
PHYSICAL REVIEW B 15 DECEMBER 2000-IVOLUME 62, NUMBER 23
Local electronic properties of carbon nanotube heterojunctions
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Instituto de Fı´sica, Universidade Federal Fluminense, 24210-340, Nitero´i-RJ, Brazil
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Local electronic properties of metallic-semiconducting carbon nanotube heterostructures are investigated by
studying the behavior of the one-electron local density of states~LDOS! along the tubes. We determine how
these properties change from the metallic to the semiconducting side of a nanotube junction. We show that
Friedel oscillations may not always be evident on the metallic side, and we found clear exponential decay of
the LDOS on the semiconducting side. The exponential rates of decay as well as the absence of the oscillations
are explained in terms of a simple picture that relates the LDOS to the bulk electronic structure of the
constituent parts of the heterostructures.
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I. INTRODUCTION

A large effort in understanding the physical properties
carbon nanotubes1,2 ~CN’s! is now in focus. These tubes ar
typically longer than 1mm, with diameters ranging from 1
to 30 nm,2 and are classified as quasi-one-dimensional s
tems. CN’s are presented in a wide variety of geomet
showing interesting transport and electronic properties.
most remarkable of those properties is the possibility of h
ing either metallic or semiconducting behavior, depend
merely on geometrical aspects of the CN structure. In f
experimental results have confirmed such dependence o
electronic structure on the geometry of the tubes.3,4

The possibility of joining two or more distinct nanotube
enables one to produce tubular heterostructures, offering
perspectives for nanoelectronic technology. Very recen
controlled catalytic growth of junctions between carb
nanotubes and silicon nanowires has been reported.5 A new
type of quantum dot based solely on carbon atoms has b
proposed,6 motivated by experimental observations of ener
quantization in single-walled nanotubes with metal
contacts.7 In particular, a metal-semiconductor junction c
be made by joining two nanotubes characterized by dist
chiral vectors. One example is the junction of (n,0) and (n
21,0) zigzag nanotubes,n being an integer multiple of thre
that defines the chiral vectors.8 This type of junction can be
made by introducing a single pentagon-heptagon~PH! pair
defect along the axial direction of the structure. Structu
and electronic properties of zigzag nanotubes, containing
pair defects, have been investigated by Charlieret al.,9 per-
forming tight-binding molecular-dynamics relaxation calc
lations. They found that junctions whose defects are alig
along the axial direction of the tubes are more stable t
those with defects along the circumferential directio
Changes in the chirality of a single-walled nanotube m
also occur when PH defects are aligned neither to the a
nor to the circumferential directions, but in this case,
abrupt bend between two straight sections of the tube
expected.10 Alternatively to pure carbon systems, heter
structures based on synthesizedBxCyNz nanotubes have als
been studied because it is relatively easy to control th
electronic properties.11
PRB 620163-1829/2000/62~23!/16040~6!/$15.00
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Motivated by the advances in the growth of CN junction
and bearing in mind their potential applicability as low
dimensional devices, we have studied local electronic pr
erties of metallic-semiconducting CN heterostructures.
are particularly interested in investigating how these prop
ties change from the metallic to the semiconducting side o
nanotube junction by studying the behavior of the on
electron local density of states~LDOS! along the tubes. Fa
from the junction, the LDOS at the Fermi energy (EF) must
be finite on the metallic side of the tube and vanish on
other. We address the question of how such limits
reached as one moves away from the junction. Friedel-
oscillation and exponential decay of the LDOS atEF are
expected on the metallic and semiconducting sides, res
tively. Both oscillatory and exponential features can be
lated to the bulk electronic structure of pure CN’s. Fried
oscillations play an important role in long-range interactio
in metals and are caused by a drastic change in the densi
states at the Fermi energy12 at low temperatures. They refe
to oscillations of the charge density, but similar oscillatio
~hereafter referred to as Friedel-like oscillations! occur in the
LDOS at EF . It is well known that the periods of thos
oscillations are associated with bulk Fermi-surface wa
vectors. Despite the somewhat exotic Fermi surface of m
tallic CNs, we show that such relation still holds giving ris
to Friedel-like oscillations, although they may not always
evident. This is an important point since there is current
terest in observing such oscillatory behavior. Although th
have been found in short tubes,13 the oscillations remain to
be observed in long metallic structures. Moreover, we c
also determine the rate of decay of the LDOS as we appro
the bulk of the semiconducting tube in terms of its electro
structure. In fact, based on the same picture used for de
mining the periods of Friedel-like oscillations, we relate t
exponentially decaying LDOS to evanescent states ass
ated with the so-called complex Fermi surface14,15 of the
semiconducting tube.

