron effective mass. determined from the paramagnetic case, {=0), repro-
It is weaklyr dependent, e.g+0.96 forrg=1. In fact, itis  duces the QMC-correlation energies for other valueg af
also dependent on the spin-polarizatignand could be self- a givenrg. ThusT, is essentially independent ¢f
consistently determined from thie— 0O limit of the interact- In applying this information to the finit&-electron liquid
ing specific heat of the electron gas at the giverand ¢, at a given density parameteg, we set the classical-fluid
predicted by the present theory itself. However, the resultsemperaturd’ to be equal to T;+T2) Y2 with T, given by
are not strongly sensitive tm* and in this work we adopt Eq. (14). The xc-free energy per electrorf,(rs,T)
the simplest procedure and take*=1. The “diffraction  =F,./n, is equivalentlyf,(T,,T). It is evaluated from the
correction” ensures the correct behavior gf5(r~0) at  distribution functions via the usual coupling-constant inte-
“contact” for any givenrg. We shall return to the question gration:
of the contact value aj(r) since there is a lot of interest and
a wide literature on just the evaluation@f,(r =0), because 1 n(A4mridr
of its importance in LFC’s, in DFT-gradient corrections and Fxe= fo d)‘if r
other application§?-4244-46
In solving the above equations for a givepand atT In the paramagnetic casge=x;=1/2 and we have
=0, we haveT=T,. A trial T, is adjusted to obtain an
E.(T4) equal to the knowparamagnetic E(r) at eachrs,
via a coupling constant integration. In effect, we determine
Tq by requiring that the classical Coulomb fluidTaf has the . . . _
same correlation energy as the quantum UEG-a0. The (fy is obtained from the noninteracting systems 0, where
resulting “quantum” temperature,(r) could be fitted to N1y andh,, becomeh?,; andh?,, respectively. Alsoh2,=0

> xixjhi(r,\). (15)
i

(N[ Aar?dr
= | o0 | T e ) +hastr ). 19

the form: and there is no coupling-constant integration sinds fixed
at zero)
To/Ee=1a+b\re+cry). (14) Oncef,(rs,T,{) is determined, the thermodynamics of

the electron liquid at any degeneracy and spin-polarization is
Note thatT(rs) is equally well a parametrization of the known. The SPDF'sgjj(rs,T,{) and the corresponding
correlation energy, viz.Tq(Eq(rs)), or E¢(Tq). The results  structure factors; (k) are also known. Since these are those
for E¢ from different QMC methods differ, e.g., by6% at  of a classical fluid at a temperatufie;, we can relate the
r<=1. We used the recent Ortiz-Ballor&; data for the S (k) to the interacting and noninteracting response func-
paramagnetic UEG from VMC and DME&.The difference  tions as in Ref. 35. Thus the interacting response function as
in E¢ in VMC and DMC leads to slightly different fits. The well as the LFC’s are known as a functionf, T, and{.
fit coefficients are, for DMCa=1.594, b=—-0.3160, and Hence the method provides a unified scheme for the thermo-
¢=0.0240, while for VMC a=1.3251, b=—0.1779, and dynamics and static response of the electron liquid forT,
¢=0.0. Eight values of s, viz.,, r¢=1-6, 8, and 10 were and ¢, without strong limitations on the coupling strength.
used in the fit toT,. At r¢=1 and 10,T,/Er goes from  Since we have used the HNC model which is essentially a
0.768 to 1.198. Although based on fits not exceedigg fluid model, this approach will most probably not apply to
=10, Eq.(14) turns out to be very robust in that it gives very regimes ofr, and T where Wigner crystallization begins to
good results at, e.gr,,=20. That is, we use Eq14) to  occur. In such regimes the HNC scheme would describe the
predict T, at rs=20 and use thafl, to predict ane;  metastable liquid phase. However, the methods presented
=E./n of —0.01144 a.u. per electron for the paramagnetichere can be applied to a solid phase as well if the HNC
UEG, in comparison with the value 6f0.0115 a.u. reported approach is suitably modified or if classical simulations are
by Ortiz, Harris, and Ballone using DMC-QME.As ry  used with the potentials of the classical map given here. Ex-
—0, g(r) tends tog’(r). The UEG asr—0 goes to a isting QMC studies have included spin-density wave and
high-density fluid interacting via the Pauli potential. For Wigner-crystallization regimes, but essentially using the
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correlated-determinantal form containing onlsiagle term

in the configuration-interaction expansion. Our study is re-
stricted to the fluid regime only. The currefig(rs) param-
etrization, Eq.(14) has been fitted for a maximum= 10,

but as already noted, we get very good prediction of the
correlation energy at,=20, which is within the spin-density
wave regime. A study of the phase diagram will not be un- _
dertaken in this study, although it is of topical inter®st. 5

