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Reduction factors for the icosahedralT,,®h4 Jahn-Teller system
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Reduction factor$RF’s), which are needed when modeling vibronic systems by an effective Hamiltonian in
an electronic basis, are calculated for thg® hy Jahn-TellerJT) system. The results obtained will be useful
when modeling the fullerene anions& , which is believed to exhibit &,,®hg JT effect in its ground state.
First-order RF's are calculated using symmetry-adapted vibronic ground and tunneling states in which
the system is allowed to tunnel between equivalent minima in the potential energy surface. The effect of
anisotropy in the minima is also considered. Second-order RF's are calculated incorporating coupling
to excited harmonic-oscillator states associated with the minima.

I. INTRODUCTION the problem by “transferring” the effect of the vibrations
into an effective(or spin Hamiltonian. This includes terms
There has been much work over the last decade concerme represent the various perturbations present, such as inter-
ing the electronic structure and properties qf @olecules nal strains, an external stress or spin-orbit couplifig.
and related compounti including the vibronic coupling Some terms are modifications of terms that would exist with-
that manifests itself via the Jahn-TellglT) effect. The in-  out the JT effect and some additional terms are introduced.
clusion of vibronic coupling is important because the patterrFor example, in magnetic fields one result is that the Lande
of energy levels exhibited and the resultant wave functiongactor can take parallel and perpendicular values significantly
are different to those that would be expected for a purelyifferent from the free-electron value. The coefficients of the

electronic system. . terms modified by the inclusion of vibronic coupling involve
Many calculations have been undertaken to determine thgsi-order JT(or Ham reduction factor¢RF’s),}3~%and the

energy spectrum of &.%° They show that all levels up to
and including the molecular orbital dfl, symmetry are
filled and that the lowest unfilled orbital is @f;, symmetry.

Therefore the ground state of the aniogoCmust be de- |\ Shvsical origin
scribed by the coupling between the electron inThg orbit Wn phys! gin.

and the vibrations of the molecular cage. From group theor Effective Hamiltonians, which may implicitly or explic-
: ge. mrom group yi’[ly make reference to RF’s, have been used to help interpret
couplings to two modes af; symmetry and eight modes of

hy symmetry are expected. Although the coupling to the twodata ona vwde range O.f wbrpmc SVSterT‘S- The sys'tems' most
ommonly interpreted in this manner involve various ions

aq modes can immediately be distinguished in the spectra, f?

is a very complex matter to consider all eighf modes. A usufl:}/ptg?r(l)st';'on me;tals ?{L rf\re elglr)tkf;s _at comeledx_orth
model in which a singlél;, orbit interacts with a singlé, crystal. er systems that could be Interpreted in the

mode of vibration in the so-calleliy,@hy JT problem is manner describ_ed above_ and are cu_rrently _analyzed by re-
obviously a good starting point for modeling the reayC  lated mgthogls include dilute magnetic semiconductbfs,
molecule. This is the main subject of this paper. manganite®3! (which are widely believed to show colossal

In order to interpret the results of spectroscopic experinagnetoresistance due to the JT efieand even th&. coli
ments such as electron paramagnetic resondeRB) or op- sulfite reductase enzymég factors have also been obtained
tical absorption/luminescence obtained on any system, it igxperimentally® and theoretically* for the G, anion,
necessary to determine the pattern of energy levels respokhich is of direct relevance to this paper.
sible for producing the lines observed. These can be divided In most approaches to interpreting experimental data, the
into manifolds that are approximately degenerate but spliRF’s (or parameters involving them, such gdactorg are
into quasidegenerate states under the full Hamiltonian. Folreated as free parameters whose values are fixed by fitting to
the purposes of modeling data obtained on JT-active sysxperimental data. This can yield useful information on the
tems, it is common to assume that the basic states form aribronic coupling. As an example, consider the EPR and
electronic manifold (doublets, triplets, etg. as these are optical zero-phonon Zeeman results obtained on chromium-
much simpler to use that the physically correct vibronicdoped GaP. The results can be all explained by modeling the
states. The vibronic coupling that has been neglected by remround state of a Gf center as an orbital triplet in which
resenting the manifold by orbital states is incorporated intdhe zero-field spin-orbit coupling is written as

coefficients of the additional terms involve second-order
RF’s. Sometimes further terms are also introduced to explain
the observed results even though they do not have any
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3 . . , systems with very strong couplifg;® this is generally true
— 5 YM-stA[C(EE;+EE) +b(l-9)7], () and holds for all couplings in th€;,®hy JT system consid-
ered here.

wherey is a first-order RF and andc involve second-order ~ Formally, RF's are defined in such a manner that the ma-
RF's. The E, and ES are orbital and spin operators, trix elements of the effective Hamiltonian within the elec-
. ;}/ 1

respectively®® Fitting to the experimental data gives a best-ronic basis are the same as those of the perturbation
fit value for y of 0.0121% As this value is much less than 1, within the original ground and/or the first excited vibronic

this indicates that spin-orbit coupling is almost completelyStates. First- and second-order RF's correspond to the inclu-
quenched by the JT couplifgThe resultant behavior is SIO" of_V to first or second order in perturbation thgory,
therefore dominated by the second-order tetmand ¢ respectivelyt® In the example above, it was seen that if the

This behavior is very different from that obtained neglectingfirst-order RF's are quenc%ad, the second-order terms domi-
vibronic coupling, when the appropriate description of spin-"até the observed behavidr.Therefore, it is important to
orbit coupling would be simply-2\I-s (— 2 is an isomor- calculate expressions for both first- and second-order RF's as

phic constant that occurs becalie: 1 is a fictitious angular @ function of the coupling strength in order to determine the
momentur. This confirms that the effect of including the "€lative importance of different contributions.

vibronic coupling in an effective Hamiltonian can be very  Second-order RF's are much harder to calculate than
pronounced. However, the values obtainedyob, andc by those of first-order as they involve coupling to an infinite set
fitting to the experimental data are obtained independently?” €xcited states. Nevertheless, results have been found both
whereas they are actually related by the JT effect to On@nal_ytlcallyf‘ > and numencallﬁ‘/s_for many Symmetries. In
coupling constant and one frequency of vibration GHly. particular, a general _method involving the_ derivation of
Furthermore, the effects of other “perturbations,” such aSsecond-order RF’s using symmetry properties of all states,

magnetic field effects, can be expressed in terms of the sanfigrturbations, and electronic operators was developed first
constants. or orbital triplets in cubic symmetfy and then for orbital

