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Behavior of the thermopower in amorphous materials at the metal-insulator transition

C. Villagonzalo,* R. A. Römer, and M. Schreiber
Institut für Physik, Technische Universita¨t, 09107 Chemnitz, Germany
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~Received 6 June 2000!

We study the behavior of the thermal transport properties in three-dimensional disordered systems close to
the metal-insulator transition within linear response. Using a suitable form for the energy-dependent conduc-
tivity s, we show that the value of the dynamical scaling exponent for noninteracting disordered systems such
as the Anderson model of localization can be reproduced. Furthermore, the values of the thermopowerShave
the right order of magnitude close to the transition as compared to the experimental results. A sign change in
the thermoelectric powerS — as is often observed in experiments — can also be modeled within the linear
response formulation using modified experimentals data as input.
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I. INTRODUCTION

Transport phenomena in disordered quantum syst
have been studied for many years,1,2 yet many open prob-
lems remain. One focus of these investigations is the me
insulator transition~MIT !. This quantum phase transitio
from a good conducting material to an insulator may be
duced by disorder due to localization1 or by interactions such
as electron-electron interactions and electron-lat
coupling.2,3 In three-dimensional~3D! amorphous materials
the MIT is mainly attributed to disorder.1 For example, in
heavily doped semiconductors the disorder is brought ab
by the random distribution of dopant atoms in the crystall
host. However, indications of electron-electron interactio
have also been found, e.g., in the dc conductivitys ~or re-
sistivity r51/s) in doped semiconductors in both metalli4

and insulating regimes.5

A further open problem is the behavior of the thermoel
tric powerSor the Seebeck coefficient of disordered mate
als near the MIT. In many amorphous alloys and both co
pensated Si:~P,B! and uncompensated Si:P,S continuously
changes from negative to positive values or vice versa at
temperatureT. This corresponds to a change of thermal co
ductors from electrons to holes or conversely and has b
attributed to the electron-phonon interaction in amorph
alloys.6,7 On the other hand, in heavily doped semicondu
tors the sign change is believed to be caused by elect
electron interactions~in uncompensated Si:P in the insulatin
regime5! or attributed to the existence of local magnetic m
ments and their interactions with electrons.8,9 This conclu-
sion is based on the suppression of the anomalous beh
by a magnetic field.8,9 We note that the sign change inS is
also observed in metals, high-Tc materials, and
quasicrystals.10–12 Analytical treatments of metals as a d
generate free-electron gas taking into account inelastic s
tering with phonons13–15as well as numerical consideration
incorporating electronic correlations in superconductor16

have also been shown to generate a sign change inS. But in
these systems the sign change occurs at aT value that is 2
orders of magnitude higher than that in disordered syste
PRB 620163-1829/2000/62~24!/16446~7!/$15.00
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Note that S is mainly due to two distinct effects:~i! the
diffusion of the charge carriers and~ii ! the net momentum
transfer from phonons to carriers.17 But for T,0.3 K as
considered in this work, the diffusive part of the the
mopower dominates that of the phonon-dr
contribution.17,18 Hence, from this point on in this paperS
denotes only the diffusion thermopower.

The prototype for a theoretical description of 3D diso
dered systems is the Anderson model of localization.19 Near
the MIT at T50, s behaves as20

sc}H s0U12
EF

Ec
Un

, uEFu<Ec ,

0, uEFu.Ec ,

~1!

whereEF is the Fermi energy,Ec is the mobility edge that
separates the extended conducting states from localized
sulating states,s is a constant andn is a universal critical
exponent.1 By using Eq.~1! for s in a linear response for
mulation the behavior of the thermoelectric transport prop
ties such asS ~Refs. 21–24!, the thermal conductivityK
~Refs. 22–24!, and the Lorenz numberL0 ~Refs. 23 and 24!
at the MIT have been computed. Moreover, similar tos, the
quantities S, K, and L0 have also been found to obe
scaling.25 The scaling form of the dynamical conductivitys
close to the MIT in 3D is given as2,26–28

s~ t,T!

T1/z
5FS t

T1/nzD . ~2!

