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We present a theory of the electronic structure of GaN/AIN quantum (€@fi8s), including built-in strain
and electric-field effects. A Green'’s function technique is developed to calculate the three-dime(&mnal
strain distribution in semiconductor QD structures of arbitrary shape and of wutt@teagonal crystal
symmetry. We derive an analytical expression for the Fourier transform of the QD strain tensor, valid for the
case when the elastic constants of the QD and matrix materials are equal. A simple iteration procedure is
described, which can treat differences in the elastic constants. An analytical formula is also derived for the
Fourier transform of the built-in electrostatic potential, including the strain-induced piezoelectric contribution
and a term associated with spontaneous polarization. The QD carrier spectra and wave functions are calculated
using a plane-wave expansion method we have developed, and a mukitRmdodel. The method used is
very efficient, because the strain and built-in electric fields can be included analytically through their Fourier
transforms. We consider in detail the case of GaN/AIN QD’s in the shape of truncated hexagonal pyramids. We
present the calculated 3D strain and electrostatic potential distributions, the carrier spectra, and wave functions
in the QD’s. Due to the strong built-in electric field, the holes are localized in the wetting layer just below the
QD bottom, while electrons are pushed up to the pyramid top. Both also experience an additional lateral
confinement due to the built-in field. We examine the influence of several key factors on the calculated
confined state energies. Use of a one-band, effective-mass Hamiltonian overestimates the electron confinement
energies by~100 meV, because of conduction-band nonparabolicity effects. By contrast, a one-band valence
Hamiltonian provides good agreement with the calculated multiband ground-state energy. Varying the QD
shape has comparatively little effect on the calculated levels, because of the strong lateral built-in electric field.
Overall, the transition energies depend most strongly on the assumed built-in electric field. The calculated
variation of transition energy with quantum dot size is in good agreement with the available experimental data.

I. INTRODUCTION about 0.5 eV below the GaN bulk banddaMoreover, un-
like GaAs QD'’s, for which the electronic structure has been

Semiconductor quantum dot®D’s) have been of major widely studied (see, e.g., Refs. 14-16 and references
interest in recent years. This has largely been stimulated bghereir), the electronic structure of GaN/AIN QD’s has not
progress in QD growth technology, whereby self-organizedyet been theoretically analyzed in any detail.
relatively uniform, dot layers can be achieved using the Because of the rapid progress in QD growth technology,
Stranski-Krastanow growth mode. Semiconductor QD’s areghe theoretical study of self-organized QD’s is now of major
of interest both from a fundamental physics perspective, eninterest, both to interpret existing data, and also to guide
abling the study of zero-dimensional objects analogous tduture developments. A key requirement is for a relatively
artificial atoms, and also because of potential device applicasimple technique to reliably calculate the electron and hole
tions, particularly in the field of optoelectronics. Self- energy levels and wave functions in any arbitrary-shaped QD
organized QD structures of relatively high quality have beerstructure. This is a considerably more difficult and computa-
successfully grown using a wide range of semiconductotionally intensive task than for a quantum well structure,
compounds. These include IlI-V quantum dots based onvhere quantization only occurs along one direction, and
GaAs!3 InP? GaSb® and nitride structure’;® as well as  where Bloch’s theorem can then sitill be used for the other
Group-lI-VI (ZnSe-basel®*Y Group-IV-VI (PbS-based?  two dimensions. The calculation of QD energy spectra must
and Si/Ge-based QD structurEsNitride-based quantum include the full three-dimensional quantization and the usu-
dots have a special place in this list. Wide-bandgap nitrideally intricate shape of the QD’s. In addition, it is necessary to
based quantum wellQW) and dot structures have signifi- determine the 3D distribution of the strain and piezoelectric
cantly different properties compared to the “classical” fields, as a prerequisite to calculating the electronic structure
GaAs-based QW and QD structures. Whereas GaAs anaf a QD. The real-space distribution of the strain and piezo-
most other Group-lll-V compounds have a culfinc-  electric fields is generally found using finite-difference or
blende crystal structure, GaN and related nitride alloys gen-atomistic techniques, which require substantial computa-
erally have a hexagondurtzite) structure, which leads to tional time and memory. The numerically determined strain
strong built-in piezoelectric fields in heterostructures, of thedistribution is then often Fourier transformédumerically
order of MV/cm. As a consequence, self-organized GaN/AINinto k space, in order to set up and solve the Hamiltonian
QD’s can exhibit a large redshift in the energy of the pho-matrix. We introduce here a method that considerably re-
toluminescence maximum, with interband emission reportediuces this computational effort.
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The main aim of this paper is to study theoretically thetheory, often for a nontrivial quantum dot shape. This is
electronic structure of hexagonal GaN/AIN QD structuresoften achieved using finite-difference methods or atomistic
and to compare the results with available experimental dataechniques*'”*® These methods require considerable com-
To the best of our knowledge, we present the first theoreticgbutational effort. A simple method to calculate the strain
investigation of the carrier states in GaN-based QD’s, whichield in a semiconductor structure containing QD’s of arbi-
we carry out in the framework of a multibarkd P model,  trary shape was presented in Ref. 19 for the case when the
including the effects of the 3D strain and built-in electric- g|astic properties are assumed to be isotropic and the elastic
field distributions. We_ present an orginal technique based 0pgnstants of the QD and matrix materials are equal. The
a plane-wave expansion method to calculate the electron angsecis of anisotropic elastic constants on the strain distribu-
hole energy spectra and wave functions. With this techniqué;,, \yere included later in Refs. 20 and 21 for the case of a

