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Image potential and the exchange-correlation weighted density approximation functional
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It is known that the exchange-correlation~XC! potentialvXC obtained by using the weighted density ap-
proximation~WDA! does not yield the correct image behavior21/4z outside a metal surface. Some authors
have speculated that this limitation could be overcome by symmetrizing the XC hole, using a two-point scaling
factor in its modelization by the WDA. In this work, we show that this symmetrization procedure does not
improve the XC potentialvXC , and makes it unphysical. Alternatively, we present a WDA scheme based on an
anisotropic scaling for the XC hole, constructed to verify both the normalization of the XC holeand the exact
value of the second momenta of the XC hole. In this last case, the potencialvXC has the correct image decay.
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I. INTRODUCTION

Density-functional theory~DFT! ~Ref. 1! has been widely
used in the study of structural and electronic properties
solids, molecules, and atoms. However, most of the fu
tional schemes fail to reproduce the correct asymptotic
havior of the exchange-correlation~XC! potentialvXC and,
in particular, its imagelike decay2 1

4 z far outside a meta
surface (z is the coordinate normal to the surface!. Although
the image potential has very little influence on such prop
ties as density profiles, work functions, and surface energ
it is crucial to describe the existence of image states
when determining the vacuum gap in scanning tunne
microscopy.2,3

As it is very well known, the local-density approximatio
~LDA ! gives an exponentially decayingvXC outside a metal
surface.4 On the other hand, the generalized-gradient
proximation, which is the current standard in DFT calcu
tions, does not provide the correct image behavior eith5

These results are not a surprise, since the potential deca
vXC is an outcome of the highly nonlocal nature of the X
energy functionalEXC@n#. Therefore, it is very unlikely tha
simple semilocal approaches will provide the correct ima
potential. On the other hand, the XC potential is given by
functional derivativevXC(r )5dEXC@n#/dn(r ) and, as a con-
sequence, the image behavior obtained by means of inte
lation procedures focused onvXC , as the one developed b
Serenaet al.6 lacks functional consistency because the int
polatedvXC is not the first functional derivative of any func
tional EXC@n#.

A similar limitation reads for thevXC potential arising
from the Sham-Schlu¨ter equation7 within the framework of
theGW approximation.8 Using this scheme, Eguiluz and co
workers obtained the XC potential for a jellium surfa
showing the correct asymptotic behavior.9,10,3 The main de-
cay (;2 1

4 z) is due to the Coulomb interaction, whereas t
exchange potential is found to decay faster (}z22). The lat-
ter result was also obtained by Solomatin and Sahni11 by
PRB 620163-1829/2000/62~23!/16063~6!/$15.00
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analyzing the exact exchange potential given by the o
mized potential method.12 The same trends are also show
by the dynamic XC potential of a realistic Al~111! surface.13

Note that by using theGW approximation, it is also possible
to obtain the total energy of the electron system. Howev
the overall accuracy of this many-body approach to calcu
ground-state properties is still unclear.14,15

The goal of this work is to provide clues in the develo
ment of an XC energy functional able to give not only t
energy of an electron system but also the imagelike beha
of vXC in a metal surface. With this aim in mind, the nonl
cal weighted density approximation~WDA! ~Ref. 16! could
be considered as a good approach to the problem that
cerns us, because the WDA improves almost systematic
the results obtained with the local and semilocal function
for a wide variety of problems.17 The starting point of the
WDA is the exact expression for the XC energy~atomic
units are used throughout this paper!,

EXC@n#5 1
2 E dr n~r !E dr 8

nXC~r ,r 8!

ur2r 8u
, ~1!

wherenXC(r ,r 8) is the XC hole centered atr , which is de-
fined as

nXC~r ,r 8!5n~r 8!E
0

1

dg gg~r ,r 8!5n~r 8!G~r ,r 8!. ~2!

gg(r ,r 8) is the pair-correlation function~PCF! of an electron
system whose ground-state density isn(r ), but with an in-
teraction potentialg/r . In the WDA, the unknown XC hole
~2! is approximated by replacing, at each pointr , the inte-
grated PCFG(r ,r 8) by the Ghom(n,r ) corresponding to a
homogeneous electron gas but evaluated at a differentñ(r ):

nXC
WDA~r ,r 8!5n~r 8!Ghom„ñ~r !,ur2r 8u…. ~3!
16 063 ©2000 The American Physical Society
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The weighted density n˜ (r ) is determined by imposing th
exact sum rule for the XC hole,

E dr nXC~r ,r 8!521. ~4!