Here t measures a dimensionless distance from the crit
point, such ast5(EF2Ec)/Ec , the correlation-length expo
nent n in 3D is equivalent to the conductivity exponent
given in Eq. ~1!, and z is the dynamical exponent.2 For a
noninteracting system such as the Anderson model, one
pectsz5d in d dimensions.2 But, instead of obtainingz53
in the scaling form ofs, one findszn51.21,24,25In addition
to this discrepancy,S turns out to be at least one order
magnitude larger23,24 than the experimental results in dope
semiconductors9 and in amorphous alloys.6,7 Furthermore,
the sign change inScannot be explained using the Anders
16 446 ©2000 The American Physical Society
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PRB 62 16 447BEHAVIOR OF THE THERMOPOWER IN AMORPHOUS . . .
model and Eq.~1!. One may argue that the discrepanc
between the transport calculations and the experimental m
surements are due to the absence of interactions in
Anderson model. Indeed, interactions may influence the
havior of the thermoelectric transport properties. Yet we e
phasize that the neglect of interactions in the Ander
model is not entirely inconsistent with the experimental si
ation in 3D amorphous materials.29 For example, recent mea
surements in Si:P yields scaling withz'3 andn'1.30 This
agrees withz5d as predicted by the scaling arguments2,26

for noninteracting systems.
The goal of this paper is to show that the correct value

z, the right order of magnitude ofS at the MIT, and perhaps
even the sign change inSat low T can be described within a
linear response formulation using the noninteracting And
son model of localization. However, in order to do so, w
have to use a more suitably chosen energy-dependensc
instead of Eq.~1!. After a brief review of linear transpor
theory, we construct a new form forsc as a function of
energyE andT from experimental data. By using this mod
data as input for the linear response formulation, we comp
the temperature dependence ofS, K, L0, and alsos and show
that they have the expected qualitative and quantitative
havior close to the MIT. Finally, we show that a small var
tion in sc(E,T) can change the sign ofS. This effect cannot
be produced simply by varying the density of states% or the
chemical potentialm(T).

II. LINEAR THERMOELECTRIC TRANSPORT THEORY

In the presence of a small temperature gradient“T, the
electric current densitŷj1& and the heat current density^ j2&
induced in a system are given~to linear order! as

^ j i&5ueu2 i~ ueuLi1E2Li2T21
“T!, ~3!

wheree is the electron charge andE is the induced electric
field. Li j are the kinetic coefficients. Since we do not co
sider the presence of a magnetic field in this work, the O
sager relationLi j 5L ji holds.31 Ohm’s law, ^ j1&5sE, im-
plies s5L11 in Eq. ~3!.

The flow of thermal conductors due to“T is counteracted
by an electric force arising fromE making^ j1&50. Equation
~3! then yields the thermoelectric powerS5L12/ueuTL11,
which relates“T to E. The sign ofSdetermines whether th
thermal carriers are electrons or holes. Using the Somm
feld expansion foruEF2Ecu.kBT, S is given by the Mott
formula32 as S52p2kB

2Ts8(EF)/3ueus(EF), where kB is
Boltzmann’s constant,s8 is the derivative ofs with respect
to E, ands(E) is assumed to be a slowly varying functio
on the scale ofkBT.21,22,24,33,34

The thermal conductivityK determines the contribution t
^ j2& stemming from“T. Usings andS in ^ j2& we obtainK
in terms of the kinetic coefficient as23,24

K5
L22L112L21L12

ueu2TL11

. ~4!

For the definition of the Lorenz number followsL0

[e2K/kB
2sT.23,24 In metals at roomT, L05p2/3.34 It also
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takes on the same value atT&10 K in metals where the
electrons suffer no inelastic scattering processes.34

The primary consideration then in determinings, S, K,
and L0 is to calculateLi j . Under the assumptions that th
system is noninteracting and inelastic scattering proce
are absent,Li j are given in the Chester-Thellung-Kubo
Greenwood formulation35–37 as

Li j 5E
2`

`

A~E!@E2m~T!# i 1 j 22F2
] f ~E,m,T!