we do not need to _calculat(_a e.xpliciftly the 3D distribution of cubic (zinc-blende crystal structure. We describe here the
the strain and built-in electric fields in real space. Instead, w%

can generate directly the Fourier transform of these distribu? energhzauon of this approach to the case of hexagonal
tions ink space, using analytical expressions which we havéwurtzne_) crystals. . .
derived, and present below. The QD shape enters these ex- Cof‘s'der a QD. of arbltrary shape formed by ‘?mbedd'f‘g
pressions through the Fourier transform of its characteristi@"€ Kind of elastic material into a second elastic material
function, which can be derived analytically for a wide rangeWith different lattice CO”Sta_”tyg- To keep the analysis as
of dot shapes. The proposed technique therefore providesSiMPle as possible, we consider here the case of equal elastic
very convenient method to study the variation of the QDconstants for the QD and matrix materials. The modification
properties as a function of dot Shape and size. The meth(ﬁf the method to take account of different elastic constants in
used considerably reduces the computational effort comthe dot and matrix is summarized in Appendix A. The dis-
pared to previous techniques, requiring that we calculate thplacement vector in a structure containing a single quantum
carrier spectrum and wave functions of any QD structure bylot can be expressed as the convolution of the Green'’s ten-
finding the eigenvalues and eigenvectors of a large matrixsor, G;,(r,r’'), and the forceslF, spread over the surface
all of whose elements are derived analytically. From a math{)’ of the QD:
ematical point of view, our method is therefore based on an
efficient Fourier-transform technique. ) , ,

The paper is organized as follows. In the next section we ui(r)=u;=(r)+ L),Gm(r,r )dFqo(r’), @
develop the method to calculate the 3D strain distribution in
a QD of arbitrary shape. We derive an analytical expressiowhere the indices=1,2,3 denote the three spatial directions,
for the Fourier transform of the strain tensor, and presenand u(® is the displacement corresponding to any initial
results for the calculated spatial dependence of the straigtrain. When the elastic constants are equal in the QD and the

tensor in GaN/AIN QD's shaped as truncated hexagonamatrix, the Green’s tens@;,(r,r')=G;,(r—r’), and satis-
pyramids and sitting on a wetting layer. We then derive, infies the following equation:

Sec. lll, analytical formulas for the Fourier transform of the
built-in electrostatic potential, including the contribution due 9G(T)
to the strain-induced piezoelectric field, and also due to the
difference between the spontaneous polarizations of the QD
and matrix materials. We demonstrate that, as previousl};vhere)\

found for quantum wells, both contributions are of similar Egs. (1) and(2), and below, we use the usual rule for sum-
magnitude in QD’s. Section IV. is devoted to the de\./elc’p'mation over 1,2,3 for repeating indices unless the sum is
ment of the plane-wave expansion method for calculating th?ndicated explicitly

carrier spectra and wave functions in QD structures using a The surface for<':e componerds, in Eq. (1) can be ex-
multibandk - P model. We then present in Sec. V the calcu- ressed asiE.= o7 ds,, whereS' ?s a su.rface element at
lated carvier spectra and wave fun_ctlons for a range Of G.a'\gointr’ with ?he ansksociélted normal vector directed outwards
AIN QD structures. We study the influence of the variation '

