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Theory of magnetophonon resonance in quantum wells
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In a polar semiconductor mixed optic phonon-magnetoplasmon vibrations can be trapped within a quantum
well. Such localized vibrations effectively interact with the confined electrons of the quantum well. We
demonstrate that these excitations can be responsible for the magnetophonon resonance oscillation of the
conductivity of quantum wells, i.e., phonon-induced resonant transitions of electrons between the Landau
levels. The frequency of the mixed vibrations is shifted, due to the screening effects, towards the frequency of
transverse optic vibrations, . This can explain the observed shift of the magnetophonon resonance in quan-
tum wells. We give theoretical considerations to determitrather narroyinterval of electron concentrations
where a two-dimensional magnetophonon resonance is observable.

[. INTRODUCTION the contrary, in the 2D structures the resonance frequencies
are expressible with adequate accuracy throughthe fre-
Magnetophonon resonand®PR) is the first internal quency of the transverse-optic phonon. This agrees with a
resonance in solids that has been predicted theoretically arftimber of experimental datdor instance, Ref. B In the
subsequently observed experimentaligee the review present section we will give some phenomenological consid-
papet). The resonant condition is met every time when theerations concerning the special features of screening of the
limiting frequency of an optical phonon equals the cyclotronPolarization phonon potential by the 2D electron gas. They
frequency of an electronyg=eB/mc, times some small in- enable one to prowde explanation as to why the resonant
teger V. Since its theoretical predictiérmnd subsequent ex- frequency is shifted from, /\'to w /. _
perimental discoveR MPR has become a powerful tool to As th_ex component of the current is pr_oporhonal to the
investigate the electron spectra in semiconductors. probability of scattering one can write for it
First observation of MPR in a quantum well was reported

by Tsuiet al.in their pioneering papeYThey observed MPR 152 M | 2f(e)[1—f(€n)]10(en— €n —Fro)).
in a single interface heterojunctions and heterojunction su- nn’
perlattices. Later on the effect was studied by Enggél.® (1.
R 7 8
Kido et al.” and Brummelet al. HereM ,,, is the matrix element of the electron-optic phonon

The purpose of the present paper is to work out a theoryyteraction,f(e,) is the distribution function of the electron
of MPR in quantum wells, to provide explanation for the yith the energye,. Futher on we will neglect the electron
existing experimental data and make predictions for futurgjegeneracy. In this approximation, the lowest in the electron-
experiments. We will consider the situation where the well ISphonon interaction, one can expect that the MPR takes place
so narrow that only one electron band of spatial quantizationyovided the energy difference between a pair of electron
is filled. The magnetic fiel® is assumed to be perpendicular |eyels e, — ¢, = A% wg coincides with the optic-phonon fre-
to the plane of the well and parallel waxis while the ex- gyency «,. Then the current will be proportional to
ternal electric field is oriented alongaxis. We will calculate S(Nwg—w,). This is a system ofrlike spikes. Consider
the oy, component of the conductivity tensor. This is the noy the electron-electrorfe-g interaction, both brought
transport coefficient relating the two-dimensioniaD) cur- apoyt by an exchange of optic phonons and a direct Coulomb
rent density(averaged over the width of the welto the  repision. We wish to check as to whether the e-e interaction
applied electric field. The electron states are characterized Qy;, pe treated for 2D systems as a small perturbation. As is
the Landau quantum number and by the coordinate of thgye|| known (Ref. 11, Sec. 48 the variation of transition

center of Landau oscillatoX. As is well knqur‘? in the ab- probability due to a perturbatiovi in the second order of the
sence of electron collisions with the impurities and phononﬁaerturbation theory is

o,=0. This means that one gets a finite expressiorsigr

only by taking into account various scattering mechanisms of o0 1

electrons. We will consider the Hich'® interaction between W= — No— o2

the conduction electrons and polarization optic phonons. h (Nog=ored
We will show that there is an essential difference between

the MPR in 3D and 2D structures. In the 3D case the reso- X 27 T(€)|Van Virnl 28 en— € — Ty

nant frequencies . are equal tav, /., i.e., are determined n.n’

by w,, the frequency of the longitudinal optical phonon. To (1.2
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Near the resonance whetg.s~Nwg this variation is by no 2 me? C
means small(In 3D case the electron spectrum depends on e(wred + o Noatio
the z component of the quasimomentum, which means an 4 Ores B
extra integration of the denominator over the intermediateye are interested in solution of this equation near a reso-
states. This, as is shown in Sec. VII, drastically changes thgance where the denominatef.— Nwg is small. It is only
whole situation). in this region that our approximatiofi.5) is valid. Such a

Let us discuss the role of the screening in propagation o§plution exists only ifw, is close toNwg [see Eq.(1.4)].
a phonon. To take into account the screening of thiéidt  Thyus the transition takes place due to a dressed vibration
interaction phenomenologically we write the Poisson equahaving frequency abous, rather than a bare optic vibration.
tion This means that the resonant peaks are centered near the
valuesNwg= w;. The form of the resonance is investigated