7 ,
Although the effective Hamiltonian approach as outlineddOUbIEt system It was shown that second-order RF's can

above is useful as a first attempt at modeling experiment e obtained from the evaluation of the sums of various over-
data, it is nevertheless unsatisfactory as a complete descrifaPS ©f the gss_omatetlj \_/|br|at|onal states. fT heba”r? qu this p;l-
tion of the underlying physical mechanisms. In a fitting pro-Per S o obtain analytical expressions for both first- an
cedure, the RF’s are treated as free, independent parameter§cond-order RF's for the icosahedid,®hy JT system

However, they are not truly free parameters; in a given sysYSIng the general methods developed previously for cubic

tem the values of the RF’s are fixed by the values of theYStems. The results obtained cover the whole range of cou-
vibronic coupling strengifs) and vibrational frequencies. PliNg strengths. An assumption is that quadratic coupling

Further limits on the number of independent parameters arle'™Ms are sufficiently large that the nuclear motion can be

set by sum rule relations between the R¥'#n general, the treated as being localized around minima in the adiabatic
number of free parameters is smaller than the number dpotential energy surfac\PES, and not as rotation around

RF's. The number of parameters limits the amount of infor-& trough. The basis of the transformation method Teg
mation that can be obtained about the vibronic coupling by® hg @nd the original resulf§ are also summarized.
experiment.

It is possible to employ various analytical or numerical Il. THE BASIC MODEL
methods to calculate values for the RF’s as functions of the
vibronic coupling. These results can then be applied to any
given system. Values for the RF’s can be determined if the Following the work of Fowler and Ceulemafsye for-
coupling strength is known. Alternativelgs is more likely, ~ mulate theT;,®hgy JT problem with a twofold axis as the
it is possible to compare the values for the RF’s obtained byxis, rather than a five-fold axis as used by some other au-
fitting with the theoretical results to deduce a value for thethors, as this gives the most symmetric results. We will label
strength of the vibronic coupling. Exact quantitative agreeihe two components of thég; mode equivalent to the
ment between theoretical values and fitted results will not benodes in cubic symmetry a&ande, and the three compo-
obtained because there will always be small additional pernents equivalent to, modes transforming agz, zx, andxy
turbations present that are not included in the effectiveas 4, 5, and 6 respectively.and e are linear combinations
Hamiltonian models. However, it can be expected that aof the hydrogenlikeds,2 2y andd 2 y2 functions?®
least the signs and orders of magnitude of the RF's are in As theH representation is not simply reduciblelipsym-
agreement. Thus theoretical calculations are needed to relateetry, there are two independerttype quadratic coupling
the RF’s to the coupling strengths. However, the only papecoefficients. There is no unique way of writing down the two
to calculate expressions for RF'slipsymmetry at present is different couplings. We will follow the separation with qua-
that by Cullerneet al,®® who obtain numerical values for the dratic coupling constant¥/, and V5 used by Dunn and
first-order RF’s for th&G®g, Goh, andH®g JT systems in  Bates?® With this separation, the depth of ti;, wells is
the strong coupling limit. found to depend upon thé,-type coupling only and thB 34

The concept of RF's is based upon the assumption that theells uponV; only. We will therefore write the Hamiltonian
ground states with and without the inclusion of vibronic cou-in terms of a linear interaction terf{; and two quadratic
pling are of the same symmetries. Although this has recentlyermsH, andHjz, so that both types of wells can be consid-
been shown to be not true for certain situations in theered. The total Hamiltonian can then be written in the form
strongly coupled icosahedrad®h system&’*! and Eee  H="H,,+H;+ H,+ Hz, wherd®

A. The Hamiltonian and transformation method
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V; is the linear vibronic coupling constant, is the reduced 6 minima of Dsq symmetry. Additional points oD, sym-
mass corresponding to the vibrational ma@g,, andy is ~ metry can only become absolute minima if coupling to fourth
summed over all of the modé e, 4, 5, and 6. Th&,,, are order is included in the Hamiltonian. As this situation only

orbital operators, which can be written in the form occurs for a very limited range of possible coupling con-
stants, it will not be considered further here.
ot 0 0 Mathematically, it is therefore useful to displace the ori-
c zl\ﬁ 0 —-¢ 0 gin of the phonon coordinates to each minimum point in
HI"2 V5 ’ turn. It is then a much simpler matter to describe the vibronic
0 1 motion about these points. This can be achieved using a
5 method developed originally for tetrahedral systems in order
1 1 ¢ 0 0 to model magnetic-ion impurities in n-v
HEZE\[E 0 —-¢ 2 0 |, semiconductord®>®* This involves applying a unitary shift
0 _5 transformation
(000 (001 uﬁ%@%ﬁq @
CH4:E001,CH5=E000, | | s
0 1 0 1 0 O to displace the nuclear coordina@,, to a positionQy,
01 0 =Qny— ay,fi. The resultant transformed Hamiltoniak
3 =U"YHU can be split into a contributiot, that does not
Cus= I 1 00 (3)  contain anyPy, or Qy,, and hence does not contain any
0 0 O coupling to excited phonon states, and a secondgathat

contains all remaining terms. It follows that; will be a
N \/E) is the golden mean. good Ha}m|lton|an for dgtermmmg the ground states of the
. N system in strong coupling. Further wafkshows that the
We know that the JT effect should result in localization of L . X
Hamiltonian is also good for determining excited states. Val-

the nuclear motion about low-symmetry minima in the es for the shift paramete at the minima are therefore
APES. Previous analyses of the potential energy surface for P Ty

the T;,®hy JT problem using numericd** and analytical found by minimizing the energy oft;. The_relgult for the
method&? have shown that, when only linear coupling and T®h problem is minima ofDsyq symmetry if F2>3V;
harmonic terms are included, there is a continuous sphericat V5V5>— %2 and minima ofDzy symmetry if 2
equal-energy surface. However, when small anharmonic o)>\/§V§>3V§>—%’ 2, whereV/ =V, /pw?(i=2,3). The
quadratic coupling terms are add®yhich must be present D34 wells are labeled to j, and theD gy wells are labeled\

