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Theory of magnetophonon resonance in quantum wells
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In a polar semiconductor mixed optic phonon-magnetoplasmon vibrations can be trapped within a quantum
well. Such localized vibrations effectively interact with the confined electrons of the quantum well. We
demonstrate that these excitations can be responsible for the magnetophonon resonance oscillation of the
conductivity of quantum wells, i.e., phonon-induced resonant transitions of electrons between the Landau
levels. The frequency of the mixed vibrations is shifted, due to the screening effects, towards the frequency of
transverse optic vibrationsv t . This can explain the observed shift of the magnetophonon resonance in quan-
tum wells. We give theoretical considerations to determine a~rather narrow! interval of electron concentrations
where a two-dimensional magnetophonon resonance is observable.
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I. INTRODUCTION

Magnetophonon resonance~MPR! is the first internal
resonance in solids that has been predicted theoretically
subsequently observed experimentally~see the review
paper1!. The resonant condition is met every time when t
limiting frequency of an optical phonon equals the cyclotr
frequency of an electron,vB5eB/mc, times some small in-
tegerN. Since its theoretical prediction2 and subsequent ex
perimental discovery3,4 MPR has become a powerful tool t
investigate the electron spectra in semiconductors.

First observation of MPR in a quantum well was report
by Tsuiet al. in their pioneering paper.5 They observed MPR
in a single interface heterojunctions and heterojunction
perlattices. Later on the effect was studied by Englertet al.,6

Kido et al.7 and Brummelet al.8

The purpose of the present paper is to work out a the
of MPR in quantum wells, to provide explanation for th
existing experimental data and make predictions for fut
experiments. We will consider the situation where the wel
so narrow that only one electron band of spatial quantiza
is filled. The magnetic fieldB is assumed to be perpendicul
to the plane of the well and parallel toz axis while the ex-
ternal electric field is oriented alongx axis. We will calculate
the sxx component of the conductivity tensor. This is th
transport coefficient relating the two-dimensional~2D! cur-
rent density~averaged over the width of the well! to the
applied electric field. The electron states are characterize
the Landau quantum number and by the coordinate of
center of Landau oscillatorX. As is well known9 in the ab-
sence of electron collisions with the impurities and phono
sxx50. This means that one gets a finite expression forsxx
only by taking into account various scattering mechanism
electrons. We will consider the Fro¨lich10 interaction between
the conduction electrons and polarization optic phonons.

We will show that there is an essential difference betwe
the MPR in 3D and 2D structures. In the 3D case the re
nant frequenciesv res are equal tov l /N, i.e., are determined
by v l , the frequency of the longitudinal optical phonon. T
PRB 620163-1829/2000/62~23!/15913~12!/$15.00
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the contrary, in the 2D structures the resonance frequen
are expressible with adequate accuracy throughv t , the fre-
quency of the transverse-optic phonon. This agrees wit
number of experimental data~for instance, Ref. 8!. In the
present section we will give some phenomenological con
erations concerning the special features of screening of
polarization phonon potential by the 2D electron gas. Th
enable one to provide explanation as to why the reson
frequency is shifted fromv l /N to v t /N.

As the x component of the current is proportional to th
probability of scattering one can write for it

j x}(
nn8

uMnn8u
2f ~en!@12 f ~en8!#d~en2en82\v l !.

~1.1!

HereMnn8 is the matrix element of the electron-optic phon
interaction,f (en) is the distribution function of the electro
with the energyen . Futher on we will neglect the electro
degeneracy. In this approximation, the lowest in the electr
phonon interaction, one can expect that the MPR takes p
provided the energy difference between a pair of elect
levelsen2en85N\vB coincides with the optic-phonon fre
quency v l . Then the current will be proportional to
d(NvB2v l). This is a system ofd-like spikes. Consider
now the electron-electron~e-e! interaction, both brought
about by an exchange of optic phonons and a direct Coulo
repulsion. We wish to check as to whether the e-e interac
can be treated for 2D systems as a small perturbation. A
well known ~Ref. 11, Sec. 43!, the variation of transition
probability due to a perturbationV in the second order of the
perturbation theory is

dw5
2p

\

1

~NvB2v res!
2

3 (
n,n8

f ~en!uVnn8Vn8nu2d~en2en82\v res!.

~1.2!
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Near the resonance wherev res'NvB this variation is by no
means small.~In 3D case the electron spectrum depends
the z component of the quasimomentum, which means
extra integration of the denominator over the intermedi
states. This, as is shown in Sec. VII, drastically changes
whole situation.!

Let us discuss the role of the screening in propagation
a phonon. To take into account the screening of the Fro¨lich10

interaction phenomenologically we write the Poisson eq
tion

«~v!¹2w524pedn, ~1.3!

where

«~v!5«`

v l
22v2

v t
22v2 , ~1.4!

«` is the high-frequency dielectric susceptibility,w is the
electrostatic potential,dn is the variation of the electron con
centration that is a linear response to the phonon pertu
tion. Under the resonance conditions this variation should
greatly enhanced. One can representdn in the following
form:

dn5C^1uw~z!u1&
c1

2~z!exp~ iqr !

NvB2v2 id
, ~1.5!

whered.0,d→0,c1(z) is the wave function of transvers
quantization of the first band in the quantum well,q is the
wave vector parallel to the plane of the well,C is a function
of q; its actual form is at the moment of no importance f
us.

The denominator in Eq.~1.5! reflects the fact that an elec
tron performing circular motion within the plane of the qua
tum well perpendicular toB is perturbed by the optic lattice
wave. If the frequency of the wave is a multiple ofvB we
have a resonant transition. The transition matrix element
to the factor exp(iqr ) does not vanish forany integerN that
is in fact the difference of the Landau quantum numbers
initial and final electron states. This is why multiple magn
tophonon resonances are allowed.