II. DESCRIPTION OF THE MODEL

The electronic structure of the nanotube may be obtai
from that of two-dimensional graphite.2 A single band tight-
binding description in terms ofp orbitals yields a very good
16 040 ©2000 The American Physical Society
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approximation for the band structure around the Fermi
ergy. Graphene is semimetallic and its Fermi surface cons
of six points at the corners of the two-dimensional Brillou
zone. Since CN’s are rolled-up graphene sheets, peri
boundary conditions quantize the components of the e
tronic wave vectors along the circumferential direction. T
axial components, on the other hand, remain continuous
an infinitely long nanotube,16 and the corresponding elec
tronic states form quasi-one-dimensional energy bands
should be stressed that such a description of the electr
structure in reciprocal space is useful for studying the pr
erties of infinite pure tubes.8 What determines if a CN is
metallic or not is whether the quantized components of
electronic wave vectors along the circumferential direct
intersect or not the graphene Fermi surface.2 For example,
(n,0) zigzag CN’s are metallic only whenn is a multiple of
three, because only in this case do the quantizedk vectors
cross the vertices of the hexagonal Brillouin zone of
graphene sheet.

When dealing with finite portions of a CN, or with he
erogeneous structures joined by two or more parts, it is c
venient to describe the electronic structure in real space
this case, the single-band tight-binding Hamiltonian of t
nanotube can be written in terms of unit cells made o
sequence of spiral bonds between the carbon atoms. In
particular case of achiral CN’s, namely armchair and zigz
structures, it is convenient to consider unit cells along
axial direction comprised of two rings associated with t
two carbon atoms in the unit cell of the graphene structu
The number of carbon atoms in those rings depends on
CN diameter. We can treat the Hamiltonian of the syst
entirely in real space considering a chain of double-ring u
cells. Here we use a real-space renormalization techniqu
calculate the LDOS at each atom along the heterostruct
We first calculate the surface Green functions for a se
infinite CN through the solution of matrix Dyson equatio
obtained by successive decimations17 of unit cells until a
fixed point is attained. Having evaluated separately the
face Green functions for a metallic and a semiconduct
CN, they are connected by a junction that consists of an a
PH defect and the necessary number of rings for match
the two semi-infinite parts. It is worth noticing that the di
tance between the pentagon and heptagon determines th
ameter reduction across the junction. The connection of
two sides is theoretically performed using the Dyson eq
tion to include the appropriate sequence of rings of the p
ticular junction joining the two semi-infinite parts. Followin
this procedure, we can determine the Green functi
Gl ,m(v) representing the propagator for electrons with e
ergy v between ringsl andm. We point out that the Green
function Gj , j (EF) is a matrix whose size depends on t
number of carbon atoms of the ring. The average LDOS
the Fermi level associated with ringj along the joined struc-
ture is then obtained byr j (EF)52Im tr Gj , j (EF)/(pNj ),
where tr stands for the trace over theNj carbon atoms of
ring j.