However, sinceGhom(n,r ) is unknown, we need to approx
mate this function as well. This is done by using para
etrized forms, developed in such a way that the energy of
homogeneous electron gas is recovered. In this work, we
use the self-consistent proposal by Chaco´n and Tarazona18

~whose shape is not very different from the more sophi
cated parametrization by Perdew and Wang19!, which allows
us to scaleGhom as

Ghom~n,r !.C@z~kF!#Ĝ@2z~kF!r #, ~5!

wherekF5(3p2n)1/3, z(kF)5kF /l(kF), the dimensionless
functionsC andl are determined by the XC density energ
and Ĝ is a parametrized one. Using this scaled integra
PCF ~5!, for an inhomogeneous system we can write

GWDA~r ,r 8!5C„z~r !…Ĝ@2z~r !ur2r 8u#, ~6!

where the short-hand notationz(r )5z„k̃F(r )…, with k̃F(r )
5@3p2ñ(r )#1/3, has been used.

The WDA significantly improves the LDA behavior o
vXC far outside a metal surface, and reproduces the pote
decay}z21. Unfortunately, when using any realistic sho
ranged functionĜ, the numerical coefficient of the decayin
tail is 2 1

2 instead of the exact value2 1
4 . The latter can be

obtained using a long-ranged functionĜ in Eq. ~6!,20,21 but
at the expense of getting unphysical results for the posi
of the image plane6,22 and unreasonable surface energies.23

Several authors have considered that the incorrect va
2 1

2 is an intrinsic limitation of the WDA due to the use of
nonsymmetric PCF for an inhomogeneous system.17 In the
first part of this work, we present a modification of the WD
which keeps the exact relationG(r ,r 8)5G(r 8,r ). To do so,
we use a two-point functionj(r ,r 8), rather than the one
point functionz(r ) in Eq. ~6!. Using thissymmetrizedWDA
~sWDA!, we have studied the asymptotic behavior of the X
potential, finding that there is no improvement at all w
respect to the original WDA. Actually, the symmetrizatio
worsens the overall shape ofvXC . This surprising result is
related to the fact that the relevant quantity in the WDA
the XC hole, not the integrated PCF: the use of a more c
plicated scaling in Eq.~6! only introduces minor changes i
nXC(r ,r 8) ~and, therefore, in the XC energy! but it has un-
desirable consequences when calculating the functional
rivative of EXC@n#.

Bearing in mind that the WDA must mainly be viewed
an approximation tonXC(r ,r 8), in the second part of this
paper we present another modification of the WDA, wh
tries to directly improve the behavior of the XC hole. As
the sWDA, we use an anisotropic scaling in the homo
neous PCF. However, instead of imposing the condit
G(r ,r 8)5G(r 8,r ), we obtain the value of such scaling usin
not only the sum rule~4! but also a sum rule related to th
second momenta of the distributionnXC(r ,r 8). Using this
ansatz, we show that thevXC so obtained exhibits the correc
-
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imagelike limit2 1
4 z outside the metal, whereas the XC ho

spreads laterally on the surface for high values ofz.

II. SYMMETRIZED WDA

As we have previously commented, our first attempt is
modify the original WDA in order to overcome the lack o
symmetry of the integrated PCFGWDA(r ,r 8) given in Eq.
~6!. The simplest way to do so is to modify Eq.~6! consid-
ering a symmetrized scaling factorj(r ,r 8):

GsWDA~r ,r 8!.C„j~r ,r 8!…Ĝ@2j~r ,r 8!ur2r 8u#. ~7!