Ill. PAIR-DISTRIBUTION FUNCTIONS AT FINITE T

Compared to previous methods of dealing with interacting
electrons at zero and finit€, the classical mapping to the
HNC equation presented in this study provides reliable cal-
culations of the pair-distribution functions which are guaran-
teed to be positive definite at amy, T, and{. The nega-
tiveness of the PDF’s in the standard methods lead to smal
overestimates of the correlation energies. However, othel
properties which depend directly on the pair correlations .
would be more reliably estimated using the PDF’s generate(®
by the present method. For example, self-interaction correc:
tions as well as nonlocal xc-effects can be treated correctly
and self-consistently. Current methods of including nonlocal
Xc-corrections depend on “gradient corrections” using only
the value ofg(r=0) at “contact,” and the large-behavior
from RPA#’" Another example is the imaginary part of the
dielectric function which is directly related to the PDF’s via
the fluctuation-dissipation theorem, a property exploited in

0.0
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the STLS formulation of the UEG response. Thus Danétea
al. used the Vashista-Singwi fortfi,based on STLS, for
constructing a finitéF dielectric function and the corre-
sponding(paramagneticg(r).8 The two parameters A and B
contained in the VSG(q) were chosen so that the
g—0-limit agreed with some estimate of the finifeeom-
pressibility, while the larger limit, taken to be given by 1
—g(r=0), was simply set to a fixed value of 0.9. Thus their
PDF is evaluated via the following set of equations:

G(q)=A(1—eB%), 17

x(9,0)=x°%(0,0)/[1-V4(1-G(a)x%q,0)], (18

S(q,w)=—1Im[ x(q)]coth Bw/2), (19
S(k)= f f S(k,w)dw/27, (20)
g(r)=1+(1m)FTS(k)—1]. (21

Here x°(k,w) is the noninteracting(Lindhard response
function and the notation “FT" indicates a Fourier transfor-

FIG. 1. (a) The g(r) from CHNC (solid lineg are compared
with those of Dandreat al., (dashed linesatrs=2. The tempera-
ture t=T/Eg. Panel(b) re=5, CHNC (solid lineg for t=0 and
t=>5. Theg(r) att=0 from Tanaka and Ichimar{Ref. 22 (dashed
line), and from DMC-QMC (Ref. 28, (boxeg, are also shown.
Panel(c) r<=5, CHNC (solid lineg for t=0 sndt=20. Theg(r)
of Tanaka and Ichimar(Ref. 22, (dashed lingis also shown for
t=0.

Ichimaru and collaborators have presented several very
comprehensive calculational procedures, viz., a method lim-
ited to spin-unpolarized systerfisbased on a direct finit&-
version of STLS, and a method based on the modified-
convolution approximation(MCA) applicable to spin-
polarized systems as wéfl together with a number of other
approximations. Their methods give PDF’s which remain
positive definite almost up tog~5. In Fig. 1, panelb) we
show results for other values of andT, as well as a result
for g(r) atrs=5 from the MCA resultg see their Fig. #of
Ichimaruet al.?

The many-electron wave function, suitably integrated
over all but a pair of electron coordinates should provide a
value ofg(r). Given the difficulty of obtaining the full(r),
or the full wave function, many studies have concentrated on
the value ofg(r) at r=0. This has been formulated as a

mation. The correlation part of the free energy was evaluatedusp condition on the wave functidha requirement on the

from a coupling constant integration over thér) obtained
from the above procedure. A stati&(q) is used in the con-
struction of the dynamic-structure fact8¢q,»), although a
G(q,w) is called for. The Dandrea-Ashcroft-Carlsson model
is a considerable improvement on the RPA, although som
negativeg(r) situations are encountered even fQe=2. A
comparison of their resultéextracted from their Fig. 24
with theg(r) generated by our method is shown in pafa!

of Fig. 1.

largek limit of the LFC** or in terms of frequency-moment
sum rules of the response functishPerdewet al*® use the
value ofg(r=0) and the long-range behavior from RPA to
construct an interpolation fag(r) for formulating gradient
eorrections to the local-density approximatighDA) to
DFT. Values ofg(r=0) have been calculated using many-
body perturbation theord?~** standard double-perturbation
theory?® and using correlated-determinantal methods. The
estimates ofy;,(r=0) by even two kindered methods like
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TABLE I. The value of the electron pair-distribution function at TABLE II. A comparison of E;({=1,T=0)/n, the negative of
contact,gq,(r =0) from various methods. CHNC denotes the clas-the fully spin-polarized correlation energies per electtarnu), ¢
sical map-HNC method used in this work. =1, from the classical mafCHNC) and other methods at=0.
The Fermi energy i€ .

e 1 3 5 10 T,
e 1 3 5 10
YasuharaRef. 42 05324 01757 006656 000848 0 ' e 076805 089392 0.90265 11980
vme (Ref. 28 0.6740 03389 0.1301 001116 0
dme (Ref. 28 05448 0.1843 0.0463 0.00495 0 CHNC 003235 002157 0.01680 0.011124
CHNC 04517 0.1038 0.02577 000963 0O CA (Ref. 3 003160 0.02006 0.01551 0.01051
DMC (Ref. 28 002921 0.01869 0.01482 0.01034
CHNC 04472 0.1068 0.02764 0.00112 1 /- Ref 29 002634 001814 001464 0.01020
CHNC 05954 02252 0.08798 000892 5
CHNC 06769 03192 0.15297 0.02556 10 Lan (Ref. 25 002735 0.01740 0.01355 0.00930

