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Spin-polarized electron liquid at arbitrary temperatures: Exchange-correlation energies,
electron-distribution functions, and the static response functions
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We use a recently introduced classical mapping of the Coulomb interactions in a quantum electron liquid
@Phys. Rev. Lett.84, 959~2000!] to present a unified treatment of the thermodynamic properties and the static
response of thefinite-temperatureelectron liquid, valid for arbitrary coupling and spin-polarization. The
method is based on using a ‘‘quantum temperature’’Tq such that the distribution functions of theclassical
electron liquid atTq leads to the same correlation energy as the quantum electron liquid atT50. The
functional form ofTq(r s) is presented. The electron-electron pair-distribution functions~PDF’s! calculated
usingTq are in good quantitative agreement with available (T50) quantum Monte Carlo results. The method
provides a means of treating strong-coupling regimes ofn,T, andz currently unexplored by quantum Monte
Carlo or Feenberg-functional methods. The exchange-correlation free energies, distribution functionsg11(r ),
g12(r ), g22(r ) and the local-field corrections to the static response functions as a function of densityn,
temperatureT, and spin polarizationz are presented and compared with any available finite-T results. The
exchange-correlation free energyf xc(n,T,z), is given in a parametrized form. It satisfies the expected analytic
behavior in various limits of temperature, density, and spin polarization, and can be used for calculating other
properties like the equation of state, the exchange-correlation potentials, compressibility, etc. The static local-
field correction provides a static response function which is consistent with the PDF’s and the relevant sum
rules. Finally, we use the finite-T xc-potentials to examine the Kohn-Sham bound- and continuum states at an
Al131 nucleus immersed in a hot electron gas to show the significance of the xc-potentials.
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I. INTRODUCTION

Recent advances in materials science, experiments u
intense lasers, etc., have created a need for improved t
retical tools for treating electronic systems at arbitra
~strong! coupling and for a wide range of densities and te
peratures. Similarly, electrons and other fermions in as
physical plasmas, white dwarfs, etc.,1 are at densities and
temperatures such that they range from full degenerac
high-temperature Maxwellian distributions. The Maxwellia
limit of the uniform electron gas~UEG! is usually studied
under the name ‘‘one-component plasma’’~OCP!. Since it is
a classical system, its properties have been studied ex
sively using integral-equations methods as well as class
simulations.2,3 The zero-temperature UEG is generally suf
cient for metal physics, and has been the object of an e
mous effort. The UEG at finiteT is important not only for the
reasons already mentioned, but also because it provid
model exchange-correlation potential for the dens
functional theory ~DFT! of finite-T inhomogeneous elec
tronic systems.4,5 Many other applications of the finite-T
UEG arise in understanding new materials,6 doped semicon-
ductors and nanostructures, as well as with respect to
older topics like liquid metals, etc., discussed some time
in Ref. 8. Recent studies on compressed hydrogen,7 both in
the solid and liquid phase, have demonstrated the nee
treat the protons on an equal footing with the electrons
the methods discussed here should be of interest.

The Hartree-Fock approximation,9 and the random-phas
PRB 620163-1829/2000/62~24!/16536~13!/$15.00
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approximation~RPA! provide useful ‘‘benchmarks’’ for cal-
culations of the properties of the interacting UEG at fin
T.10–13 RPA is a reasonable approximation when the ‘‘co
pling parameter’’G, the ratio of the potential energy to th
kinetic energy of the Coulomb fluid, is smaller than unit
The G for the UEG atT50 reduces to the mean-sphe
radius r s per electron, i.e., for the three-dimensional~3D!
case,G5r s5(3/4pn)1/3, with n the number density per a.u
Since electronic interactions involve exchange effects,
spin-polarizationz5(n12n2)/n, where ni is the number
density of spin speciesi of the system, brings in a multicom
ponent aspect to the theory. The RPA holds in the hi
temperature low-density limit where it reduces to Deby
Hükel theory, and in theT50 high-density limit, since these
are both weak-coupling regimes. However, for typical
gimes of physical interest, the electron-electron pa
distribution functions~PDF’s!, g(r s ,r ), calculated in the
RPA are not found to be positive definite. Improving th
RPA is nontrivial if the theory is expected to satisfy su
rules and provide physically realisticg(r ). Diagrammatic
methods look for resummations that conserve the sum ru
Ward identities, etc.14–17 These methods become quite u
wieldy for finite-T strong coupling. Hence most attempts
go beyond the weak-coupling regime are based on the c
struction of local-field corrections~LFC’s! to the RPA re-
sponse functions.8,18–22 The equations of motion~EQM! of
the density operator beyond the RPA require an ‘‘ansatz’
‘‘close’’ the equations. Singwiet al. ~STLS!, used a
physically-motivated closure by introducing the electr
16 536 ©2000 The American Physical Society
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PDF determined self-consistently.18 A finite-T application of
STLS was given by Tanakaet al.21 The STLS-type method
was also used by the Cornell group~Ref. 8!, in the form of a
finite-T extension of the Vashista and Singwi~VS! approach
at T50.19 They provided parametrized forms for th
exchange-correlation free energyf xc and various thermody
namic properties of the UEG without spin polarization. Co
prehensive studies of the finite-T electron fluid were p
sented by Ichimaru and collaborators. They used extens
of the STLS method as well as methods based on a modi
convolution approximation and provide parametrized for
for the spin-polarized UEG.21–23 All these treatments do no
overcome the underlying difficulty that theg(r ) becomes
negative for some values ofr, for sufficiently larger s ~e.g.,
r s;5, or even 2 in some cases! in the metallic range, al-
though the situation is much improved compared to RP
Further, very often the small-k and large-k limits of the
model LFC’s used in these theories are fitted toad hocval-
ues or values obtained from theoretical resultsoutside the
method used. Nevertheless, these methods have been
successful than straight diagrammatic methods in obtain
practical results for the regime beyond weak coupling, es
cially because the energy could be calculated with good
curacy even if the PDF’s were unsatisfactory.

Another approach, well known inT50 applications, as-
sumes a trial wave function of the formc5FD, whereF is
a correlation factor andD is a Slater determinant. This typ
cally leads to the Feenberg energy functionals which
handled in several ways.24–26Quantum Monte Carlo~QMC!
techniques also use such ac and lead, e.g., to the variationa
Monte Carlo~VMC! method.27–30The QMC estimate of the
exchange-correlation energy,Exc(r s), at T50 is now avail-
able in several parametrized forms.28,32,33While it is easy to
get goodExc(r s), the opposite is true for other propertie
like the PDF’s and LFC’s. There is at present a very cons
erable interest in extending these methods for the UEG
finite T andz, as well as for dense hydrogen.34

In a recent letter we showed that the many-body inter
tions in theT50 UEG are such that its static properties, e.
g(r ), Exc(r s ,z), static LFC’s, may be extracted from
study of theclassicalCoulomb fluid at a ‘‘quantum’’ tem-
peratureTq , and presented a parametrization ofTq as a func-
tion of r s .35 In parallel with the Fermi-hypernetted-cha
and Bose-hypernetted-chain methods, we will call this
classical-map hypernetted-chain method,~CHNC!, although
of course, the HNC isipso factoa classical method. Othe
classical integral equations or molecular dynamics may
course be used instead of the HNC, within the classical m
presented here, and in Ref. 35. In this study we extend
CHNC calculations to the finite-temperature electron liqu
assuming that the same conceptual basis holds here.T
50, the method could be checked against results from Q
and other studies. At finiteT we do not have QMC results
but a variety of previous studies as well as the behavio
various limiting situations ofr s , T, and z are available to
provide a check on the methods used. In Sec. II we rev
the classical map for quantum electrons for the convenie
of the reader and provide additional results for theT50 case
not reported in our previous publication, viz., Ref. 35.
Sec. III we present results for the pair-distribution functio
of the finite-T electron gas. The parametrized form of t
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exchange-correlation free energy and several derived pro
ties are presented in Sec. IV. The local-field corrections
the static response at finite-T are discussed in Sec. V. In Se
VI we use the new xc-potentials to study the Kohn-Sh
electronic structure of an Al-ion immersed in a hot electr
gas and show that there are significant differences from
results obtained from the Iyetomi-Ichimaru xc-potential.

