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Image potential and the exchange-correlation weighted density approximation functional
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It is known that the exchange-correlatiOdC) potentialvyc obtained by using the weighted density ap-
proximation(WDA) does not yield the correct image behaviofl/4z outside a metal surface. Some authors
have speculated that this limitation could be overcome by symmetrizing the XC hole, using a two-point scaling
factor in its modelization by the WDA. In this work, we show that this symmetrization procedure does not
improve the XC potentiabyc, and makes it unphysical. Alternatively, we present a WDA scheme based on an
anisotropic scaling for the XC hole, constructed to verify both the normalization of the XGahdlthe exact
value of the second momenta of the XC hole. In this last case, the poteggialas the correct image decay.

[. INTRODUCTION analyzing the exact exchange potential given by the opti-
mized potential methotf The same trends are also shown
Density-functional theoryDFT) (Ref. 1) has been widely by the dynamic XC potential of a realistic AlL1) surface'®
used in the study of structural and electronic properties ofNote that by using th&W approximation, it is also possible
solids, molecules, and atoms. However, most of the functo obtain the total energy of the electron system. However,
tional schemes fail to reproduce the correct asymptotic bethe overall accuracy of this many-body approach to calculate
havior of the exchange-correlatigXC) potentialvyc and,  ground-state properties is still uncleért®
in particular, its imagelike decay 5z far outside a metal The goal of this work is to provide clues in the develop-
surface ¢ is the coordinate normal to the surfacalthough ~ ment of an XC energy functional able to give not only the
the image potential has very little influence on such properenergy of an electron system but also the imagelike behavior
ties as density profiles, work functions, and surface energie®f vyc in a metal surface. With this aim in mind, the nonlo-
it is crucial to describe the existence of image states andal weighted density approximatiqkVDA) (Ref. 16 could
when determining the vacuum gap in scanning tunnelinde considered as a good approach to the problem that con-
microscopy’* cerns us, because the WDA improves almost systematically
As it is very well known, the local-density approximation the results obtained with the local and semilocal functionals
(LDA) gives an exponentially decaying outside a metal for a wide variety of problem&’ The starting point of the
surface’ On the other hand, the generalized-gradient apWDA is the exact expression for the XC energtomic
proximation, which is the current standard in DFT calcula-units are used throughout this paper
tions, does not provide the correct image behavior efher.
These results are not a surprise, since the potential decay of Nxe(r,r')
vxc is an outcome of the highly nonlocal nature of the XC EXC[n]zéf dr n(r)f dr’x—’, (1)
energy functionaExc[ n]. Therefore, it is very unlikely that Ir—=r'|
simple semilocal approaches will provide the correct image ) o
potential. On the other hand, the XC potential is given by theVherenxc(r.r’) is the XC hole centered at which is de-
functional derivativey xo(r) = SExc[n]/on(r) and, as a con- Ined as
sequence, the image behavior obtained by means of interpo-
lation procedures focused aryc, as the one developed by
Sereneet al® lacks functional consistency because the inter-
polatedv x¢ is not the first functional derivative of any func-
tional Exc[n]. g,(r,r') is the pair-correlation functiofPCPH of an electron
A similar limitation reads for thevyc potential arising system whose ground-state densityn{g), but with an in-
from the Sham-Scfiter equatiof within the framework of  teraction potentialy/r. In the WDA, the unknown XC hole
the GW approximatiorf Using this scheme, Eguiluz and co- (2) is approximated by replacing, at each paintthe inte-
workers obtained the XC potential for a jellium surface grated PCFG(r,r’) by the Gpo.{Nn,r) corresponding to a

showing the correct asymptotic behavidf.* The main de- homogeneous electron gas but evaluated at a differ@nt

1
nxc<r,r'>=n<r'>fodygy<r,r'>=n<r'>e<r,r'>. @

cay (~ — 32) is due to the Coulomb interaction, whereas the
exchange potential is found to decay fastez(?). The lat- WDA, . , ~ )
ter result was also obtained by Solomatin and Sahioy Nxc (1.1")=n(r")Ghom(N(r),[r=r"]). ()
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The weighted density (1) is determined by imposing the
exact sum rule for the XC hole, 0.0

f dr nyc(r,r’)=—1. (4) ]
However, sinces,,(N,r) is unknown, we need to approxi- é o —0.14
mate this function as well. This is done by using param- :; )
etrized forms, developed in such a way that the energy of the
homogeneous electron gas is recovered. In this work, we will ]
use the self-consistent proposal by Chaemd Tarazond
(whose shape is not very different from the more sophisti-
cated parametrization by Perdew and Wingvhich allows —0.24
us to scaleG,,y, as I I