i (0)
of QD shape on the carrier spectra, as well as the influence 5'?‘)”; the QD surfsce. We ?ISO use in EG) that ui™(r)
nonparabolicity on the electron spectra, and of band mixing=Yi Xoo(r) and o =Nnkp€pr, Where xqp(r) is the char-
on the hole states in QD’s. Section VI compares the calcucteristic function of theT QQ' ec;ual to unity within the QD
lated carrier spectra in QD’s with the available experimentaPnd zero outside, andy.e, ,u; are components of the
data from Ref. 6. We show that the calculated ground-statétress and strain tensors and the displacement caused by the
optical transition energy depends most strongly on the as-initial” strain due to the lattice mismatch between the QD
sumed difference between the spontaneous polarizations 8nd matrix materials. o
bulk GaN and AIN. Using values in the range 0.032—-0.052 For cubic and isotropic crystals we had for the initial
C/n? for this polarization difference, we can obtain good Strain that

agreement between the theoretical and experimental results.

ik|mm:—5(r)5m, (2

ikim IS the elastic modulus tensor of the materials. In

Finally we summarize our results and conclusions in Sec. r au—agp
Vil, s Op=Eadr
Il. STRAIN CALCULATIONS whereay, andaqp are the elastic constants for the matrix

The calculation of the spatial strain distribution in a QD and QD material$>* The situation is more complicated in a
structure requires the solution of a 3D problem in elasticityhexagonal crystal, where the tenagt; has the form
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e 0 O terms describe the elastic anisotropy of the hexagonal crys-
tal. Using Eq.(7) and the expression fa [Eq.(3)] we find
eh=| 0 ea O] =eibuteeimia, O 9Ealn P pr (£33

0 0 & )\nkpregr:Rﬁnk"' Sbn3ks, 9

with &= (Cy—Cqp) /Cop and e.a=¢.— €5, the difference  where
between the strain values along thaxis and thea axes. The
displacemenuis(r) due to a single QD of arbitrary shape
embedded in an infinite matrix, is then given by

R=(3a+2B+k)ey+(a+K)eca, (10
S=(y+3k+4p)e,+(2B+y+k+4p)ecs. (1)
uis(r):uiTXQD(r)JrJ' Gm(r_r,))\nkpregr ds.. @ Substituting Eq(9) into Eq. (6) then gives
(2m)®

Using Gauss'’s theorem and rewriting Ed) in terms of the 'éi(js)=7(QD(§) £,0ij T €cadizdjz— TR[gigné,-n(g)
strain tensor rather than displacements, we obtain:

L[ [#Gu(r=r") 6B O]~ T 6888+ 6,650
e (N=ely <r>+—f i E&Gin(9]— 5 SLEEG 3§+ 6]
" ijAQD 2 QD) o"on"Xk
(12)
IGj,(r—r’) - , . . .
R Nnkpr€pr AV, (5  The last step to derive an analytical formula for the Fourier
I

transform’éisj is to find the quantitieéjg and the “scalar”
where integration is carried out over the QD volume. USingproductsgnéan(fG)j . To do this we start from the Fourier
the convolution theorem and then taking the Fourier transtransform of Eq(2):

form gives

~ 1
o (2m)3 _ NikimékémGin(£) = W (13)
€ =e&jXopn(é)— T{fiGjn(§)+§jGin(§)}
Then with the help of the explicit expression for the tensor
X)\nkprgkegr}“(QD(f). (6)  Nm [EqQ. (7)], we can rewrite Eq(13) in the following

Equation (6) gives the general expression for the Fourierform

t(ansform of the_ strain tensor in a structure containing_a(ﬁgz+p§§)éin+[(,<+p)§i§3+(p§2+ ygg) 5ia]Gan

single QD of arbitrary shape. This is a general formula valid

for crystals of hexagonal or any other symmetry. Note that 1

the QD shape enters only as the Fourier transform of the QD +[(a+B)¢ +(K+P)5i3§3](§G)n=(ZT)3 Sin. (14
characteristic function.