II. THE CLASSICAL MAP FOR QUANTUM ELECTRONS

The thermodynamics and static-response functions o
system of interacting particles can be calculated if the p
distribution functions and the interaction potentials a
known. The PDF’s of classical fluids are easily obtaina
from classical Monte Carlo simulations or using the hyp
netted-chain~HNC! equation and its extensions.36 We use
the HNC method in our work as it is not computer intensi
and also provides a formal language suitable for concep
analysis. In Ref. 35 we showed that there exists a temp
ture Tq such that, at that temperature, the PDF’s of aclassi-
cal Coulomb fluid are in very close agreement with t
PDF’s of thequantumelectron gas and yield the same co
relation energy. In effect, we asked for the temperatureTq at
which the PDF’s of a Coulomb fluid, obeying theclassical
HNC-integral equation, yielded theEc of the UEG at the
same density and atT50. The suffixq in Tq signifies that
this temperature reflects the quantum many-body interact
in the UEG. Using the temperatureTq at eachr s we obtained
gi j (r ), spin-polarized correlation energiesEc(r s ,z), LCF’s
etc., for theT50 case.

The physical motivation for our method comes from DF
where interacting electrons are replaced by noninterac
Kohn-Sham~KS! particles whose wave function is a simp
determinant. This is conceptually very different to the Fee
berg approach which uses a correlated wave function of
form c5FD.25,26 In DFT, the many-body potential is re
placed by a one-body KS potential,VKS, obtained from the
exchange-correlation energyExc . Since the natural energ
parameter of the classical ensemble is the temperature
look for a temperature mapping of theExc .

Our objective is to construct a classical Coulomb fluid
some temperatureTc f such that its correlation energy an
spin-dependent distribution functions are those of a quan
electron gas at some given temperatureT. Consider a fluid of
mean densityn containing two spin species with concentr
tions xi5ni /n. We deal with the physical temperatureT of
the UEG, while the temperature of the classical fluidTc f is
1/bc f . Since the leading dependence of the energy on t
perature is quadratic, we assume that a suitable formula
terpolating between the low-T and high-T regimes is given is
given byTc f5A(T21Tq

2). This is clearly valid forT50 and
for high T. The caseT50 was examined in Ref. 35 whereTq
was determined as a function ofr s , and the agreement be
tween the quantum pair distributions with those calcula
from the classical model was established in detail. In t
study we present detailed calculations at finite-T using our
quadratic interpolation. A physical interpretation ofTc f is
given in Appendix A, where it is shown to agree with th
classical temperature which gives the correct quantum
netic energy per electron. Comparison with results fro
other available methods suggests that it provides a suit
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interpolationfor all T, while being valid for low-T and high-
T regimes by construction. At this point we may note th
every singletheory of the finite-T electron liquid that at-
tempts to provide numerical results that go beyond RPA
essentially based on someassumedinterpolation between the
T50 and high-T regimes. Thus Tanakaet al.,22 interpolate
between two types of modified-convolution approximatio
while ours is between two regimes of the HNC equation. T
method of Dandreaet al.,8 uses the STLS ‘‘ansatz,’’ assume
that the Vashista-Singwi static LFC can be used with int
polations ~unspecified in the paper! of the compressibility
between theT50 and high-T limits, and carry out frequency
integrations over the static LFC’s. Since the compressibi
is related to the density gradient of the xc-potentials, us
the compressibility as an input clearly poses some questi
The results are justified by DAC by noting that their ‘‘calc
lations of the excess free energy of the intermediate deg
eracy regime find good agreement with the more exact
sults of Tanakaet al.’’ In a similar sense, the validation o
our interpolation procedure is based on the general con
tency of our results with previous methods, as well as
positivity and other favorable aspects of our pa
distributions functions, other properties etc., that we pres
in this work, but not found in other methods. A more com
plete validation of the results from existing theories of t
finite-T UEG, including ours, has to await results fro
complementary methods which use different assumpti
~e.g., stochastic simulations!.

The pair-distribution functions for a classical fluid at a
inverse temperaturebc f can be written as

gi j ~r !5e[ 2bc ff i j (r )1hi j (r )2ci j (r )1Bi j (r )] . ~1!

Heref i j (r ) is the pair potential between the speciesi , j . For
two electrons this is just the Coulomb potentialVcou(r ). If
the spins are parallel, the Pauli principle prevents them fr
occupying the same spatial orbital. Following earlier wo
notably by Lado,37 we also introduce a ‘‘Pauli potential,’
P(r ). Thusf i j (r ) becomesP(r )d i j 1Vcou(r ).

f i j ~r !5P~r !d i j 1Vcou~r !. ~2!

The Pauli potentialP(r ) will be discussed with the PDF’s o
the noninteracting UEG, i.e.,gi j

0 (r ). The functionh(r ) is
g(r )21; it is related to the structure factorS(k) by a Fourier
transform. Thec(r ) is the ‘‘direct correlation function
~DCF!’’ of the Ornstein-Zernike~OZ! equations:

hi j ~r !5ci j ~r !1SsnsE dr 8hi ,s~ ur2r 8u!cs, j~r 8!. ~3!

TheBi j (r ) term in Eq.~1! is the ‘‘bridge’’ term arising from
certain cluster interactions. If this is neglected Eqs.~1!–~3!
form a closed set providing the HNC approximation to t
PDF of a classical fluid. Various studies have clarified
role of B(r ) and its treatment via ‘‘reference’’ HNC
equations.38 B(r ) is important when the coupling constantG
exceeds, say, 20. The range ofG relevant to this work can be
estimated onceTq is known. Thus, using the results from
Ref. 35,G;4.5, ;7.2 and;15.2 for r s510, 20, and 50,
respectively. Hence the HNC approximation holds in m
cases of interest. In fact, in this study we consider the ra
r s<10 to construct the parametrized energy expressio
t
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However, the robustness of the method is such that
correlation-energy estimates are found to be accurate eve
r s520, i.e., well outside the fitted regime. The HNC a
proximation suffers from a compressibility inconsisten
~CI!, i.e., the excess compressibility calculated from t
small-k limit of the short-ranged part ofc(k) does not agree
with that obtained from the excess free energy. The RP
Hubbard,14 and also STLS methods suffer from such a
even for coupling regimes much smaller than those wh
the HNC holds good. In fact, the Vashista-Singwi model w
an attempt to correct the CI in the original STLS method a
extend it to the metallic regime ofr s . The CI in the HNC
scheme can be corrected by including a suitable bridge te
In this study we retain the simple-HNC scheme since
range ofG involved is such that the CI is not at all seriou

Consider the noninteracting system at temperatureT, with
xi50.5 for the paramagnetic case. The parallel-spin PD
i.e., gii

0 (r ,T), will be denoted bygT
0(r ) for simplicity, since

gi j
0 (r ,T), i Þ j is unity. Denoting (r12r2) by r , it is easy to

show that

gT
0~r !5

2

N2
Sk1 ,k2

n~k1!n~k2!@12ei (k12k2)•r#. ~4!