]E GdE, ~5!

for i , j 51,2, where m(T) is the chemical potential
f (E,m,T) is the Fermi distribution function, andA(E) con-
tainsall the system-dependent features.

Last, we note that theT dependence ofm can be obtained
for noninteracting systems from

n~m,T!5 È`

dE%~E! f ~E,m,T! ~6!

where n is the number density of electrons and% is the
density of states.34 In the 3D Anderson model of localization
% has been computed previously.24 Thus keepingn constant,
we find numerically24 that m(T);T2 with an increased ef-
fective mass due to the disorder as expected for noninter
ing Fermi systems.34

III. A PHENOMENOLOGICAL APPROACH

There are only two parameters that are model depen
in the transport theory discussed in Sec. II. These areA(E)
andm(T). In order to determine the behavior of the therm
electric transport properties close to the Anderson M
A(E) in Eq. ~5! has usually been set21–24,33 equal to the
critical behavior ofs given by Eq.~1!. As mentioned in the
Introduction, this leads to the unphysical value forz51/n
and therefore an unphysical frequency andT dependence of
s. The main reason for this behavior is easily understo
there is noT dependence in Eq.~1! and consequently allT
dependence ins is due to the broadening of the Fermi fun
tion in Eq. ~5! with increasingT. Thus in order to model the
correctT dependence, we should add to Eq.~1!, valid at T
50, the desiredT dependencies such ass}T1/z in the me-
tallic ands} exp(2T) in the insulating~say, variable-range-
hopping! regimes.38,39 Such a purely theoretical model fo
sc(E,T) will then incorporate a multitude of constants th
can be adjusted to fit the experimental results. Of course
is of limited practical use since the validity of these fittin
parameters is hard to justify.

Here we will instead use as input forsc(E,T) recentex-
perimental data obtained by Waffenschmidtet al.,30 who
measureds in Si:P at the MIT under uniaxial stress. The
data yield good scaling ofs according to Eq.~2! with a
dynamical exponentz52.9460.3 andn5160.1. These val-
ues agree with the scaling arguments2,26 and reasonably wel
with the numerical results40–42 for noninteracting systems
We emphasize that it is—in principle—unimportant wheth
the scaling has been achieved by stress-tuning or other v
tions of the effective disorder content in the material. Inde
theoretical studies in anisotropic Anderson models h
shown41,42 that the critical properties remain unaffected
the anisotropy~or stress!. Therefore, we expect that whil
nonuniversal properties such as the numerical values ofs, S,
etc., may differ according to the material considered in
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particular experiment, the universal properties such as
critical exponents and the scaling behavior should be as
cussed here.

In thes(t,T) scaling of Ref. 30,t5(s2sc)/sc , wheres is
the stress andsc the corresponding value at the transitio
We sample those scaled data for several values of (t,T) and
fit a spline curve43 sc to these points in order to get a smoo
functional form fors(t,T). Transforming the splinesc as a
function not only of T but also of E, we set t5(E
2Ec)/Ec . Finally, we substitutesc(E,T) for A(E) in Eq.
~5! and compute the thermoelectric transport properties
fined in Sec. II.

In this paper we consider temperatures from 0.01 K to
K. Far from the transition we could not probe lower thanT
,0.02 K. This is due to the limited input data and cons
quently a limited range of the spline function that genera
sc(E,T). The unit ofsc is taken asV21 cm21 consistent
with the experiments. TheE scale is~arbitrarily! fixed at 1
meV, which is the order of magnitude of the binding ener
of an isolated donor in a heavily doped semiconductor.5 In
order to compare with the previous results in the Ander
model24 we let Ec57.5. We emphasize that this value is
no significance and can be assigned~nearly! arbitrarily. The
important point to consider is the location of the Fermi e
ergyEF with respect toEc . This distinguishes the electroni
regimes. Thus, the metallic, critical, and insulating regim
are identified asuEFu,Ec , EF5Ec , and uEFu.Ec , respec-
tively. Usually,m(T) is derived in Eq.~6! from % of the 3D
Anderson model of localization. In the next section we sh
also show the effect of using a different functional form
m(T).

