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Local electronic properties of carbon nanotube heterojunctions
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Local electronic properties of metallic-semiconducting carbon nanotube heterostructures are investigated by
studying the behavior of the one-electron local density of stdtB©S) along the tubes. We determine how
these properties change from the metallic to the semiconducting side of a nanotube junction. We show that
Friedel oscillations may not always be evident on the metallic side, and we found clear exponential decay of
the LDOS on the semiconducting side. The exponential rates of decay as well as the absence of the oscillations
are explained in terms of a simple picture that relates the LDOS to the bulk electronic structure of the
constituent parts of the heterostructures.

[. INTRODUCTION Motivated by the advances in the growth of CN junctions,

and bearing in mind their potential applicability as low-
A large effort in understanding the physical properties ofdimensional devices, we have studied local electronic prop-
carbon nanotubég (CN's) is now in focus. These tubes are erties of metallic-semiconducting CN heterostructures. We
typically longer than 1um, with diameters ranging from 1 are particularly interested in mvestlgatlng how these proper-
to 30 nm? and are classified as quasi-one-dimensional systies change from the metallic to the semiconducting side of a
tems. CN’s are presented in a wide variety of geometrie§ianotube junction by studying the behavior of the one-

showing interesting transport and electronic properties. Th&!ectron local density of statesDOS) along the tubes. Far

most remarkable of those properties is the possibility of hay{rom the junction, the LDOS at the Fermi enerdyg) must
e finite on the metallic side of the tube and vanish on the

ing either metallic or semiconducting behavior, dependin . .
9 g P other. We address the question of how such limits are

merely on geometrical aspects of the CN structure. In fact . X . .
; ! feached as one moves away from the junction. Friedel-like
experimental results have confirmed such dependence of thé

electronic structure on the geometry of the tubés oscillation and exponential decay of the LDOSEat are
- on the g Y - ' expected on the metallic and semiconducting sides, respec-
The possibility of joining two or more distinct nanotubes

. tively. Both oscillatory and exponential features can be re-
enables one to produce tubular heterostructures, offering NeWied to the bulk electronic structure of pure CN's. Friedel

perspectives for nanoelectronic technology. Very recentlyyggijjations play an important role in long-range interactions
controlled catalytic growth of junctions between carbonjy metals and are caused by a drastic change in the density of
nanotubes and silicon nanowires has been repSrfedew states at the Fermi enerdyat low temperatures. They refer
type of quantum dot based solely on carbon atoms has begg oscillations of the charge density, but similar oscillations
proposed, motivated by experimental observations of energy(hereafter referred to as Friedel-like oscillatiposcur in the
guantization in single-walled nanotubes with metallic . DOS at Er. It is well known that the periods of those
contacts. In particular, a metal-semiconductor junction can oscillations are associated with bulk Fermi-surface wave
be made by joining two nanotubes characterized by distinctectors. Despite the somewhat exotic Fermi surface of me-
chiral vectors. One example is the junction of@) and @  tallic CNs, we show that such relation still holds giving rise
—1,0) zigzag nanotuben,being an integer multiple of three to Friedel-like oscillations, although they may not always be
that defines the chiral vectofsThis type of junction can be evident. This is an important point since there is current in-
made by introducing a single pentagon-hepta¢®H) pair  terest in observing such oscillatory behavior. Although they
defect along the axial direction of the structure. Structurahave been found in short tubEsthe oscillations remain to
and electronic properties of zigzag nanotubes, containing Pie observed in long metallic structures. Moreover, we can
pair defects, have been investigated by Chaetieal.’ per-  also determine the rate of decay of the LDOS as we approach
forming tight-binding molecular-dynamics relaxation calcu- the bulk of the semiconducting tube in terms of its electronic
lations. They found that junctions whose defects are alignegtructure. In fact, based on the same picture used for deter-
along the axial direction of the tubes are more stable thamining the periods of Friedel-like oscillations, we relate the
those with defects along the circumferential direction.exponentially decaying LDOS to evanescent states associ-
Changes in the chirality of a single-walled nanotube mayated with the so-called complex Fermi surfdc® of the

also occur when PH defects are aligned neither to the axi@@@miconducting tube.