Heren(k) is the Fermi occupation number at the temperat
T. Equation~4! reduces to

gT
0~r !512FT

2~r ! ~5!

FT~r !5~6p2/kF
3 !E n~k!

sin~kr !

r

kdk

2p2
. ~6!

Here kF is the Fermi momentum. ThusgT
0(r ) is obtained

from the Fourier transform of the Fermi function. Thenc0(r )
can be evaluated fromgT

0(r ) using the OZ relations. TheT
50 case can be evaluated analytically.37 Assuming that
gii

0 (r ) can be modeled by an HNC fluid with the pair inte
actionbc fP(r ) ~and dropping the indices!, we have

g0~r !5exp@2bc fP~r !1h0~r !2c0~r !#. ~7!

The k-space DCF, i.e.,c0(k), decays as 4kF/3k for small k
and for T50, showing that ther-space formc0(r ) is long
ranged. The ‘‘Pauli potential’’P(r ) is given by

bP~r !52 log@g0~r !#1h0~r !2c0~r !. ~8!

We can determine only the productbc fP(r ). The ‘‘classical-
fluid temperature’’ 1/bc f is still undefined and isnot the
thermodynamic temperatureT. The Pauli potential is a uni-
versal function ofrkF at T50. It is long ranged and mimics
the exclusion effects of Fermi statistics. At finiteT its range
is about a thermal wavelength and is increasingly ha
sphere-like. Plots ofbP(r ) and related functions are given i
Fig. 1 of Ref. 35.

The next step is to use the full pair potentialf i j (r ), and
solve the coupled HNC and OZ equations for the binary~up
and down spins! interactingfluid. For the paramagnetic cas
ni5n/2, we have:

gi j ~r !5e2bc f(P(r )d i j 1Vcou(r ))1hi j (r )2ci j (r ), ~9!
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hi j ~q!5→
FT

hi j ~r !, ~10!

h11~q!5c11~q!1~n/2!Sgc1g~q!hg1~q!, ~11!

h12~q!5c12~q!1~n/2!Sgc1g~q!hg2~q!. ~12!

The Coulomb potentialVcou(r ) needs some discussion. F
two point-charge electrons this is 1/r . However, depending
on the temperatureT, an electron is localized to within a
thermal wavelength. Thus, following Minoo, Gombert, a
Deutsch,39 we use a ‘‘diffraction corrected’’ form:

Vcou~r !5~1/r !@12e2r /l th#; l th5~2pm̄Tc f!
21/2.

~13!

Here m̄ is the reduced mass of the electron pair, i.
m* (r s)/2 a.u., wherem* (r s) is the electron effective mass
It is weakly r s dependent, e.g.,;0.96 forr s51. In fact, it is
also dependent on the spin-polarizationz, and could be self-
consistently determined from theT→0 limit of the interact-
ing specific heat of the electron gas at the givenr s and z,
predicted by the present theory itself. However, the res
are not strongly sensitive tom* and in this work we adop
the simplest procedure and takem* 51. The ‘‘diffraction
correction’’ ensures the correct behavior ofg12(r;0) at
‘‘contact’’ for any givenr s . We shall return to the questio
of the contact value ofg(r ) since there is a lot of interest an
a wide literature on just the evaluation ofg12(r 50), because
of its importance in LFC’s, in DFT-gradient corrections a
other applications.40–42,44–46

In solving the above equations for a givenr s and atT
50, we haveTc f5Tq . A trial Tq is adjusted to obtain an
Ec(Tq) equal to the knownparamagnetic Ec(r s) at eachr s ,
via a coupling constant integration. In effect, we determ
Tq by requiring that the classical Coulomb fluid atTq has the
same correlation energy as the quantum UEG atT50. The
resulting ‘‘quantum’’ temperaturesTq(r s) could be fitted to
the form:

Tq /EF51/~a1bAr s1crs!. ~14!

Note that Tq(r s) is equally well a parametrization of th
correlation energy, viz.,Tq„Ec(r s)…, or Ec(Tq). The results
for Ec from different QMC methods differ, e.g., by;6% at
r s51. We used the recent Ortiz-BalloneEc data for the
paramagnetic UEG from VMC and DMC.28 The difference
in Ec in VMC and DMC leads to slightly different fits. The
fit coefficients are, for DMC,a51.594, b520.3160, and
c50.0240, while for VMC a51.3251, b520.1779, and
c50.0. Eight values ofr s , viz., r s5126, 8, and 10 were
used in the fit toTq . At r s51 and 10,Tq /EF goes from
0.768 to 1.198. Although based on fits not exceedingr s
510, Eq.~14! turns out to be very robust in that it gives ve
good results at, e.g.,r s520. That is, we use Eq.~14! to
predict Tq at r s520 and use thatTq to predict an ec
5Ec /n of 20.01144 a.u. per electron for the paramagne
UEG, in comparison with the value of20.0115 a.u. reported
by Ortiz, Harris, and Ballone using DMC-QMC.29 As r s
→0, g(r ) tends tog0(r ). The UEG asr s→0 goes to a
high-density fluid interacting via the Pauli potential. F
,

ts

e

c

smallr s , standard perturbation methods are adequate and
techniques presented here are really not necessary.

The Tq(r s) function given by Eq.~14!, suitably scaled, is
of general applicability for all spin-half fermions interactin
via a Coulomb potential. Thus it may be applied to a spin-
gas of protons for which the a.u. length scale→ a.u./MH and
the au.. energy scale→ Hartree (MH), where MH is the
mass of the proton. In contrast, it is not applicable to liqu
He3 since the rare-gas interaction is not Coulombic. T
form of Tq applicable to liquid He3 can be derived easily
using the methods of Ref. 35 and the He-He pair potenti

The only quantum many-body input to this analysis is t
paramagnetic Ec(r s) at T50. Since even theories whic
give PDF’s which are not positive definite provide acce
able estimates ofEc(r s), our CHNC can be incorporated t
any such method for obtaining a first prediction of a posit
definiteg(r ) within any such theory. It is found that theTq ,
determined from the paramagnetic case~i.e, z50), repro-
duces the QMC-correlation energies for other values ofz at
a givenr s . ThusTq is essentially independent ofz.

In applying this information to the finite-T electron liquid
at a given density parameterr s , we set the classical-fluid
temperatureTc f to be equal to (Tq

21T2)1/2, with Tq given by
Eq. ~14!. The xc-free energy per electron,f xc(r s ,T)
5Fxc /n, is equivalentlyf xc(Tq ,T). It is evaluated from the
distribution functions via the usual coupling-constant in
gration:

f xc5E
0

1

dl
n

2E 4pr 2dr

r (
i j

xixjhi j ~r ,l!. ~15!