KP (Ref. 26 —0.03270 0.01840 0.01335 0.00855

DMC and VMC tend to be significantly different. In Table |
we present the results from the classical-map HNC methodjiven here by subtracting,, given in Eq.(42) of Ref. 12.
not only for T=0, but also for finiteT. The value ofg,,(r ~ The latter is good forT/Tz=0.2 and does not contain
=0) increases with temperature, showing that quantum efT*logT-type terms.

fects become increasingignportantfor the short-ranged be-

havior as the temperature is increagsée also Fig. )l That A. Results atT=0

is, classical Debye-Hel type approximations are not satis-

factory for theg(r) at any temperature, for small The paramagnetic xc-energy Ey(rs,T=0£=0), rs

<10, is the input to the theory used in determining the tem-
peratureT,. Using the so obtained; we can repeat the

IV. EXCHANGE-CORRELATION FREE ENERGIES calculation at any arbitrary spin polarization and obtain the
dspin-polarized gij(r) and E,(rs,T=0,). The resulting
¢-dependent energies show a slight overestimate over the
QMC results, while other methods on the whole show an
underestimatésee Table Il. Here it should be noted that the
earlier Ceperley-Alder resulté, VMC, and DMC show a
pread of about 5% at;=10, (=0, and 3% atf=1. At

In this section we present results for the spin-polarize
exchange-correlation free enerfy.(rs,T,{) per electron in
Hartree atomic units, at arbitrary temperaturesTAtO the
free energy is identical with the internal energy(rs,T
=0,{). At finite temperaturesg,.= d[ Bfy.]/dB. Similarly,

?” th? o;)hetr lt(hermoqtygflmtljc protpemes_tﬁan be (;etlICL(Jante s=1 these QMC uncertainties become 11% and 18% at
rom Ty by taking suitable derivatives with respect {o den- _q 5,4 1, respectively. If we exclude the older Ceperley-

sity, temperature, and spin polarization. Thus, e.g., denoting\Ider QMC data and compare only the Ortiz-Ballone VMC
the exchange-correlation correction to the chemical potentiaénd DMC data, the spreads become halved

'“'dthe pressur;P elmd theh compressibility by zixc, Pxc, It is usual to describe th€=0 spin-polarized correlation
and k. respectively, we have energies in terms of a spin-polarization functidifrg,¢)

given by
Mye= o[ nfy]lan, (22
Ec(rs,0)—Ed(rs0
o o(re )= ol sé)_ o(l's )_ 25
Pye/n=fyc— txcs (23 Ec(rs,1) —Ec(rs,0)
Our results can be accurately fitted to the form:
Ukye=N?d iyl . (24)
. : : o (1+)*+(1-{)*=2
The first of these equations provigeg, which is identical o(rg,0)= - , (26)
with the xc-potential of the UEG used in density functional 24-2
theo_ry_. The second equation provides an equation of state fQfhare o is a function ofr, given by
the finite-T electron gas. The temperature- 1/8, in energy
units, refers to the physical temperature and not toTthe a+brg
used in the classical-map HNC calculations discussed in the a(rs)= 76, 27
S

previous sections. The full quantities, e.g., have to be
calculated by adding on the noninteracting contributionswith a=0.978772b=0.322323, and¢=0.247303. The ener-
e.g., ug to the above xc-contributions. In Ref. 12 we pro- gies are in Hartree atomic units and the fit has an average
vided parametrizations for the exchange contribufigrand  error of 4.6<10°* a.u., while the maximum error is 8.8
the ring-sum correlation contributiof{°® as separate enti- x10 * a.u., for the range $r,<10. The frequently used
ties. In the present paper we evaluate and paramdtgizas  Hartree-Fock spin-polarization function is independent of
a single expression as this ensures that the important cancels, with «=4/3. Typical values ot appearing in our fit are
lations which occur between the two parts are better prefound to be 1.042 and 1.213 nt=1 and 10, respectively.
served in the parameter-fitting process. If desired, the corre- Our numerical estimate of thE=0, (=0, E.(rs0) for
lation contributionf . at finite T can be obtained from thig,  up tors=10 is the same as that of Ortiz and Ballone sifige
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TABLE Ill. Parameters of the functional form dof,.(rs,T) of Eq. (28), for the unpolarized UEG,
obtained from CHNC.

k a k by Cik PIN P2k Cok Vg %
1 5.6304 —2.2308 1.7624 2.6083 1.2782 0.16625 1.5 4.4467
2 5.2901 —2.0512 1.6185 —15.076 24.929 2.0261 3.0 45581
3 3.6854 —1.5385 1.2629 2.4071 0.78293 0.095869 3.0 4.3909
was evaluated to fit the DMC-QMC data upitg=10. But (1) It gives the QMC xc-energy at=0, where we have