nor to the circumferential directions, but in this case, an
abrupt bend between two straight sections of the tube is
expected? Alternatively to pure carbon systems, hetero-
structures based on synthesiz&gC, N, nanotubes have also The electronic structure of the nanotube may be obtained
been studied because it is relatively easy to control theifrom that of two-dimensional graphifeA single band tight-
electronic properties binding description in terms of orbitals yields a very good

II. DESCRIPTION OF THE MODEL
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approximation for the band structure around the Fermi en-
ergy. Graphene is semimetallic and its Fermi surface consists
of six points at the corners of the two-dimensional Brillouin

0.12

zone. Since CN’s are rolled-up graphene sheets, periodic 0.06 &

boundary conditions quantize the components of the elec-

tronic wave vectors along the circumferential direction. The 0.00

axial components, on the other hand, remain continuous for 012 |

an infinitely long nanotub& and the corresponding elec- )

tronic states form quasi-one-dimensional energy bands. It 8 0.06

should be stressed that such a description of the electronic -

structure in reciprocal space is useful for studying the prop- 1

erties of infinite pure tubesWhat determines if a CN is 0.00

metallic or not is whether the quantized components of the 0.06 1

electronic wave vectors along the circumferential direction B
intersect or not the graphene Fermi surfadeor example, 0.03 frevssssesssessesaent n

(n,0) zigzag CN’s are metallic only whamis a multiple of

three, because only in this case do the quantkeéctors 0.00 :
cross the vertices of the hexagonal Brillouin zone of the -20 -10 10 20 30
graphene sheet. j (ring index)

When dealing with finite portions of a CN, or with het-

L o FIG. 1. Local density of states along metal-semiconductor het-
erogeneous structures joined by two or more parts, itis con- .~
venient to describe the electronic structure in real space. frojunctions of typda) (9,0-(8,0, (b) (9,0-(10,0, and(c) (12.0

this case, the single-band tight-binding Hamiltonian of the{é'o) as a function of the ring indices and at the Fermi endzgy

tub b itten in t f unit cell de of =0. Filled and open circles are associated with rings labeled by
nanotube can be written in terms of unit celis macde o ""nteger and half-integer indices, respectively. The crosses indicate

sequence of spiral bonds between the carbon atoms. In ﬂ?ﬁe bulk LDOS of the corresponding metallic CN and dotted curves

particular case of achiral CN’s, namely armchair and zigzagye guides for the eye showing the unit-cell-averaged LDOS.
structures, it is convenient to consider unit cells along theyashed lines correspond to the junction limits. The same results for

axial direction comprised of two rings associated with thethe semiconductor tubes are presented in the inset of the figure but
two carbon atoms in the unit cell of the graphene structurein a logarithmic scale.

The number of carbon atoms in those rings depends on the

CN diameter. We can treat the Hamiltonian of the system,ion connecting metallic to semiconducting zigzag CN's.
entirely in real space considering a chain of double-ring uni n Figs. 1a) and Xb) we show results for metalli,0) CN's
cells. Here we use a real-space renormalization technique %nneéted to semiconductirig,0) and (10,0 tubes, respec-

calculate the LDOS at each atom along the heterostructurg ey since the diameter reduction of such structures is the

We first calculate the surface Green functions for a semigg e potn junctions have a common width. Also, in Fig.

infinite CN through the solution of matrix Dyson equations 1(c) we present results for the LDOS of(42,0/(8,0) het-
obtained by successive decimatidhsf unit cells until a o/ oircture, which has a wider junction. In all cases the

fixed point is attained. Having evaluated separately the Sufy,,ction region is marked by vertical dashed lines that sepa-
face Green functions for a metallic and a semiconductin

. . . Tate the metallic (<0) from the semiconductingj&W)
CN, they are connected by a junction that consists of an axig|,pes \wheraw represents the width of the junction. Since