The solution of Eq.~1.3! has the form

w~z!5w0 exp~ iqr !E dz8c1
2~z8!exp~2quz2z8u!,

~1.6!

where q5Aqx
21qy

2. This is a plane wave localized withi
the well; the corresponding potential falls off exponentia
outside the well12,13 @see Eq.~4.6!#. The qualitative physica
picture does not in fact depend on the value of parameterqa,
wherea is the width of the well. Therefore further on in th
section we will discuss the caseqa!1. Then the matrix el-
ement on the right-hand side of Eq.~1.5! can be easily cal-
culated and is equal tow0 .

In order for Eq.~1.6! to be a solution it is necessary that
dispersion relation should be satisfied. Indeed,

¹2w522qc1
2~z!w0 exp~ iqr !.

Inserting¹2w into Eq. ~1.3! we get the following dispersion
relation:
n
n
e
e

f

-

a-
e

e

f
-

«~v res!1
2pe2

q

C

v res2NvB1 id
50. ~1.7!

We are interested in solution of this equation near a re
nance where the denominatorv res2NvB is small. It is only
in this region that our approximation~1.5! is valid. Such a
solution exists only ifv t is close toNvB @see Eq.~1.4!#.
Thus the transition takes place due to a dressed vibra
having frequency aboutv t rather than a bare optic vibration
This means that the resonant peaks are centered nea
valuesNvB5v t . The form of the resonance is investigate
in detail in Sec. VI~see also Sec. V!.

We will show that in the 2D case in polar semiconducto
the interaction between the bulk optic phonons and confi
electrons leads to a dynamic screening of the optic-pho
potential. As a result, a mixed phonon-plasmon vibration c
be localized within a quantum well~Sec. IV!. Due to the
screening effects such vibration is localized even for the c
where one can neglect the difference between the lat
properties within and outside the well. The frequency of t
mixed vibrations is shifted towards the frequency of tran
verse optic vibrationsv t . This can explain the observed shi
of the magnetophonon resonance in quantum wells.

As long as the MPR maxima are at the pointsv t /N their
widths are determined by the phonon damping~Sec. VI A!.
The optic-phonon damping is comparatively large even
low temperatureskBT!\v res. The main process responsib
for the damping is the decay of an optic phonon into tw
acoustic ones~investigated in Appendix A!. The damping
parameterG depends on the anharmonic coefficients. Th
are sensitive to the perfection of the lattice and, as a rule,
difficult to make even order-of-magnitude estimates of the
G, however, can be in principle measured on experiment,
instance, by Raman scattering of light. Its most proba
values range from several K up to several tens of K. Anot
important point is thatG within the relevant temperature in
terval is practically temperature independent.

There can be some competition between the pho
dampingG and the electron dampingGe resulting in a shift
of v res. This competition, however, does not amount to
direct comparison of the two quantities. As soon as the e
tron damping reaches a critical valueGec ~Sec. VI B! that, in
its turn, depends on the product of the phonon damping
the electron concentration, the MPR maxima begin to s
towards the frequencies slightly lower thanv t . Simulta-
neously their heights go down. The shift is not too big b
can be experimentally discernible. If the electron concen
tion goes down or the phonon damping goes up the M
oscillation entirely disappears. In order to see the MPR p
in the frequency regionv l /N at the values of electron con
centration typical for the nanostructures (;1010cm22) large
values of the damping are necessary and therefore large
ues ofvB . Very small values of the effective masses are a
favorable for such situations. An alternative way to rea
resonances atv l /N are very small electron concentration
~of the order of 108 cm22)—see Eq.~6.3!.

All these features are characteristic of a 2D case. As
dicated above, in the 3D case the electron spectrum dep
on the z component of the quasimomentumk. This, as is
shown in Sec. VII, changes the whole situation. In the
case the screening may play a role in calculation ofsxx only
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at comparatively low temperatures where the MPR canno
observed under the usual conditions.

II. GENERAL EQUATIONS

To calculate thex component of the dc current it is con
venient to consider the motion of a Landau oscillator a
whole. The conductivitysxx in the plane of the quantum
well is given by~see Ref. 9!

sxx5
e2

2T E
2`

`

dt^Ẋ~0!Ẋ~ t !&, ~2.1!

whereX is the operator of coordinate of the center of Land
oscillator in the Heisenberg representation. It commutes w
the free-electron HamiltonianH in magnetic fieldB as well
as with the operator of Coulomb electron-electron inter
tion. This is a consequence of the quasimomentum con
vation in electron-electron collisions. Here^Ẋ(0)Ẋ(t)& is the
ensemble-averaged correlation function between the ve
ties of the centers of Landau oscillators. In the present
the following sections we will assume\51, kB51, and will
restore these symbols only in the resulting formulas.

Now

Ẋ~ t !5(
s

E c†~r ,s!i @H,X#c~r ,s!d3r

5(
s

c

eBE c†~r ,s!
]Û

]y
c~r ,s!d3r . ~2.2!

Herec is the operator of the electron wave function whileÛ
is the operator of phonon field interacting with the electro
For the time being we consider it as an external random fi
later on we will average over all realizations of this field. T
expression forsxx can be presented in such a form~we re-
mind that we calculate the conductivity averaged over
width of the well!

sxx5
e2

2T S c

eBD 2E
2`

`

dtE d2q

~2p!2 E dz

3E dz8
q2

2
^Û2q~0,z8!Ûq~ t,z!&. ~2.3!

We made use of the quasimomentum conservation along
plane of the quantum well. It is convenient to repres
Ûq(t,z) as @see Eq.~2.2!#

Ûq~ t,z!5n̂q~ t,z!U~ t,z!,

wheren̂q is a Fourier component of the electron-density o
erator. Equation~2.3! should be averaged over the ensemb
including averaging over the phonon field. It can be p
formed in two steps. As the first step, we average over
phonon fields in the density matrix by connecting the fact
Û2q(t1 ,z8) and Ûq(t2 ,z) pairwise. During the second ste
we average the two phonon fields that are present explic
in Eq. ~2.3!. As a result, the correlation functio

^Û2q(t1 ,z8)Ûq(t2 ,z)& can be presented in the form
e

a
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ci-
d

.
d;

e

he
t

-
,
-
e
s

ly

^Û2q~0,z8!Ûq~ t,z!&5^U2q~0,z8!Uq~ t,z!&

3^n̂2q~0,z8!n̂q~ t,z!&. ~2.4!