0. .7

e(w)V2p=—4medn, (1.3 in detail in Sec. Vi(see also Sec. V
where We will show that in the 2D case in polar semiconductors
the interaction between the bulk optic phonons and confined
wlz_ w? electrons leads to a dynamic screening of the optic-phonon
S(w)zswm, (1.9 potential. As a result, a mixed phonon-plasmon vibration can

be localized within a quantum we(Sec. 1V). Due to the

e, is the high-frequency dielectric susceptibility, is the  screening effects such vibration is localized even for the case
electrostatic potentialin is the variation of the electron con- where one can neglect the difference between the lattice
centration that is a linear response to the phonon perturb@roperties within and outside the well. The frequency of the

tion. Under the resonance conditions this variation should b&ixed vibrations is shifted towards the frequency of trans-

greatly enhanced. One can represént in the following  verse optic vibrations, . This can explain the observed shift

form: of the magnetophonon resonance in quantum wells.
As long as the MPR maxima are at the pointg N their
wi(z)exp(iqr) widths are determined by the phonon dampiBgc. VIA).
5H=C<1|¢(Z)|1)m, 15 The optic-phonon damping is comparatively large even at

low temperature&s T<fi w,es. The main process responsible

where 6>0,6—0,#,(2) is the wave function of transverse for the damping is the decay of an optic phonon into two
quantization of the first band in the quantum welljs the  acoustic oneginvestigated in Appendix A The damping
wave vector parallel to the plane of the walls a function  parametel” depends on the anharmonic coefficients. They
of g; its actual form is at the moment of no importance for are sensitive to the perfection of the lattice and, as a rule, it is
us. difficult to make even order-of-magnitude estimates of these.

The denominator in Eq1.5) reflects the fact that an elec- T, however, can be in principle measured on experiment, for
tron performing circular motion within the plane of the quan-instance, by Raman scattering of light. Its most probable
tum well perpendicular t® is perturbed by the optic lattice values range from several K up to several tens of K. Another
wave. If the frequency of the wave is a multiple @ we  important point is thal” within the relevant temperature in-
have a resonant transition. The transition matrix element dugerval is practically temperature independent.
to the factor exg@r) does not vanish foany integer\ that There can be some competition between the phonon
is in fact the difference of the Landau quantum numbers olampingI” and the electron dampin, resulting in a shift
initial and final electron states. This is why multiple magne-of wes. This competition, however, does not amount to a

tophonon resonances are allowed. direct comparison of the two quantities. As soon as the elec-
The solution of Eq(1.3) has the form tron damping reaches a critical vallig, (Sec. VI B) that, in

its turn, depends on the product of the phonon damping and

2)=opexpiar) | dz’ v2(z))exp —qlz—z']), the electron concentration, the MPR maxima begin to shift
#(2)=¢oexpliq )j i )exp | D towards the frequencies slightly lower thas. Simulta-

(1.6) neously their heights go down. The shift is not too big but

_ P ; . be experimentally discernible. If the electron concentra-

whereq=1/gZ+q?. This is a plane wave localized within 2" .
the well; the corresponding potential falls off exponentiallyt'on. goes dOV.V” or Fhe phonon damping goes up the MPR
outside the welP13[see Eq/(4.6)]. The qualitative physical _oscnlatlon entirely dlsappears. In order to see the MPR peak
picture does not in fact depend on the value of paranuger in the f.requen.cy regiom, /A at the values O(f) eleftron con-
wherea is the width of the well. Therefore further on in this C€ntration typical fo_r the nanostructures {0*°cm ) large
section we will discuss the casg@<1. Then the matrix el- values of the damping are necessary angl therefore large val-
ement on the right-hand side of EQ..5) can be easily cal- Y€S ofwg . Very small values of the effective masses are also
culated and is equal to, ' favorable for such situations. An alternative way to reach

In order for Eq.(1.6) to be a solution it is necessary that a resonances ab, /A are very small electron concentrations

—2
dispersion relation should be satisfied. Indeed, (of the order of 18cm™?)—see Eq(6.3). _
All these features are characteristic of a 2D case. As in-

V2p=— Z(Wi(z)@o expliqr). dicated above, in the 3D case the electron spectrum depends
on the z component of the quasimomentukn This, as is
InsertingV2¢ into Eq.(1.3) we get the following dispersion shown in Sec. VII, changes the whole situation. In the 3D
relation: case the screening may play a role in calculatioargfonly
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at comparatively low temperatures where the MPR cannot be (U_q(O,z’)Oq(t,z)>:(U_q(o,z’)Uq(t,z)>
observed under the usual conditions.
X(A_4(02")A4(t,2)). (2.9
Il. GENERAL EQUATIONS Now,
To calculate thex component of the dc current it is con-
venient to consider the motion of a Landau oscillator as a . o _ . o p
whole. The conductivityo,, in the plane of the quantum (h—4(02 )nq(t,z)>—% Wi exp(—iomt)(m|f-o(0.2)[1)

well is given by(see Ref. 9 x(1|Ag(0,z)|m) (2.5
4(0, , .

2 [}
UXX:e_f dt(X(O)X(t)), (2.2 Wherew,. is the probability of occupation of the quantum
2T J - statel while |, m are the exact quantum states of the electron-

. _ phonon system as a whole. This correlation function is ex-
whereX is the operator of coordinate of the center of Landaupressible through exact electron polarization operator, i.e.,