Because we can only use the sum rule~4! to fit the scaling,
j(r ,r 8) has to be a function of the weighted density eva
ated at the pointsr and r 8. Therefore, we can use a simila
ansatz to that used in the symmetrizedaveraged density ap
proximationfor the kinetic-energy functional:24

j~r ,r 8!5221/b@z~r !b1z~r 8!b#1/b, ~8!

whereb is a free parameter and, as in the original WD
z(r )5 k̃F(r )/l„k̃F(r )…. By varying the value ofb, different
~arithmetic, geometric, etc.! means of the scalingsz(r ) and
z(r 8) can be covered.

When compared with the original WDA, the evaluation
ñ(r ) @or equivalently ofk̃F(r )# is much more involved, be-
cause the sum-rule condition~4! now yields a set of coupled
integral equations that must be solved iteratively. On
other hand, when calculatingvXC(r ), a matrix equation mus
be solved, instead of a simple evaluation of a double integ
Nevertheless, for a jellium surface the sWDA functional c
be handled with an affordable numerical effort~see the Ap-
pendix for details! due to the translational invariance of th
system along thex-y plane.

In Fig. 1, we present the XC potential for a jellium su
face with r s54a0, as obtained with the original WDA and
with the sWDA~with b5 1

2 ). We are mainly interested in th
changes induced by the symmetrization, so we have ca

FIG. 1. The WDA~solid line!, the sWDA~dotted line!, and the
LDA ~dashed line! values for the XC potentialvXC(z), in atomic
units, for a semi-infinite jellium system withr s53.93a0. The elec-
tron density profile used is the one resulting from a LDA calcu
tion. The circles represent the classical image potential2

1
4 z.
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FIG. 2. Integrated pair correla
tion functionG(r,z,z8) ~the first,
z850, and the third column,z8
512a0) and the corresponding
XC hole nXC(r,z,z8) ~the second
and fourth column! for a semi-
infinite jellium system with r s

54a0. WDA: first row; sWDA:
second row; mWDA: third row.
Each column has the same valu
for the contour lines; in the darke
regions, the values of the func
tions are higher.
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lated the functional derivative ofEXC using the same elec
tronic profile in both cases~specifically, in this paper we us
the LDA profiles obtained with the Lang and Kohn metho4

using the XC energy density parametrized by Chaco´n and
Tarazona18!. As we commented on in the Introduction, th
asymptotic behavior ofvXC

WDA(z) equals 2 1
2 z. However,

vXC
sWDA(z) goes to an unphysical constant whenz@0. We

have tried several values ofb, as well as different short
ranged parametrizations forĜ, but vXC

sWDA(z) always shows
that behavior. Therefore, we can conclude that a straight
ward symmetrization of the WDA integrated PCF is n
enough to obtain the correct imagelike potential and, mo
over, the results obtained with the functional are clea
worse than those obtained with the original WDA one.

In order to understand this amazing outcome, we pres
in Fig. 2 the integrated PCFsG(r ,r 8)5G(z,z8,r8), being
r85A(x2x8)21(y2y8)2, obtained using both functionals
and the LDA profile, for two values ofz: the first one when
z is at the edge of the positive background (z50), and the
second whenz is located far outside the surface (z512a0).
As can be seen,GWDA(z,z8,r8) always has spherical sym
metry around the pointz, whereas for the sWDA functiona
~with b5 1

2 ) the higher the value ofz is, the more anisotropic
GsWDA(z,z8,r8) becomes. Comparing these results with
cent Monte Carlo calculations,25 it seems at first glance tha
the sWDA improves the description of the integrated PC
However, we must remember that the key quantity in
WDA is the XC holenXC(r ,r 8) and, as we can also see
Fig. 2, the XC holes obtained with both models are rat
similar. In fact, forz@0, neither the functionnXC