Now,

^n̂2q~0,z8!n̂q~ t,z!&5(
m,l

wl exp~2 iv lmt !^mun̂2q~0,z8!u l &

3^ l un̂q~0,z!um&, ~2.5!

where wl is the probability of occupation of the quantu
statel while l, m are the exact quantum states of the electr
phonon system as a whole. This correlation function is
pressible through exact electron polarization operator, i.e

^n̂2q~z8!n̂q~z!&v5 i @PR~v,z8,z!

2PA~v,z8,z!#
1

12exp~2v/T!
.

~2.6!

Here PR(v,z8,z)@PA(v,z8,z)# is the retarded@advanced#
polarization operator that has analytical properties of a bo
Green function. Accordingly one has~see Ref. 14, Sec. 36!

PR~v,z8,z!5(
m,l

wl

^mun̂~0,z8!u l &^ l un̂~0,z!um&
v2v lm1 id

3@12exp~2v lm /T!#. ~2.7!

As a result,

^Û2q~0,z8!Ûq~ t,z!&5E dv

2p
^n̂2q~z8!n̂q~z!&v

3^Û2q~2v,z8!Ûq~v,z!&.

~2.8!

One can average over the phonons in the same way. We

^Û2q~2v,z8!Ûq~v,z!&52 iN~v!@DR~2v!2DA~2v!#.
~2.9!

Here DR(DA) are the exact retarded~advanced! phonon
Green functions, andN(v) is the Bose function. We assum
that the lattice properties of both components of the hete
structure are practically the same. This means, in particu
that the phonon Green’s function in the zeroth approximat
should depend on the difference of spatial coordinates.

Inserting Eq.~2.9! into Eq. ~2.3! for sxx we get

sxx5
e2

4T S c

eBD 2E
2`

` dv

2p E d2q

~2p!2

3E dzE dz8
q2N~v!

12exp~2v/T!

3@DR~2v!2DA~2v!#@PR~v;z8,z!2PA~v;z8,z!#.

~2.10!

In the lowest approximation of the perturbation theory w
have
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DR,A
0~q!~v!5u^1uÛqu0&u2

1

2 S 1

v2v l6 id
2

1

v1v l6 id D ,

~2.11!

whereu0& and u1& indicate the states with 0 and 1 optic ph
non. For the Fro¨lich interaction10

u^1uÛqu0&u25
4pe2

q2«c
, ~2.12!

where

1

«c
5

1

«`
2

1

«0
.

Here «0 and «` are the dielectric susceptibilities forv→0
andv→`, respectively.

Inserting Eq.~2.12! into Eq. ~2.10! we get for the 3D
space homogeneous case in the lowest approximation in
electron-phonon interaction

sxx5
4pe2c2v l

TB2«c

3E d2q dk

~2p!3

q2

q21k2

N~v l !

12exp~2v l /T!

3Im PA~v l ,q,k!. ~2.13!

This equation was obtained by Gurevich and Firsov in R
2.

III. NAI¨VE PERTURBATION APPROACH IN 2D CASE

To begin with, we will consider a well where the ele
trons are confined by a parabolic potential

U~z!5
m

2
v0

2z2. ~3.1!

It will be seen that such an assumption facilitates the ca
lations without seriously affecting the result in the gene
case. We assume that the interlevel distance between
oscillator levels satisfies the condition\v0@T, so that only
the 2D band associated with the lowest vibrational leve
occupied.

Our problem is spatially inhomogeneous along thez di-
rection. Accordingly, we introduce the coordinates

Dz5z12z2 , Z5~z11z2!/2. ~3.2!

The correspondingz components of the quasimomentum w
will denote byk andK. Then

PR~v,q,z1 ,z2!5c1~z1!c1~z2!PR
~2!~v,q!, ~3.3!

wherePR
(2)(v,q) is the 2D polarization operator calculate

by Gurevich and Shtengel13 ~see also Sondheimer an
Wilson15! that is given by
he

f.

-
l

the

s

PR
~2!~v,q!522ns expF2

1

2
~qaB!2 cotha G

3 (N52`

`
sinhNa

v2NvB1 id
I NS q2aB

2

2 sinha D .

~3.4!

HereaB
25c\/eB, ns is the 2D electron concentration

ns5
1

p
aB

22 cosh~\V0/2kBT!

sinh~\vB/2kBT!

3expS m

kBT
2

\v0

2kBTD ; a5
\vB

2kBT
. ~3.5!

\V0 is the difference between the two electron spin le
positions. We wish to emphasize thatPR

(2)(v,q) is a purely
2D polarization operator depending neither onk nor on K.
For a well of parabolic form we have

PR~v,q!5exp~2A/2!PR
~2!~v,q!, ~3.6!

where

A5k2l 21 1
4 K2l 2 ~3.7!

~here l 51/Amv0 is the amplitude of the zero-point vibra
tions!.

Now we embark on calculation ofsxx for a quantum well.
As in the zeroth approximation in the electron-phonon int
action the phonon Green’s function is spatially homogene
and the polarization operator atK50 enters the equation fo
sxx . However, as thez component of the electron’s quas
momentum is not conserved one should integrate over all
k. As a result, the electron-phonon interaction is

V~2!~q!5
4pe2v l

«c
E

2`

` dk

2p

exp~2k2l 2/2!

k21q2 . ~3.8!

One can easily see that if the characteristic values ofk2l 2 are
much smaller than 1 the exponent in the integrand can
replaced by 1 and one gets the standard expression fo
2D electron-phonon interaction

V~2!5
2pe2v l

«cq
. ~3.9!