oscillator in the Heisenberg representation. It commutes with

the free-electron Hamiltoniak in magnetic fieldB as well (A_o(2)Ng(2)),=1[lr(w,2",2)
as with the operator of Coulomb electron-electron interac-
tion. This is a consequence of the quasimomentum conser- , 1
C - i —a(0,2' 2] g o
vation in electron-electron collisions. Hef¥(0)X(t)) is the 1-exp(—w/T)
ensemble-averaged correlation function between the veloci- (2.6
ties of the centers of Landau oscillators. In the present and .
the following sections we will assunfe=1, kg=1, and will ~ Here llg(w,2’,2)[115(w,2’,2)] is the retardedadvanced
restore these symbols only in the resulting formulas. polarization operator that has analytical properties of a boson
Now Green function. Accordingly one hdsee Ref. 14, Sec. 36
. , (m|A(0.2")[1){1]A(0.2)|m)
0= [ oo XIpr o Me(2',2)= 2 W= = S5
c 50 X[1—exp —wom/T)]. 2.7
=S - T -~ 3
; er yir.o) ay y(r,o)d’r. (2.2 As a result,
Here  is the operator of the electron wave function while ~ o _ f do
is the operator of phonon field interacting with the electrons. (U-q(027)Uq(t,2)) 2 (h—4(2)0g(2)).
For the time being we consider it as an external random field,; . .
later on we will average over all realizations of this field. The X(U_4(— 0,2 )Uy(w,2)).
expression foro,, can be presented in such a fofme re- 2.9
mind that we calculate the conductivity averaged over the
width of the wel) One can average over the phonons in the same way. We have
e e\ d’q (U_q4(—0,2)0y(0,2))=—iN(w)[Dr(— ) —Da(— w)].
Uxx_ﬁ e_B 7ocdt (277_)2 dz (29)

2 Here Dgr(D,) are the exact retardetadvanceyl phonon
% f dz’q—(U,q(O,z’)Uq(t,z)). (2.3  Green functions, anbl(w) is the Bose function. We assume
2 that the lattice properties of both components of the hetero-

W d fth . i i | i structure are practically the same. This means, in particular,
€ mace use of the quasimomentum conservation along r’{ﬁat the phonon Green'’s function in the zeroth approximation

plane of the quantum well. It is convenient to representynouig depend on the difference of spatial coordinates.

Uq(t,2) as[see Eq(2.2)] Inserting Eq.(2.9) into Eq. (2.3) for oy, we get
U4(t,2)=0g(t,2)U(t,2), el T do [ d’g
. . 9T aT\eB) | .27 ) (2m)?
wheren, is a Fourier component of the electron-density op-
erator. Equatiori2.3) should be averaged over the ensemble, a°N(w)
including averaging over the phonon field. It can be per- Xf dzf dz’m
formed in two steps. As the first step, we average over the
phonon fields in the density matrix by connecting the factors X [Dg(—w)—Da(— »)][[(w;Z',2)—a(w;Z’,2)].
U_q(t1,2") andUq(t,,2) pairwise. During the second step (2.10

we average the two phonon fields that are present explicitly

in Eq. (2.3. As a result, the correlation function  |n the lowest approximation of the perturbation theory we
(U_q(t1,2")Uq(t2,2)) can be presented in the form have
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1 1 1
0(q) = y 2 _ (2) S S 2
DAY= 1040 | o5 wrors) 11Z)(0,0)= ~2n.exp — } (430)cotha
(219 - sinh\NVa g?a3
where|0) and|1) indicate the states with 0 and 1 optic pho- XN;x w—Nowg+is M 2sinha)’
non. For the Fitich interactiort®
(3.9
(1|0 |0>|2_47're2 (212 Herea3=c#/eB, nyis the 2D electron concentration
q T 9l :
4-ec 1, coshhQy/2kgT)
where = %8 Sin7iwg/2kgT)
L hog hwg
1 1 1 M L
- X O T 2kBT)’ ke 39

€c €. &g

Qg is the difference between the two electron spin level
Hereeo ande., are the dielectric susceptibilities fas—0  positions. We wish to emphasize tHaf?)(w,q) is a purely
and w—c°, respectively. 2D polarization operator depending neither lomor on K.

Inserting Eq.(2.12 into Eq. (2.10 we get for the 3D  For a well of parabolic form we have
space homogeneous case in the lowest approximation in the

electron-phonon interaction Mg(w,q)=exp — AR (w,q), (3.6
where
_47T82C2w|
T TTB%, A=K212+ 5 K22 3.7
d’qgdk @2 N(w)) (herel=1/\ymwy is the amplitude of the zero-point vibra-
2m)° g?+k? 1—exp —w /T tions). ,
(2m™ g A= /T) Now we embark on calculation ef,, for a quantum well.
XImI(w,q,K). (2.13  As in the zeroth approximation in the electron-phonon inter-

action the phonon Green'’s function is spatially homogeneous
This equation was obtained by Gurevich and Firsov in Refand the polarization operator ét=0 enters the equation for
2. oyy- However, as the component of the electron’s quasi-
momentum is not conserved one should integrate over all the

Il NAI'VE PERTURBATION APPROACH IN 2D CASE k. As a result, the electron-phonon interaction is

To begin with, we will consider a well where the elec- Vi2)(q)= 4me’w) f“’ dk exp(—k?1%/2) 3.9
trons are confined by a parabolic potential € .27 KA+ q2 ' '

One can easily see that if the characteristic valudgiGfare
_M 22 much smaller than 1 the exponent in the integrand can be
U(2) Wzt (3.1 !
2 replaced by 1 and one gets the standard expression for the

. _ o 2D electron-phonon interaction
It will be seen that such an assumption facilitates the calcu-

lations without seriously affecting the result in the general @ 27w,

case. We assume that the interlevel distance between the Vie= ed 3.9
oscillator levels satisfies the conditidnuy>T, so that only ¢

the 2D band associated with the lowest vibrational level is?hysically this case means a weak variation of the effective

occupied. electron-phonon interaction over the width of the well. Tak-
Our problem is spatially inhomogeneous along thei- g into consideration the asymptotic behavior gfas well
rection. Accordingly, we introduce the coordinates as the exponential factor in E¢3.4) the inequalityq®aj

<1 can be rewritten as

Az=2,—2,, Z=(z,+12,)/2. 3.2 .
172 (z1+2,) (3.2 g Sint wg/4T)