CHNC allows us to make predictions fgr=0 and also for used the Ortiz-Ballon&_ fitted to the Perdew-Zunger form,
r<>10. Representative values of various quantities obtainetbgether with theT=0 exchange energy.

from CHNC and other methods are given in Table II. (2) The second term in the smdill- expansion of
f.o(rs,T) goes asT?. It automatically satisfies the condition
B. Results at finite temperatures of cancellation of thd@? In T terms which exist separately in

- the exchange and correlation partsfof(rs,T).
At finite temperatures, the Helmholz free energy per par (3) The high temperature asymptotic expansion has two

k7.5, 1o e fom e copingconsant 1o o e Dy oo o
9 ’ to T-¥?), and the exchange terrtproportional toT™1).

energy per particles,, is obta!ned at zero temperature. We These constraints define the density-dependent functipns
first consider the paramagnetic case. andu
2.

A comparison off,.(rs,T) obtained from the classical-
o ) map HNC and some of the other approximations is shown in
The finiteT xc-free energy per electrofi.(rs,T), isthe  Fig. 2. Figure 3 shows only the correlation part of the free
ObjeCt of interest. Our results for the Unp0|arlzed eleCtrOlbnergy_ Comparison between these two ﬁgures shows the

liquid obtained from our calculations can be accurately reprather strong cancellation between the exchange and correla-
resented by the form:

1. Paramagnetic UEG at finite T

frc(rs, T)=(Exc(rs,00—P1)/ Py, (28)
Py= (AU +Agu,) T2+ Au, T2, (29)
Po=1+A; T2+ A T2+ A, T3, (30)
x
u;=n/2, (31 3
Q
x
U,=2+/(mn/3, (32
yk(rs)+,8k(rs)zk(rs)
INA(rg)= , 33
k( S) 1+Bk(rs) ( )
Ayt Dyl s+ Coyrd
rg)=vcInrg+— : ' 34
yk( s) k s 1+0.2f§ ( )
Azt Dol 3
z(ry)=r————, (35 <
k( S) S 1+02’kr§ q-g
B Fe—rg ag
The e,(r,0) appearing in the first of these equations is the 04 : : ' : 0.5
usual paramagnetic xc-energy per electron at zero tempere ° 4T/T 8 ° 4T/T 8

ture. The values of the fit parameters are given in Table Ill.
The temperaturd and f, are in Hartree atomic units. The £ 5 The xc-free energy per electrdy., in units of u,=
densityn andr s are in atomic units. The precision of the fit, __/ for the unpolarized electron liquid at=1, 3, 5, and 10,
measured with respect to the 77 data points of therset as a function of the temperatufein units of T =kZ/2. Panelga)
=1,2,3,4,5,8,10,T/E¢=0, 0.25,0.50,1.0,1.5,2,3,4,5, 10, is and(b) show results from CHNGsolid line9, RPA (dashed lines
such that the mean relative error is 0.0035, while the maxityetomi and IchimaruRef. 23 (boxes, and Dandre&t al. (Ref. 8
mum relative error is 0.012. This fit has the following prop- (dotted ling. In panels(c) and(d) we display CHNC, lyetomi and
erties: Ichimaru, and the RPA result.
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0.40 . 0.19
(a) xc-bulk modulus (b) xc-pressure
9 /\'9§70 <'=0
Ng Mo,
E = 3
g !
ul 02 010 &
o J o2
3 ~ e
H—o [-. ~—_ -
(= ROwlY
0.10 L L L 0.01
0 4 8 o0 5 10
T/TF T/T,=

FIG. 4. Panel(a). The xc-bulk modulus, given agP’=
—Er/(27n%ky), Wherek,. is the xc-compressibility and is the
density, calculated using CHNC is displayed in fQe=1, 5, and
10. Panel(b). The exchange-correlation contribution to the pres-
sure, pyc/n="f,.— uy. calculated using CHNC is displayed. Our
results of(a) and (b) are in good agreement with those obtained
from lyetomi and Ichmarunot displayed (Ref. 23.

0
X

fo/u

pressureP,.. The former is scaled to define # which
corresponds to thie=0 limit of the LFC, but is derived from
the xc-free energy differentiated twice with respect to the
density[see Eq(22)]. Both y° and P, agree very well with

the values obtained from the free-energy parametrization
given by lyetomi and Ichimar@Ref. 23.

FIG. 3. The correlation contribution to the free energy per elec-
tron, f., in units of u,= —kg /7, for the unpolarized electron lig-
uid atrs=1, 3, 5, and 10, as a function of the temperaflire units We consider the finitd- xc-free energy of the polarized
of T,::k,Z:IZ. Panels show results from CHN@olid lineg, RPA UEG, with n, the majority-spin density, whil@=n,+n.,,
(dashed lines and lyetomi and IchimargRef. 23 (boxes, atrg and £=(n;—n,)/(n,+n,). As already remarked, we work

=1, 3,5 and 10. Comparison of this with the Fig. 2 shows they iun 't rather than withf, andf. . The polarization function
strong cancellations between the exchange and correlation parts ffg defined as

2. Results for the finite-T spin-polarized UEG

TITe<3.
. . . fxc(rS,T,g)—fxc(rS,T,O)
tion parts, forT/Te<3. The{=0 rows in Table IV provides e(rs,T.0) =7 T —f(r. T.0) 37
a set of representative values for the unpolarized UEG, use- xews xews
ful for direct comparison where necessary. In the zeroT case one has
In Fig. 4 we present results for the xc-bulk modulus
verse of the xc-compressibilitk,.) as well as the xc- e(rs,i=1)=2%¢(r,,(=0), (38

where e, (rg,{=1) is the exchange energy per electron.