to some extent in a real system, the minimum-energy surface F. Anisotropy in the minima can also be included by ap-
is warped to give either 10 local minima Df;; symmetry or  plying an additional scale transformatisfr>>*However, as

with respect to orbital basis, y, andz, and wherep=3(1
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the excited well states are to be used as approximations to |0T(fl’f)’(>=N(T5ff}[¢‘l(|C’;O)+|D’;0>)+(|E’;0>
the symmetrized states in the second-order RF calculations ,

and the results are inevitably much more complicated, the —[F";0))],

anisotropy will only be considered for the first-order RF’s in (5d) (5d) , , e
this paper. |0T50x ) = N7 [(|C";0)+|D";0)) — ¢~ *(|E";0)

The states of the transformed Hamiltoniam., after the —|F":0))] (5)
application of the shift transformatipnare harmonic- 50) (50) o
oscillator type states representing motion localized about th&hereNy;; andNy,; are normalization constarft For the
bottom of a given minimum. These include ground states ifP3s minima, thex components of the symmetry-adapted
the wells and states with a total ofh-type phonon excita- States are
tions, composed of different numbers of the individual com- @)\ — NGD[ _ 42/ |t - . PN At
ponent excitation®, €, 4, 5, and 6. The ground state asso- |0T30x) =Nyl = ¢7(|c";0) +[d";0)) +([f*:0)—e";0))
ciated with the wellk will be written in this transformed +¢(—1g’;0)+|h";0)—]i";0)—]j";0N],
picture in the form|4(®;0>, wherey is the orbital state
and the 0 indicates that all tig, oscillators centered on the  [0TS) =NV 6~ %(|c’;0)+d’;0)) —(|f";0)—|e’;0))
well are in their ground state. -1 . . . .

Vibronic states associated with the wells, such as those +7(=19%0)+[n"0)=[i"0)= ;001
determined by the transformation method, are only good ei- (3d)\ _ n(3d) , . O\ (A
genstates of Jahn-Teller systems in infinitely strong coupling|OGUX )=Ngg’[2(|c";0)+[d";0)+|f";0)—|e’;0))
when the potential barriers separating the wells are infinitely +(—|g’;0)+|h";0y—i";0)—|j"; 01, (6)

large and no tunneling can take place. This limit is oftenWh ; in the\'s are normalization constants. We al
referred to as the static Jahn-Teller effect. In real systems ere aga S are normajization constants. Ve aiso

the height of the barriers is not infinite and tunneling be-r10te t_hat in Ref. 48, the labeS,, and G, were inadvert-
. . . ently interchanged.
tween equivalent nuclear distortions becomes possibie

: : . In cubic symmetry, it was possible to derive a full set of
dynamic Jahn-Teller effectMathematically, this means tak- symmetry-adapted excited states using projection operators

ing linear combinations of states localized around different ) 5 cimilar way to that used to obtain the ground states.
wells. As the system is equally likely to be in any one of they,\yever, these are extremely complicated and difficult to
equivalent minima, the icosahedral symmetry of the originalyy 51 ate inl, symmetry. The essential difference is that a
problem is restored. Therefore, the infinite coupling state@roqu element of thd4 group will transform both the elec-
should be symmetry-corrected by taking new linear combitronic and phonon states associated with one well directly
nations that transform among themselves with the requireghto those for another well, whereas In symmetry the
icosahedral symmetry. Consequently appropriate combinaransformation is to a linear combination of states in different
tions can be found analytically using projection operatorwells (with the same overall number of phonon excitations
techniques’ The results obtained foF®h (Ref. 48 com-  Therefore, for the second-order RF calculations, we will take
pare well with those of numerical approach®s. the excited states to be excited harmonic oscillator states
As combinations of states localized around different wellsocalized in the wells, rather than symmetry-adapted linear
are to be taken, it is necessary to write the well states in @ombinations of them. Although these states are only true
common basis. Therefore, states |¢(k)';n> eigenstates in infinite coupling, the resultant effect of sum-

|49 gPeaAT5%6") appropriate to the untransformed pic- ming over all excited states removes some of the inaccura-

ture can be obtained by multiplying the transformed states b§|es that might otherwise be expectd.

the valueU™ of U appropriate to that well by substituting
with the particular values of; for that well. Here,6, for
example, denotep phonon excitations of th@,, mode in A. First-order reduction factors
the well k. As Ut contains phonon operators, the ground  gecayse thed representation in the icosahedral group is
states(with n=0) as well as the excited states are automatiyonsimply reducible, additional complications can occur for
cally vibronic in nature. _ icosahedral problems involvingl (either electronically or

An effect of the tunneling is to lift the degeneracy of the iprationally) that do not occur in other symmetries. This
well states in finite coupling and restore a three fald,  mpeans that it does not automatically follow that derivations
ground state. The remaining levels are tunneling levels comgeyeloped for systems that are reducible can be applied here.
posed of combinations of localized well states with no phojgyever, it is found that the calculation of first-order RF’s
non excitations in the wells. The energies of these states ajg jcosahedral symmetry can be carried out in an analogous
higher than the ground state in finite coupling but tend 10-yanner to that used previousf/Thus, in first order, the real

wards the ground state energy as the coupling tends 10 infingamijitonian for a perturbation of symmetiy is written in
ity. The tunneling levels for th®s4 wells form aT,, triplet general terms as

and for theD 34 wells they form aT,, triplet and aG,, quar-
tet. 1)
The x components of thd,, ground state and th&,, H (F)zz Wr,Cry» @)
tunneling state obtained from tli;4 minima can be written 7
as where thewr, are coefficients and

Ill. REDUCTION FACTORS
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®I'®T,, containsA;4. This results in the three possible
Cr,= 2 Tyl T YTy )Tyl (8 symmetrical operator8, 4, T14, andH,. Operators of,