Physically this case means a weak variation of the effec
electron-phonon interaction over the width of the well. Ta
ing into consideration the asymptotic behavior ofI N as well
as the exponential factor in Eq.~3.4! the inequalityq2aB

2

!1 can be rewritten as

l !
sinh~vB/4T!

Asinh~vB/2T!
aB . ~3.10!

For arbitrary relations betweenl andaB :

V~2!~q2!5
2pe2v l

«cq
exp~q2l 2/2!@12F~ql /& !#,

~3.11!

whereF(x) is the error function:
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F~x!5
2

Ap
E

0

x

dt exp~2t2!.

Our purpose is to investigate the magnetophonon re
nance. This means that we are interested in the situa
where the integral overv in Eq. ~2.10! is dominated by the
frequencies satisfying the inequality

uNvB2vu!vB . ~3.12!

Then one can retain in Eq.~3.4! a single term withN
'v/vB while ImPR(vl) is proportional tod(NvB2v l) and
we have

sxx5
2pnsc

2\2

kBT B2 sinh
NvB

2kBT
d~NvB2v l !JN~vB!,

~3.13!

JN~v!5E d2q

~2p!2 q2I NS aB
2q2

2 sinh
\v

2kBT
D

3expF2
aB

2q2

2
cothS \vB

2kBTD GV~2!~q2!.

~3.14!

Equation~3.13! exhibits a number ofd-like resonant spikes
Such sharp spikes originate in the fact that in the one-b
approximation of 2D situation the only type of electron m
tion is their quantized motion in the magnetic field. A com
parison with the 3D case shows that instead ofd(NvB
2v l) there appears a resonant factor

1

ApqBvT

expF2
~NvB2v l !

2

~qBvT!2 G , ~3.15!

whereqB is the component of the wave vector parallel toB.
A logarithmic form of the resonant peak insxx is due to the
electron motion along the magnetic field.

When inequality~3.10! is satisfied one can easily give a
estimate of integralJN . We have

JN~v!5
&e2v l

«caB
3 S sinh

v

2kBTD 3/2E
0

`

dxAxIN~x!

3expS 2x sinh
v

2kBT
coth

vB

2kBTD . ~3.16!

Below we will see~Sec. VI! that in fact Eq.~3.13! is
never valid in the 2D case under the assumptions it has b
derived. One feels that in fact the collisional broaden
should always play a role. We will not discuss the broad
ing of the MPR peaks in this case as the problem has b
investigated in detail in Ref. 16. We will see, however, th
the width of the Landau levels necessary to get the re
~3.13! may reach several hundred K forns slightly exceeding
1010cm22.
o-
on

d

en
g
-

en
t
lt

IV. BARE ELECTRON-PHONON INTERACTION

In this section we will show how to take into conside
ation the screening in a quantum well where one 2D ban
occupied. This will result in a shift of the magnetophon
resonant frequencies fromv l towardsv t . We will take into
consideration the Fro¨lich electron-phonon interaction
screened by the conduction electrons of the quantum w
Following Ref. 17, one should add to the phonon propaga
D (0) the Coulomb electron-electron interaction 4pe2/(q2

1k2)«` . Then the full propagator in the zeroth approxim
tion is

F5D ~0!1
4pe2

~q21k2!«`
5

4pe2

q2«~v!
, «~v!5«`

v l
22v2

v t
22v2 .

~4.1!

We remind thatv t
25v l

2(12«` /«c).
Now we should surmise as to how to treat a spatia

inhomogeneous situation with a quantum well. Assum
that the gas approximation is valid, it is sufficient to sum
the loop diagrams depicted in Fig. 1. To avoid excess
proliferation of notation we will indicate here only thek
dependence, i.e., the dependence on thez component of the
electron quasimomentum.

Introducing Fourier components regarding the sum a
difference variables introduced in Eq.~3.2! one comes to the
conclusion that the diagram in Fig. 1 corresponds to the
lowing analytical expression:

E dk1 dk2 dk3 ,...,F~k1!PS k11k2

2
,k12k2D

3F~k2!PS k21k3

2
,k22k3DF~k3!... . ~4.2!

Here the first argument ofP is the Fourier component of th
difference of coordinates while the second argument is
Fourier component of the sum of coordinates. It follow
from Eqs.~3.6!, ~3.7!, and~4.2! a factorization of the depen
dence on quasimomenta. In other words, we get a geom
progression with the indexP (2)(q,v)V( f )(q,v) where

VR,A
~ f ! ~v,q!5

4pe2

«R,A~v!
E

2`

` dk

2p

exp~2k2l 2/2!

k21q2 . ~4.3!

This means that to calculatesxx for a quantum well where
only the lowest 2D band is occupied it is sufficient to sol
the problem where 2D electrons interact with each other
the potentialV( f ).

We emphasize that the potentialV( f )(q,v) is practically
independent of the form of the well. If the condition~3.10! is
satisfied,V( f )(q,v) does not depend on the form of the we
at all. However the difference remains small even forkl
;1. One can see it from Ref. 13 for a well with infinitel
high rectangular walls. Indeed, for the model adopted in R

FIG. 1. A chain of electron loops connected by the phonon lin
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13, using phenomenological considerations, the follow
equation forV( f )(q,v) was obtained:

V~ f !~q,v!5
2pe2

q«~v!
f ~qa!, ~4.4!

where
f

en
r i

wo
g

y
a
s

ce

en
op
ch
no

n
s

w

g
f ~q!5~4/a2!E

2a/2

a/2

dzE
2a/2

a/2

dz8 cos2~pz/a!cos2~pz8/a!

3exp~2quz2z8u!. ~4.5!