TABLE IV. Typical values of the negative xc-free energy per Hence, by analogy we write

particle, — f,.(rs,T,{), obtained from the classical m&a@HNC).

T/Eg— 0.4 1.0 4.0 10 fxc(rsvTrgz1):Zfoc(rsrTa§:0)r (39
14 whereB is a functionB(rg,T) to be determined. In analogy
r—1 with the T=0 case, we assume tha(rs,T,{) has the same
S - .
0.0 0.4579 03766 02234  0.1441 funct!onal form as Eq.(26), but the expongnty is now a
06 0.4940 04054 02363  0.1502 fur_1ct|on ofrg andT. This leads to the following form for the
1.0 0.5623 04571 02593  0.1609 spln-de!oendent xc-free energy where we have used
I'S:3 :T/EF .
0.0 0.1773 0.1570 0.1076 0.0747 _ B
0.6 0.1861  0.1638  0.1108  0.0763 xells T.0) = Tl TOLLH (25 Dotrs .01, (40)
1.0 0.2025 0.1760 0.1165 0.0793
fs=0 1+ +(1-0"-2
0.0 0.0980 0.0896 0.0667 0.0488 o(rs,T,0)= , (42
0.6 01014  0.0921  0.0679  0.0494 202
1.0 q0.1077 0.0965 0.0700 0.0505

a’(rs:T):Z_g(rs)ein\(rs't)a (42)
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TABLE V. Values of the parameters used in the functional form  TABLE VI. Typical values of the negative of the spin-polarized
of f,.(rs,T,) of Eq. (40), for the spin-polarized UEG, obtained xc-potential (Hartree a.y. for majority-spin electrons.

from CHNC. —Vyeolrs, T,{), obtained from the classical magHNC).
k Py o, Sk Uy o TIE— 0.4 1.0 4.0 10
1 0.653676 0.166896 —0.373864 0.472245 1.000000 ¢
2 —0.157510 —0.308756 —0.144853 2.495400 2.236068 rs=1
3  0.190535 0.691258 —0.890943 5.656750 3.162278 0.0 0.6383 0.5492 0.3398 0.2208
0.4 0.7108 0.6090 0.3679 0.2341
0.8 0.7722 0.6613 0.3948 0.2472
9(rs)=(91+02rs)/(1+gsry), (43 r«=5
0.0 0.1517 0.1429 0.1098 0.08091
N(rs,t)=1.089+0.7Q s, (449 04 0.1607 01499  0.1132  0.08272
1=i ] k=3 0.8 0.1686 0.1562 0.1166 0.08451
1L S Nr9—o)((r)—oy) s
B(rs,T) i#] £k Dy ’

construct a matrix of xc-potentials. An alternative method,
PPREY: frequently used within the Iocal-spin—gensity approximation
k:&_ (46)  (LSDA) is the approach introduced by Kier et al.,*® where

1+ st B3+, 123 the spin-quantization axis is rotated to locally diagonalize the
spin-density matrix. In this study we will present some re-
B . - sults for V., in the form used in LSDA. In Table VI a
;9'6?4 2919,=0.063 9‘;43’ alr(1231—20.3249 611. The cot?]f- representative set of values W, is given. In Fig. 5 we
ICIeNtS ok, Pk, Gk, Sk, and Uy, <05 appearnng N e .o mpare our strong-coupling estimate with the RPA estimate
above equations are given in Table V. of V., given by the Baton-Rouge grodplt is clear that the

The parametrized form of the free energy may be used RPA overestimates the correlations, as expected. Thus, for

obtaining other thermodynamic quantities as well as th ~5, the overestimate is about 10—20%. Also, the polariza-

spin-dependent xc-potentials of DFT by suitable manipulas;. .
. . _ tion dependence of the strong-coupling result changes char-
tions. The spin-polarized RPA xc-free energy, viZt?, can ! P g-couping resu g

acter around’/Tg~2. It is seen, especially in pangd), that
be evaluated from the RPA-grand potent3(rs,T.) re- — yhe poarization dependence is quite weak §or0.4, while
ported by Kanhereet al™ In the work of Tanaka and

. . o he highest sensitivity is nedr-0.
Ichimaru?? the spin-polarization effects have been treatedt 9 y a
using the Hartree-Fock form a@f. The results of Dandreat
al. (Ref. 8 are limited to the paramagnetic case. Represen-