Y172 symmetry are trivial and need not be considered here. The
are general expressions for the orbital operators in terms afalculation of the required matrix elements fbfy andH,
Clebsch-Gordon(CG) coefficients® A first-order effective  involves evaluating phonon overlaﬁ@lu(i)’ru(g)|0> be-
Hamiltonian corresponding to the same perturbatiacting  tween wellg andk. These are the same factors that appear in
between a vibronic state of symmetffy and a state of sym- the determination of the normalization facté?s.
metry I',,, can be written in the form Neglecting the anisotropy in the wells and noting that the

labelsI’, andT',, are interchangeable, we find that there are

e, only four distinct nonzero first-order RFK{). (I') for D
HEHT) =2 Wi K (T)Cm, 9) y {1 (I) for Dsg
Y wells, namely
where the term&{} (') multiplying the electronic opera- K (Tig)=2X0S,

tors are defined to be the general first-order RF for a pertur-
bation of symmetryl". For theT,,® hy problem, botH"; and

', can be taken a3y, T,,, or G, . When the effective K(Tll)uTlu(Hg): 5 Xo(1+4S),
Hamiltonian in Eq.(9) describes the effect of the perturba-
tion between basis states of the same symmetry as each _

y y K1 (H=0.4,

other, the orbital operatoeg'yrm are the same as ti@, in
Eq. (8). When they occur between different states, they have 1
a similar form to Eq.(8), as given explicitly in Eq(2) of KM 1 (Hg)==Xo\6(1—SP), (13
Ceulemans and Chibotaff:. e S

Expressions for the RF’s as a function of the couplingwhere X,=(1+S)) ! and® S=exd—2(8k)?] with B

strength can be obtained using vibronic states with the re= V6/(5—4+2V}) andky=—V,/(\2huw®). For theDq
quired transformation properties and evaluating matrix eleyells the nonzero RF’s are

ments of any operator of the desired symmetry. Suitable

states are those given in Eq$) and (6). The matrix ele- K(Tl)T (Tlg)=2XfSD(1+4SD),
ments of the effective Hamiltonian between two general o
electronic statefl’|x;) and|T"x;) are given by \F S
(1) —— /=
. . KGUGU(Tlg)_ 31+Sy’
(T H DT )= 2 W, KE (1)
Y
2
rr, KW (T1g) = —=XoX3Sp(1—Sp),
><<F|Xi|Cr|y |mej> (10) TZUGU( 19) \/§ 2733 D( D)

Also, the matrix element of the perturbation Hamiltonian be-

; . ; 2
; 1 _ 2 2
i(\év?e;;h; cg(?\r/reer?%())/ndlr(ground vibronic state$0Ix;) and K(Tl)uTlu(Hg) —gxl(3+ 8Sp+142),
m%j
2
(OT ;| H ()| 0T ;) = >, W, (OFxi|Cr,|OT ;). K1 (Hy=~ gx§(3— 7Sp+4Sp),
Y
1y i
2
As these two equations must be equivalent, it follows that Kgu)Gu(Hg): ?xgxﬂﬂ
(0T, x| Cr,|OT 1)
KR (D)= (12) W G

(Txi|CRy T ;) K 1, (Ho)= 5 X XoXa,
These expressions can be evaluated using the symmetry-
adapted vibronic and orbital states given ab&V&he calcu- KO (Hy) = EX1X3X4
lations are simplified noting that a sufficient and necessary TG0 B ’
condition for nonzero RF'’s is that the direct product of the
symmetries of both vibronic states and the orbital operator
must containA(\ll?. It should be noted that although the or-
bital part of H ¢t} is neither Hermitian nor anti-Hermitian for _ 2\ _ 2\
some combinations of; and I'y,, this approach is valid where Xl_z(?_’i_/ZSSDJFZSD) B XZ_(3_58D+228D) %
because the product of the orbital part and its correspondinéf(l_SD) ' and Xy=(1+Sp—25p), So
first-order RF is Hermitian. =exd —2(vk))?], and y= \/El(\/1—5—4\/g)V§.
As the T,,®hgy JT system is modeled by an electronic  In order to interpret these formulas, it is useful to set the
state of symmetryl'y,,, all the required symmetry operators quadratic coupling to zero, even though thgy and Dsqy
I' may be found from the condition that the produict, points are not actually wells in this case. The RF’s with this

(1) 2 2
K 6,(Hg) = £ XoX5(2- 38+ ), (14)
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1.0 o T T T v T T T —] Anisotropy in the wells alters the frequencies of the oscil-
09F ™\ \ K (T g) . lators located in the well€ Expressions for the frequencies
osk " N L1 n . can be determined using a scale transformation procedure in
g o7F X K H) ] addition to the shift transformation. It is found to be also
§ osk o R\ ] necessary to include second-order corrections to the well
= o5k Krr@) N\ N 14  States in order to obtain accurate restdtshen anisotropy
g 0'4- NN\ e 15 is included, the simple expressions for the first-order RF’'s
5 L LN : given above should be modified. However, the results are
E osr s ‘\\ ] then very complex and cannot be expressed in simple ana-
02r .2 0 2 ] lytical forms. In most cases, it is possible, as a first approxi-
0.1 _'," KTMT,(Hg) ‘\\ ] mation, to neglect the second-order corrections to the well
o.o0 . 1' . é "“3 "1 5 states a_nd modify _only the expressions for the overlap i_nte-
K grals to include anisotropf. Results for the RF’s where this

1 approximation does not produce divergent results are plotted
FIG. 1. A plot of the firstorder RF’s between symmetry- as dashed lines in Figs. 1 and 2 alongside the corresponding

1 H H H r__ _ I
adapted states fd@s4 wells both with anisotropydashed linesand ~ 1SOtropic results(solid lines. ,We h:’:lve takenV,=—V;
without anisotropy(solid line9 as a function ok;. =0.04; for D5y wells andV,=—V3=—0.04k; for D3y

wells. These values both ensure that the correct wells are

simplification have been plotte@olid lineg as a function of ~aPsolute minima and meet the condition that wignap-
k; in Figs. 1 Osq case and 2 D34 case. The nontrivial proaches zerd/, andV; also approach zero. They also give
! . . .