Herec1(z)5A2/a cos(pz/a) entering this and the following
equation is the wave function of transverse quantization c
responding to the lowest level. The space and time dep
dence of electrostatic potential accompanying the locali
phonon propagation is
w5f0 exp@ i ~qr2vt !#3H exp~qa/2!$@11~a2q2/2p!cos2~pz/a!#2cosh~qz!%, uzu<a/2

sinh~qa/2!exp@q~a/22uzu!#, uzu>a/2
. ~4.6!
ces
er

ld
the

non
are

gets

q.
The exact formulas forf (q) should depend on the form o
the confining potential through the wave functionc1(z).
However, the difference between various confining pot
tials is in general not too big and the asymptotic behavio
the same

f ~q!5H 1, qa!1

2/qa, qa@1.
~4.7!

In fact such heterostructures as GaAs-GaxAl12xAs can
exhibit a two-mode behavior, i.e., existence of pairs of t
differentv l andv t optic frequencies in the materials makin
the heterostructure~such as GaAs and GaAlAs!. The reflec-
tivity experiments~for instance, Ref. 18! show behavior of
such a sort. This fact, however, should not change the ph
cal situation in regard to the localization. Indeed, the loc
ization of an optic phonon within the quantum well becau
of the screening can be only enhanced due to the existen
the interfaces.

V. MPR IN QUANTUM WELLS

According to Eq.~2.10! the conductivitysxx is expressed
through the phonon Green’s function with regard to scre
ing. This means that we should sum up all the electron lo
~see Fig. 1! connected by the effective interaction lines. Ea
such lineV( f ) can be represented as a sum of the pho
propagator and the Coulomb interaction integrated overk as
is indicated in Sec. IV and expressed by Eq.~4.3!.

One should, however, observe the following importa
point. Both ends of a chainshould be ordinary phonon line
D (0) without Coulomb interaction. This is due to the fact
~mentioned in Sec. II! that the operatorX commutes with the
electron-electron interaction operator@see Eq.~2.2!# as the
latter conserves the electron quasimomentum.

Let us introduce two quantities that we will need belo
These are the bare Coulomb interaction

V0~q!5
4pe2

«`
E

2`

` dk

2p

exp~2k2l 2/2!

k21q2 ~5.1!
-
s

si-
l-
e
of

-
s

n

t

.

and the zero-order phonon propagator~without regard of
Coulomb interaction, except for the electron-phonon verti
AV(2)(q) that it is convenient to include into a zero-ord
phonon line!

DR,A
~0! ~v!5

1

2
V~2!~q!S 1

v2v l6 id
2

1

v1v l6 id D .

~5.2!

If one had the full interaction in all the vertices one wou
have had as a result of summation of the progression
following equation for the full propagatorD ( f ):

DR,A
~ f ! 5

VR,A
~ f !

11VR,A
~ f ! PR,A

~2! . ~5.3!

The outer lines, however, should represent only the pho
propagators. It is convenient to add to the outer lines the b
Coulomb interactionsV0(q) to get the full linesD ( f ) and
then to subtract the same interactions. As a result, one
instead of Eq.~5.3!:

DR,A
~ f ! 2V01

2V0V~ f !

P211V~ f !2DD, ~5.4!

where

DD5
V0

2

P211V~ f !. ~5.5!

We will show that MPR is determined by the last term in E
~5.4!. In the approximation where Eq.~3.12! is satisfied, the
differencePR2PA is proportional to thed function so that
one gets

sxx52
ic2

T B2 E d2q

~2p!2 q2
N~NvB!

12exp~2NvB /T!

3RN@DDR~NvB!2DDA~NvB!#, ~5.6!

where

RN52ns expF2
1

2
q2~aB!2 cothaGsinh~Na!I NS q2aB

2

2 sinha D
~5.7!
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is the negative residue ofP (2) @Eq. ~3.5!# while N is the
number of the MPR peak. Finally

sxx5
2p«cnsc

2\2

«`
2 v lkBT B2 sinh

\v t

2kBT
JN~v t!d@«21~NvB!#

~5.8!

or

sxx5
p«cnsc

2\2~v l
22v t

2!

«`v tv lkBT B2 sinh
\v t

2kBT
d~NvB2v t!JN~vB!,

~5.9!

where JN(v) is given by Eq.~3.14!. Thus instead of the
resonance condition~3.13! determined by the frequencyv l
one has the condition~5.9! wherev l is replaced byv t .

The contributions of all the rest terms in Eq.~5.4! are
formally proportional to the expressions of the type«d~«!.
Therefore they vanish in this approximation.

VI. FINITE WIDTH OF MPR LINE

A. Phonon damping G

We will start with taking into account the phonon dam
ing. Finite optic-phonon damping is due to the decay of
optic phonon into two acoustic ones~see Appendix A!.
Technically it can be taken into account by replacemenv
→v6 iG in the retarded and advanced phonon Green fu
tions, respectively, whereG is the damping parameter. On
can easily see that in such a case the MPR acquires a
width that results in the following replacement in Eq.~5.8!

d~«21!→ 1

p
Im «R . ~6.1!

Here

1

p
Im «R5

v l
22v t

2

2pv t

G

~NvB2Av t
21G2!21G2

. ~6.2!

This result is valid provided that

G2!vB
2. ~6.3!

We see that according to Eq.~6.3! both the shift of the
resonant maximum and its width are determined by the
rameterG. In Appendix B we will show, however, that th
shift of the resonance frequency is in fact determined by
ith
n

c-

ite

a-

e

phonon dispersion rather than the damping parameterG. In a
real situation, however, one can neglect all these shifts.
the same time, the damping parameter determines the w
of the resonance.

B. Electron damping Ge

Now we turn to consideration of the electron dampi
Ge . We will assume that the main mechanism of electr
relaxation is a short-range impurity scattering and validity
the following inequality:

Ge!vB . ~6.4!

As is shown by Laikhtman and Altshuler19 ~see also Ref. 20!
the self-energy diagram is a periodic function of energy w
the periodvB and has the following form:

SN~E!5 1
2 @E2NvB6 iA4Ge

22~E2NvB!2# ~6.5!

provided that uE2NvBu!Ge . In this case the electron
Green’s function has a non-Lorentzian form with the char
teristic widthGe given by ~see Ando and Uemura!21,22

Ge
25vB/2pt, ~6.6!

wheret is the relaxation time forB50 obtained by assum
ing the same scatterers.