In the paramagnetic casexi5xj51/2 and we have

f xc5E
0

1dl

4
nE 4pr 2dr

r
@h11~r ,l!1h12~r ,l!#. ~16!

( f x is obtained from the noninteracting system,l50, where
h11 andh12 becomeh11

0 andh12
0 , respectively. Also,h12

0 50
and there is no coupling-constant integration sincel is fixed
at zero.!

Once f xc(r s ,T,z) is determined, the thermodynamics
the electron liquid at any degeneracy and spin-polarizatio
known. The SPDF’sgi j (r s ,T,z) and the corresponding
structure factorsSi j (k) are also known. Since these are tho
of a classical fluid at a temperatureTc f , we can relate the
Si j (k) to the interacting and noninteracting response fu
tions as in Ref. 35. Thus the interacting response function
well as the LFC’s are known as a function ofr s , T, andz.
Hence the method provides a unified scheme for the ther
dynamics and static response of the electron liquid forr s , T,
and z, without strong limitations on the coupling strengt
Since we have used the HNC model which is essentiall
fluid model, this approach will most probably not apply
regimes ofr s and T where Wigner crystallization begins t
occur. In such regimes the HNC scheme would describe
metastable liquid phase. However, the methods prese
here can be applied to a solid phase as well if the H
approach is suitably modified or if classical simulations a
used with the potentials of the classical map given here.
isting QMC studies have included spin-density wave a
Wigner-crystallization regimes,29 but essentially using the
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correlated-determinantal form containing only asingle term
in the configuration-interaction expansion. Our study is
stricted to the fluid regime only. The currentTq(r s) param-
etrization, Eq.~14! has been fitted for a maximumr s510,
but as already noted, we get very good prediction of
correlation energy atr s520, which is within the spin-density
wave regime. A study of the phase diagram will not be u
dertaken in this study, although it is of topical interest.6

III. PAIR-DISTRIBUTION FUNCTIONS AT FINITE T

Compared to previous methods of dealing with interact
electrons at zero and finiteT, the classical mapping to th
HNC equation presented in this study provides reliable c
culations of the pair-distribution functions which are guara
teed to be positive definite at anyr s , T, and z. The nega-
tiveness of the PDF’s in the standard methods lead to s
overestimates of the correlation energies. However, o
properties which depend directly on the pair correlatio
would be more reliably estimated using the PDF’s genera
by the present method. For example, self-interaction cor
tions as well as nonlocal xc-effects can be treated corre
and self-consistently. Current methods of including nonlo
xc-corrections depend on ‘‘gradient corrections’’ using on
the value ofg(r 50) at ‘‘contact,’’ and the large-r behavior
from RPA.47 Another example is the imaginary part of th
dielectric function which is directly related to the PDF’s v
the fluctuation-dissipation theorem, a property exploited
the STLS formulation of the UEG response. Thus Dandreet
al. used the Vashista-Singwi form,18 based on STLS, for
constructing a finite-T dielectric function and the corre
sponding~paramagnetic! g(r ).8 The two parameters A and B
contained in the VSG(q) were chosen so that th
q→0-limit agreed with some estimate of the finite-T com-
pressibility, while the large-q limit, taken to be given by 1
2g(r 50), was simply set to a fixed value of 0.9. Thus th
PDF is evaluated via the following set of equations:

G~q!5A~12eBq2
!, ~17!

x~q,v!5x0~q,v!/@12Vq„12G~q!…x0~q,v!#, ~18!

S~q,v!52Im@x~q!#coth~bv/2!, ~19!

S~k!5E
2`

`

S~k,v!dv/2p, ~20!

g~r !511~1/n!FT@S~k!21#. ~21!

Here x0(k,v) is the noninteracting~Lindhard! response
function and the notation ‘‘FT’’ indicates a Fourier transfo
mation. The correlation part of the free energy was evalua
from a coupling constant integration over theg(r ) obtained
from the above procedure. A staticG(q) is used in the con-
struction of the dynamic-structure factorS(q,v), although a
G(q,v) is called for. The Dandrea-Ashcroft-Carlsson mod
is a considerable improvement on the RPA, although so
negative-g(r ) situations are encountered even forr s52. A
comparison of their results~extracted from their Fig. 14!,
with theg(r ) generated by our method is shown in panel~a!
of Fig. 1.
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Ichimaru and collaborators have presented several v
comprehensive calculational procedures, viz., a method
ited to spin-unpolarized systems,21 based on a direct finite-T
version of STLS, and a method based on the modifi
convolution approximation ~MCA! applicable to spin-
polarized systems as well,22 together with a number of othe
approximations. Their methods give PDF’s which rema
positive definite almost up tor s;5. In Fig. 1, panel~b! we
show results for other values ofr s andT, as well as a result
for g(r ) at r s55 from the MCA results~ see their Fig. 4! of
Ichimaruet al.22

The many-electron wave function, suitably integrat
over all but a pair of electron coordinates should provide
value ofg(r ). Given the difficulty of obtaining the fullg(r ),
or the full wave function, many studies have concentrated
the value ofg(r ) at r 50. This has been formulated as
cusp condition on the wave function,40 a requirement on the
large-k limit of the LFC,41 or in terms of frequency-momen
sum rules of the response function.53 Perdewet al.45 use the
value ofg(r 50) and the long-range behavior from RPA
construct an interpolation forg(r ) for formulating gradient
corrections to the local-density approximation~LDA ! to
DFT. Values ofg(r 50) have been calculated using man
body perturbation theory,42–44 standard double-perturbatio
theory,46 and using correlated-determinantal methods. T
estimates ofg12(r 50) by even two kindered methods lik

FIG. 1. ~a! The g(r ) from CHNC ~solid lines! are compared
with those of Dandreaet al., ~dashed lines! at r s52. The tempera-
ture t5T/EF . Panel~b! r s55, CHNC ~solid lines! for t50 and
t55. Theg(r ) at t50 from Tanaka and Ichimaru~Ref. 22! ~dashed
line!, and from DMC-QMC ~Ref. 28!, ~boxes!, are also shown.
Panel~c! r s55, CHNC ~solid lines! for t50 sndt520. Theg(r )
of Tanaka and Ichimaru~Ref. 22!, ~dashed line! is also shown for
t50.
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DMC and VMC tend to be significantly different. In Table
we present the results from the classical-map HNC meth
not only for T50, but also for finiteT. The value ofg12(r
50) increases with temperature, showing that quantum
fects become increasinglyimportantfor the short-ranged be
havior as the temperature is increased~see also Fig. 1!. That
is, classical Debye-Hu¨kel type approximations are not sati
factory for theg(r ) at any temperature, for smallr.

IV. EXCHANGE-CORRELATION FREE ENERGIES

In this section we present results for the spin-polariz
exchange-correlation free energyf xc(r s ,T,z) per electron in
Hartree atomic units, at arbitrary temperatures. AtT50 the
free energy is identical with the internal energyexc(r s ,T
50,z). At finite temperatures,exc5]@b f xc#/]b. Similarly,
all the other thermodynamic properties can be calcula
from f xc by taking suitable derivatives with respect to de
sity, temperature, and spin polarization. Thus, e.g., deno
the exchange-correlation correction to the chemical poten
m, the pressureP and the compressibilityk by mxc , Pxc ,
andkxc respectively, we have

mxc5]@n fxc#/]n, ~22!