limits in both strong and weak coupling, as determined anaY2 an appr(g;(lmate value to explain observed experimental
lytically from the above expressions, are also marked on théata on (. It can be seen that, as would be expected, the
figures. For theDsy minima, it can be seen that all the first- anisotropic corrections become negllglble in strong couplujg.
order RF’s lie between 0 and 1, but for tiy minima, It can also be seen that the corrections in the intermediate
some of thek (1. (') are negativeldown to —2/5) for I, ~ coupling region are relatively small. Therefore it can be con-
I KW |'_|m for D N | as it ch cluded that the much simpler results obtained neglecting an-
o T2uT2u( o) for Dgg minima is unusual as it changes isotropy are a reasonable approximation to the true results.
sign when the coupling strength increases. This implies that
the energies of thd,, vibronic states may change much B. Second-order reduction factors
more than other levels as the coupling strength changes from , )
weak to strong. The appearance of negative RF’s also shows Second-order RF's can be calculated using the general
that the first-order RF’s should not be simply regarded agnethods given previousf/. The excited states used in the
numbers that reduce the effect of an electronic perturbatiorf@lculation should be taken to be symmetry-adapted states

The off-diagonal RF’s reflect, in some senses, the quenctfl€rived using projection operator methods. However, as dis-
ing of the strength of the interactions between two states ofuSSed in Sec. |, the calculation of such states is very com-

different symmetries. This is demonstrated K&)T (H,) plicated in icosahedral symmetry, so the excited states will
wl2ut "0 be taken to be the zero-phonon tunneling states and well

and K(Tll)uGU(Hg) for trigonal wells. In weak coupling, these giates with phonon excitations, even though the latter are
factors both tend to zero as the energy gap betWiggrand  only strictly appropriate in the infinite-coupling limit. In ad-
T,y (or G) is large. On the other hand, as the RF'sTqy  dition, the tunneling levels require special consideration as
electronic operators approach zero in the strong couplinghey become degenerate with the ground states in strong cou-
limit, Hy operators dominate the energies of the JT system ipling. Hence these will be considered separately later. An-
strong coupling. We note that, for tii®s4 case, the RF’s are isotropic effects will also be ignored throughout these calcu-
similar to those for the cubit® (e®t,) system with equal lations. We will only consider RF’s within the ground {,)
coupling®! state, and not “off-diagonal” second-order RF’s involving
the tunneling levels, as these are the most useful for subse-
quent calculations involving effective Hamiltonians.

10 [ Thus, for a purely electronic perturbation of symmdtry

0.8 f the second-order perturbation Hamiltonian neglecting the
§ o6k ﬁ- tunneling states is
£ o4 " HOTT)=HWDT)G(T)HOT), (15)
g o2y J  Where
= 15
-8 0.0- (m)’.n (m)’.n

¥ n,m AE

-0.4

and where the sum is taken over all possible phonon excita-
k tions n and well states)(™. AE is the difference in energy
between the excited well statég(™’;n) and the ground
FIG. 2. As in Fig. 1 but forD 34 wells. vibronic symmetry-adapted states.
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Substituting Eq.(7) for the first-order perturbation into The second-order RF's as given in EB3) can be evalu-
Eqg. (15), we have ated for any given system using the appropriate states and
operators. After much algebra, it is found tihecause the
2) _ + t excited states have been approximated to simple harmonic
HE(TeL) nZyk WFVJWFVKCFVJG(Tl)C”k' an oscillator functions localized in the potential welthe final
results are a linear combination wkdimensional sums hav-

(Note that the dagger was omitted in our earlier paper as thﬁ’lg functional forms equivalent to the two-dimensional func-

matrices are redl. It is included here to allow replacement

of the operator€ andW by complex orbital and spin opera- tion

tors in Sec. lll D) From a symmetry point of viewG(T,) is o Xhym

a scalar and thus it does not change the transformation prop- ... (24)
erties of any term in the sum. The terms wittfit® have Lm=0 (E+1+m)lim!’

the same symmetry properties as those of the operator

cl G(T)Cw. and thev are thus second-rank tensors. Theyvhere the prime on the sum indicates that the term With
r,G(T)Cry y yjmzo is excluded ancE is the difference in energy be-

can therefore be expressed as a sum of irreducible tensors in . .
the form tween the excited phonon states and the ground states in
units of Aiw. The maximum dimension of the sum is 5, as
. @) there are five components of tig mode. Although these
CijG(Tl)CFyk:MZ# LTIy TydMu), (18 factors can be computed directly, thedimensional sums

can be simplifietf to one-dimensional sums of the form

where
* n
H(2)=2 = (25
ﬁ&%L(F@F):yEy Cl, G(TOCr Ty TwdMu), (19 =1 (E+n)n!
j 7k
. J , , that are quicker to compute.

andM is taken over all the elements containedi®I” and ~  The energies of the symmetry-adapted ground states have
wu over all the components of the irreducible representationyready been calculat&ifor all coupling strengths. As the

M excited states are states localized in the wells, the energy of

Now, by de]Zizr;ition, the effect of a second-order effective 5 state withn phonon excitations can be obtained by taking
Hamiltonian{ ¢t between(ze)lectromc stat¢b ) must be  the strong-coupling limit of the ground-state energy 6r
the same as the effect ¢f'“(I'@1") between the vibronic s,_,0) and addingn%e. Therefore, neglecting quadratic

ground state$0l", yk), i.e., coupling, the energ in the functionf(Z) in Eq. (25) is
Dy HEHT D)Ly =(0r | H AT &T) [0 9. Xs4S)
20) E= 1 78) 26)

The second-order RFK(2) are defined to be factors multi-

plying electronic operators for Dsg wells and

= XaSo(5+4Sp)

(2) _ T _ = 27)
Lin(rel) 2 ChCry Tyl ydMu)  (21) (3455125 (
such that for Dag wells, whereXsq=12k?/25 and Xgq=4k2/15. An
alternative approximation is to assume that the excited states
HOTel)= Wi W, are allnz o above the ground state, as used previously for
el ) ME,L ijyk Py e cubic system&? In this caseF is taken to be zero.