R -10 0 10 20
Gron{ 1,1 =Cl¢(ke)1G[2¢ (Ke)r ], (5) 2 (au)

}"’her.e "F:C(3732”)1/3’ g(kF) :.kFékékF)h’ tg‘(ecd(;mer.‘SiO“'ess FIG. 1. The WDA(solid line), the SWDA(dotted ling, and the

unCtlor_'S anda are_ etermine _yt € ’ enSIIY ENETGY. | pA (dashed ling values for the XC potentiabxc(2), in atomic

and G is a parametrized one. Using this scaled integratedinits, for a semi-infinite jellium system with,=3.93a,. The elec-

PCF(5), for an inhomogeneous system we can write tron density profile used is the one resulting from a LDA calcula-
tion. The circles represent the classical image poteﬁtiizt.

GWPA(r,r")=C((r)G[24(r)|r—r'[1, (6)
~ ~ imagelike limit — 7z outside the metal, whereas the XC hole
where the short-hand notatiof(r) = {(ke(r)), with ke(r)  spreads laterally on the surface for high valueg.of
=[37%n(r)]*® has been used.
The WDA significantly improves the LDA behavior of Il. SYMMETRIZED WDA
vyc far outside a metal surface, and reproduces the potential ) ) _
decay=z 1. Unfortunately, when using any realistic short- ~AS we have previously commented, our first attempt is to

LA : . . modify the original WDA in order to overcome the lack of
ranged fimctlorG, the numerical coefficient of the decaying symmetry of the integrated POBWPA(r 1) given in Eq.

S . 1
tail |§ 5 m;tead of the exact valutleA4 . The Iattezrotzz?n be (6). The simplest way to do so is to modify E) consid-
obtained using a Iong—.ranged fun_ct@wm Eq. (6), but' __ering a symmetrized scaling factér,r'):
at the expense cr)11;e§]2ettlng unphysical results for the gf%smon
of the image plal and unreasonable surface energres. SWDA/, 1y . I A Ny
Several authors have considered that the incorrect value G (r.r)=CErrNG2&rrr=r'{l. @
— 3 is an intrinsic limitation of the WDA due to the use of a Because we can only use the sum r(#to fit the scaling,
nonsymmetric PCF for an inhomogeneous systéim the  £(r.r’) has to be a function of the weighted density evalu-
first part of this work, we present a modification of the WDA ated at the points andr’. Therefore, we can use a similar
which keeps the exact relatid(r,r')=G(r’,r). To do so, ansatz to that used in the symmetrizaeeraged density ap-
we use a two-point functio(r,r’), rather than the one- proximationfor the kinetic-energy functionaf
point functionZ(r) in Eq. (6). Using thissymmetrize DA
(sWDA), we have studied the asymptotic behavior of the XC Er,r)y=2"YP[(r)P+ (1) PYE, (8)
potential, finding that there is no improvement at all with . . -
respect to the original WDA. Actually, the symmetrization Where~,8 IS a fiee parameter and, as in the original WDA,
worsens the overall shape ofc. This surprising result is  £(r) =Kge(r)/X(kg(r)). By varying the value ofs, different
related to the fact that the relevant quantity in the WDA is(@rithmetic, geometric, efcmeans of the scalings(r) and
the XC hole, not the integrated PCF: the use of a more comé(r'’) can be covered.
plicated scaling in Eq(6) only introduces minor changes in ~ When compared with the original WDA, the evaluation of
nyc(r,r') (and, therefore, in the XC energput it has un-  n(r) [or equivalently ofkg(r)] is much more involved, be-
desirable consequences when calculating the functional deause the sum-rule conditidd) now yields a set of coupled
rivative of Exc[n]. integral equations that must be solved iteratively. On the
Bearing in mind that the WDA must mainly be viewed as other hand, when calculating(r), a matrix equation must
an approximation tayc(r,r’), in the second part of this be solved, instead of a simple evaluation of a double integral.
paper we present another modification of the WDA, whichNevertheless, for a jellium surface the sSWDA functional can
tries to directly improve the behavior of the XC hole. As in be handled with an affordable numerical effsee the Ap-
the sSWDA, we use an anisotropic scaling in the homogependix for details due to the translational invariance of the
neous PCF. However, instead of imposing the conditiorsystem along th&-y plane.
G(r,r')=G(r',r), we obtain the value of such scaling using In Fig. 1, we present the XC potential for a jellium sur-
not only the sum rulé4) but also a sum rule related to the face withr;=4a,, as obtained with the original WDA and
second momenta of the distributionyc(r,r’). Using this  with the SWDA(with 8=3). We are mainly interested in the
ansatz, we show that theg, so obtained exhibits the correct changes induced by the symmetrization, so we have calcu-
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lated the functional derivative dEyc using the same elec- 1. MOMENTUM WDA