Pxc /n5 f xc2mxc , ~23!

1/kxc5n2]mxc /]n. ~24!

The first of these equations providemxc which is identical
with the xc-potential of the UEG used in density function
theory. The second equation provides an equation of stat
the finite-T electron gas. The temperatureT51/b, in energy
units, refers to the physical temperature and not to theTc f
used in the classical-map HNC calculations discussed in
previous sections. The full quantities, e.g.,m, have to be
calculated by adding on the noninteracting contributio
e.g., m0 to the above xc-contributions. In Ref. 12 we pr
vided parametrizations for the exchange contributionf x and
the ring-sum correlation contributionf c

rpa as separate enti
ties. In the present paper we evaluate and parametrizef xc as
a single expression as this ensures that the important ca
lations which occur between the two parts are better p
served in the parameter-fitting process. If desired, the co
lation contributionf c at finiteT can be obtained from thef xc

TABLE I. The value of the electron pair-distribution function
contact,g12(r 50) from various methods. CHNC denotes the cla
sical map-HNC method used in this work.

r s 1 3 5 10 T/TF

Yasuhara~Ref. 42! 0.5324 0.1757 0.06656 0.00848 0
vmc ~Ref. 28! 0.6740 0.3389 0.1301 0.01116 0
dmc ~Ref. 28! 0.5448 0.1843 0.0463 0.00495 0
CHNC 0.4517 0.1038 0.02577 0.00963 0

CHNC 0.4472 0.1068 0.02764 0.00112 1
CHNC 0.5954 0.2252 0.08798 0.00892 5
CHNC 0.6769 0.3192 0.15297 0.02556 10
d,
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given here by subtractingf x , given in Eq.~42! of Ref. 12.
The latter is good forT/TF>0.2 and does not contain
T2logT-type terms.

A. Results atTÄ0

The paramagnetic xc-energy Exc(r s ,T50,z50), r s
<10, is the input to the theory used in determining the te
peratureTq . Using the so obtainedTq we can repeat the
calculation at any arbitrary spin polarization and obtain
spin-polarized gi j (r ) and Exc(r s ,T50,z). The resulting
z-dependent energies show a slight overestimate over
QMC results, while other methods on the whole show
underestimate~see Table II!. Here it should be noted that th
earlier Ceperley-Alder results,27 VMC, and DMC show a
spread of about 5% atr s510, z50, and 3% atz51. At
r s51 these QMC uncertainties become 11% and 18% az
50 and 1, respectively. If we exclude the older Ceperle
Alder QMC data and compare only the Ortiz-Ballone VM
and DMC data, the spreads become halved.

It is usual to describe theT50 spin-polarized correlation
energies in terms of a spin-polarization functionG(r s ,z)
given by

w~r s ,z!5
Ec~r s ,z!2Ec~r s,0!

Ec~r s,1!2Ec~r s,0!
. ~25!

Our results can be accurately fitted to the form:

w~r s ,z!5
~11z!a1~12z!a22

2a22
, ~26!

wherea is a function ofr s given by

a~r s!5
a1brs

11crs
~27!

with a50.978772,b50.322323, andc50.247303. The ener
gies are in Hartree atomic units and the fit has an aver
error of 4.631024 a.u., while the maximum error is 8.
31024 a.u., for the range 1<r s<10. The frequently used
Hartree-Fock spin-polarization function is independent
r s , with a54/3. Typical values ofa appearing in our fit are
found to be 1.042 and 1.213 atr s51 and 10, respectively.

Our numerical estimate of theT50, z50, Ec(r s,0) for
up tor s510 is the same as that of Ortiz and Ballone sinceTq

-
TABLE II. A comparison of -Ec(z51,T50)/n, the negative of

the fully spin-polarized correlation energies per electron~a.u.!, z
51 , from the classical map~CHNC! and other methods atT50.
The Fermi energy isEF .

r s 1 3 5 10
Tq /EF 0.76805 0.89392 0.99265 1.1980

CHNC 0.03235 0.02157 0.01680 0.01112
CA ~Ref. 31! 0.03160 0.02006 0.01551 0.01051
DMC ~Ref. 28! 0.02921 0.01869 0.01482 0.01034
VMC ~Ref. 28! 0.02634 0.01814 0.01464 0.01020

Lan ~Ref. 25! 0.02735 0.01740 0.01355 0.00930
KP ~Ref. 26! 20.03270 0.01840 0.01335 0.00855
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TABLE III. Parameters of the functional form off xc(r s ,T) of Eq. ~28!, for the unpolarized UEG,
obtained from CHNC.

k a1,k b1,k c1,k a2,k b2,k c2,k nk r k

1 5.6304 22.2308 1.7624 2.6083 1.2782 0.16625 1.5 4.446
2 5.2901 22.0512 1.6185 215.076 24.929 2.0261 3.0 4.5581
3 3.6854 21.5385 1.2629 2.4071 0.78293 0.095869 3.0 4.390
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was evaluated to fit the DMC-QMC data up tor s510. But
CHNC allows us to make predictions forz5” 0 and also for
r s.10. Representative values of various quantities obtai
from CHNC and other methods are given in Table II.

B. Results at finite temperatures

At finite temperatures, the Helmholz free energy per p
ticle, f xc(r s ,T,z), is obtained from the coupling-constant in
tegration over the distribution functions, while the intern
energy per particle,exc , is obtained at zero temperature. W
first consider the paramagnetic case.

1. Paramagnetic UEG at finite T

The finite-T xc-free energy per electron,f xc(r s ,T), is the
object of interest. Our results for the unpolarized elect
liquid obtained from our calculations can be accurately r
resented by the form:

f xc~r s ,T!5„exc~r s,0!2P1…/P2 , ~28!

P15~A2u11A3u2!T21A2u2T5/2, ~29!

P2511A1T21A3T5/21A2T3, ~30!

u15pn/2, ~31!

u252A~pn/3, ~32!

lnAk~r s!5
yk~r s!1bk~r s!zk~r s!

11bk~r s!
, ~33!

yk~r s!5nk ln r s1
a1,k1b1,kr s1c1,kr s

2

110.2r s
2

, ~34!

zk~r s!5r s

a2,k1b2,kr s

11c2,kr s
2

, ~35!

bk~r s!5expS r s2r k

0.2 D . ~36!

The exc(r s,0) appearing in the first of these equations is
usual paramagnetic xc-energy per electron at zero temp
ture. The values of the fit parameters are given in Table
The temperatureT and f xc are in Hartree atomic units. Th
densityn andr s are in atomic units. The precision of the fi
measured with respect to the 77 data points of the ser s
51,2,3,4,5,8,10,T/EF50, 0.25,0.50,1.0,1.5,2,3,4,5, 10,
such that the mean relative error is 0.0035, while the ma
mum relative error is 0.012. This fit has the following pro
erties:
d

r-

l

n
-

e
ra-
I.

i-

~1! It gives the QMC xc-energy atT50, where we have
used the Ortiz-BalloneEc fitted to the Perdew-Zunger form
together with theT50 exchange energy.