. . ——ap. 3.1
The corresponding components of the quasimomentum we Vsinh wg/2T) %8 (3.19
will denote byk andK. Then
For arbitrary relations betwedrandag :
Hg(,0,21,22) = ¥1(2) Y1(2) 1 (0,9), (3.3 2720
(2)( 42y — ' 2|2 _
VE(QT) = exp(q/2)[1-D(ql/v2)],

WhereH(RZ)(m,q) is the 2D polarization operator calculated ¢ (3.1

by Gurevich and Shtendél (see also Sondheimer and
Wilson®®) that is given by where®(x) is the error function:
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I ‘
(I)(x)—\/;fodtexp( 2). _____Q__O**m

Our purpose is to investigate the magnetophonon resog|G. 1. A chain of electron loops connected by the phonon lines.
nance. This means that we are interested in the situation

where the integral ove® in Eq. (2.10 is dominated by the IV. BARE ELECTRON-PHONON INTERACTION
frequencies satisfying the inequality ) . ) . .
In this section we will show how to take into consider-

(3.12 ation the screening in a quantum well where one 2D band is
' occupied. This will result in a shift of the magnetophonon
resonant frequencies from, towardsw,. We will take into
consideration the Ftizh electron-phonon interaction
screened by the conduction electrons of the quantum well.
Following Ref. 17, one should add to the phonon propagator
D© the Coulomb electron-electron interactionre?/(g?

INog—o|<wg.
Then one can retain in Eq3.4) a single term with A/

~ wl/wg While ImIIg(w)) is proportional tod(Nwg— w;) and
we have

_27Tn502ﬁ2 Nowg

O = ~—sinh S(Nwg— ) T wg), sz)'sw. Then the full propagator in the zeroth approxima-
ksT B 2kgT tion is
(3.13
F—pO4 Ame? _ 4me? - M
aq , [ aa O e T e T
ZSinhm . 2 2
B We remind thatw; = w{(1—¢e.. /).

2 2 Now we should surmise as to how to treat a spatially
Xexp{— agq ti—( ﬁws)}v(g)(qz)_ inhomogeneous situation with a quantum well. Assuming
2 2kgT that the gas approximation is valid, it is sufficient to sum up

the loop diagrams depicted in Fig. 1. To avoid excessive
(3.14 p diag p 9

proliferation of notation we will indicate here only tHe
Equation(3.13 exhibits a number of-like resonant spikes. dependence, i.e., the dependence onztbemponent of the
Such sharp spikes originate in the fact that in the one-ban@lectron quasimomentum. _
approximation of 2D situation the only type of electron mo- _ Introducing Fourier components regarding the sum and
tion is their quantized motion in the magnetic field. A com- difference variables introduced in E@.2) one comes to the
parison with the 3D case shows that instead &fVwg conclusion that the diagram in Fig. 1 corresponds to the fol-
— w) there appears a resonant factor lowing analytical expression:

, Ky +ky
(N(l)B_(l)|) J dkldkzdk3,,f(kl)n T,kl—kz

1
\/;qBUT F{ (qBUT)2

whereqg is the component of the wave vector paralleBo
A logarithmic form of the resonant peak in,, is due to the
electron motion along the magnetic field.

When inequality(3.10 is satisfied one can easily give an
estimate of integral/,,. We have

: (3.19
Ko+ Ks
X]:(kz)H(T,kz—kg)]-'(kS).... (4.2

Here the first argument dil is the Fourier component of the
difference of coordinates while the second argument is the
Fourier component of the sum of coordinates. It follows
from Egs.(3.6), (3.7), and(4.2) a factorization of the depen-
dence on quasimomenta. In other words, we get a geometric

Tw)= Vida (sinh @ )yzfxdx\/;w(x) progression with the indeK ®)(q,w)V(")(q,») where
ecap 2ksT) Jo
VO (0.0) 4me? (= dk exp(—k?1?/2) 3
L@ wg rA(@,0)= P e Sy S C 2
_ ' —2 ke+
xex;{ XSInthBT COchkBT>' (3.16 eralw@) T q

This means that to calculate,, for a quantum well where

Below we will see(Sec. V) that in fact Eq.(3.13 is  only the lowest 2D band is occupied it is sufficient to solve
never valid in the 2D case under the assumptions it has beghe problem where 2D electrons interact with each other via
derived. One feels that in fact the collisional broadeningthe potential/(").
should always play a role. We will not discuss the broaden- We emphasize that the potentii’)(q, ) is practically
ing of the MPR peaks in this case as the problem has beendependent of the form of the well. If the conditi@® 10 is
investigated in detail in Ref. 16. We will see, however, thatsatisfiedV(")(q,») does not depend on the form of the well
the width of the Landau levels necessary to get the resulit all. However the difference remains small even kdr
(3.13 may reach several hundred K fog slightly exceeding ~1. One can see it from Ref. 13 for a well with infinitely
10%cm2 high rectangular walls. Indeed, for the model adopted in Ref.
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13, using phenomenological considerations, the following o (82 a2
equation forV(")(q,w) was obtained: f(aq)=(4/a )J—a/ZdZJ—aIZdZ/ cog(mwz/a)cos(nz'/a)
i xXexp(—q|z—2']). (4.9
VH(g,0)= 2we f(ga), (4.4) Here z_ﬁl(z_)= V2/a cos(wz/a)_entering this and the fplloyving
ge(w) equation is the wave function of transverse quantization cor-

responding to the lowest level. The space and time depen-
dence of electrostatic potential accompanying the localized
where phonon propagation is

exp(qa/2){[1+ (a?q?/2m)cog(mz/a)]—coslqz)}, |z|<al2

sinh(gqa/2)exd q(a/2—|z|)], |z|=al2 49

¢=doexpi(qr—wt)]X

The exact formulas fof (q) should depend on the form of and the zero-order phonon propagataithout regard of
the confining potential through the wave functigh(z). Coulomb interaction, except for the electron-phonon vertices
However, the difference between various confining potenV®)(q) that it is convenient to include into a zero-order
tials is in general not too big and the asymptotic behavior iphonon ling
the same