III. NUMERICAL RESULTS

We calculate the LDOS atEF50 as a function of the ring
index for three different heterostructures, all with a sing
-
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junction connecting metallic to semiconducting zigzag CN
In Figs. 1~a! and 1~b! we show results for metallic~9,0! CN’s
connected to semiconducting~8,0! and ~10,0! tubes, respec-
tively. Since the diameter reduction of such structures is
same, both junctions have a common width. Also, in F
1~c! we present results for the LDOS of a~12,0!/~8,0! het-
erostructure, which has a wider junction. In all cases
junction region is marked by vertical dashed lines that se
rate the metallic (j ,0) from the semiconducting (j .W)
tubes, whereW represents the width of the junction. Sinc
the unit cell along the axial direction contains two rings, w
have plotted two curves, for integer and half-integer ri
indices, depicted by filled and open circles, respectively
could be argued that the two curves should coincide as
moves away from the junction. In fact, on the semicondu
ing side they both vanish exponentially. However, on t
metallic side the curves tend to distinct limits, which a
different from its bulk value. This is a consequence of bre
ing the axial inversion symmetry of the CN lattice. For pu
semi-infinite CN’s, for instance, such symmetry breaki
leads to two inequivalent rings even when they are infinit
far from the surface. The bulk LDOS is the average betwe
those of the two inequivalent rings. Since the upper a
lower curves in each figure have basically the same behav
either of them can be chosen to describe how the limit
values of the LDOS are approached. On the metallic s
contrary to expectations, we find no oscillations in the LDO
in all three cases shown in Fig. 1. The oscillations in t
LDOS associated with adjacent rings~labeled by integer and
half-integer indices, respectively! do not correspond to
Friedel-like oscillations. They just reflect the existence

FIG. 1. Local density of states along metal-semiconductor h
erojunctions of type~a! ~9,0!-~8,0!, ~b! ~9,0!-~10,0!, and~c! ~12,0!-
~8,0! as a function of the ring indices and at the Fermi energyEF

50. Filled and open circles are associated with rings labeled
integer and half-integer indices, respectively. The crosses indi
the bulk LDOS of the corresponding metallic CN and dotted cur
are guides for the eye showing the unit-cell-averaged LDO
Dashed lines correspond to the junction limits. The same results
the semiconductor tubes are presented in the inset of the figure
in a logarithmic scale.
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two inequivalent rings in the unit cell along the axial dire
tion of a semi-infinite zigzag CN. We will show that th
Friedel oscillations in the metallic CN have a period equa
the unit-cell size~containing two rings!, thus being commen
surate with the lattice. The LDOS at the Fermi energy on
semiconducting side of the junction is finite near the int
face, decaying exponentially as one moves deep into
semiconductor. This is clearly demonstrated for all cases
the straight lines of the insets showing the correspond
LDOS in logarithmic scale. It is noteworthy that the exp
nential rates of decay depend on the diameter of the se
conducting CN attached to the junction. The dotted line
Fig. 1 is a guide to the eyes representing the average LD
over a unit cell. In both sides and sufficiently far from th
junction it correctly approaches the corresponding limiti
values. Based on a simple model, we show how our res
can be explained and related to the electronic structure o
CN’s.

IV. ANALYTICAL METHOD AND DISCUSSION

We are interested in determining the dependence
r j (EF) on the ring indexj. We start by looking at this de
pendence forj on the metallic side. By introducing an imag
nary cleavage plane separating the metallic side from the
of the system, we can show thatGj , j is given by the follow-
ing matrix equation:

Gj , j5Sj , j1Sj ,21W S21,j , ~1!