tronic profile in both casegpecifically, in this paper we use
the LDA profiles obtained with the Lang and Kohn method
using the XC energy density parametrized by Chmaead

Tarazon&). As we commented on in the Introduction, the

asymptotic behavior ofvy-"(z) equals —z. However,

v3ePA(z) goes to an unphysical constant wher0. We

have tried several values @, as well as different short-

In the preceding section, we have seen that, in order to
improve the description of the XC potential in a metal sur-
face, we need to develop a better model for the XC hole. In
the WDA, the holenyc(r,r") around the point verifies the
sum rule(4), which fixes the value of the zeroth momentum
of nyc. However, additional information about the shape of

o A SWDA the hole around can be obtained from the values of its
ranged parametrizations f@, butvyc"(z) always shows 0.0 ad second momenta given by
that behavior. Therefore, we can conclude that a straightfor- '

ward symmetrization of the WDA integrated PCF is not Iyl
enough to obtain the correct imagelike potential and, more- Mij(r)= _f dr’ﬁnxc(r,H—r’)G(r,r+r’), 9
over, the results obtained with the functional are clearly r'|?

worse than those obtained with the original WDA one. herei i=123 t the Cartesi Asoriori. th
In order to understand this amazing outcome, we preserW erer,j=1,2,5 represent the tartesian axesprior, the

in Fig. 2 the integrated PCF&(r,r')=G(z,2',p'), being tensorM;; (r) is unknown for any electron system. Neverthe-
p' = \/&x—x’)2+(y—y’)2 obtaine’d using bloﬂ,1 furlwctionals less, due to the symmetry, for the homogeneous electron gas

and the LDA profile, for two values af the first one when we have
zis at the edge of the positive backgrourt=0), and the [1/3 it i=j
ij=

!

second wherz is located far outside the surface={12a,).
As can be seerG"WPA(z,z’,p’) always has spherical sym-

metry around the poirt, whereas for the SWDA functional on the other hand, if we consider a jellium surface, wiaen
(with 5= 3) the higher the value afis, the more anisotropic 5.0 the XC hole can be approximately described by the clas-

WDA H ; . . K .
G*"™Y(z,z',p’) becomes. Comparing these results with re-sical one(i.e., by the screening charge induced on the surface
cent Monte Carlo calculatiorfS,it seems at first glance that of the meta). That is,

the sSWDA improves the description of the integrated PCF.

= ) 10
0 otherwise. (19

However, we must remember that the key quantity in the 28(2' —zp)
WDA is the XC holenyc(r,r’) and, as we can also see in Nxc(z>0r")=— (o \2g 215 11
Fig. 2, the XC holes obtained with both models are rather ml(p")"+27]

similar. In fact, forz=0, neither the functiomyc"(z,2',p’)  wheres is the Dirac delta function ang, is the position of

nor nivé’DA(z,z’,p’) show any evident lateral spread over thethe image plane. It is easy to show that ELfl) also verifies
surface. As a conclusion, the anisotropy induced by the twothe equality(10). Therefore, since the relatiofl0) for a
point scaling factoré(z,z') is not enough to improve the metal surface is satisfied both in the bulk and in the vacuum,
shape of the XC hole, this shape being still monitored by theve assume that our approximated XC hole verifies @)

dependence ofr—r’|. across the surface, i.eM;;(z)=3 for any value ofz In
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mWDA
ch

0.0 T T T T ) _10 0 10
-10 0 10 z (au)

z (au) FIG. 4. The XC potential, in atomic units, given by the mWDA

FIG. 3. The dimensionless momenith,,(z) (dotted ling and model (solid line for.a semi-infinite jellium system with'§ .
M,,(z) (dashed linggiven by the WDA for a jellium surface with =3.93,. The dashed line shows the LDA results. The dotted line is

r.=4a,. The full line shows, as a reference, the electronic densityin® calculation by Eguiluz and co-workeef. 10 using theGW
profile used, in arbitrary units. approximation. The circles represent the classical image potential