1 1
w—w*id wto=xid’
4.7 (5.2

If one had the full interaction in all the vertices one would
have had as a result of summation of the progression the
In fact such heterostructures as GaAs/8a ,As can following equation for the full propagatdd(*):
exhibit a two-mode behavior, i.e., existence of pairs of two
differentw, andw, optic frequencies in the materials making ) _ V(Rf,,l
the heterostructurésuch as GaAs and GaAlAsThe reflec- DR,A_W' (5.3
tivity experiments(for instance, Ref. 18show behavior of ’ '
such a sort. This fact, however, should not change the physithe outer lines, however, should represent only the phonon
cal situation in regard to the localization. Indeed, the locallPropagators. It is convenient to add to the outer lines the bare
ization of an optic phonon within the quantum well becauseCoulomb interactiond/q(q) to get the full linesD") and
of the screening can be only enhanced due to the existence #fen to subtract the same interactions. As a result, one gets

1
Diga(@)=5V?(q)
1, qa<l

fla)= 2/ga, ga>1.

the interfaces. instead of Eq(5.3):
" 2Vev)
V. MPR IN QUANTUM WELLS Dra= Vot I+ v 7~ AD, 54
According to Eq.(2.10 the conductivityo,, is expressed where
through the phonon Green'’s function with regard to screen- 5
ing. This means that we should sum up all the electron loops AD— Vo 5
(see Fig. 1connected by the effective interaction lines. Each BT ERYARS (5.9

such lineV(") can be represented as a sum of the phonon , _ , _
propagator and the Coulomb interaction integrated &vas VW€ Will show that MPR is determined by the last term in Eq.
is indicated in Sec. IV and expressed by E43). (5.4). In the approximation where E3.12) is satisfied, the

One should, however, observe the following import‘,jm,[differencel]R—HA is proportional to thes function so that
point. Both ends of a chaishould be ordinary phonon lines ©ON€ 9€ts
D without Coulomb interactionThis is due to the fact

in2 2
(mentioned in Sec. Jlthat the operatoX commutes with the Oy= — ' . f d q2 92 N(Nws)
electron-electron interaction operaf@ee Eq.(2.2)] as the TB*) (2m)° " 1—exp(—Nwg/T)
latter conserves the electron quasimomentum. YR ADa(Nww) — ADa(N 5.6
Let us introduce two quantities that we will need below. MADR(Nws) ANwe) ], .8
These are the bare Coulomb interaction where

1 g?aj3
_ ) 2 ;
K 5.0 RN—ZnSexp{ 54 (ag)“ cotha smf‘(j\/a)lA(szha

4me? (= dk exp(—k?12/2)
Votay - [ =

0
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is the negative residue di(® [Eq. (3.5] while A is the e B
number of the MPR peak. Finally -

2me NC2h? o rl r1
= sinh Set : :
O-XX 832060|kBT BZ | 2kBT \.7,/\/( (Ut) [8 (NwB)] //\”1 | NZ
(5.8 w, qj
or |
|
B wscnsczﬁz(wf— wtz) h xon SN |
T akaT B2 St ON@s— @) Tl ws), o .
(5.9 FIG. 2. Electron-phonon vertex with impurity line corrections

(dotted lines.
where J\(w) is given by Eq.(3.14. Thus instead of the

resonance conditiof8.13 determined by the frequenay,  Phonon dispersion rather than the damping paranieter a
one has the conditiofb.9) wherew, is replaced byw; . real situation, however, one can neglect all these shifts. At
The contributions of all the rest terms in E¢5.4) are the same time, the damping parameter determines the width
formally proportional to the expressions of the typé).  Of the resonance.
Therefore they vanish in this approximation. )
B. Electron damping I'¢
VI. FINITE WIDTH OF MPR LINE Now we turn to consideration of the electron damping
I'e. We will assume that the main mechanism of electron
relaxation is a short-range impurity scattering and validity of
We will start with taking into account the phonon damp- the following inequality:
ing. Finite optic-phonon damping is due to the decay of an <o 6.4)
. . . . e B . .
optic phonon into two acoustic ondsee Appendix A
Technically it can be taken into account by replacement As is shown by Laikhtman and Altshulérsee also Ref. 20
—w=+il in the retarded and advanced phonon Green functhe self-energy diagram is a periodic function of energy with
tions, respectively, wherE is the damping parameter. One the periodwg and has the following form:
can easily see that in such a case the MPR acquires a finite
width that results in the following replacement in E§.8)

A. Phonon dampingI’

S ME)=3[E-Nowg+i 42— (E—Nwg)?] (6.5

1 . .
Se H— —Imeg. (6.2) provided that|E—ANwg|<I'.. In this case the electron
7" Green’s function has a non-Lorentzian form with the charac-
Here teristic widthT", given by (see Ando and Uemuyd 2
1 w?— w? r 2= wg/2mr, (6.6
;ImSR_ 2T0f (Nwg— /w12+1~2)2+1~2' -2 where 7 is the relaxation time foB=0 obtained by assum-

ing the same scatterers.