whereSi , j represents the Green-function matrix connect
rings i and j of the semi-infinite metallic CN, and inde
21 labels its surface ring. Here,W involves the surface
Green functions of both cleaved parts, namely the meta
side and the rest of the heterojunction. It is worth notici
that W contains only surface terms and hopping matric
joining the cleaved parts. Therefore, the dependence ofGj , j
on j is entirely in theS matrices above. It is possible to sho
that Sj , j , Sj ,21, andS21,j can all be expressed in terms
the Green functionsI of the corresponding infinite metalli
CN. Thej dependence of thoseS matrices are then given b
the off-diagonal Green functionI21,j , representing the elec
tronic propagator between rings21 and j for the infinite
metallic CN. Since such infinite CN has axial translati
symmetry,Ij , j 8 depends only on the relative positionsu j
2 j 8u. The actual dependence ofGj , j on j is described by the
productI21,j3Ij ,21. Therefore, to study the position depe
dence of the LDOS in the heterostructure, one needs to
vestigate how the off-diagonal propagatorsIj , j 8 of infinite
pure CN’s vary with the ring indices, and, to some exte
this can be done analytically. Although the discussion ab
is for j on the metallic side, it also applies with mino
changes forj on the semiconducting side, the basic diffe
ence being thatI is the Green functions of the correspondi
infinite semiconducting CN.

In what follows we consider an infinite zigzag nanotub
As mentioned before, in that case it is convenient to desc
the electronic structure in reciprocal space. The off-diago
Green function representing electronic propagation betw
rings j and j 8 with energyv is given by18
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Ij , j 8~v!5
aA3

8p (
ky

E dkx

2v1eikx( j 82 j )aA3/2

~v1!22@E~kx ,ky!#2
, ~2!

wherea is the distance between two equivalent sites of
hexagonal lattice (a51.42A3 Å), v15v1 ih, h is a small
imaginary part added to the energy, andE is given by

E~kx ,ky!5t@114 cos~A3kxa/2!cos~kya/2!

14 cos2~kya/2!#1/2, ~3!

wheret is the electronic hopping.
Here ky assumes discrete values, namelyky

5 l /Ny(2p/a), l 51,2, . . . ,Ny , andNy is determined by the
CN diameter. Thekx component, on the other hand, is
continuous variable inside the two-dimensional Brillou
zone. Thus, we end up with a set of one-dimensional ba
along kx corresponding to discrete values ofky . As previ-
ously discussed, the nanotube is metallic if some of the
creteky lines in reciprocal space intersect the corners of
hexagonal Brillouin zone. This is illustrated in Figs. 2~a! and
2~b!, showing discreteky values represented by vertica
dashed lines for a metallic and a semiconducting CN, resp
tively.

The integral in Eq.~2! can be evaluated forj , j 8 by
extendingkx to the complex plane and changing the integ
tion contour from a straight line on the real axis to t
boundaries of a semi-infinite rectangle in the upp
half-plane18 whose base lies on the real axis betwe
22p/aA3 and 2p/aA3, as shown in Fig. 2~c!. For the
case j . j 8, the extension is to a similar rectangle in th
lower half-plane. In either case, the integrand vanishes
u Im kxu→`, and becausekx52(2p/aA3)1 iy and kx

5(2p/aA3)1 iy are equivalent wave vectors, the integra
along the vertical sides of the rectangle cancel each ot
reducing the problem to a sum of the residues associ
with the poles of the integrand inside the correspond

FIG. 2. Two-dimensional Brillouin zones of graphene showi
the quantizedky values~dashed lines! for ~a! metallic and~b! semi-
conducting CN’s. The real polekx

0 corresponding to half the dis
tance between the points of the Fermi surface is depicted in
metallic case.~c! The integration contour is considered for evalua
ing the integral in Eq.~2!, for j . j 8. For j , j 8, the contour is in the
lower half-plane.
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closed contour. The poles are in turn given by the values
kx for which (v1)22@E(kx ,ky)#250. Since we are inter-
ested in the LDOS atEF50, the energyv1 is given by
v1501 ih.