The values of the three coefficients ig(rs) are g;

V. LOCAL-FIELD CORRECTIONS

tative values off((rs, T,{) are given in Table IV. The response function of the electron gas is intimately
_ _ connected with the PDF’s, as already discussed within the
C. Exchange-correlation potentials context of Eq.(17). The usual approach is to find an LFC

An important derived property of,(r<,T,¢) is the xc- from perturbation theory_or fr_om_ eq_uations of motion etc.,
potential which enters in the Kohn-Sham equations. In thénd then use the fluctuation dissipation theorem to get at the
unpolarized case, the xc-potenti) (n) is the density de- PDF’s self-con5|ster_1tly, if possible. As we know, such meth-
rivative d[nf,«(n)]/dn. Thus it is identical with the xc- ods are extremgly difficult to carry qut successfully to obtain
chemical potentiak,.. When we have a spin-polarized sys- & positive definiteg(r). In contrast, in our approach we al-
tem, the densitien,,, o=1,2 for the up-spin and down-spin
species, are treated as independent variables, with the tot:
density n=n;+n,. The two-component system has four
PDFs, viz.,g;;(r), and hence one should formally define a
matrix of xc-potentials based on the derivatives of the energy
contributions of the four pair-distribution functions. How-
ever, it is customary in spin-density functional theory
(SDFT) to just define two spin xc-potentials by

VXC(r:a[nfxc(nlan)]/&n(r- (47)

Here the derivative with respect to the density of one of the
spin speciege.g.,n;) is taken while the density of the other 090 "‘ 5o "‘ 0383
componenie.g.,n,) is held fixed. This approach assumes a T T
constant direction of spin polarization and is not immediately F F
applicable to the spin-density-functional calculations of in-  F|G. 5. The spin-polarized xc-potentidl.,(r<,t,) in units of
homogeneous systems where the direction of spin polarizahe corresponding RPA value is shown for the majority-spin com-
tion varies as a function of position. In such situations it isponent,c=1. Heret=T/T¢, {=(n;—n,)/(n;+n,). The spin-
best to use the full matrix of distributions functiogg(r) to  polarized RPA potentials are from Kanherteal. (Refs. 13 and 49

1.00 0.93

(a)

@ A\
Q
e x

0.95 0.88

ch(‘/ \
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ready have thg(r) and so proceed to evaluate the LFC and 20
the interacting response function from thé).

The responseg((k,w) of the interacting UEG is usually
written in terms of a referencg®(k,w) and an LFC denoted
by G(k,w). Such a form ensures that theum rule is auto-
matically satisfied for any physically sensib®&k,w), in-
cluding the static form. The simplest static for@(k), is
identical with G(k,0) at k=0, and begins to differ from
G(k,w) askincreases. In general, tii&(k,w) for o smaller
than the plasma frequeney, behaves like a static quantity.
Hence the use of a static for@(k) is often adequate. The
main thrust of STLS® GT*® UI,*° FHER?! and others has
been to provide th&(k) as a function of i at T=0. Even 0.0
though Ul begins as a basic theory, it actually relies on fit ~ 00 10 20 3.0 40 5.0
parameters constraining ti(k) to fits to Monte Carlcg, k/ke
and derivatives, and to Yasuharaj$0),*? i.e., it invokes
quantities outside Ul theory. FHER take the parametric form FIG. 6. The static local field correctioitFC), G(q) calculated
of the UI's LFC and successfully fit it to available theoretical rom CHNC atrs=5 andT/Te=t=0, 1, and 5 are displayed. The
results(at T=0) for the UEG, using an ample array of pa- data p_omts(tnangles) are for a finiteT LFC based on the \(ashlsta-
rameters to handle the known sum rules and other physicgi"9l two-parameter form where tige-+0 andq—c are fitted to
requirements. However, there is no clear way of ensuring’® CHNC ', (see Table VIl, and 1~g(0) (see Table L The
that the LFC of FHER corresponds to the physigét). nset S.hows the smat- behavior Ofg(q)/q , showing th.at the
Relating the LFC to thg(r) in the quantum case proceeds hump in the LFC forq~.1'5_2 has disappeared for the h'gh. tem-
via an integration over, as in Eq.(20). This requires a perature case. Comparisons of the LFC from CHNG=a0 with

. ; other models was given in our Ref. 35.
knowledge ofG(k,w) and not justG(k). By contrast, in the

classical case no integration oweris required. compressibility sum rule which defines the limit 8{q)/qg?

The only “fit" parameter of the present model B;.  for q—0, and theq— limit of G(q). Thus
Further, since the PDF'’s have been evaluated for a classical

fluid, we can use the properties of classical distribution func- AB=+°, (52
tions to evaluate the LFC which is expressible in terms of the

direct correlation functions or structure factors of the inter- yoze(q)/q2|q=0 (53
acting and zeroth-order systems. Thus consider the simplest

LFC, viz., G(k), for a one-component fluid: ~ Ef 1 (54

27N Ky

[=]

3 Gk /K B

0.