Let us discuss the corrections to the vertex depicted
Fig. 2. The renormalization of the vertex would be importa
if the index of the geometric progression were close to
This would be the case for the resonant values ofv;NvB
had one been able to neglect the dependence on the ph
wave vectorq. Later, of all the analytic expressions of th
diagram in Fig. 2, we will write only the relevant factor
They are

FIG. 2. Electron-phonon vertex with impurity line correction
~dotted lines!.
(N1N2

E d2r 1

cN1
~r1!exp~ iqr1!cN2

~r1!

@E2N1vB2SN1
~E!#@E1v2N2vB2SN2

* ~E1v!#
,

a
ti-

of
ne
for
where an asterisk denotes a complex conjugation.
Because of the orthogonality of the wave functions w

different quantum numbersN the index of the geometric
progression tends to zero as a power of (qaB)2 when q
→0. It goes down provided that (qaB)2 is big enough as
well. As the MPR is dominated by (qaB)2;N it is clear that
the renormalization of the vertex, if relevant at all, brings
factor of the order of unity. For the order-of-magnitude es
mates it will be sufficient to use the Lorentzian form
P (2)(v,q). Moreover, in the resonance approximation o
should retain only the resonant term of all the series
PR

(2)(v,q)
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PR
~2!~v,q!52

RN~v,q!

v2NvB1 iGe
. ~6.7!

One can calculate the integral over frequency in Eq.~5.9!
for sxx taking the residues in the polesv5NvB6 iGe . This
results in replacement ofd(«21) by

D[
1

p

Im «A
2112g

~2g1Im «A
21!21~Re«A

21!2 , ~6.8!

where

g5
Ge

v̄
; v̄5

2pe2

q
RN~NvB ,q!.

For small values ofg, Eq. ~6.8! turns into Im«R(vt) and
one can neglect the term 2g in the numerator of Eq.~6.8!.
When, however, Im«A

21/2g!1, Eq. ~6.8! has a large field-
independent term, which is usually omitted during analy
of the experimental data. Therefore in our numerical cal
lations, to get an idea about the position of the MPR ma
mum, we computed the derivative of Eq.~6.8! over v
5NvB .

It follows from Eq.~6.8! that afterg has reached the criti
cal value (1/2)u«A

21(v t)u the amplitude of the peak goe
down while its position slightly moves—see Figs. 3 and 4
means that the shift of the resonance begins provided thaGe
exceeds the characteristic valueGec given by

Gec5
2pe2aBns

\«`

G

v l2v t
. ~6.9!

For ns;631010, N53 andG;5 K this givesGec;10 K.
This estimate can be reformulated in a different way,

the electron concentration goes down, the MPR peak sh
also go down. This imposes the following condition on t
electron concentration where such a decrease of the reso
peak begins:

ns&ndown[
«`\~v l2v t!

2pe2aB

Ge

G
.

For GaAsndown'231010cm22(Ge /G). One can visualize
the physical meaning of the concentrationndown in the fol-
lowing way. For low electron concentrations the screen
becomes inefficient. As a result, the MPR maximum we h
discussed goes down~see below! and the phonon itself can

FIG. 3. 3D plot of the form and position of MPR maximum fo
N53 @Eq. ~6.8!#.
s
-

i-

t

s
ld

ant

g
e

become delocalized~provided one entirely neglects a po
sible role of the interfaces!. We emphasize that the efficienc
of screening is in fact determined by the rationsG/Ge . At
even lower concentrations the MPR oscillation disappear

As can be seen from numerical calculation~see Figs. 4
and 5! when the electron concentrationns diminishes so that
it becomes of the order ofndown, the peak amplitudes at firs
go down relatively rapidly. Then the resonances beco
much less sharp and at the same time their positions
shifted towards low frequencies. The typical shift is abo
10% of the peak’s width—see Fig. 5. Such behavior of
resonant maximum is related to the fact that on the one h
the resonance is due to the zero of«21 at v t5NvB while on
the other hand«21 has a maximum atv l , i.e., relatively far
away fromv t as compared toG andGe . One should keep in
mind that as soon as Im(«A

21/2g) reaches a value of the orde
of 1, a contribution of the denominator of Eq.~6.8! that has
the opposite sign becomes important and the principal fie
independent term is partially cancelled. As a result, the M
maximum is shifted not towards higher frequencies@as one
could have judged by the numerator of Eq.~6.8!# but in the
opposite direction~Fig. 4!.

We would like to draw attention to the following poin
Brummelet al. in Ref. 8 discussing a possible role of scree
ing in 2D MPR, discarded this possibility for the reason
would be strongly temperature dependent. However@see
Eqs.~6.8! and~6.9!# the positions and forms of the resonan
maxima are determined by the attenuation parameters
depend on temperature but weakly in the relevant temp
ture interval.

In addition to the aforementioned limitation on the ele
tron concentration from below, there is also a limitation for

FIG. 4. Shift of the MPR maxima’s positions.

FIG. 5. Derivative]D/](NvB) @see Eq.~6.8!# for g50.001;
g50.003; andg50.007 ~from the upper curve downward! at v t

5270 cm21, v l5300 cm21, andg55 cm21.



gr
t

o

c

i-
b
h
oa
b
ak
p

m

t
r

th

n
b
en
p

f

D
at

eas
e
to

tron

lues
the
ter-

ing
ee-
t

s is
o-
the
e

en-

y

ig

ture

PRB 62 15 921THEORY OF MAGNETOPHONON RESONANCE IN . . .
above. To investigate it we calculate, as above, the inte
over frequencies in Eq.~5.9! for sxx by taking the residues a
the poles

v5NvB1~2pe2/q!RN~q!«A
21~v!.