~2! The second term in the small-T expansion of
f xc(r s ,T) goes asT2. It automatically satisfies the conditio
of cancellation of theT2 ln T terms which exist separately i
the exchange and correlation parts off xc(r s ,T).

~3! The high temperature asymptotic expansion has
exact leading terms: the Debye correlation term~proportional
to T21/2), and the exchange term~proportional toT21).
These constraints define the density-dependent functionu1
andu2.

A comparison off xc(r s ,T) obtained from the classical
map HNC and some of the other approximations is shown
Fig. 2. Figure 3 shows only the correlation part of the fr
energy. Comparison between these two figures shows
rather strong cancellation between the exchange and cor

FIG. 2. The xc-free energy per electron,f xc , in units of mx5
2kF /p, for the unpolarized electron liquid atr s51, 3, 5, and 10,
as a function of the temperatureT in units of TF5kF

2/2. Panels~a!
and~b! show results from CHNC~solid lines!, RPA ~dashed lines!,
Iyetomi and Ichimaru~Ref. 23! ~boxes!, and Dandreaet al. ~Ref. 8!
~dotted line!. In panels~c! and ~d! we display CHNC, Iyetomi and
Ichimaru, and the RPA result.
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tion parts, forT/TF,3. Thez50 rows in Table IV provides
a set of representative values for the unpolarized UEG, u
ful for direct comparison where necessary.

In Fig. 4 we present results for the xc-bulk modulus~in-
verse of the xc-compressibilitykxc) as well as the xc-

FIG. 3. The correlation contribution to the free energy per el
tron, f c , in units ofmx52kF /p, for the unpolarized electron liq
uid atr s51, 3, 5, and 10, as a function of the temperatureT in units
of TF5kF

2/2. Panels show results from CHNC~solid lines!, RPA
~dashed lines!, and Iyetomi and Ichimaru~Ref. 23! ~boxes!, at r s

51, 3, 5, and 10. Comparison of this with the Fig. 2 shows
strong cancellations between the exchange and correlation par
T/TF,3.

TABLE IV. Typical values of the negative xc-free energy p
particle,2 f xc(r s ,T,z), obtained from the classical map~CHNC!.

T/EF→ 0.4 1.0 4.0 10
z

r s51
0.0 0.4579 0.3766 0.2234 0.1441
0.6 0.4940 0.4054 0.2363 0.1502
1.0 0.5623 0.4571 0.2593 0.1609

r s53
0.0 0.1773 0.1570 0.1076 0.0747
0.6 0.1861 0.1638 0.1108 0.0763
1.0 0.2025 0.1760 0.1165 0.0793

r s56
0.0 0.0980 0.0896 0.0667 0.0488
0.6 0.1014 0.0921 0.0679 0.0494
1.0 q0.1077 0.0965 0.0700 0.0505
e-

pressurePxc . The former is scaled to define ag0 which
corresponds to thek50 limit of the LFC, but is derived from
the xc-free energy differentiated twice with respect to t
density@see Eq.~22!#. Both g0 andPxc agree very well with
the values obtained from the free-energy parametriza
given by Iyetomi and Ichimaru~Ref. 23!.

2. Results for the finite-T spin-polarized UEG

We consider the finite-T xc-free energy of the polarized
UEG, with n1 the majority-spin density, whilen5n11n2,
and z5(n12n2)/(n11n2). As already remarked, we wor
with f xc rather than withf x and f c . The polarization function
is defined as

w~r s ,T,z!5
f xc~r s ,T,z!2 f xc~r s ,T,0!

f xc~r s ,T,1!2 f xc~r s ,T,0!
. ~37!

In the zero-T case one has

ex~r s ,z51!521/3ex~r s ,z50!, ~38!

where ex(r s ,z51) is the exchange energy per electro
Hence, by analogy we write

f xc~r s ,T,z51!52Bf xc~r s ,T,z50!, ~39!

whereB is a functionB(r s ,T) to be determined. In analog
with theT50 case, we assume thatw(r s ,T,z) has the same
functional form as Eq.~26!, but the exponenta is now a
function of r s andT. This leads to the following form for the
spin-dependent xc-free energy where we have uset
5T/EF :

f xc~r s ,T,z!5 f xc~r s ,T,0!@11~2B21!w~r s ,T,z!#,
~40!

w~r s ,T,z!5
~11z!a1~12z!a22

2a22
, ~41!

a~r s ,T!522g~r s!e
2tl(r s ,t), ~42!

-

e
for

FIG. 4. Panel ~a!. The xc-bulk modulus, given asg05
2EF /(2pn2kxc), wherekxc is the xc-compressibility andn is the
density, calculated using CHNC is displayed in forr s51, 5, and
10. Panel~b!. The exchange-correlation contribution to the pre
sure, pxc /n5 f xc2mxc calculated using CHNC is displayed. Ou
results of~a! and ~b! are in good agreement with those obtain
from Iyetomi and Ichmaru~not displayed! ~Ref. 23!.
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g~r s!5~g11g2r s!/~11g3r s!, ~43!

l~r s ,t !51.08910.70tAr s, ~44!

1

B~r s ,T!
5 (

iÞ j Þk

1< i , j ,k<3
„A~r s!2s i…„A~r s!2s j…

Dk
, ~45!

Dk5
pk1qkt

1/3

11skt
1/31ukt

2/3
. ~46!

The values of the three coefficients ing(r s) are g1
50.644 291,g250.063 944 3, andg350.249 611. The coef-
ficients sk ,pk ,qk ,sk , and uk , k51,2,3 appearing in the
above equations are given in Table V.

The parametrized form of the free energy may be use
obtaining other thermodynamic quantities as well as
spin-dependent xc-potentials of DFT by suitable manipu
tions. The spin-polarized RPA xc-free energy, viz.,f xc

rpa , can
be evaluated from the RPA-grand potentialV(r s ,T,z) re-
ported by Kanhereet al.13 In the work of Tanaka and
Ichimaru,22 the spin-polarization effects have been trea
using the Hartree-Fock form ofw. The results of Dandreaet
al. ~Ref. 8! are limited to the paramagnetic case. Repres
tative values off xc(r s ,T,z) are given in Table IV.

C. Exchange-correlation potentials

An important derived property off xc(r s ,T,z) is the xc-
potential which enters in the Kohn-Sham equations. In
unpolarized case, the xc-potentialVxc(n) is the density de-
rivative d@n fxc(n)#/dn. Thus it is identical with the xc-
chemical potentialmxc . When we have a spin-polarized sy
tem, the densitiesns , s51,2 for the up-spin and down-spi
species, are treated as independent variables, with the
density n5n11n2. The two-component system has fo
PDFs, viz.,gi j (r ), and hence one should formally define
matrix of xc-potentials based on the derivatives of the ene
contributions of the four pair-distribution functions. How
ever, it is customary in spin-density functional theo
~SDFT! to just define two spin xc-potentials by

Vxcs5]@n fxc~n1 ,n2!#/]ns . ~47!