IV. RESULTS AND DISCUSSIONS

A. Temperature dependence of the thermoelectric transport
properties

Consistent with the dynamics of the experiment in R
30, we expects(T);T1/z at the critical regime withz'3.
This is indeed the behavior ofs(T) close toEc as we show
in Fig. 1. For uEF2Ecu<0.2 meV we obtainz53.260.3.
Note thats(T)5L11 has been integrated according to Eq.~5!
over the energy range where] f /]E>10220 meV21. Thus
our numerical calculation ofs is consistent since it repro
duces closely the original result in Ref. 30. If we plot t
results in Fig. 1 with respect to (m2Ec)/EcT

1/nz we obtain a
rough scaling ofs similar to Fig. 4 of Ref. 30.

We next turn our attention to the thermoelectric powerS.
In the 3D Anderson model of localization, we know th
when using Eq.~1! one obtainsS→0 in the metallic
regime21,24,33 while in the insulating regimeS does not ap-
proach zero but seems to diverge asT→0.24,25At the MIT S
is a constant21 of the order of 100mV/K.23,24,44In Fig. 2, we
show that in the present approachS in the vicinity of the
MIT is two orders of magnitude smaller compared to the
previous results for the Anderson model. The magnitudeS
is in fact comparable to the experimental results in dis
dered systems.6,7,9 Furthermore,S→0 asT→0 in the metal-
lic, critical, and insulating cases. This behavior ofS(T) in all
electronic regimes was observed6,45 in amorphous AuxSb12x
and in amorphous Ge12xAux . As indicated by the differen
e
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lines in Fig. 2,S is in good agreement with the Mott formul
sinces in Fig. 1 is smooth across the transition at finiteT.
Note that in order to evaluate the Mott formula properly f
the system considered here, theE dependence of the inpu
spline sc(E,T) was used instead ofs(T) from Fig. 1. We
emphasize that it is no contradiction thatS is positive here
but mainly negative in the doped semiconductors in all el
tronic regimes. In the energy regions close toEc.0 the
charge carriers are holes instead of electrons as show

FIG. 1. Numerical calculations for the electrical conductivitys
as a function of temperatureT. The filled symbols represent th
metallic regimeuEFu,Ec , * denotes the critical regimeEF5Ec ,
and the open symbols represent the insulating regimeuEFu.Ec .

FIG. 2. The thermopowerS as a function ofT with the same
symbols as in Fig. 1 distinguishing the metallic, critical, and ins
lating regimes. The lines are obtained from the Mott formula.
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Ref. 24.S would be negative if we had chosen the left m
bility edgeEc,0 for low filling.24,46

The correspondingT dependence ofK is shown in Fig. 3.
We find thatK→0 asT→0 in all electronic regimes. This is
also the behavior ofK usingsc in Eq. ~1!.24 In the metallic
regimeK is larger than in the insulating regime since the
are more heat carriers in the former. From the results os
andK in Figs. 1 and 3, respectively, we obtainL0. As shown
in Fig. 4, L0→p2/3 asT→0 whether it be in the metallic
critical, or insulating regime. This is different from the r
sults using Eq.~1! for s. There one obtains anL0 that de-
pends on the conductivity exponent in the critical and in
lating regimes while it approaches the universal value34 p2/3

FIG. 3. TheT dependence of the thermal conductivity comput
with Eq. ~4!.

FIG. 4. The Lorenz numberL0. The results are shifted byp2/3,
the universal value for metals~Ref. 34!.
-

only in the metallic regime.24 Here we see no markedly dis
tinct behavior in the metallic regime compared to the ins
lating regime. ForuEF2Ecu50.1,0.2 meV,L0 in the metal-
lic regime is less than its corresponding value in t
insulating regime. ForuEF2Ecu50.5,1.0 meV, L0 in the
metallic regime is larger than its corresponding value in
insulating regime.

In the calculation ofs(T), S(T), K(T), andL0(T), we
used a phenomenological construction ofsc(E,T). Further-
more, we have assumed that the density of states% is the
same as that of the 3D Anderson model of localization giv
in Ref. 24. Since this%(E) is a smooth and~restricted to
E.0) monotonic function,m(T) obtained from Eq.~6! is
also smoothly and monotonically varying withT as de-
scribed in Sec. II.