WDA(z,z8,r8)
nor nXC

sWDA(z,z8,r8) show any evident lateral spread over t
surface. As a conclusion, the anisotropy induced by the t
point scaling factorj(z,z8) is not enough to improve the
shape of the XC hole, this shape being still monitored by
dependence onur2r 8u.
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III. MOMENTUM WDA

In the preceding section, we have seen that, in orde
improve the description of the XC potential in a metal su
face, we need to develop a better model for the XC hole
the WDA, the holenXC(r ,r 8) around the pointr verifies the
sum rule~4!, which fixes the value of the zeroth momentu
of nXC . However, additional information about the shape
the hole aroundr can be obtained from the values of i
normalized second momenta, given by

Mi j ~r !52E dr 8
xi8xj8

ur 8u2
nXC~r ,r1r 8!G~r ,r1r 8!, ~9!

where i , j 51,2,3 represent the Cartesian axes.A priori, the
tensorMi j (r ) is unknown for any electron system. Neverth
less, due to the symmetry, for the homogeneous electron
we have

Mi j 5H 1/3 if i 5 j

0 otherwise.
~10!

On the other hand, if we consider a jellium surface, whez
@0 the XC hole can be approximately described by the c
sical one~i.e., by the screening charge induced on the surf
of the metal!. That is,

nXC~z@0,r 8!.2
zd~z82z0!

2p@~r8!21z2#3/2
, ~11!

whered is the Dirac delta function andz0 is the position of
the image plane. It is easy to show that Eq.~11! also verifies
the equality ~10!. Therefore, since the relation~10! for a
metal surface is satisfied both in the bulk and in the vacuu
we assume that our approximated XC hole verifies Eq.~10!
across the surface, i.e.,M j j (z)5 1

3 for any value ofz. In
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order to better appreciate this approximation, we show
Fig. 3 the values forMxx(z)5M yy(z) and Mzz(z) obtained
with the original WDA functional for the LDA profile. As
expected, inside the metal both momenta take the valu1

3 ,
close to the surface these functions deviate slightly from
value, and only well outside the surface are they very diff
ent from 1

3 , because the WDA PCF is completely inaccura
for z@0. So, our assumption will not force the origin
WDA scheme too much within the region where it giv
good results; moreover, it will improve over the behavior
the WDA momenta whenz@0. In short, our approach to th
XC hole for a metal surface is determined by the sum rule~4!
and by the two additional conditionsMxx(z)5M yy(z)5 1

3

andMzz(z)5 1
3 .

To fulfill these new sum rules, we have to change
WDA modeling of the integrated PCF. We propose the f
lowing ansatz~which we call mWDA!:

GmWDA~r ,r 8!5C„z~r !…Ĝ@2z~r !iH~r !~r2r 8!i #, ~12!

whereH(r ) is a deformationmatrix to be obtained by im-
posing the aforementioned sum rules for the second
menta. Note that if we setH(r )51, we recover the origina
WDA model, whereasH(r )Þ1 breaks the spherical symme
try of the integrated PCF. Due to the symmetry of the jelliu
surface, the matrixH is diagonal andHxx(r )5Hyy(r ).
Therefore,

GmWDA~r ,r 8!

5C„z~z!…3Ĝ@2z~z!AH xx
2 ~z!~r8!21H zz

2 ~z!~z2z8!2#,

and, for each pointz, we have three sum rules which allow u
to obtainñ(z) @or z(z)#, H xx

2 (z), andH zz
2 (z). The integrated

PCF obtained for the LDA profile is plotted in Fig. 2. As fo
the GsWDA, the deformation ofGmWDA has an overall agree
ment with the Monte Carlo results25 in the regions outside
the surface. On the other hand, the spurious spread insid
vacuum that appeared in the sWDA has been elimina

FIG. 3. The dimensionless momentaMxx(z) ~dotted line! and
Mzz(z) ~dashed line! given by the WDA for a jellium surface with
r s54a0. The full line shows, as a reference, the electronic den
profile used, in arbitrary units.
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Finally, the XC hole obtained whenz@0 is definitely ex-
tended over the surface, featuring an evident change w
respect to the WDA and sWDA results~note that each col-
umn in the figure has the same values for the contour lin!.