Glk)

1.0

A.'A"AAAAAAAAAAAA
a0
a e

A A A VS (t=5)

Veou(K)G(K)=Veou(K) + Lx(K) = 1x%(k).  (48)

For a classical fluidy(k) is directly related to the structure A=G(g—>)=1-9(0). (59

factor: The xc-compressibilityx,. at any temperature is known

(k)= — . n: )12 from our parametrized form of the free enerfe(rg,T,0)
Si(k) (1/BCf_)X”(k)/(n'n') ' 49 (see Fig. 4 In Table VIl we give a set of values of° for
Hence, for the paramagnetic case: convenience. Similarlyy(0), thevalue of the PDF, at con-
tact is also known from the CHNC proceduisee Table )l
. (50) Hence we can construct finite-temperature two-parameter
{-dependent VS-LFC's. A result is shown for the paramag-

netic case, in Fig. 6 by triangles, together with CHNC-LFC

Note that here we have used the temperature of the interac(tdotted ling for T=5E, andr.=5. The VS form provides a
ing system, viz. T with S°(k) itself. We believe that this is poor representation of the intermediateegion. This was

equivalent to using an interacting’(k) as the reference re-
sponse functiof®>* In these expressions thg(k) and TABLE VII. Typical values of y°, the q=0 limit of the
S’(k) are based on a Slater determinant, while the Lindhargs(q)/q? function whereG(q) is the local-field correction to the
function is applicable to the noninteracting case without anresponse functiofisee Eq.(52), and Fig. 4a)]. The ° values are
tisymmetrization of the wave function. We display in Fig. 6 derived from the CHNC xc-free energf(rs,T,{=0).

the LFC forr =5, for several values of the temperature

ch
Veoul(K)G(K) =V o (K) — T

As already mentioned in the context of the work of Dan-rsl 0.4 1.0 4.0 10
g;eaet al, the two-parameter Vashista-Singwi LFC, given 0.3008 0.3031 0.2194 0.1468

1

3 0.2908 0.3034 0.2639 0.2008
5 0.2851 0.3005 0.2851 0.2316
8 0.3160 0.3254 0.3044 0.2574
a0 0.3285 0.3451 0.3203 0.2739

G(q)=A(1-e B7), q=k/k, (51)

has sometimes been used as a model for the LFC, even
finite temperatures, sinok andB can be determined by the
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already noted many years ago by Sh¥nte pointed out fied to have a cavity whose radius is equal to the Wigner-
that the VS and related methods do not capture the exchan@eitz radius of the Al ion, and the nucleus is placed at the
effects which determine the LFC neakg, for T=0. The center of the Wigner-Seitz sphet& Since the system has
model LFC can be easily improved by introducing an extraspherical symmetry, the Kohn-Sham equations reduces to a
level of parametrization such th&(q)~1 for some inter- radial equation which has to be solved iteratively, since the
mediate wave vectork,. The latter should be such that it Hartree potential and also the xc-potential depend implicitly
becomes Ry att=0 and increase with temperature. How- on the electron-density distribution. Our aim is to assess the
ever, we shall not examine such an approach any further, afifference between the CHNC xc-potential and, for instance,
it does not guarantee a positive defingjér). It may how- the lyetomi-Ichimaru(Yl) xc-potential. For this purpose we
ever prove to be useful when the full CHNC procedure is noiimit ourself here to a spin-unpolarized DFT calculation in
needed. the local-density approximation. We examine the electronic
It should be remarked that the LFC’s based O}a?acal— structure of the “average atom” where the electron occupa-
culated with the interacting-density distribution tend to ations are assumed to be given by the Fermi distribution at the
constant for largek, viz., G(k,0)—2(1—g(0))/3, while given temperaturg>®®
G(k)—1—g(0). If we look at some of theT=0 theories, The K-S bound states obtained by the two methods,
the theory of Ul is based on &°, but in practice the CHNC and YI, respectively, are at energi@s Rydbergs of
Lindhard x° is used. The fitted5(k,0) of FHER is built to ~ —115.044 and—110.199 for the & level, —7.86214 and
behave likek? at large k, being an LFC based on the —7-53968 for the &level. The outermost level, thepzstate,
Lindhard form®3 The largek limit of the LFC obtained from Nas an energiRy) of —5.05646 and-4.81116 from CHNC
the CHNC can be investigated as follows. The lakgémnit and YI, respectively. Similar proportionate changes are seen

of S(k), at densityn and fractional compositiomn=1/2 for in the phase shifts of the continuum states. Thus it is clear
the par:amagnetic case is given by that the xc-potentials should have a significant impact, espe-

cially in determining the regimes of plasma phase transitions,
finite-T magnetic transition$,as well as in the accurate de-

4 d
S(k)y=1- —an 2——hy,(r) , (56)  termination of ionization balance and transport properties. A
4 dr *2 -
k r=0 more complete study of these phenomena using fully nonlo-
cal, self-interaction-corrected, spin-dependent methods is
dgip(r)  d BV eou(®) 57) now emerging since thg;;(r) may be easily evaluated and

ar __ar° ' directly used in the Kohn-Sham calculations, using the

CHNC methods presented in this study.