The poles are clearly dependent on the band struc
since they involve the dispersion relationE(kx ,ky) and are
given by

cosS kx
0aA3

2 D 5

2124 cos2S kya

2 D
4 cosS kya

2 D . ~4!

It is interesting to look at the physical significance of the
poles. Each value ofky yields a correspondingkx and since
they are obtained from the band structure atEF , they are just
the coordinates of the CN Fermi surface along the axial
rection@see Fig. 2~a!#. In other words, they indicate the wav
vectorskx

0 with which electrons at the Fermi level propaga
along the axial direction. Since the Fermi surface of the m
tallic CN is a collection of six isolated points, many discre
values ofky have no realkx components. This happens whe
u cos(kx

0aA3/2)u.1 and kx
0 assumes imaginary values. Th

residues associated with the poles are

Res@kx
0#5

2 iheikx
0( j 82 j )aA3/2

aA3 cosS kya

2 D sin~kx
0aA3/2!

. ~5!

The position dependence of the residue is entirely gi
by the difference (j 82 j ) which appears in the argument o
the exponential. Hence, for realkx

0 , the residue oscillates as
function of (j 82 j ), whereas it decays exponentially whenkx

0

is imaginary. For a metallic CN, the sequence of discreteky

is such that there is always a real polekx
0 that corresponds to

half the distance between the points of the Fermi surface
shown in Fig. 2~a!. All the others, for not intersecting th
Fermi surface, yield imaginary poles and contribute w
evanescent terms. After summing over allky it is clear that
the dominant contribution is the oscillatory term. The reas
why no oscillations were found in the metallic side of Fig.
becomes clear by recalling that the LDOS depends on
product I1,j3Ij ,1 . Since each Green function contribut
with the same oscillation period, the product depends o
wave vector twice as large as the real polekx

0 , i.e., of the
same size as the distance between the points of the F
surface. This distance corresponds to the length of the B
louin zone along thekx direction; therefore, any oscillation
with this wave vector cannot be observed for being perfe
commensurate with the lattice. In other words, Friedel-l
oscillations are present but are not seen in Fig. 1 beca
their oscillation period is exactly equal to the unit-cell si
containing two rings. The oscillation period in this case
commensurate with the CN lattice, and is not observable
probing the average LDOS at discrete successive rin
When the probe resolution is sufficiently sharp to ident
each ring separately, the LDOS oscillation from one ring
its nearest neighbor may be detected. However, this is n
Friedel-like oscillation, but a phase shift due to the existe
of two rings in the unit cell along the axial direction of th
of
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CN. This is a particular case of the so-called aliasing effe
where periods obtained from a discrete sampling of a c
tinuous oscillation differ from the original ones. Such a
effect has been addressed before in the study of oscilla
interlayer exchange coupling in magnetic multilayers.19

Based on the same picture, we can evaluate the
diagonal Green functionsIj , j 8 for an infinite semiconducting
CN. Each discrete value ofky yields imaginary poleskx

0 , so
that we end up with a sum over evanescent states, all e
nentially decaying as functions ofu j 82 j u. Clearly, the domi-
nant contribution is the one with the slowest rate of decay
other words, from all those evanescent states, the one
the smallest imaginary polekx

0 determines the rate of deca
of Ij , j 8 . The rate of decay is given by 2kx

0 because the
LDOS also depends on the product of two similarly decay
functions, as previously discussed. Whereas in the met
CN the contributoryky is the one whose quantization lin
intersects the points of the Fermi surface, in the semic
ducting case the dominant evanescent state will be the
closest to that line. In fact, there is perfect agreement
tween the slopes of the LDOS in logarithmic scale in t
insets of Fig. 1 and the values we have calculated. For
particular case of a~8,0! nanotube the exponentially deca
ing LDOS behaves ase2l j as a function ofj, where l
50.53 is found both analytically and numerically. Th
agreement is also perfect for the semiconducting~10,0! CN,
where the rate of decay is found to bel50.32. This indi-
cates unambiguously that the asymptotic rate of deca
completely determined by the bulk electronic structure of
particular semiconducting tube and depends neither on
details of the junction nor on its metallic counterpart.