Let us discuss the corrections to the vertex depicted in
Fig. 2. The renormalization of the vertex would be important

F2<w25. 6.3 if the index of the geometric progression were close to 1.
This would be the case for the resonant valuesefNwg

We see that according to E¢6.3) both the shift of the had one been able to neglect the dependence on the phonon
resonant maximum and its width are determined by the pawave vectorg. Later, of all the analytic expressions of the
rameterl’. In Appendix B we will show, however, that the diagram in Fig. 2, we will write only the relevant factors.
shift of the resonance frequency is in fact determined by th&hey are

This result is valid provided that

|
s f . P, (r)expliqry) i, (rq) ) |
N1N2 [E—leB—ENl(E)][E-i-w—/\/sz—ENZ(E—Fw)]

where an asterisk denotes a complex conjugation. the renormalization of the vertex, if relevant at all, brings a

Because of the orthogonality of the wave functions withfactor of the order of unity. For the order-of-magnitude esti-
different quantum numberd/ the index of the geometric mates it will be sufficient to use the Lorentzian form of
progression tends to zero as a power gbg)? when q I1®(w,q). Moreover, in the resonance approximation one
—0. It goes down provided thamég)? is big enough as should retain only the resonant term of all the series for
well. As the MPR is dominated byg@g)?~ it is clear that  1¥)(w,q)
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FIG. 3. 3D plot of the form and position of MPR maximum for

N=3 [Eq. (6.9)]. FIG. 4. Shift of the MPR maxima’s positions.

become delocalizedprovided one entirely neglects a pos-

N2 (w,q)=— RN(“’*Q? _ 6.7) sible role of the interfacgsWe emphasize that the efficiency
RAT o—Nog+il', of screening is in fact determined by the ratid'/T",. At
. . even lower concentrations the MPR oscillation disappears.
One can calculate the integral over frequency in GcP) As can be seen from numerical calculatitsee Figs. 4
for oy taking the residues mlthe poles=Nwg*il'e. This  and § when the electron concentratiog diminishes so that
results in replacement af(e ") by it becomes of the order afy,,,, the peak amplitudes at first

go down relatively rapidly. Then the resonances become

-1
AEE Ime, +2y (6.9 much less sharp and at the same time their positions are
T (2y+Im 8;1)2+(Res,§1)2’ ' shifted towards low frequencies. The typical shift is about
10% of the peak’s width—see Fig. 5. Such behavior of the
where resonant maximum is related to the fact that on the one hand
r 2 re? the resonance is due to the zerceof! at w,= Nwg while on
y=—; o= Ry Nwg,q). the other hand ~* has a maximum ab, , i.e., relatively far
w q away fromw, as compared td' andI'.. One should keep in

mind that as soon as Ile/Zy) reaches a value of the order

one can neglect the termydn the numerator of Eq(6.8). ofl,a cor_1tr|bL_Jt|on of the de_nommator of E@.8) '_[ha_t has_

When, however, Ina;Y2y<1, Eq. (6.8 has a large field- f[he opposite sign pecomes important and the principal field-
' » A oo independent term is partially cancelled. As a result, the MPR

independent term, which is usually omitted during anaIySiSmaximum is shifted not towards higher frequendias one

of the experimental data. Therefore in our numerical calcu- : :
lations, to get an idea about the position of the MPR maxi-Could have judged by the numerator of &6.8] but in the

Lok opposite directior(Fig. 4).
Tm we computed the derivative of E(.8 over o We would like to draw attention to the following point.
=Nwg.

... Brummelet al.in Ref. 8 discussing a possible role of screen-
It follows from_Elq.(6.8) that afte_ry has reached the criti- ing in 2D MPR, discarded this possibility for the reason it
cal value (1/2)e5~(wy)| the amplitude of the peak goes o4 be strongly temperature dependent. Howelsse
down while its position slightly moves—see Figs. 3 and 4. Itgqs (.8) and(6.9)] the positions and forms of the resonance
means that the shift of the resonance begins providedthat maxima are determined by the attenuation parameters that

For small values ofy, Eq. (6.8 turns into Imeg(w,) and

exceeds the characteristic vallig; given by depend on temperature but weakly in the relevant tempera-
ore?ann. T ture interygl. . S
oc= B s _ (6.9 In addition to the aforementioned limitation on the elec-
he, o~ tron concentration from below, there is also a limitation form

For ng~6x10° N=3 andI'~5 K this givesI'¢;~10K.

This estimate can be reformulated in a different way, as
the electron concentration goes down, the MPR peak shoulc
also go down. This imposes the following condition on the
electron concentration where such a decrease of the resona
peak begins:

1

0 262 266 70 274 278 262 Nup (em™))
exh(w—wy) T'e

Ns=Ngowr— ZwezaB ? -

For GaASNgou=2X10P%cm 2(I',/T). One can visualize
the physical meaning of the concentratiog,,,, in the fol-
lowing way. For low electron concentrations the screening FIG. 5. DerivativedA/d(Nwg) [see Eq.(6.8)] for y=0.001;
becomes inefficient. As a result, the MPR maximum we havey=0.003; andy=0.007 (from the upper curve downwardt w,
discussed goes dowisee below and the phonon itself can =270cm?, w;=300cnm?, andy=5cm ..
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above. To investigate it we calculate, as above, the integrdfrdich interaction by the free carriers. This is why the 2D
over frequencies in Eq5.9) for o, by taking the residues at case is much less favorable for observation of MPR at
the poles Nwg= w, than the 3D casésee Sec. VIl Forg.~1/ag, Eq.

N (6.12 can be written as
o=Nog+ (27 /q)R\(Q)ex (w).