B. Effects of a structured %

We now consider the effects of a possible structure in%.
We shall assume here that this structure corresponds on
variations inm(T) and not ins. In Fig. 5 we show two
examples of a modifiedm(T) in the critical regime. Example
A has a pronounced maximum, while example B has bot
maximum and a minimum. The height of the maximum
both examples A and B is'0.1 meV. Note that this is sig
nificantly larger than the half-width of the bump, which
<0.005 meV. This is also true for the depth of the minimu
in example B. Thus a small change inT corresponds to a
large change inm(T). Applying these forms ofm(T) to-
gether with Eq.~1! for s reproduces the same structures inS.
For example, using form B ofm(T) we obtain anS having
both a maximum and a minimum in the sameT interval as
m(T). But S is still of the order of 100mV/K, while the
variations are only of the order of 10mV/K and not large
enough to cause a sign change inS. On the other hand, using
the phenomenological construction ofsc(E,T) yields even
smaller changes. We observe variations inL11 andL12 of less
than 10% from their unmodified values. Consequently,
find negligible changes inS. Figure 2 would appear unmodi
fied. Hence we conclude that even a large change in
density of states% and thus also inm(T) is not sufficient to

FIG. 5. Comparison between modified~dashed and dotted lines!
and unmodified~solid lines! chemical potentials. The curves ar
shifted with respect to the mobility edge. The thin solid line is t
unmodifiedm shown on a finer~right! scale.
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cause the change of sign forS as observed in the exper
ments. Nevertheless, this weak dependence ofS on % and
m(T) at least justifies our use of the simple Anderson den
of states in the present paper.

C. Effects of a structured s„E…

Let us now assume that for smallT there are nonmonoto
nicities in sc(E,T)—although these have not been observ
in the experiments.6,7,9Thus we consider the case when the
is a sizable change insc(E,T) in the region close toEc for
smallT. The corresponding ‘‘bumps’’ insc(E,T) are shown
in Fig. 6 with different peak heights and with half-width
,1 meV. For simplicity they are essentially quadratic fun
tions of E and have been generated such that they de
quickly as exp(2T4) with increasingT. The height of the
bumps is,1 V21 cm21, which is at least an order of mag
nitude smaller than the values observed fors in the
measurements.6,30 The lowest temperature studied isT
56 mK and we shall only consider metallic and insulati
regions withuEF2Ecu<0.1 meV.

Our results in Fig. 7 usingsc(E,T) with and without
bumps indicate that there are only small variations in
slope of log(s) and s;T1/3 remains valid within the accu
racy of these estimations. We note that the lowest meas
temperature in Ref. 30 is 15 mK. From Fig. 7 we see that
variations forT>15 mK are much smaller than those f
T,15 mK. Hence, these variations ins could not have
been observed in the experiments.

In Fig. 8 we show how the bumps affectS. Even with the
very small bump 3,S changes sign in the critical regime a
T→0. As the bump increases this change becomes m
pronounced. The temperatureTS50 at which the sign change
occurs is 0.1 K for bump 3,TS5050.2 K for bump 2, and
TS50'0.4 K for bump 1. These results forTS50 are still
about one order of magnitude less than in semiconducto8,9

and two orders of magnitude smaller than in amorph
alloys.6,7 Of course, as shown in Fig. 8,TS50 shifts to higher
values as the bump height increases. Nevertheless, the
mum value ofS for T,TS50 has the same order of magn
tude as the corresponding maximum value ofS in Si:~P,B!
and in Si:P. We emphasize that the value ofTS50 of course
depends on the energy unit chosen and thus will vary