For a hexagonal crystal the elastic modulus tensgg,  We derive from Eq(14) two linear equations foGs, and
has five independent componemkS;u,=C11, Axxyy=Ci2, (gG)n_ anc_i then solve the_c_equations o] thaiFFethe first
Mxxzz= C13, Nzz,7= Caz, and\y,y=Cyy, WhereC;; are the equation is found by rewriting Eq14) for i =3:
eIa;tic constants. A ijth compone{;&xy, which one might Surk
at first expect to be independent, is related to these five by P&Ga +1(£G), = 3nén (15)

Axyxy=3 (C11— C1,). The elastic modulus tensagyy, for a (2m)*
hexagonal crystal can also be expressed in a more genewhere
form in terms of the unit tensaf;; :
P=(Cs3—2C44— C13) 5+ Cput?, (16)
Nikim= @Sk Sim+ B( i) SkmT SimSk1) + ¥ 6i30k36130m3 (Cas uCrIEe+ Cadd
+K(5i35k36|m+ 5ik5I35m3)+p(5im5k35I3 l :(C13+C44)§§' (17)
+ 8130m30k1+ i1 ScaBmaT 6136130k (7 Toget the second equation f@r, and ¢G),, we multiply
Eq. (14) by ¢ and sum over to find
where
= 3
a=Cy, B=3(Cy—Cy), Q&3Gsnt F(§G)n:#, (18)
¥=Cag—2C15~4Cyq+ Cuy, where
Cor C Q=(C33—2C13-4C 4+ C11) &5+ (C13+2C44— C1) &,
k=C13=Cyz, p=Cyt —122 = 8 (19
F=(Cigt+2C4—C1)é5+Cpaé” (20)

The first two terms in Eq(7) correspond to the isotropic
part, so the condition that the hexagonal crystal has isotropi€ombining Egs(15) and(18) we solve the X 2 linear sys-
elastic properties is thay=«k=p=0, i.e., the last three tem and find
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- 1 1 (a)
§3G3n:W m{F%n—'}fn, (21
o X
(§G)n=(zT)3 m{P—Q%n}&- (22) \ |
Finally using Egs(21), (22), and(12), we obtain an analyti-
cal expression for the Fourier transform of the strain tensor by
for the case of hexagonal crystals: w * :3 | BN
z
B =Xqo(&) 8a5ij+8ca5i35j3+L_|S§i§' | /T\ """"" /—l"_\
IQ—Fp > d,
SF-RQ_ £33+ & ©

IQ—FP®* 2 ' @3
Although Eq.(23) provides an apparently complicated ex-
pression for the strain tensor, it is nevertheless straightfor-
ward to evaluate, with the expressions forl, Q, and F
given by Eqgs(16), (17), (19), and(20); and the quantitieR
andSdefined by Eqs(10) and(11). It can also be shown that

it reduces in the case of an isotropic crystal to the expression

that we previously derived f& , namely,
i - 3N+2u &
&8 =2eoxqp()| 5 — N2 & (29

FIG. 1. Schematic diagrams of GaN/AIN QD’s shaped as trun-
cated hexagonal pyramid&) 3D view of a single QD standing on
a wetting layer{b) and(c) Views of the QD structure in the-z and
x-y planes, respectively. The QD size is determined by the diam-
eters of the pyramid base and td}}, andR, (more precisely, these
are the diameters of the circles that circumscribe the polygons at the

hil d bout d f itud ler. W. bottom and the top h is the QD height, andv is the thickness of
while x andp aré about an order ot magnitude smailer. Ve, wetting layer. The QD’s are modeled using a cubic superlattice

COUl,d thergforg in principlg set andp equal to zero in the with periodd,=d, in the growth plane and, in the growth direc-
strain distribution calculations. We choose however to keemon_