N . _ _ 4metagon
For simplicity, we have discarded hel&,. This equation Fe>w_ (6.13
can be solved by iterations. In the lowest approximaiion e cks
=NwB. The next iteration is the second termca#NwB. This result is given in K. FomS: 4% 101° we get as an

Now, of all the serie$3.4) for I1®), we keep only the single order-of-magnitude estimate of several hundred K, whereas
resonant term. This can be justified if the imaginary part of4 o, for A’=3 is about 130 K. One can hardly expect the
the root we have obtained is smaller thag. This require-  MPR oscillation under these conditions. Indeed, in order to

ment can be formulated as observe a MPR peak in this frequency region at the electron
concentration typical for the nanostructures 10'°cm™2)
G Eoohi(w)—wy) wg 6.10 big values of the dampings are needed as well as large values
STV 2qefag I ' of wg . As has been indicated above, very small values of the

effective masses are favorable for such a situation. An alter-

For the values of parameters accepted above, the concefative way to reach the MPR resonancessat\” are small
tration on the right-hand side of E@l@ is electron concentrations.

ng~5x10' cm2

VIl. COMPARISON OF 2D AND 3D CASES
One can offer a simple physical interpretation for this limi- . . . .
tation. The MPR peaks are associated with transitions be- In the present section we are discussing the _followmg
tween one-electron levels. Naturally the e-e interaction thafmpPortant point. Why in the 3D case, where there is a free-

does not conserve the one-electron energy results in a broafl€ctron motion along thé-direction, does MPR not shift

ening of the one-electron levels. When the broadening bel@Wardsw;/A”? The shift exists provided that

comes of the order of interlevel distance, the MPR peaks Amre?

disappear. The oncoming degeneracy can enhance this pro- ST (w,0,) =1, (7.2
cess. Qualitatively such a concentrational dependeiittea &(w)q; 0=,

maximum at some intermediate concentraoovides a the- _

oretical interpretation of the results of Ref. 23. qc being of the order of Hg.

It is interesting to know as to whether under any circum-  The principal difference between the 2D and 3D cases is
stances the MPR oscillation exists for=/Nwg . Let us ana- N the singularity of 2D polarization operator existing pro-
lyze for this purpose the evolution of the MPR whepgoes ~ Vided one neglects the electron damping. In the 3D case the
Up. The term we were discussing above tends to zero. In theolarization operatod1®, because of dependence of the
region of magnetic fieldeg = w, /\'it is replaced by another electron energy on the projection of electron quasimomen-
resonant term emerging from(") [Eq. (5.4)]. Inserting ex-  tum on the magnetic fieldjg, has a finite amplitude and
pression forD(") into the equation foir,, [Eq. (5.6)] and width. For what follows it is sufficient to know its imaginary

using the identity parf
W~ Wy oy (3) _ \/;n ;{ 1 ’
— t_ ImIg (w,9,0g) = ——7—€Xp — 5 (gag)“ cotha
~ 7e.’ R (©,0,08) FHPE 2 (dag)
we get after some algebra E@®.13 with the replacement - (Nowg— 0)?
XNE exg————5—
1 I =—o (dgvT)
S(Nowg—w))— — . (6.1) 2 2,2
T (NwB_ /w|2_|_1'*2)2+1'*2 _ dg | q-aB ' (72)
8mT 2 sinha
This result is valid provided that ) )
Heren is the 3D electron concentrationy= 2T/m.
27e?(w,— wy) Under the MPR conditiolWwg= w, the integral oveqg
Fe> el R(Qc), (6.12 diverges logarithmically. The resulting logarithm is the big
) o parameter of the theory. The integral is dominated byyall
whereq is the characteristic value of from Y2 ml" up to V2 mT. Forgg~qr=muv/% the condi-
Mathematically this inequality is needed to suppress thgjon involving Eq.(7.1) can be rewritten as
loop diagrams that would be proportional to @4 Nwg
+i6) (without regard ofl".). This demands a large electron 47792&% r,
i is i i i T=< (7.3
damping.(It is interesting to note that this statement can be

related not only to MPR but to a number of other phenomena e=Ke (@1~ wy)

in 2D situation as one is allowed to ignore the electron loopgFor ag~7x 10" ' cm ?(N=3) we haveT<10 n; if one
when the damping is largeThe inequality(6.12 ensures the gives here the electron concentration in ¢none gets the
suppression. In this case one can neglect the screening of themperature in K. Thus to reach a relevant MPR temperature
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range, one needs the electron concentrations of the order of q,a
10*¥cm™3. However, such big concentrations are inevitably e
associated with the electron scattering by the doping impuri- ~
ties. Therefore all the 3D MPR experiments are performed at ~ 0,0
much lower concentrations. Thus for- g the effect we are T <
discussing is of no importance.

Considering the interval ofjg of the order ofy2mI,
one can use for the characteristic widthI&f>) the estimate ) ) .
\/T_l"el As a result, one will have on the left-hand side of FIG. 6. Decay of an optic phonon into two acoustic ones.

inequality (7.3) VTI's. The corresponding limitation on the . .
electron concentration is somewhat weaker than above bﬁgent .Of the MPR frequenC|e_s. It pe.rm|ts us, however, o
still rather difficult to satisfy. investigate various aspects of interaction of electrons belong-
This means that for the 3D case the MPR condition is "9 t0 @ quantum well with optic phonons as well as other
features of behavior of electrons in magnetic field.