For simplicity, we have discarded hereGe . This equation
can be solved by iterations. In the lowest approximationv
5NvB . The next iteration is the second term atv5NvB .
Now, of all the series~3.4! for P (2), we keep only the single
resonant term. This can be justified if the imaginary part
the root we have obtained is smaller thanvB . This require-
ment can be formulated as

ns&nup[
«`\~v l2v t!

2pe2aB

vB

G
. ~6.10!

For the values of parameters accepted above, the con
tration on the right-hand side of Eq.~6.10! is

ns'531011 cm22.

One can offer a simple physical interpretation for this lim
tation. The MPR peaks are associated with transitions
tween one-electron levels. Naturally the e-e interaction t
does not conserve the one-electron energy results in a br
ening of the one-electron levels. When the broadening
comes of the order of interlevel distance, the MPR pe
disappear. The oncoming degeneracy can enhance this
cess. Qualitatively such a concentrational dependencewith a
maximum at some intermediate concentrationprovides a the-
oretical interpretation of the results of Ref. 23.

It is interesting to know as to whether under any circu
stances the MPR oscillation exists forv l5NvB . Let us ana-
lyze for this purpose the evolution of the MPR whenGe goes
up. The term we were discussing above tends to zero. In
region of magnetic fieldsvB5v l /N it is replaced by anothe
resonant term emerging fromD ( f ) @Eq. ~5.4!#. Inserting ex-
pression forD ( f ) into the equation forsxx @Eq. ~5.6!# and
using the identity

v l2v t

«`
5

v l

2«c
,

we get after some algebra Eq.~3.13! with the replacement

d~NvB2v l !→
1

p

G

~NvB2Av l
21G2!21G2

. ~6.11!

This result is valid provided that

Ge@
2pe2~v l2v t!

qc«`G
R~qc!, ~6.12!

whereqc is the characteristic value ofq.
Mathematically this inequality is needed to suppress

loop diagrams that would be proportional to 1/(v2NvB
1 id) ~without regard ofGe). This demands a large electro
damping.~It is interesting to note that this statement can
related not only to MPR but to a number of other phenom
in 2D situation as one is allowed to ignore the electron loo
when the damping is large.! The inequality~6.12! ensures the
suppression. In this case one can neglect the screening o
al

f

en-

e-
at
d-

e-
s
ro-

-

he

e

e
a
s

the

Frölich interaction by the free carriers. This is why the 2
case is much less favorable for observation of MPR
NvB5v l than the 3D case~see Sec. VII!. Forqc;1/aB , Eq.
~6.12! can be written as

Ge@
4pe2aBv lns

G«ckB
. ~6.13!

This result is given in K. Forns5431010 we get as an
order-of-magnitude estimate of several hundred K, wher
\vB for N53 is about 130 K. One can hardly expect th
MPR oscillation under these conditions. Indeed, in order
observe a MPR peak in this frequency region at the elec
concentration typical for the nanostructures (;1010cm22)
big values of the dampings are needed as well as large va
of vB . As has been indicated above, very small values of
effective masses are favorable for such a situation. An al
native way to reach the MPR resonances atv l /N are small
electron concentrations.

VII. COMPARISON OF 2D AND 3D CASES

In the present section we are discussing the follow
important point. Why in the 3D case, where there is a fr
electron motion along theB-direction, does MPR not shif
towardsv t /N? The shift exists provided that

4pe2

«~v!qc
2 P~3!~v,qc!U

v5v t

*1, ~7.1!

qc being of the order of 1/aB .
The principal difference between the 2D and 3D case

in the singularity of 2D polarization operator existing pr
vided one neglects the electron damping. In the 3D case
polarization operatorP (3), because of dependence of th
electron energy on the projection of electron quasimom
tum on the magnetic fieldqB , has a finite amplitude and
width. For what follows it is sufficient to know its imaginar
part2

Im PR
~3!~v,q,qB!5

Apn

uqBuvT
expF2

1

2
~qaB!2 cotha G

3 (N52`

`

expF2
~NvB2v!2

~qBvT!2

2
qB

2

8mTG I NS q2aB
2

2 sinha D . ~7.2!

Heren is the 3D electron concentration,vT5A2T/m.
Under the MPR conditionNvB5v, the integral overqB

diverges logarithmically. The resulting logarithm is the b
parameter of the theory. The integral is dominated by allqB

from A2 mG up to A2 mT. ForqB;qT5mvT /\ the condi-
tion involving Eq.~7.1! can be rewritten as

T&
4pe2aB

2

«`kB

Gn

~v l2v t!
. ~7.3!

For aB'731027 cm22(N53) we haveT&10216n; if one
gives here the electron concentration in cm23 one gets the
temperature in K. Thus to reach a relevant MPR tempera
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range, one needs the electron concentrations of the ord
1018cm23. However, such big concentrations are inevitab
associated with the electron scattering by the doping imp
ties. Therefore all the 3D MPR experiments are performe
much lower concentrations. Thus forq;qT the effect we are
discussing is of no importance.

Considering the interval ofqB of the order ofA2mGe,
one can use for the characteristic width ofP (3) the estimate
ATGe. As a result, one will have on the left-hand side
inequality ~7.3! ATGe. The corresponding limitation on th
electron concentration is somewhat weaker than above
still rather difficult to satisfy.

This means that for the 3D case the MPR condition is

NvB5v l . ~7.4!

VIII. CONCLUSIONS

Almost four decades have elapsed since the theore
prediction and subsequent experimental observation of M
in 3D semiconductor structures. Eventually, along with c
clotrone resonance, MPR became one of the main ins
ments of semiconducting compound spectroscopy.