The shape ofvXC(z) obtained with this new mWDA func-
tional is shown in Fig. 4, when the LDA profile is used. W
have to point out that the functional derivativ
dEXC

mWDA@n#/dn(r ) has been obtained numerically, by an
lyzing the change induced in the XC energy by a small p
turbation in the density profile at each pointr . Our calcula-
tion yields numerical errors for very high values ofz (z
.15a0), but it is enough to demonstrate that the mWD
functional gives the correct asymptotic behavior,2 1

4 z. In
fact, for z,2a0 there are minor differences betwee
vXC

WDA(z) and vXC
mWDA(z), but for z.2a0 they have a very

different behavior.
On the other hand, as shown in the same figure,vXC

mWDA(z)
fits very well the XC potential presented by Eguiluzet al.
using the Sham-Schlu¨ter equation.3 The differences between
vXC

mWDA(z) and vXC
GW(z) in the bulk region appear becaus

different XC density energies are used in each case.

IV. CONCLUSIONS

In this work, we have studied the capability of the WD
scheme to reproduce the image-potential limit ofvXC in the
vacuum region of a metal surface. We have presented
modifications of the WDA model, trying to overcome th
incorrect behavior of the XC functional.

The first model, sWDA, uses a two-point function as t
scaling factorj(r ,r 8) and uses the sum-rule condition~4! to
evaluateñ(r ). The new functional has a symmetric inte
grated PCF, but gives an unphysical XC potential.

The second model, mWDA, breaks down theur2r 8u de-
pendence ofG(r ,r 8) by imposing two conditions that the
XC hole has to verify: first, as in the original WDA and i
the sWDA, the zeroth-order momenta of the XC hole, i.

y

FIG. 4. The XC potential, in atomic units, given by the mWD
model ~solid line! for a semi-infinite jellium system withr s

53.93a0. The dashed line shows the LDA results. The dotted line
the calculation by Eguiluz and co-workers~Ref. 10! using theGW
approximation. The circles represent the classical image poten
2

1
4 z.
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the sum rule~4!; second, and this is a new condition for an
proposed functional, at each pointr the holenXC

mWDA must
satisfy the values of the second momenta of the exact
hole. This second condition introduces an anisotropic sca
of the XC hole on the density profile. In general, the ex
momenta are not known, but for a jellium system it is easy
obtain these values both in the bulk region and very outs
the metal~with the same values in both limits!. Assuming as
an ansatz that these momenta are constant across the su
we can obtain the deformation matrix and, therefore, eva
ate the XC functional. The XC potential, i.e., the function
derivative of the energy functional so constructed, shows
correct asymptotic behavior, with results close to the origi
WDA ones in the surface region.

A number of questions remain open. First of all, we ha
to generalize the mWDA model for any system and it is n
easy to anticipate the values of the momenta of the XC h
in a more general case. In this work, we have seen that g
results are obtained when imposing simple momenta co
tions. It might also be the case for other systems and
possibility of obtaining similar conditions for the momen
in localized systems is presently under study.

Though the aim of this paper is the discussion of the
potential at the jellium surface, we are now presenting so
preliminary results for the surface energies in Table I,
obtained with the WDA functionals described in this wor
These energies are evaluated for the same LDA electr
density profile. We can see that the results given by
sWDA and by the mWDA are very similar, and are syste
atically bigger than the LDA and WDA energies~which are
almost the same!. These results, however, do not confirm t
trend showed by those obtained using wave-function-ba
methods as the Fermi hypernetted chain26 or the already
quoted Monte Carlo,25 especially for low densities,r s>3a0.
In any case, the reliability of the surface energies given
these methods is unclear, and which is theexactenergy of a
jellium surface is still an unsolved problem.27