@) @) For Dsq wells, the RF’s can be written in terms of the
X(CyT MK Ly, (Fel). (22 functionsf,=f(Xsq) andf,=f(2Xs4). The results are

Therefore, the second-order RF’s, which essentially incorpo- @) B

rate all the vibronic effects, can be written as KAg(Tlg)_25(flJr f2)Ysa,

(O] £ (T@T)|0T )
ANTATRVING - 1) DS

The second-order RF's are independent of the symmetry

component labelg:, y;, andy,. and
The only perturbationd” giving nonzero second-order

RF’s for theT,,®hg system are those ;4 or Hy symme- K%)(Hg)=5(3fl+4f2)Y5d,

try. The only values oM allowed are those contained in the

productl’®I", namely,Ag, Tyq, andl_—|g. For pertlyjrbatlons K(Tz)(Hg):30f1Y5d,

of Hy symmetry, there are two possilitg-type RF's due to 1o

the repeated root ikl ;®@Hy . These will be labeledt 4 and

Hag-

KE)(T19)=50f; Vs,

K@(r)= (23)

K (T1g)=10(4f1+ f2) Ysq, (28)

KE) (Hg)=10(2f 1+ ) Ysq,
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K&ZZ)Q(HQ)=2(18f1+f2)Y5d, (29

for a T4 and aHq perturbation, respectively, wheh;;=
—28|2/[25(1+ S))]. For D34 wells, the RF’s can be written
in terms of the functiong,=f(X34) andg,=1(2Xs4), g3
=f(3X3q) andg,="f(4Xs3y). The results are

K;(Azg)(Tlg) = 5[3gz+ 2(3gl+ 592)SD
+(592+15g5+ 1294)520]Y3d )
K (T19)=1085[2(301 +02) + (130, +305) 5] aa,

Kffg)(Tlg) =2[3g,+8(39;+29,)Sp+4(11g,+ 6493

+394)S5] Yz, (30
and
KK (Hg) =[24g2+2(99: + 250,)Sp
+(13g;+ 4503+ 4294)S5] Y aq
KE) (Hg)=25p[ 2(21g, +50,)
+(2392+993)Sp] Y34,
K{?) (Hg)=[14g,+8(50:+40,) S
+4(179,+ 503+ 294)S5]Yaq
KE) (Hg) =2[3g,+4(9g: +472) So
+2(95+995+694)S5]Ysa,  (3D)

whereY 4= —2S3/[15(3+5Sp+2S3)].
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FIG. 3. Second-order RF'’s for a perturbationTof symmetry.
The solid lines are the results obtained using symmetry-adapted
states forD 34 wells and the dashed lines the results Boyy wells.

the curves obtained have a similar shape but are larger in
magnitude in intermediate coupling. TKé\z)(Tlg) RF has a
maximum magnitude of 1.6kt and ther:(Hg) RF a
maximum magnitude of 1.3Ak, compared to 1.3%/w and
1.03hw, respectively, with the energies in Eq26) and
(27).

The RF'sK{(T;5)=K{(T,y) for Dy wells are all
almost exactly 1.6 times larger than the corresponding RF’s
KP)(T19)=KPI(T,,) for Dsy wells up tok; =2 and also in
very strong coupling. In the intermediate-coupling region,
the KP(T,4) are slightly more than 16*(T,y), al-
though the discrepancy is never more than G.ab/For the
H perturbation, a similar scaling effect can be observed al-
though the equivalence is not so exact as forTigerturba-
tion, especially in strong coupling. THE{*¥(H,) RF’s are

It is interesting to note that the RF's have been expresseg)| approximately 1.7 times larger than the corresponding

in terms of two related functions fobsy wells and four

related functions foD 34 wells. This is a very similar result

to that found previously for the cubid®e and T®t

systemd? where in both cases the RF's were expressed i

terms of two functions (X) andf(2X).

KPY(Hg) RFs up tok;=2, with the exception of the
KEP(Hy) RF. The latter has the same asymptotic behavior

as theK(TSl‘;)(Hg) RF in strong coupling, whereas the other

three KHg(Hg) RF’s all have their own unigque asymptotic

It is a simple matter to numerically compute the abovebehavior.

expressions for the RF's for any given coupling strength.

In the cubicT,;®t, system, second-order RF’s have been

Sufficient phonon excitations are included in the calculationcalculated with both symmetry-adapted and excited well
to ensure that additional contributions from higher excited

states are negligibly small for the coupling strengths of in- 0.0 pgr—T——T—
terest, noting that the number of significant excited states N K‘”(Hg) e
increases as the coupling strength increases. Figures 3 and &
show the RF's(in units of 1hw) as a function of the cou-

pling strengthk,; up to k;=5 for T, and H perturbations,
respectively, using the energi&s given in Eqgs.(26) and

(27). In both figures, solid lines are used to denote the resul

for D54 wells and dashed lines the results fogg wells.

It can be seen that all of the RF’s are negative. Hence it
important to note that although these quantities are by con:
vention called “reduction factors” they indicate both the
magnitude and sign of additional terms that need to be add
to effective Hamiltonians when vibronic coupling is included

compared to when it is not. For each perturbationthe
Kﬁfg)(l") RF has the largest magnitudes and M%L(F) RF

the smallest magnitude. If the enerfyis taken to be zero,

T v T I__J-_' - iy iplyiphplds
\ P ol L L it
N T, e e
02}k NN s ARy ]
g \\““‘\‘__-_\_'- \ , P -
< el NN\ ]
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FIG. 4. As in Fig. 3 but for a perturbation &f symmetry.
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states. This latter approximation was found to result in a 00 T
slight overestimation of the RF’s in intermediate coupling I e o ]
due to the inclusion of too much overlapHence the values |
of the reduction factors calculated here for the intermediate-
coupling region should be taken to be an upper limit on the
true values.

-0.2

-0.3

-0.4

C. Tunneling levels

order RF contributions

Total (excluding tunneling) |

As mentioned above, any tunneling levels that areg
coupled to the ground state by the perturbation in questior§
should be considered in the calculations. In this case, n® 5 R R T S S SR S
tunneling levels are coupled by tfig, perturbation. How- 00 05 10 15 20 25 30 35 40 45 50
ever, all tunneling levels are coupled for tHg perturbation.
The contributions can be calculated by substituting appropri-
ate expressions for the tunneling states insteads8?’;n) FIG. 5. The totaK$?(Hg) RF excluding tunnelingsolid line),
into Eq. (16). If the usual symmetry-adapted states in Eqs.the contributions from well states with one, two, and three phonons
(5) and (6) are used, the contributions are found to rapid|y(dashed ling and two different estimations of the tunneling level
diverge as the coupling strengkh increases to around 2 or contribution[dot-dash linega) and (b)].