PH defect and the necessary number of rings for matching,q it cell along the axial direction contains two rings, we
the two semi-infinite parts. It is worth noticing that the dis- ave plotted two curves, for integer and half-integer ring

tance between the pentagon and heptagon determines the dices, depicted by filled and open circles, respectively. It

ameter reduction across the junction. The connection of th‘éould be argued that the two curves should coincide as one

two sides is theoretically performed using the Dyson equag,,,eq away from the junction. In fact, on the semiconduct-
tion to include the appropriate sequence of rings of the par

. . B i - P?ing side they both vanish exponentially. However, on the
ticular junction joining the two semi-infinite parts. Following metallic side the curves tend to distinct limits, which are

this procedure, we can determine the Green functiongjgerent from its bulk value. This is a consequence of break-
Gi,m(@) represen_tlng the propagatolr for electrons with en'mg the axial inversion symmetry of the CN lattice. For pure
ergy » between ringd andm. We point out that the Green g infinite CN's, for instance, such symmetry breaking
function G; ;(Ef) is @ matrix whose size depends on the|gaqs to two inequivalent rings even when they are infinitely

number of carbon atoms of the ring. The average LDOS af,; from the surface. The bulk LDOS is the average between
the Fermi level associated with ringlong the joined struc-  55e of the two inequivalent rings. Since the upper and

ture is then obtained by;(Eg)=—ImtrG; ;(EF)/(7N;),  |ower curves in each figure have basically the same behavior,
where tr stands for the trace over thg carbon atoms of  gjther of them can be chosen to describe how the limiting
fngJ. values of the LDOS are approached. On the metallic side,

contrary to expectations, we find no oscillations in the LDOS
in all three cases shown in Fig. 1. The oscillations in the
LDOS associated with adjacent rinabeled by integer and
We calculate the LDOS &=0 as a function of the ring half-integer indices, respectivelydo not correspond to
index for three different heterostructures, all with a singleFriedel-like oscillations. They just reflect the existence of

Ill. NUMERICAL RESULTS
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two inequivalent rings in the unit cell along the axial direc-
tion of a semi-infinite zigzag CN. We will show that the
Friedel oscillations in the metallic CN have a period equal to
the unit-cell sizgcontaining two rings thus being commen-
surate with the lattice. The LDOS at the Fermi energy on the
semiconducting side of the junction is finite near the inter-
face, decaying exponentially as one moves deep into the
semiconductor. This is clearly demonstrated for all cases by
the straight lines of the insets showing the corresponding (c) Im [kx]
LDOS in logarithmic scale. It is noteworthy that the expo-
nential rates of decay depend on the diameter of the semi-
conducting CN attached to the junction. The dotted line in
Fig. 1 is a guide to the eyes representing the average LDOS

over a unit cell. In both sides and sufficiently far from the Re [ ky]

junction it correctly approaches the corresponding limiting on o

values. Based on a simple model, we show how our results Wg Wg

can be explained and related to the electronic structure of the

CN'’s. FIG. 2. Two-dimensional Brillouin zones of graphene showing

the quantized, values(dashed linesfor (a) metallic and(b) semi-
conducting CN’s. The real polte(x) corresponding to half the dis-
IV. ANALYTICAL METHOD AND DISCUSSION tance between the points of the Fermi surface is depicted in the
0?netallic case(c) The integration contour is considered for evaluat-
ing the integral in Eq(2), for j>j'. Forj<j’, the contour is in the
lower half-plane.

We are interested in determining the dependence
pij(Eg) on the ring indey. We start by looking at this de-
pendence foj on the metallic side. By introducing an imagi-
nary cleavage plane separating the metallic side from the rest
of the system, we can show th@j ; is given by the follow- T (w)= ﬁ E f dk
ing matrix equation: ) 87 (