The advances in semiconductor nanofabrication and
terial science in recent years have made available mate
of great purity and crystalline perfection. The essence
electrical conduction in these structures is that the quan
nature of the electron leaves its distinct trace in a mac
scopic measurement. The electrical conduction and s
other transport phenomena in such nanoscale structures
been a focus of numerous investigations, both theoretical
experimental, with a number of important discoveries a
even patent applications. In particular, the dicovery of M
in the quantum wells took place.5 After this first publication
a number of papers appeared where various aspects o
physical phenomenon were investigated. In the present p
we offer a theoretical interpretation of a number of expe
mental results.

To summarize, in a polar semiconductor, mixed opt
phonon-magnetoplasmon vibrations can be trapped with
quantum well. Such localized vibrationsinteract much more
effectivelywith the confined electrons of the quantum w
than the bulk optic phonons. ForB perpendicular to the plan
of quantum well and rather big electron concentrationsns ,
such vibrations are responsible for themagnetophonon reso
nanceoscillation of the conductivity of quantum wells. As
result, the phonon frequency determining the MPR is shif
towardsv t . The interval of electron concentrations whe
MPR is observable is estimated and appears to be ra
narrow. The estimates qualitatively coincide with the expe
mental findings.23 Outside this concentration interval on
cannot observe MPR nearv t /N. To observe MPR atv l /N
one needs structures with very small effective masses~where
big values ofvB can be achieved! and unrealistically big
electron damping or exceptionally low values of the elect
concentrationns . Unlike the 3D case, in the 2D casethe
phonon damping often determines the MPR amplitude.

We also show that the MPR in quantum wells for perpe
dicular orientation ofB is on practice not as universal as
the 3D case. In particular, its investigation does not permi
to obtain directly the electron’s effective mass by measu
of
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ment of the MPR frequencies. It permits us, however,
investigate various aspects of interaction of electrons belo
ing to a quantum well with optic phonons as well as oth
features of behavior of electrons in magnetic field.
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APPENDIX A: CALCULATION OF G

The damping parameterG is determined by the lattice
anharmonicity. It is given by the diagram in Fig. 6. Applyin
the usual rules of the diagrammatic techniques we have

G~v!5
p\

8r (
a,a8

E d3q8

~2p!3

uboaa8~0,q8,2q8!u2

vva~q8!va8~q8!

3d@v2va~q8!2va8~2q8!#@N~va!11#

3@N~va8!11#. ~A1!

Here the summation is over the three acoustic branches
extra factor 1/2 is introduced in order not to take into acco
the same terms twice.

The diagram in Fig. 6 describes the decay of an op
phonon into two acoustic ones belonging to the branchea
and a8. The corresponding anharmonic interaction is giv
by the Hamiltonian~cf. Ref. 24!

Hanh5(
q,q8

(
a,a8

~rSa!1/2\

2rV
3boaa8~q,q8,2q82q!coqcaq8

† ca82q82q
†

3@vva~q8!va8~q8!#211H.c., ~A2!

wherer is the mass density,S is the area of the quantum
well, boaa8 are the so-called anharmonic coefficients~see
Ref. 24, Sec. 6!, coq is the operator of annihilation of an

optic phonon, andca,q
† is the operator of creation of acoust

phonon. Characteristic values of the acoustic phonon
quencies in the integral@Eq. ~A1!# are aboutv t/2. Then the
characteristic values ofq8 are of the order ofp/ao whereao

FIG. 6. Decay of an optic phonon into two acoustic ones.
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is the lattice constant. This means that the absolute valuq
are much smaller thanq8. This is why in Eq.~A1! q can be
replaced by 0.

According to Ref. 24, Sec. 7 we have the following rou
order-of-magnitude estimate for the anharmonic coefficie

uboaa8~q,q8,2q82q!u'hq

s2

a0
3 , ~A3!

wheres is some average value of the sound velocity whilehq
is a q-dependent dimensionless numerical factor determi
by the anharmonicity. Usually it is somewhat bigger th
unity.

For low temperatures

kBT!\v t . ~A4!

Equation~A1! is temperature independent. Taking into a
count Eq.~A2! we get the following estimate:

G'
h\v t

ra0
3s̄2

, ~A5!

whereh is a dimensionless numerical coefficient charact
izing the anharmonicity. Its typical value is several units. W
do not believe that its theoretical calculations can at pres
provide sufficient accuracy because of a limited volume
the well and a possible small lattice mismatch. This is w
we think that the results of Ref. 25 are not directly applica
in this case and that experimental determination ofG should
be more reliable. In other words,G for the phonons trapped
near a quantum well can differ substantially fromG for the
bulk optic phonons.

The damping parameterG goes up with temperature a
such temperatures when the terms with Bose functions in
~A1! begin to play a role~cf. Ref. 25!. This is one of the
sources of temperature dependence of the amplitude of M
oscillation.
.
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APPENDIX B: ROLE OF DISPERSION OF OPTIC
VIBRATIONS

We start with the expression for the phonon propaga
with regard to the dispersion~neglecting the anisotropy o
dispersion!. To take the dispersion into account one has
replace in the denominators of Eq.~5.2!:

v l→Av l
22b2~q21k2!, ~B1!

whereb has units of velocity and is equal for GaAs accor
ing to Ref. 26 4.73105 cm s21. Then

«~v,q,k!5«`

v l
22b2~q21k2!2v2

v t
22b2~q21k2!2v2 . ~B2!

Thus taking into account the nonhomogeneity along thz
direction, one is not allowed to take«(v,q,k) out of the
integral overk in Eq. ~4.3!. Assuming for simplicity the
well’s width to be much smaller thanaB , one gets for the
full propagator Eq.~4.3!, after integration overk, the follow-
ing additional term:

2
2pbe2

«`

~v l
22v t

2!

@~v6 iG!22v l
2#Av l

22v2
. ~B3!

Here we have assumed that

G

v l2v t
!1. ~B4!

We have omitted here the terms proportional toGb that
would have given an insignificant variation of the width
resonance. One can get the shift of the maximum by repla
ment

G2→G21Av l
22v t

2b/aB

in Eq. ~6.2!. Inserting the typical values of the parameters
see that the shift is of the order of 1 K.
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