3. Indeed, tunneling contributions will always diverge when ) ]

the tunneling splittings) and the energy differences causedWherea=S; andb=1—5;, for example. The main question
by the perturbation are much smaller thab. This is be- IS to determine which well state to associate Wlth which
cause the energy difference in the denominator tends to zeRymmetry-adapted state. When E¢f). and (6), giving the

and the states that are being used are not correct to first ord@ymmetry-adapted states in terms of the well states, are
in perturbation theory in strong coupling. solved to obtain expressions for_the vyeII states in termslof

The divergence of the tunneling contributions is not athe symmetry-adapted states, either in the strong-coupling
serious problem because the concept of reduction factors [§nit or at all couplings, it is found that the results naturally
not valid in the strong-coupling limit; the strongly-coupled divide into two triplets forDsq wells and two triplets and a
T1,®hg JT system cannot be described in terms of an effecduadruplet foD g4 wells. For example, for th®sg wells in
tive orbital triplet. For vibronic systems with tunneling lev- Strong coupling, one triplet is
els, the correct approach in strong coupling is to work in an _ _
enlarged quasidepg%nerate basis ignclud% agI]I tunneling IeveléfﬂA)z’\l(|o-r(15udy)>+9ZS 1|0T(1?1dz)>_¢’ 1|0T(25udy)>+|0T(25udz)>)'
First-order RF’s can then be calculated that are relevant fo
this basis. This results in new combinations of the symmetry-[‘pC> - N(|0T(1?sz)>+ ¢_l|OT(1?§<)> B ¢_1|0T(2?sz)>+ |0T(2?ﬂ<)>)'
adapted states that are correct states of the system to fi

rst
N . X _ (5d) -1 (5d)\ _ -1 (5d) (5d)
order in perturbation theory. In this case, second-order RF’f‘/’E)_ N(|OTTX) + ¢ |0T1uy> ¢ 0o+ |OT2uy>)'
could also be calculated that do not diverge in strong cou- (33
pling. corresponding to well statés C, andE respectively, and the

Although the concept of RF's is not valid in strong cou- other triplet is
pling, it is still useful to estimate the sizes of the RF contri-
butions in intermediate coupling to determine whether theyl ) =N(¢~*0TSD) — [0THY) +[0TSED) + ¢ HOTED)),
are significant, or whether they can be neglected as has been
done for other systeniS. Suitable states for the strong- |¢p)=N(p OTEDY—[0TED)Y+|0TEDY+ ¢~ 2|0TEDY),
coupling limit are those states that simultaneously diagonal-
ize each of theC,,, matrices in Eq(3). These are found to  [y)=N(¢ HOTED) —[0TED) +[0TED) + 6~ HOTER)),
be simply the zero-phonon states localized in the wells. (34)

However, although the numerator in the general expression . B
(23) for the second-order RF’s calculated using these zerot®'responding to wellsB, D, and F, where N=[2(1
+ ¢~ °)]” 7% We choose one of the triplets to correspond to

phonon well states correctly tends to zero in strong coupling,

these states can not be used in place of the symmetry-adaptilf [0T1u) states and the other with tHT,,) states(and
states because they all have the same energy and so the Ja€ duadruplet with theG,) states forD54 wells). We start

nominator is exactly zero at all couplings. y associating each symmetrized stgte with the §trong-
We know that the usual symmetry-adapted stigdsy) coupling stat_e _from the nominated multlplet that contains the
in Egs. (5) and (6) are good states for weak coupling, and Ia'rgest cig)gfﬁment of that symmetrized states, suchias
that the statel)(™:0) localized in the wells are good states With [0T i) o
in strong coupling. We have therefore constructed combina- 't i found that the RF contributions calculated as de-
tions of the the states that we know tend to the correcBCribed above do converge in strong coupling. Figure 5
strong- and weak-coupling limits, namely, states of the forrShoWs the tunneling contributidtebeled(a)], together with
the totalegd)(Hg) RF, neglecting tunneling. Also shown are
the contributions to the RF from the well states with one-,
alor'y)+b| pm’ ;0), (32 two- and three- phonon excitations. It is found that for all of
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the RF’s, the calculated tunneling contribution ugkie=2 is  to model spectroscopic date has already been obtained. How-
similar in size to the contribution of the two-phonon well ever, as the formulation is somewhat mathematical, it is use-
states, but that in stronger coupling the calculated tunnelinful to illustrate how the results can be used by means of a
contribution is of the same order of magnitude as the overalsimple example. For this purpose, we will consider the effect
contribution neglecting tunneling. However, this result de-of spin-orbit coupling on the ground state of the vibronic
pends upon the method of calculation rather than a tru@,,®hg JT system.

physical result. The procedure adopted has shown that the Spin-orbit coupling transforms with symmetly=T,.
divergence can be removed by redefining the basis stateBrom Table 2 of Fowler and Ceulemaffst can be seen that
however, it does not give any information on thete of Cle:Ly/iﬁ\/E (y=x,y,2), where theL,, are the usual an-

convergence in strong coupling. Indeed, such information i%ﬂar momentum operators fdr=1 (i.e., L,=yP,~zP,
also not relevant because, as mentioned above, the whole c). TheWle are spin operators having the same transfor-

formalism is not appropriate in strong coupling. . : :
To illustrate the above point further, an alternative set Oimatlon properties as tr@Tﬂ' If the overall constant is cho-

basis states is defined in which the strong-coupling parts aréen So that the real Hamiltoniai) takes the usual form
not simply single well states but a linear combination of thehL-S; it follows that the first-order effective Hamiltonian is
well states from the nominated multiplet. The coefficients are
chosen so that the coefficients of the symmetrized states con-

structively add, such agc) +[¢e)) or (|¢0) —|i)) with Choosing the same overall constant and using (£8), it

!OT(lux)>' The result is given as lingh) in Fig. 5. This time,  ¢o)10ws that the second-order effective Hamiltonian is
it can be seen that the RF is much smaller for all coupling

strengths and has decayed to zero almost completely, by
=~2.5. With this choice, the tunneling contributions only 7"ff(32f)f:7\2(K(Az)l—sf)sff)+ K'(I'Zl)E L@ sP),
serve to marginally increase the value of the maximum mag- 7
nitude and have no effect in strong coupling.