-2z

order to better appreciate this approximation, we show in_ ] ] o

Fig. 3 the values foM,,(z)=M,,(z) andM,z) obtained Finally, the XC hole obtained whe21>0 is definitely ex- _
with the original WDA functional for the LDA profile. As tended over the surface, featuring an evident change with
expected, inside the metal both momenta take the vhjue "€SPect to the WDA and sWDA resultsote that each col-
close to the surface these functions deviate slightly from thi¢/mn in the figure has the same values for the contour)lines
value, and only well outside the surface are they very differ-  The shape ob xc(z) obtained with this new mWDA func-
ent from, because the WDA PCF is completely inaccuratetional is shown in Fig. 4, when the LDA profile is used. We
for z>0. So, our assumption will not force the original ave 10 point out that the functional derivative
WDA scheme too much within the region where it gives 9Exc ~ Ln]/on(r) has been obtained numerically, by ana-
good results; moreover, it will improve over the behavior oflyzing the change induced in the XC energy by a small per-
the WDA momenta whems>0. In short, our approach to the turbation in the density profile at each pomtOur calcula-
XC hole for a metal surface is determined by the sum ¢gle  tion yields numerical errors for very high values pf(z
and by the two additional conditiorMXX(z)=Myy(z)=% >15§0), but. it is enough to demonstrate that.th$ mWDA
andM,(z)=1%. functional gives the correct asymptotic behavier;z. In

To fulfill these new sum rules, we have to change thefact, for z<2a, there are minor differences between
WDA modeling of the integrated PCF. We propose the fol-vxe: (2) and vd’®A(z), but for z>2a, they have a very
lowing ansatzwhich we call mMWDA: different behavior.

A On the other hand, as shown in the same figuf:>*(z)
G™DA(r, "y =C(Z(r)G[2¢(r)|H(r)(r—r")|]], (120  fits very well the XC potential presented by Eguiletal.

whereH(r) is a deformationmatrix to be obtained by im- “i‘v’J%Athe Sham-Sciter equation. The differences between

posing the aforementioned sum rules for the second Moz XC (z) and U%V(Z) in the bulk regio.n appear because
menta. Note that if we sét(r)=1, we recover the original different XC density energies are used in each case.

WDA model, wherea8i(r) # 1 breaks the spherical symme-
try of the integrated PCF. Due to the symmetry of the jellium

surface, the matrix}{ is diagonal andH,(r)="H,,(r). In this work, we have studied the capability of the WDA
Therefore, scheme to reproduce the image-potential limivgf in the
GTWOA(p 1) vacuum region of a metal surface. We have presented two
’ modifications of the WDA model, trying to overcome the
— A 2 N2 2 N2 incorrect behavior of the XC functional.
=CU@IXCL2AVH W2 (p) + Hof2)(2=2)7], The first model, SWDA, uses a two-point function as the
and, for each point, we have three sum rules which allow us scaling factoré(r,r') and uses the sum-rule conditi¢f) to

to obtainn(z) [or £(2)], H2,(z), andH2(z). The integrated  evaluaten(r). The new functional has a symmetric inte-
PCF obtained for the LDA profile is plotted in Fig. 2. As for grated PCF, but gives an unphysical XC potential.

the GSWPA, the deformation oG™VPA has an overall agree-  The second model, mMWDA, breaks down {ne-r’| de-
ment with the Monte Carlo resuftsin the regions outside pendence ofG(r,r’) by imposing two conditions that the
the surface. On the other hand, the spurious spread inside tC hole has to verify: first, as in the original WDA and in
vacuum that appeared in the sSWDA has been eliminatedhe sWDA, the zeroth-order momenta of the XC hole, i.e.,