\ \_ql a/
~2

Nowg=w). (7.9
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The advances in semiconductor nanofabrication and m 2ussian National Fund of Fundamental Rese#@tant No
terial science in recent years have made available materi%:7_02_18286_}1 '
of great purity and crystalline perfection. The essence o
electrical conduction in these structures is that the quantum
nature of the electron leaves its distinct trace in a macro- APPENDIX A: CALCULATION OF T’
scopic measurement. The electrical conduction and some

) The damping parametdr is determined by the lattice
other transport phenomena in such nanoscale structures aﬁq

harmonicity. It is given by the diagram in Fig. 6. Applying

been a focus of numerous investigations, both theoretical a e usual rules of the diagrammatic techniques we have

experimental, with a number of important discoveries an
even patent applications. In particular, the dicovery of MPR o 439" [Doan (09", —q")|2
in the quantum wells took placeAfter this first publication Mw)=—=— > f y ————
a number of papers appeared where various aspects of this 8p ;o ) (2m)° wwa(q)war(q')

hysical phenomenon were investigated. In the present paper ] ,
\?veyofferg theoretical interpretatioﬂ of a numbepr of epr:arin X o= 0a(q) = @ar(—q) J[N(wa) +1]
mental results. X[N(wgyr)+1]. (A1)

To summarize, in a polar semiconductor, mixed optic-

phonon-magnetoplasmon vibrations can be trapped within Blere the summation is over the three acoustic branches; an
guantum well. Such localized vibratioitgeract much more extra factor 1/2 is introduced in order not to take into account
effectivelywith the confined electrons of the quantum well the same terms twice.
than the bulk optic phonons. FBrperpendicular to the plane The diagram in Fig. 6 describes the decay of an optic
of quantum well and rather big electron concentratings ~ phonon into two acoustic ones belonging to the branehes
such vibrations are responsible for tiiagnetophonon reso- anda’. The corresponding anharmonic interaction is given
nanceoscillation of the conductivity of quantum wells. As a by the Hamiltonian(cf. Ref. 24
result, the phonon frequency determining the MPR is shifted
towardsw;. The interval of electron concentrations where (pSa)¥?,
MPR is observable is estimated and appears to be rather Hant= E E 20V
narrow. The estimates qualitatively coincide with the experi- aqaa

mental finding$® Outside this concentration interval one Xboaa'(q,Q"—Q'—Q)CoqC; ,c;,_ .
cannot observe MPR near,/N. To observe MPR ab, /N d 4
one needs structures with very small effective magstere X[wwa(q")war(q')] 1+ H.C., (A2)

big values ofwg can be achievedand unrealistically big ) o

electron damping or exceptionally low values of the electronVhere p is the mass densitys is the area of the quantum

concentrationn,. Unlike the 3D case, in the 2D caske  Well, boay are the so-called anharmonic coefficieritee

phonon damping often determines the MPR amplitude Ref. 24, Sec. § c,q is the operator of annihilation of an
We also show that the MPR in quantum wells for perpen-optic phonon, an«t;q is the operator of creation of acoustic

dicular orientation ofB is on practice not as universal as in phonon. Characteristic values of the acoustic phonon fre-

the 3D case. In particular, its investigation does not permit ugjuencies in the integrdEq. (A1)] are aboutw,/2. Then the

to obtain directly the electron’s effective mass by measureeharacteristic values @’ are of the order ofr/a, wherea,
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is the lattice constant. This means that the absolute vajues APPENDIX B: ROLE OF DISPERSION OF OPTIC
are much smaller thag'. This is why in Eq.(Al) q can be VIBRATIONS

replaced by 0. We start with the expression for the phonon propagator

According to Ref. 24, Sec. 7 we have the foI_Iowing _rO_UQhWith regard to the dispersiofneglecting the anisotropy of
order-of-magnitude estimate for the anharmonic Coeﬁ'c'emsdispersiom To take the dispersion into account one has to

2 replace in the denominators of E¢.2):
b ’ y ! y r— ~ y A3
| oaa' (0,9 q C])| ﬂqgg (A3) w0\ —,BZ(QZ-H(Z), (B1)

wheresis some average value of the sound velocity while ~ where has units of velocity and is equal for GaAs accord-
is ag-dependent dimensionless numerical factor determineihg to Ref. 26 4. K 10°cms L. Then
by the anharmonicity. Usually it is somewhat bigger than
unity.

For low temperatures

of =BG +K) —
of = AP+ k) —0?

g(w,q,K)=¢, (B2)
keT<fw;. (A4) Thus taking into account the nonhomogeneity alongzthe
direction, one is not allowed to take(w,q,k) out of the
integral overk in Eq. (4.3. Assuming for simplicity the
well's width to be much smaller thaag, one gets for the

Equation(Al) is temperature independent. Taking into ac-
count Eq.(A2) we get the following estimate:

nho, full propagator Eq(4.3), after integration ovek, the follow-
~ (A5)  ing additional term:
P8oS 2 2_ 2
. . . . .. 2mBe (0} — wt)
where 7 is a dimensionless numerical coefficient character- - ) (B3)
izing the anharmonicity. Its typical value is several units. We €o [(wxil)2— wf] \/wf— w?
do not believe that its theoretical calculations can at prese
. - L ere we have assumed that
provide sufficient accuracy because of a limited volume o
the well and a possible small lattice mismatch. This is why r
we think that the results of Ref. 25 are not directly applicable <l (B4)

in this case and that experimental determinatiot’ should @I

be more reliable. In other words, for the phonons trapped We have omitted here the terms proportional Itg that
near a quantum well can differ substantially frdirfor the ~ would have given an insignificant variation of the width of

bulk optic phonons. resonance. One can get the shift of the maximum by replace-
The damping parametd? goes up with temperature at ment
ht t hen the t ith B functi in Eq.

such temperatures when the terms with Bose functions in Eq F2—>F2+m,8/a3

(A1) begin to play a rolgcf. Ref. 25. This is one of the
sources of temperature dependence of the amplitude of MPR Eq. (6.2). Inserting the typical values of the parameters we
oscillation. see that the shift is of the order of 1 K.
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