9(0)=g:0)/2. (58
Now, using the above limiting forms and the diffraction form VIl. CONCLUDING DISCUSSION

of Veou(k) in Eq. (50) it is found that We have presented the application of the classical map-
_ ping of the Coulomb interactions using the HNC procedure
GK)l-.»=1-9(0). (59 to the finiteT uniform electron gas. It was shown in a pre-
It should be noted that the diffraction potential used herevious publication that the method accurately reproduces the
does not lead to the Kimball relatiomg(r)/dr|,—o=g(0) pair distributions and xc-energies of the=0 quantum-
but to the formdg(r)/dr|,—o=g(0)(B.#/2\?) if the contri-  electron fluid. Here we examined our results by comparison
butions from the nodal term at=0 are ignored. In the usual With other published approaches. The methods proposed by
derivations of the Kimball relation it is often assumed thatlchimaru and collaborators, and also by Dandeeal., lead
the strongly repulsive Coulomb potentialrat 0 implies that ~ to g(r) which are in reasonable agreement with the CHNC
only the interacting pair of electrons is present, and that théesults whenever theg(r) remain positive definite. In other
effect of the other electrons could be neglected. Howevergases, when theg@(r) contain negative regions, the positive,
the diffraction form of the potential is weak e&0 anddoes  larges part of their PDF’s seem to fall into agreement with
not exclude the presence of other electrons. Hence the usuabr results. The exchange-correlation free enerfjigsalcu-
form of the Kimball relation is not relevant to us. Also, it is lated by the CHNC show that the forms proposed by Ichi-
not clear if the very largé- limit is meaningful for k maru et al provide good estimates of the free energies and
>1/\,. In practice, the behavior of the LFC for largeis derived properties, even though there is some overestimate in
not important since the response functipfk,») as well as  the correlation effects, especially in the regimes where the
x°(k, ) decay rapidly for largé. traditional methods give negative PDF’s. Currently there are
no quantum Monte Carlo results for the finifeuniform
electron gas that we can use for comparison. We have pre-
sented an easy to use parametrizatiof,gfrg,T, ) fitted to
a large data base with, andT/T¢ up to 10, and ensuring the
One of the most important applications of the xc-free en-correct asymptotic behaviors. The parametrization is be-
ergies and potentials is to finifle-Kohn-Sham calculations. lieved to be sufficiently accurate for obtaining derived prop-
We consider a typical system, namely, at®Alnucleus im-  erties like the pressure, compressibility and the spin-
mersed in an electron gas of half the normal density of solidlependent xc-potentials of density functional theory at finite
aluminum, and at a temperature of 15 eV. In such calcula. The computer programs for generating the PDF’s, the
tions the neutralizing background of the electron gas is modif,(rs,T,{) and related properties are available online to

VI. APPLICATION OF THE XC-POTENTIALS TO A
FINITE- T KOHN-SHAM CALCULATION
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other workers via web acces5. Herelx(X), 134X) are the usual Fermi integrals. The nu-
The present approach, based on the CHNC scheme, prmerator is the kinetic-energy density and the denominator is

vides a unified formulation of the thermodynamics and di-the electron density. The denominator can be expressed in

electric response of the uniform interacting-electron flgd  terms of the Fermi temperature since

other Coulombic-Fermion fluidsat finite temperatures and

for general values of spin polarization and coupling strength, (kgT)%¥ 1 Bu)=213(kgTE) %2 (A3)
with a minimum of assumptions.
Hence we have
APPENDIX: PHYSICAL MEANING OF THE
“CLASSICAL-FLUID TEMPERATURE” Teras/ Te=(TITE) 30 Br). (A4)

The temperature of the classical fluil,;, which is used . _ . .
to calculate the distribution functions and excess free enerl?et us defineX(T)=Telas/Tr. The quadratic interpolation

gies of the electron fluid at the physical temperatlireas that we have used is of the form:
modeled using the quadratic interpolation: > >
Y(T)=Te/Te=VA -+ (TITE)".

. . L i . _The constanA=X(T)|1_¢ is 2/5, and is independent of.
In density functional theory, the kinetic energy is described; ;g easily shown numerically that the rath(T)/X(T) is

by noninteracting electrons at the inte_rac_ting density. Let U%Mays very close to unity, with a maximum error /6%
assume that the meanvaIEQin of the k!netlc energy opera-  around T/Tg=0.5. This shows that the chosen functional
tor can be described by some classical temperalil&.  form (surd of a sum of quadraticslescribes the quantum-
Restoring thekg factors for the sake of clarity, we then have, |ineatic energy(which involves a ratio of Fermi integrals
very well. In our quadratic interpolation we do not use a
constant A, but arrg-dependent quantityr,/Tg, obtained
by fitting to the UEG aff=0.

(A5)

To=To+T2 (A1)

V27 2(kgT)5 5o Be)
V2 2k T)¥ o Bu)

3
EkinZEkBTclas: (A2)
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