We have also investigated aItergnativg sit%ations with dif- +KPX LE) (2§>- (36)
ferent associations between the strong- and weak-coupling 7
states, and with different values afandb. In all cases, a where
guide to whether the choice of states is good or bad is to
evaluate the tunneling splittings and compare them with the 1
tunneling splitti - - L@ = (LI, +LTL, +LIL,),

g splittings using the symmetry-adapted states alone. A 3 xThyby T bzbz
If a tunneling splitting is negative for some coupling
strengths, that case is rejected as a poor choice. It is found 1
that for some choices of states the results converge, and in | () — — ( f| 1 )
. T.X z 1

others they diverge. Where convergence occurs, the results N Y
obtained with different choices of states all show the same
behavior as in Fig. 5. Although the actual numerical values -1 ®
are different in different cases, they still have the same or- Lﬁg:—LILX— —L;Ly+ ELILZ,
ders of magnitude as each other. The results are not sensitive \/E \/E
to which triplet is associated witii;,, and which withT,,.

The net conclusion of the calculations involving the tun- L(2)_¢_2|_‘r 3 ¢—_2LTL 3 —\/:LTL
neling contribution is that, as expected, the contributions do He_z\/g X=X 23’ y 2o \V3-z-z
converge to zero in infinite coupling when correct strong-
coupling states are taken. However, it is not possible to ob- 1
tain precise numerical values for the tunneling contributions. L&) =" (LIL,+ LZLy), (37)
It has been shown likely that the tunneling contributions to V2

the RF’'s can be neglected in weak and moderate couplings, . .
in line with the findings in other systeri&.in strong- and where the{2) andL{?) can be obtained by cyclic per-

. _ 2 .
coupling, the concept of RF’s in the basis of an electronidhutation fr?g“-(rx) (I'=Ty orH). Thes(”) can be obtained
triplet is not appropriate and an alternative approach to théom the L") by replacing the orbital operatork, by

modeling of the vibronic system must be found. equivalent spin operators.
From Fig. 1, it can be seen that when the coupling is such

that D5y wells are lowest, the first-order RK(Tll)uTlu(Tl)
D. Example of application: Spin-orbit coupling varies from 1 in the weak-coupling limit to O in the strong-
The first-order RF’s given by Eq$13) and(14), and the  coupling limit. Thus if the vibronic coupling is strong, the

second-order RF’s given by Eq28) to (31), as displayed in  effect of the coupling will be to significantly quench the
Figs. 1 to 4, give all the information necessary to express agffect of first-order spin-orbit coupling. This is very similar
effective Hamiltoniar{Egs.(9) and(22)] for any given per- to many of the cubic systems studied previougly stated in
turbation in terms of the coupling strengths and frequenciethe Introduction. However, Fig. 2 shows that D34 wells
only. The only other details required to write down the are lowest, the minimum value of the first-order RR/8/15.
Hamiltonian explicitly are the CG coefficients given by Thus first-order spin-orbit coupling can only ever be partially
Fowler and Ceulemarf€.Thus all the information necessary quenched, even in a very strongly coupled system. Note that

HE=AKE L (TyL-S. (35
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if fitting to experimental data indicates that the first-order RFexample, if the results of spectroscopic experiments an C

is less than/6/15, we can deduce that the system faDks  could be modeled in terms of effective Hamiltonians, the
minima. The value of the RF could then be used to estimat@yperimental values obtained for the coefficients could be
a value for the linear coupling strengih and sets limits on - equated to the first- and second-order RF expressions ob-
the possible values for the quadratic couplidgsandVs. I tained in this paper and hence an estimate of the strength of
the first-order RF is predicted to be larger tha/15, then  the vibronic coupling obtained. Currently, the evidence is
both theD3z4 andDsg situations must be considered as pos-ihat g proper interpretation of the available experimental data
sibilities. Any fitted values for the second-order RF{{’,  must involve vibronic coupling in order to explain the spec-
K'(le) andK () would further aid a determination of values tral structure and width&©® However, the strength of the

for the coupling constants. coupling is still a matter of some debate. Long progressions
indicating emission into high-energy vibrational levels deep
IV. CONCLUSIONS in potential wells suggest the coupling is intermediate or

strong® However, the uv spectrum of¢g in solution is

The main purpose of this paper has been to derive anajimilar to Gy, which could indicate that the coupling is
lytical expressions for the first- and second-order RF's forweak®” The situation is complicated because it is likely that
the T;,®hgy JT system. These factors have been calculatedome low-symmetry perturbations are present that can stabi-
using symmetry-adapted ground states and excited states Igze static distortions away frorh, symmetry®® RF’'s may
cated in theDsy and D34 minima. In addition, off-diagonal = also be of use in modeling these situations.
first-order RF's have also been derived, and corrections to The theory for RF’s developed here can be applied to
the first-order RF's due to anisotropy in the potential wellspther icosahedral systems, such@sg, Goh, andH®g.
obtained. The results obtained can be used to determine thejs has relevance to other states of,Cnd related
parameters appearing in effective Hamiltonians used t@yjlerenes, such as the cationC.
model icosahedral systems with vibronic coupling.

As stated earlier, the ground state of gyCmolecule is
an electronicT,, triplet coupled to eighth, vibrational
modes. Although only one mode is considered here, the mul-
tiple mode problem can be formulated in terms of a domi- The authors wish to thank the late Dr. M. C. M. O'Brien,
nant interacting mod® The remaining modes are coupled Dr. Y.-M. Liu, and Dr. C. P. Moate for many helpful discus-
relatively weakly, and their effect can be included as a persions. One of ugQ.C.Q) would like to thank the U.K. com-
turbation of required. Hence, it may be possible to apply thenittee of Vice-Chancellors and Principals and the University
results presented here directly to the reg) Cproblem. For  of Nottingham for financial support.
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