2w+eikx(j’—j)a\s§/2
0")2=[E(k, k)%’

wherea is the distance between two equivalent sites of the
Gj=8j;+S5,- W S_4;, (1 hexagonal latticed=1.42/3 A), w*=w+in, 7 is a small
imaginary part added to the energy, a&ads given by
where §; ; represents the Green-function matrix connecting
rings i andj of the semi-infinite metallic CN, and index E(ky,ky) =t[1+4 cog \3k.a/2)cogk,a/2)
—1 labels ifcs surface ring. Her@) involves the surface _ +4co§(kya/2)]1’2, 3)
Green functions of both cleaved parts, namely the metallic
side and the rest of the heterojunction. It is worth noticingwheret is the electronic hopping.
that W contains only surface terms and hopping matrices Here k, assumes discrete values, namely,
joining the cleaved parts. Therefore, the dependend®;gf ~ =1/Ny(27/a), 1=1,2,... Ny, andNy is determined by the
onj is entirely in theS matrices above. It is possible to show CN diameter. Thek, component, on the other hand, is a
thatS; ;, Sj_;, andS_;; can all be expressed in terms of continuous variable inside the two-dimensional Brillouin
the Green functiong of the corresponding infinite metallic zone. Thus, we end up with a set of one-dimensional bands
CN. Thej dependence of thosg@matrices are then given by alongk, corresponding to discrete values kf. As previ-
the off-diagonal Green functiofi_ , ;, representing the elec- ously discussed, the nanotube is metallic if some of the dis-
tronic propagator between rings1 andj for the infinite  cretek, lines in reciprocal space intersect the corners of the
metallic CN. Since such infinite CN has axial translationhexagonal Brillouin zone. This is illustrated in Figsapand
symmetry,Z; ;; depends only on the relative positiohis 2(b), shqwmg d|scretek¥ values rep_resenteql by vertical
—j'|. The actual dependence @f ; onj is described by the d@shed lines for a metallic and a semiconducting CN, respec-
productZ_, ;X Z; _,. Therefore, to study the position depen- tively. _ o
dence of the LDOS in the heterostructure, one needs to in- The integral in Eq.(2) can be evaluated foj<j’ by
vestigate how the off-diagonal propagatdfs;. of infinite ~ €xtendingk, to the complex plane and changing the integra-
pure CN’s vary with the ring indices, and, to some extenttion contour from a straight line on the real axis to the
this can be done analytically. Although the discussion abov&oundaries of a semi-infinite rectangle in the upper
is for j on the metallic side, it also applies with minor half-plané® whose base lies on the real axis between
changes foj on the semiconducting side, the basic differ- —2m/a\3 and 2r/a\3, as shown in Fig. @). For the
ence being thaf is the Green functions of the corresponding casej>j’, the extension is to a similar rectangle in the
infinite semiconducting CN. lower half-plane. In either case, the integrand vanishes as
In what follows we consider an infinite zigzag nanotube.| Imk,|—, and becausek,= —(2m@lay3)+iy and k,
As mentioned before, in that case it is convenient to describe= (27/a\/3)+iy are equivalent wave vectors, the integrals
the electronic structure in reciprocal space. The off-diagonaalong the vertical sides of the rectangle cancel each other,
Green function representing electronic propagation betweereducing the problem to a sum of the residues associated
ringsj andj’ with energyw is given by® with the poles of the integrand inside the corresponding

@
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closed contour. The poles are in turn given by the values o€EN. This is a particular case of the so-called aliasing effect,
k, for which (w+)2—[E(kX,ky)]2=0. Since we are inter- where periods obtained from a discrete sampling of a con-
ested in the LDOS aEg=0, the energyw™ is given by tinuous oscillation differ from the original ones. Such an

o =0+in7. effect has been addressed before in the study of oscillatory
The poles are clearly dependent on the band structuriterlayer exchange coupling in magnetic multilay¥ts.