Here the derivative with respect to the density of one of
spin species~e.g.,n1) is taken while the density of the othe
component~e.g.,n2) is held fixed. This approach assumes
constant direction of spin polarization and is not immediat
applicable to the spin-density-functional calculations of
homogeneous systems where the direction of spin polar
tion varies as a function of position. In such situations it
best to use the full matrix of distributions functionsgi j (r ) to

TABLE V. Values of the parameters used in the functional fo
of f xc(r s ,T,z) of Eq. ~40!, for the spin-polarized UEG, obtaine
from CHNC.

k pk q1 sk uk sk

1 0.653676 0.166896 20.373864 0.472245 1.000000
2 20.157510 20.308756 20.144853 2.495400 2.236068
3 0.190535 0.691258 20.890943 5.656750 3.162278
to
e
-

d

n-

e

tal

y

e

y
-
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construct a matrix of xc-potentials. An alternative metho
frequently used within the local-spin-density approximati
~LSDA! is the approach introduced by Ku¨bler et al.,48 where
the spin-quantization axis is rotated to locally diagonalize
spin-density matrix. In this study we will present some r
sults for Vxcs in the form used in LSDA. In Table VI a
representative set of values ofVxcs is given. In Fig. 5 we
compare our strong-coupling estimate with the RPA estim
of Vxcs given by the Baton-Rouge group.49 It is clear that the
RPA overestimates the correlations, as expected. Thus
r s;5, the overestimate is about 10–20%. Also, the polari
tion dependence of the strong-coupling result changes c
acter aroundT/TF;2. It is seen, especially in panel~b!, that
the polarization dependence is quite weak forz.0.4, while
the highest sensitivity is nearz;0.

V. LOCAL-FIELD CORRECTIONS

The response function of the electron gas is intimat
connected with the PDF’s, as already discussed within
context of Eq.~17!. The usual approach is to find an LF
from perturbation theory or from equations of motion et
and then use the fluctuation dissipation theorem to get at
PDF’s self-consistently, if possible. As we know, such me
ods are extremely difficult to carry out successfully to obta
a positive definiteg(r ). In contrast, in our approach we a

TABLE VI. Typical values of the negative of the spin-polarize
xc-potential ~Hartree a.u.! for majority-spin electrons.
2Vxcs(r s ,T,z), obtained from the classical map~CHNC!.

T/EF→ 0.4 1.0 4.0 10
z

r s51
0.0 0.6383 0.5492 0.3398 0.2208
0.4 0.7108 0.6090 0.3679 0.2341
0.8 0.7722 0.6613 0.3948 0.2472

r s55
0.0 0.1517 0.1429 0.1098 0.08091
0.4 0.1607 0.1499 0.1132 0.08272
0.8 0.1686 0.1562 0.1166 0.08451

FIG. 5. The spin-polarized xc-potentialVxcs(r s ,t,z) in units of
the corresponding RPA value is shown for the majority-spin co
ponent,s51. Here t5T/TF , z5(n12n2)/(n11n2). The spin-
polarized RPA potentials are from Kanhereet al. ~Refs. 13 and 49!.
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ready have theg(r ) and so proceed to evaluate the LFC a
the interacting response function from theg(r ).

The responsex(k,v) of the interacting UEG is usually
written in terms of a referencex0(k,v) and an LFC denoted
by G(k,v). Such a form ensures that thef-sum rule is auto-
matically satisfied for any physically sensibleG(k,v), in-
cluding the static form. The simplest static form,G(k), is
identical with G(k,0) at k50, and begins to differ from
G(k,v) ask increases. In general, theG(k,v) for v smaller
than the plasma frequencyvp behaves like a static quantity
Hence the use of a static formG(k) is often adequate. The
main thrust of STLS,18 GT,15 UI,50 FHER,51 and others has
been to provide theG(k) as a function ofr s at T50. Even
though UI begins as a basic theory, it actually relies on
parameters constraining theG(k) to fits to Monte CarloExc
and derivatives, and to Yasuhara’sg(0),42 i.e., it invokes
quantities outside UI theory. FHER take the parametric fo
of the UI’s LFC and successfully fit it to available theoretic
results~at T50) for the UEG, using an ample array of p
rameters to handle the known sum rules and other phys
requirements. However, there is no clear way of ensur
that the LFC of FHER corresponds to the physicalg(r ).
Relating the LFC to theg(r ) in the quantum case proceed
via an integration overv, as in Eq.~20!. This requires a
knowledge ofG(k,v) and not justG(k). By contrast, in the
classical case no integration overv is required.

The only ‘‘fit’’ parameter of the present model isTq .
Further, since the PDF’s have been evaluated for a clas
fluid, we can use the properties of classical distribution fu
tions to evaluate the LFC which is expressible in terms of
direct correlation functions or structure factors of the int
acting and zeroth-order systems. Thus consider the simp
LFC, viz., G(k), for a one-component fluid:

Vcou~k!G~k!5Vcou~k!11/x~k!21/x0~k!. ~48!

For a classical fluid,x(k) is directly related to the structur
factor:

Si j ~k!52~1/bc f!x i j ~k!/~ninj !
1/2. ~49!

Hence, for the paramagnetic case:

Vcou~k!G~k!5Vcou~k!2
Tc f

n F 1

S~k!
2

1

S0~k!
G . ~50!

Note that here we have used the temperature of the inte
ing system, viz.,Tc f with S0(k) itself. We believe that this is
equivalent to using an interactingx0(k) as the reference re
sponse function.52,53 In these expressions thex0(k) and
S0(k) are based on a Slater determinant, while the Lindh
function is applicable to the noninteracting case without
tisymmetrization of the wave function. We display in Fig.
the LFC for r s55, for several values of the temperaturet
5T/TF .

As already mentioned in the context of the work of Da
drea et al., the two-parameter Vashista-Singwi LFC, give
by

G~q!5A~12e2Bq2
!, q5k/kF , ~51!

has sometimes been used as a model for the LFC, eve
finite temperatures, sinceA andB can be determined by th
t
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compressibility sum rule which defines the limit ofG(q)/q2

for q→0, and theq→` limit of G(q). Thus

AB5g0 , ~52!

g05G~q!/q2uq50 ~53!

52
EF

2pn

1

kxc
, ~54!

A5G~q→`!512g~0!. ~55!

The xc-compressibilitykxc at any temperature is know
from our parametrized form of the free energyf xc(r s ,T,z)
~see Fig. 4!. In Table VII we give a set of values ofg0 for
convenience. Similarly,g(0), thevalue of the PDF, at con-
tact is also known from the CHNC procedure~see Table I!.
Hence we can construct finite-temperature two-param
z-dependent VS-LFC’s. A result is shown for the parama
netic case, in Fig. 6 by triangles, together with CHNC-LF
~dotted line! for T55EF andr s55. The VS form provides a
poor representation of the intermediate-k region. This was

FIG. 6. The static local field correction~LFC!, G(q) calculated
from CHNC atr s55 andT/TF5t50, 1, and 5 are displayed. Th
data points~triangles! are for a finite-T LFC based on the Vashista
Singwi two-parameter form where theq→0 andq→` are fitted to
the CHNC g0, ~see Table VII!, and 12g(0) ~see Table I!. The
inset shows the small-q behavior of G(q)/q2, showing that the
hump in the LFC forq;1.522 has disappeared for the high tem
perature case. Comparisons of the LFC from CHNC att50 with
other models was given in our Ref. 35.

TABLE VII. Typical values of g0, the q50 limit of the
G(q)/q2 function whereG(q) is the local-field correction to the
response function@see Eq.~52!, and Fig. 4~a!#. The g0 values are
derived from the CHNC xc-free energy,f xc(r s ,T,z50).