So, we can conclude that the mWDA functional, with t
proposed ansatz, is the first one that allows us to obtain
the same footing the surface energy, the density profile,
the image behavior of the XC potential of a metallic surfa
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TABLE I. Surface energy~in erg/cm2) obtained with the LDA
self-consistent density profile for a jellium surface using the LD
functional and the WDA models described in the text.

r s LDA WDA sWDA mWDA
b50.5

2 3361.1 3323.1 3533.1 3442.8
3 762.6 761.4 820.0 808.8
4 260.0 262.6 286.3 286.1
5 109.9 112.6 124.3 126.3
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APPENDIX: FUNCTIONAL DERIVATIVE OF THE
SYMMETRIZED WDA FUNCTIONAL

In general, the functional derivative ofEXC@n# can be
written as

vXC~r !5V1~r !1V2~r !1V3~r !

5E dr1

n~r1!G~r1 ,r !

2ur12r u
1E dr1

n~r1!G~r ,r1!

2ur12r u

1E dr1dr2

n~r1!n~r2!

2ur12r2u
dG~r1 ,r2!

dn~r !
.

In the sWDA model,G(r1 ,r )5G(r ,r1). Therefore,V1(r )
5V2(r )5«XC(r ), «XC(r ) being the XC energy per particl
at the pointr . On the other hand, according to Eq.~7!, V3(r )
is equal to

V3~r !5E dr1dr2

Gj~r1 ,r2!

2ur12r2u (
n51

2

jn~r1 ,r2!
d k̃F~rn!

dn~r !
,

wherejn(r1 ,r2)5]j(r1 ,r2)/] k̃F(rn) can be obtained from
Eq. ~8!, and

Gj~r1 ,r2!5n~r1!n~r2!
]G~r1 ,r2!

]j~r1 ,r2!
. ~A1!

To obtain the matrixJ(r 8,r )5d k̃F(r 8)/dn(r ), we make the
functional derivative of the relation~4!, arriving at

2n~r1!G~r1 ,r !5E dr2B~r1 ,r2!J~r2 ,r !,

where the matrixB is given by

B~r1 ,r2!5Gj~r1 ,r2!j2~r1 ,r2!1d~r12r2!

3E dr3Gj~r1 ,r3!j1~r1 ,r3!.

Therefore,J(r2 ,r ) can be found out after a matrix inver
sion.

The previous set of equations greatly simplifies when c
sidering a jellium surface. In this case, the XC energy
surface unit and the sum rule~7! can be written as

eXC@n#5E dz1dz2n~z1!n~z2!v~z1 ,z2! ~A2!

215E dz2n~z2!s~z1 ,z2!, ~A3!

where

v~z1 ,z2!5
pC„j~z1 ,z2!…

2j~z1 ,z2!
E

2j(z1 ,z2)uz12z2u

1`

dx Ĝ~x!,

s~z1 ,z2!5
pC„j~z1 ,z2!…

2j~z1 ,z2!2 E
2j(z1 ,z2)uz12z2u

1`

dx xĜ~x!.

As a consequence,
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vXC~z!52E dz1n~z1!v~z1 ,z!1E dz1dz2vj~z1 ,z2!

3 (
n51

2

jn~z1 ,z2!J~zn ,z!, ~A4!

and the matrixJ is now the solution of

2n~z1!s~z1 ,z!5E dz2b~z1 ,z2!J~z2 ,z!, ~A5!

with
z,

de

e,

ys
b~z1 ,z2!5sj~z1 ,z2!j2~z1 ,z2!1d~z12z2!

3E dz2sj~z1 ,z2!j1~z1 ,z2!.

The subindexj in sj andvj has the same meaning as th
given in Eq. ~A1!. Note that the integral character of E
~A5! avoids a simple analysis of the asymptotic behavior
vXC(z). In fact, the constant term contained invXC(z@0)
arises from the nonlocal contributionV3(z).
d
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