since they involve the dispersion relati@tk,,k,) and are Based on the same picture, we can evaluate the off-

given by diagonal Green functiorig; ;, for an infinite semiconducting

CN. Each discrete value ¢, yields imaginary polekg, SO

. 14 co2 @ that we end up with a sum over evanescent states, all expo-
ka3 2 nentially decaying as functions @f' —j|. Clearly, the domi-
COE( 2 ) = k.a (4 nant contribution is the one with the slowest rate of decay. In
4 cos{% other words, from all those evanescent states, the one with

the smallest imaginary polleg determines the rate of decay

It is interesting to look at the physical significance of theseof Z; ;. The rate of decay is given byk2 because the
poles. Each value dt, yields a corresponding, and since LDOS also depends on the product of two similarly decaying
they are obtained from the band structur&at they are just  functions, as previously discussed. Whereas in the metallic
the coordinates of the CN Fermi surface along the axial diCN the contributoryk, is the one whose quantization line
rection[see Fig. 2a)]. In other words, they indicate the wave intersects the points of the Fermi surface, in the semicon-
vectorsk? with which electrons at the Fermi level propagate ducting case the dominant evanescent state will be the one
along the axial direction. Since the Fermi surface of the meclosest to that line. In fact, there is perfect agreement be-
tallic CN is a collection of six isolated points, many discretetween the slopes of the LDOS in logarithmic scale in the
values ofk, have no reak, components. This happens when insets of Fig. 1 and the values we have calculated. For the
| costlay/3/2)|>1 andk? assumes imaginary values. The particular case of 48,0) nanotube the exponentially decay-

residues associated with the poles are ing LDOS behaves ag™M as a function ofj, where A
=0.53 is found both analytically and numerically. The
—j neiki’(J’—J)aﬁ/z agreement is also perfect for the semiconduct{it@0 CN,
Re$k2]= a . (5) where the rate of decay is found to he=0.32. This indi-
a3 Coﬁ{ L) sin(k%a/3/2) cates unambiguously that the asymptotic rate of decay is
2 completely determined by the bulk electronic structure of the

" ) ) _ . particular semiconducting tube and depends neither on the
The position dependence of the residue is entirely giveryerails of the junction nor on its metallic counterpart.

by the difference j’ —]) which appears in the argument of |, metallic 'systems, a few portions of their bulk Fermi
the exponential. Hence, for reld] , the residue oscillates as a gyrfaces determines the periods of Friedel-like oscillations.
function of (' — ), whereas it decays exponentially whéh  we have extended this picture to relate, not only the periods,
is imaginary. For a metallic CN, the sequence of disckgte but also the rate of decay of the LDOS of a heterojunction to
is such that there is always a real pkEethat corresponds to the electronic structure of a semiconducting CN. Instead of
half the distance between the points of the Fermi surface, dseing associated with extended electronic states of the Fermi
shown in Fig. 2a). All the others, for not intersecting the surface, the dominant evanescent states giving the exponen-
Fermi surface, yield imaginary poles and contribute withtially decaying LDOS are related to the so-called complex
evanescent terms. After summing over lg)lit is clear that  Fermi surface;"'® consisting of imaginary wave vectors.

the dominant contribution is the oscillatory term. The reason
why no oscillations were found in the metallic side of Fig. 1
becomes clear by recalling that the LDOS depends on the
product Z,;XZ; ;. Since each Green function contributes Whereas isolated nanotubes have their Fermi energies
with the same oscillation period, the product depends on aredicted atE=0, a charge-transfer-induced shift Ee
wave vector twice as large as the real pkfg i.e., of the may occur when the tube is deposited onto a substrate. More-
same size as the distance between the points of the Fermver, the ability to vary the Fermi energy in a CN has been
surface. This distance corresponds to the length of the Brilpreviously discusseti®>=?*> To test the validity of our
louin zone along thé, direction; therefore, any oscillation method, we have slightly changed the Fermi energy of the
with this wave vector cannot be observed for being perfectly(12,0/(8,0) junction. As a result, the Fermi surface of metal-
commensurate with the lattice. In other words, Friedel-likelic CN's becomes small pockets centered at the six corners of
oscillations are present but are not seen in Fig. 1 becaugbe two-dimensional Brillouin zone. In this case, we no
their oscillation period is exactly equal to the unit-cell sizelonger have periods perfectly commensurate with the lattice,
containing two rings. The oscillation period in this case isand the oscillations are clearly seen. We consider two dis-
commensurate with the CN lattice, and is not observable byinct values for the Fermi energy, namety=0.05 andEr
probing the average LDOS at discrete successive rings=0.1, in units of the hopping integral. Figure 3 shows the
When the probe resolution is sufficiently sharp to identifyLDOS for those different values &g as a function of the
each ring separately, the LDOS oscillation from one ring toring index. Figures @& and 3b) correspond to the metallic

its nearest neighbor may be detected. However, this is not parts whereas(8) and 3d) show the LDOS in logarithmic
Friedel-like oscillation, but a phase shift due to the existencescale along the semiconducting sides. Both value€of

of two rings in the unit cell along the axial direction of the show clear oscillations on the metallic side whose periods