T/EF→
r s↓ 0.4 1.0 4.0 10

1 0.3008 0.3031 0.2194 0.1468
3 0.2908 0.3034 0.2639 0.2008
5 0.2851 0.3005 0.2851 0.2316
8 0.3160 0.3254 0.3044 0.2574
10 0.3285 0.3451 0.3203 0.2739
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already noted many years ago by Sham.54 He pointed out
that the VS and related methods do not capture the exch
effects which determine the LFC near 2kF , for T50. The
model LFC can be easily improved by introducing an ex
level of parametrization such thatG(q);1 for some inter-
mediate wave vector 2kFt . The latter should be such that
becomes 2kF at t50 and increase with temperature. How
ever, we shall not examine such an approach any furthe
it does not guarantee a positive definiteg(r ). It may how-
ever prove to be useful when the full CHNC procedure is
needed.

It should be remarked that the LFC’s based on ax I
0 cal-

culated with the interacting-density distribution tend to
constant for largek, viz., G(k,0)→2„12g(0)…/3, while
G(k)→12g(0). If we look at some of theT50 theories,
the theory of UI is based on ax I

0 , but in practice the
Lindhardx0 is used. The fittedG(k,0) of FHER is built to
behave likek2 at large k, being an LFC based on th
Lindhard form.53 The large-k limit of the LFC obtained from
the CHNC can be investigated as follows. The large-k limit
of S(k), at densityn and fractional compositionx51/2 for
the paramagnetic case is given by

S~k!512
4p

k4
nxF2

d

dr
h12~r !G

r 50

, ~56!

dg12~r !

dr
52

d

dr
e2bc fVcou(r ), ~57!

g~0!5g12~0!/2. ~58!

Now, using the above limiting forms and the diffraction for
of Vcou(k) in Eq. ~50! it is found that

G~k!uk→`512g~0!. ~59!

It should be noted that the diffraction potential used h
does not lead to the Kimball relationdg(r )/drur 505g(0)
but to the formdg(r )/drur 505g(0)(bc f/2l2) if the contri-
butions from the nodal term atr 50 are ignored. In the usua
derivations of the Kimball relation it is often assumed th
the strongly repulsive Coulomb potential atr 50 implies that
only the interacting pair of electrons is present, and that
effect of the other electrons could be neglected. Howe
the diffraction form of the potential is weak atr 50 anddoes
not exclude the presence of other electrons. Hence the u
form of the Kimball relation is not relevant to us. Also, it
not clear if the very large-k limit is meaningful for k
.1/l th . In practice, the behavior of the LFC for large-k is
not important since the response functionx(k,v) as well as
x0(k,v) decay rapidly for largek.

VI. APPLICATION OF THE XC-POTENTIALS TO A
FINITE- T KOHN-SHAM CALCULATION

One of the most important applications of the xc-free e
ergies and potentials is to finite-T Kohn-Sham calculations
We consider a typical system, namely, an Al131 nucleus im-
mersed in an electron gas of half the normal density of s
aluminum, and at a temperature of 15 eV. In such calcu
tions the neutralizing background of the electron gas is mo
ge

a

as

t

e

t

e
r,

al

-

d
-
i-

fied to have a cavity whose radius is equal to the Wign
Seitz radius of the Al ion, and the nucleus is placed at
center of the Wigner-Seitz sphere.5,55 Since the system ha
spherical symmetry, the Kohn-Sham equations reduces
radial equation which has to be solved iteratively, since
Hartree potential and also the xc-potential depend implic
on the electron-density distribution. Our aim is to assess
difference between the CHNC xc-potential and, for instan
the Iyetomi-Ichimaru~YI ! xc-potential. For this purpose w
limit ourself here to a spin-unpolarized DFT calculation
the local-density approximation. We examine the electro
structure of the ‘‘average atom’’ where the electron occu
tions are assumed to be given by the Fermi distribution at
given temperature.55,56

The K-S bound states obtained by the two metho
CHNC and YI, respectively, are at energies~in Rydbergs! of
2115.044 and2110.199 for the 1s level, 27.86214 and
27.53968 for the 2s level. The outermost level, the 2p-state,
has an energy~Ry! of 25.05646 and24.81116 from CHNC
and YI, respectively. Similar proportionate changes are s
in the phase shifts of the continuum states. Thus it is cl
that the xc-potentials should have a significant impact, es
cially in determining the regimes of plasma phase transitio
finite-T magnetic transitions,6 as well as in the accurate de
termination of ionization balance and transport properties
more complete study of these phenomena using fully non
cal, self-interaction-corrected, spin-dependent methods
now emerging since thegi j (r ) may be easily evaluated an
directly used in the Kohn-Sham calculations, using t
CHNC methods presented in this study.

VII. CONCLUDING DISCUSSION

We have presented the application of the classical m
ping of the Coulomb interactions using the HNC procedu
to the finite-T uniform electron gas. It was shown in a pr
vious publication that the method accurately reproduces
pair distributions and xc-energies of theT50 quantum-
electron fluid. Here we examined our results by comparis
with other published approaches. The methods propose
Ichimaru and collaborators, and also by Dandreaet al., lead
to g(r ) which are in reasonable agreement with the CHN
results whenever theirg(r ) remain positive definite. In othe
cases, when theirg(r ) contain negative regions, the positiv
large-r part of their PDF’s seem to fall into agreement wi
our results. The exchange-correlation free energiesf xc calcu-
lated by the CHNC show that the forms proposed by Ic
maru et al. provide good estimates of the free energies a
derived properties, even though there is some overestima
the correlation effects, especially in the regimes where
traditional methods give negative PDF’s. Currently there
no quantum Monte Carlo results for the finite-T uniform
electron gas that we can use for comparison. We have
sented an easy to use parametrization off xc(r s ,T,z) fitted to
a large data base withr s andT/TF up to 10, and ensuring the
correct asymptotic behaviors. The parametrization is
lieved to be sufficiently accurate for obtaining derived pro
erties like the pressure, compressibility and the sp
dependent xc-potentials of density functional theory at fin
T. The computer programs for generating the PDF’s,
f xc(r s ,T,z) and related properties are available online
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other workers via web access.57

The present approach, based on the CHNC scheme,
vides a unified formulation of the thermodynamics and
electric response of the uniform interacting-electron fluid~or
other Coulombic-Fermion fluids! at finite temperatures an
for general values of spin polarization and coupling streng
with a minimum of assumptions.

APPENDIX: PHYSICAL MEANING OF THE
‘‘CLASSICAL-FLUID TEMPERATURE’’

The temperature of the classical fluid,Tc f , which is used
to calculate the distribution functions and excess free e
gies of the electron fluid at the physical temperatureT was
modeled using the quadratic interpolation:

Tc f
2 5Tq

21T2. ~A1!

In density functional theory, the kinetic energy is describ
by noninteracting electrons at the interacting density. Let
assume that the meanvalueEkin of the kinetic energy opera
tor can be described by some classical temperatureTclas .
Restoring thekB factors for the sake of clarity, we then hav

Ekin5
3

2
kBTclas5

A2p22~kBT!5/2I 3/2~bm!

A2p22~kBT!3/2I 1/2~bm!
. ~A2!
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