FIG. 6. The modifiedsc(E,T) as input having increasing bump
with decreasingT centered near atE2Ec50.05 meV. For clarity
only selected isotherms are shown. The vertical line indicates
mobility edge.
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systems with different bandwidths, e.g., a larger bandwi
will give rise to a larger value ofTS50. We observe a similar
sign change in the metallic regime but the depth of the m
mum is smaller than in the critical regime. The Mott formu
with s(T) given in Fig. 7 can readily model this behavio
sinces(T) remains slowly varying even ifsc(E,T) has a
bump nearEc . In the insulating regime,S has a shallow
maximum and drops back to zero asT→0. This is different
from experiment,5 whereS changes sign and neither has
maximum nor minimum in the insulating regime.

e

FIG. 7. Comparison betweens with and without bumps in the
metallic, critical and insulating regimes forEF2Ec5
20.1, 0.0, 0.1 meV. For clarity each set ofs(T) is shifted by 0.2
along the vertical axis from each preceding set. The lines are gu
for the eye only.

FIG. 8. The thermopower for different cases ofsc input. The
lines are guides for the eye only.
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Unlike in S, there is no dramatic change inK as can be
seen in Fig. 9. We find only negligible variations atT
,15 mK. This should be expected since there has also b
hardly any change in the slope ofs(T) except for T
,15 mK. However, the small increase ins at T,15 mK
in the metallic regime together with the minimally modifie
K leads to a drastic change inL0 even in the case for the
smallest bump. The increase and decrease ins leads to a
maximum and minimum inL0, respectively. However,L0
still approaches the universal valuep2/3 for T→0 as dem-
onstrated in Fig. 10.

Let us comment on the validity of the bumps. As r
viewed in the Introduction, one commonly observes a s
change inS for smallT. As shown here, we can only extra
such a sign change within the noninteracting Anders
model of localization by introducing an artificial bumplik
structure insc . We interpret this as evidence that the si
change is more likely due to physical processes not pre
in the Anderson description of disordered systems.

V. CONCLUSIONS

In this paper, we have shown that the anticipated value
the dynamical scaling exponentz'3 as well as the right
order of magnitude for the thermopowerS'1 mV/K at the
MIT can be obtained when taking into account the expec
T dependencies in addition to the simple scaling behavio
Eq. ~2!. Our approach is phenomenological in the sense
we have refrained from using fitting parameters and h
rather taken experimental data as input. Using these data
can explain the large deviations from experimental result
reported in the theoretical studies of Refs. 21–25 and 33.
have shown that our results forS agree with those predicte
by the Mott formula since we have used as slowly varying
on the scale ofkBT near the MIT. We emphasize, howeve
that for a disordered system where interactions are ne
gible, we should still expect the Anderson-type transition
given in Eq. ~1! at T50. Consequently,S'100 mV/K at
the MIT21–24 should again be expected and one should
serve a large increase ofuSu at very low T. However, such
temperatures appear presently inaccessible by experim

FIG. 9. The thermal conductivty remains largely unaffected
variations in sc(E,T). The data for unmodified and modifie
sc(E,T) lie on top of each other. The lines are guides for the e
only.
en
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We also note that the finite-T scaling of s, S, K, and L0

according to Eq.~2! can be performed with good accurac
for z'3, n'1.47

As a further challenge, we considered the sign chan
observed inS at low T. We found that even large variation
in the chemical potentialm(T) do not lead to a sign chang
in S. On the other hand, a variation in the inputsc(E,T) data
can give rise to such a sign change inS, while at the same
time resulting in only small changes in the conductivitys.
Hence we have effectively modeled the underlying physi
reasons for the sign change—which have been attribute
electron-electron interactions5 or to the existence of loca
magnetic moments and their interactions with electrons8,9 or
to inelastic scattering with phonons13–15—by simply chang-
ing the inputsc(E,T). Regarding a possible test for the e
istence of such a structuredsc(E,T), we have shown that the
T variation ofL0 is much more sensitive to the bumps th
s. Thus we have been able to describe the main feature
the critical behavior ofS(T) although it remains unclea
what might cause bumps insc(E,T) close toEc . A micro-
scopic and possible system-dependent approach to the p
lem may eventually account for these abrupt changes insc .
Of course, if many-particle interactions and electron-phon
coupling are important, we no longer expect the feasibility
the Chester-Thellung-Kubo-Greenwood formulation35–37

used here.
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