IV. CONCLUSIONS
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TABLE |. Surface energyin erg/cnf) obtained with the LDA APPENDIX: FUNCTIONAL DERIVATIVE OF THE
self-consistent density profile for a jellium surface using the LDA SYMMETRIZED WDA FUNCTIONAL

functional and the WDA models described in the text. . o
In general, the functional derivative dyc[n] can be

s LDA WDA SWDA mMWDA written as
B=05
Uxc(r)=V(r)+Vy(r)+Vs(r)
2 3361.1 3323.1 3533.1 3442.8
3 762.6 761.4 820.0 808.8 =fdr n(ry)G(ry.r f n(ry)G(r.ry)
4 260.0 262.6 286.3 286.1 L2l | L2 -]
5 109.9 1126 1243 126.3

n(ryn(ry) 6G(ry,ry)
+fd”°”2 2lri—1,  on(r)

the sum rulg(4); second, and this is a new cor;g\lltégn forany |, the sWDA model,G(r,,r)=G(r,r,). Therefore,V,(r)

proposed functional, at each pointthe holenys"" must =V,(r)=exc(r), exc(r) being the XC energy per particle

satisfy the values of the second momenta of the exact XGt the pointr. On the other hand, according to Ea), V4(r)
hole. This second condition introduces an anisotropic scalings equal to

of the XC hole on the density profile. In general, the exact
momenta are not known, but for a jellium system it is easy to 2 T
. ; . . Ge(ry,rp) OKe(rp)

obtain these values both in the bulk region and very outside V3(r):f drydr,———— > &n(ry,r)——)
the metal(with the same values in both limjtsAssuming as 2[ry=rg 4= on(r)
an ansatz that these momenta are constant across the surfaCﬁ, B ~ .
we can obtain the deformation matrix and, therefore, evalu/"€"® €n(r1,12) =9€(r1,72)/ dke(ry) can be obtained from
ate the XC functional. The XC potential, i.e., the functional E9- (8), and
derivative of the energy functional so constructed, shows the 9G(ry.10)
correct asymptotic behavior, with results close to the original Gelry,rp)= n(rl)n(rz)#. (A1)
WDA ones in the surface region. 9&(ry,rp)

A number of questions remain open. First of all, we have ) ., < .,
to generalize the mMWDA model for any system and it is not! © Obtain the matrig (r',r) = &ke(r’)/n(r), we make the
easy to anticipate the values of the momenta of the XC holé!nctional derivative of the relatiot#), arriving at
in a more general case. In this work, we have seen that good
r_esults are obtained when imposing simple momenta condi- —n(rl)G(rl,r)=f droB(ry,r)E(r,,r),
tions. It might also be the case for other systems and the
possibility of obtaining similar conditions for the momenta
in localized systems is presently under study.

Though the aim of this paper is the discussion of the XC _ _
potential at the jellium surface, we are now presenting some B(r1:12) =Gelr1:12) 65(1,12) + (11— 1)
preliminary results for the surface energies in Table I, as
obtained with the WDA functionals described in this work. XJ draGe(ry,rg)éa(ra,ra).
These energies are evaluated for the same LDA electronic
density profile. We can see that the results given by thdherefore,=(r,,r) can be found out after a matrix inver-
SWDA and by the mWDA are very similar, and are system-sion.
atically bigger than the LDA and WDA energiéshich are The previous set of equations greatly simplifies when con-
almost the same These results, however, do not confirm thesidering a jellium surface. In this case, the XC energy per
trend showed by those obtained using wave-function-basegurface unit and the sum ru(@) can be written as
methods as the Fermi hypernetted chdior the already
quoted Monte Carlé® especially for low densities=3a,.
In any case, the reliability of the surface energies given by
these methods is unclear, and which is &xactenergy of a
jellium surface is still an unsolved probleth.

So, we can conclude that the mWDA functional, with the _1:f dz,n(2;)0(21,2,), (A3)
proposed ansatz, is the first one that allows us to obtain on
the same footing the surface energy, the density profile, an@here
the image behavior of the XC potential of a metallic surface.

where the matrixB is given by

exc[n]:j dzdzn(zy)n(zy) w(zy,2,) (A2)

mC(&(21,27)) [+

dx G(x),
28(21,2,) 2¢(21,29)|21 - 25 0

0(21,25)=
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vxc(z)=2f dzln(zl)w(zl,z)+f dz,dz,w¢(21,2,)

2
xgl €0(21,2)E(20,2), (A4)

and the matrixZ is now the solution of

_n(Zl)U(ZLZ):f dz,b(z1,2,)E(22,2),  (A5)

with

P. GARCA-GONZALEZ et al.

PRB 62
b(21,22) =0421,25)€2(21,25) + 8(21— 2,)

X f d2,04(21,25)€1(21,2,).

The subindex in o; and w; has the same meaning as that
given in Eqg.(Al). Note that the integral character of Eq.
(A5) avoids a simple analysis of the asymptotic behavior of
vxc(2). In fact, the constant term contained ic(z>0)
arises from the nonlocal contributiorg(z).
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