V. DOPED NANOTUBES (E#0)
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0.035

Experimental techniques capable of distinguishing intracell
© | rings (such as atomic resolved microscopyay be more
suitable to making such oscillations evident, owing to the
fact that they only become apparent when the LDOS is plot-
ted as a function of the number of unit cells.

0.030 [

LDOS

0.025 |+

VI. CONCLUSIONS

0.020 . 10 . .
-50 -25 0 5 10 15

0.035 - 107 : : We have investigated the electronic LDOS at the Fermi
®) | 52 | @ ] level across heterostructures composed of two attached me-
tallic and semiconducting semi-infinite CN’s. No Friedel-like
oscillations were observed on the metallic side, whereas
clear exponential decays are seen on the semiconducting one.
L . Based on a simple picture that describes the heterostructure
, 6 , , in terms of infinite metallic or semiconducting CN'’s, the
50 25 0 5 10 15 20 asymptotic behavior of the LDOS was related to the bulk
i (ring index) J (ring index) electronic structure of its constituent parts, being indepen-

FIG. 3. Local density of states along(#2,0-(8,0) heterojunc- dent of the intervening junction. More precisely, the oscilla-

tion for the[(a) and (b)] metal side andi(c) and (d)] semiconductor tory behavior of the LDQS was associate_d Witr,] particular
tube as a function of the ring index and for two values of the Fermivave vectors of the Fermi surface of metallic CN's. Also, by

energy:E-=0.05 in(a) and(c), andEx=0.1 in (b) and(d); ener-  €xtending the same picture to account for evanescent states,
gies are given in units of the hopping integral. The dotted curves ithe exponential rate of decay on the semiconducting side was
(@) and (b) are guides for the eye showing the unit-cell-averagedassociated with imaginary wave vectors of the complex
LDOS. Fermi surface. The perfect agreement of the analytically
evaluated periods and decay rates with the numerical results
confirms the validity of the present model calculation. Fur-
coincide exactly with the calculated values. For slightthermore, the absence of oscillations on the metallic side was

changes arounBg=0, the oscillation periods decrease with Shown to result from periods commensurate with the dis-
|Eg|, reflecting the enlargement of the Fermi-surface pocket§nce between the carbon rings. The oscillations do exist but
around the corners of the two-dimensional Brillouin zone.@re hidden by periods that coincide with the lattice spacing.
We recall that charge-density oscillations in one dimensiod" fact, as the Fermi energy is slightly changed, non-
decay away from the interface but not the corresponding oLommensurate periods arise and the oscnlat!ons of the LDQS
cillations in the LDOS, whose amplitudes remain constantP@come apparent. Measurements of the Friedel-like oscilla-
as can be clearly seen in Figs@8and 3b). It is worth tion periods on _doped cgrbpn nantubes provide |_nformat|on
stressing that the exponential rate of decay is also affecte@oout the Fermi-level shift in these structures. Since trans-
but the calculated values from the corresponding poles reROrt phenomena across heterogeneous nanotube structures
main in perfect agreement with the numerical observationsd'® believed to be promising for technological applications,
On the metallic side, we point out that even when the periodé1€ understanding of their local electronic properties is es-
are not commensurate with the lattice, intracell phase shift§ential for further development in this field.

may hide the Friedel-like oscillations. When the LDOS is
averaged over the unit cell, their amplitude is strongly re-
duced(due to the phase shifas shown in Figs. @) and
3(b). Therefore, measurements probing such an average may The authors would like to thank CNPq and FAPERJ of
experience difficulties in detecting the Friedel oscillations.Brazil for partial financial support.
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