In metallic systems, a few portions of their bulk Ferm
surfaces determines the periods of Friedel-like oscillatio
We have extended this picture to relate, not only the perio
but also the rate of decay of the LDOS of a heterojunction
the electronic structure of a semiconducting CN. Instead
being associated with extended electronic states of the F
surface, the dominant evanescent states giving the expo
tially decaying LDOS are related to the so-called comp
Fermi surface,14,15 consisting of imaginary wave vectors.

V. DOPED NANOTUBES „EFÅ0…

Whereas isolated nanotubes have their Fermi ener
predicted atEF50, a charge-transfer-induced shift inEF
may occur when the tube is deposited onto a substrate. M
over, the ability to vary the Fermi energy in a CN has be
previously discussed.7,20–22 To test the validity of our
method, we have slightly changed the Fermi energy of
~12,0!/~8,0! junction. As a result, the Fermi surface of meta
lic CN’s becomes small pockets centered at the six corner
the two-dimensional Brillouin zone. In this case, we
longer have periods perfectly commensurate with the latt
and the oscillations are clearly seen. We consider two
tinct values for the Fermi energy, namelyEF50.05 andEF
50.1, in units of the hopping integral. Figure 3 shows t
LDOS for those different values ofEF as a function of the
ring index. Figures 3~a! and 3~b! correspond to the metallic
parts whereas 3~c! and 3~d! show the LDOS in logarithmic
scale along the semiconducting sides. Both values ofEF
show clear oscillations on the metallic side whose perio
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coincide exactly with the calculated values. For slig
changes aroundEF50, the oscillation periods decrease wi
uEFu, reflecting the enlargement of the Fermi-surface pock
around the corners of the two-dimensional Brillouin zon
We recall that charge-density oscillations in one dimens
decay away from the interface but not the corresponding
cillations in the LDOS, whose amplitudes remain consta
as can be clearly seen in Figs. 3~a! and 3~b!. It is worth
stressing that the exponential rate of decay is also affe
but the calculated values from the corresponding poles
main in perfect agreement with the numerical observatio
On the metallic side, we point out that even when the peri
are not commensurate with the lattice, intracell phase sh
may hide the Friedel-like oscillations. When the LDOS
averaged over the unit cell, their amplitude is strongly
duced~due to the phase shift! as shown in Figs. 3~a! and
3~b!. Therefore, measurements probing such an average
experience difficulties in detecting the Friedel oscillation
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Experimental techniques capable of distinguishing intrac
rings ~such as atomic resolved microscopy! may be more
suitable to making such oscillations evident, owing to t
fact that they only become apparent when the LDOS is p
ted as a function of the number of unit cells.

VI. CONCLUSIONS

We have investigated the electronic LDOS at the Fe
level across heterostructures composed of two attached
tallic and semiconducting semi-infinite CN’s. No Friedel-lik
oscillations were observed on the metallic side, wher
clear exponential decays are seen on the semiconducting
Based on a simple picture that describes the heterostruc
in terms of infinite metallic or semiconducting CN’s, th
asymptotic behavior of the LDOS was related to the b
electronic structure of its constituent parts, being indep
dent of the intervening junction. More precisely, the oscil
tory behavior of the LDOS was associated with particu
wave vectors of the Fermi surface of metallic CN’s. Also,
extending the same picture to account for evanescent st
the exponential rate of decay on the semiconducting side
associated with imaginary wave vectors of the comp
Fermi surface. The perfect agreement of the analytica
evaluated periods and decay rates with the numerical res
confirms the validity of the present model calculation. Fu
thermore, the absence of oscillations on the metallic side
shown to result from periods commensurate with the d
tance between the carbon rings. The oscillations do exist
are hidden by periods that coincide with the lattice spaci
In fact, as the Fermi energy is slightly changed, no
commensurate periods arise and the oscillations of the LD
become apparent. Measurements of the Friedel-like osc
tion periods on doped carbon nantubes provide informa
about the Fermi-level shift in these structures. Since tra
port phenomena across heterogeneous nanotube struc
are believed to be promising for technological applicatio
the understanding of their local electronic properties is
sential for further development in this field.
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