them nonzero, and therefore to include the full anisotropy of
the elastic constants in our strain calculations below. in the form of a Fourier series, for the strain distribution in
The elastic problem is a linear one and so the solution forny free-standing structure of hexagonal symmetry that con-
a periodic QD array is obtained as a superposition of thdéains QD’s of arbitrary shape.
elastic fields for single QD’s, namely, The QD shape enters in E@®3) only in the form of the
Fourier transforniyqp(€) of the QD characteristic function.
Analytical expressions foryqp(§) for different shapes
(sphere, cube, cylinder, cone, square pyramid, truncated-
square pyramidare given in the Appendix of Ref. 20. The
whered,, d,, andd; are the periods in the, y, andz  Fourier transform for a regulax-sided truncated pyramid is
directions, respectively. If we assume a free-standing perielerived in Appendix B of this paper.
odic array of dots, then an additional condition &y arises We now turn to apply Eq(26) to investigate the strain
from the requirement of minimum elastic energy for the pe-distribution about GaN QD’s embedded in an AIN matrix. A
riodic QD array. The strain tensor averaged over the elemersystematic high-resolution transmission electron microscope
tary 3D superlattice unit cell is zer&f=0). From Eq.(25) (HRTEM) analysis of this systeffi indicates that the dots
it follows that the coefficients for the Fourier series expan-form as truncated hexagonal pyramids standing on a thin
sion of e;; are equal tc[(2w)3/(d1d2d3)]“é?j(§n), whereg,  wetting layer* A schematic 3D view of one such QD is
=2m(n,/dq,n,/d,,ng/d3). Finally, therefore, we obtain shown in Fig. 1a) with cross sections shown in Figs(b]l
for the strain tensor in a free-standing QD array that (view in x-z plang and Xc) (view in x-y plane. In the
calculations below, the shapes of the QD’s are as presented
(2m)° _ ) in Fig. 1, with the sizes and vertical repeat distances used
€i(N= 9d.d 2 E(&)expig& ), (20 close to the experimental valub,
1reTs Nz s Figure 2 shows the calculated variation of the strain ten-
where the summation is carried out over all values ofsor components along t8001) and (01D) directions. For
Ny,Ny,ng, with®; =0 whenn;=n,=n;=0. Thus, Eq(26)  the (000 direction [Fig. 2@], along the line through the
when combined with E¢(23) gives an analytical expression, pyramid center, the strain tensor components are of similar

wheresg=¢,=¢., and\=C,, and u=C,, are the Lame
constants for an isotropic elastic medium.

The calculated elastic constant values for GaN and?AIN
are such that the anisotropic elastic constaig of compa-
rable magnitude to the isotropic elastic constantgnd g,

&= > e (xy—Nnydy,Xo— Nyd;, X3—Ngds), (25
ny.Np,Nng
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—g ,X=0 that the GaN dots are totally strained with respect to the AIN
—e=-e_ ,x=0 matrix. In addition, assuming uniform biaxial strain in the
8,0 X=d/2 GaN QD, Arleyet al?* managed to obtain good agreement
(0001) ----e, x=d/2 between the simulated and measured interplanar distance
0.02- —e, x=d/2 profiles through the GaN dot. Therefore it was concluded in
(@) p=- Ref. 24 that, to a first approximation, the strain distribution is
0.01 N uniform throughout each dot, with a value corresponding to
__________ AR SR the biaxial strain imposed by the surrounding AIN matrix.
000d = 1 k F_or _thes_e smaller QD’s we have_ also calculated the strain
distribution. Along the(0001) direction through the QD, the
strain tensor components exhibit similar variations as those
for large dots, which are presented in Figa)2 However, for
. smaller dots the average strain value within the dot is larger,
and the strain value also decreases more rapidly outside the
dot. In particular, we found that e,,~1.7%—2.1% inside
the dot, whilee,, decreases t6-0.4% between the dots. To
a first approximation, these results agree with those of Ref.
24, where it was estimated tha&t,~0 outside ande,,
~2.5% inside the dot. It would be interesting to model the
results of the HRTEM measurements of Ref. 24 using a more
detailed simulation based on the predicted strain distribution
about each dot, rather than just assuming a uniform biaxial
strain model. Such an analysis is beyond the scope of the
present paper. We note however that the model used in Ref.
24 is inconsistent with a range of calculations, all of which
show that a single lattice-mismatched quantum dot intro-
duced pseudomorphically into an infinite matrix material will
always distort the material surrounding the &bt-®%2%n
fact, this strain field outside the dot plays an important role
in dot formation leading to the vertical correlation of the dots
in the array. In such a vertically correlated QD array the
r T r T T Y T , strain fields from neighboring dots overlap outside the dots,
16 12 8 4 0 4 8 12 16 so that nonzero strain tensor components must always exist
in the matrix between the dots, as shown in Fi@) 2where
FIG. 2. Position dependence of the strain tensor component&ii IS nonzero along th€0002) direction through the dots.
calculated using Eq26) for the GaN/AIN QD structure shown in The strain distributions in Fig. 2 were determined using
Fig. 1; (a) along the(000)) direction through the pyramid center AIN elastic constant values in the dot and matrix regions.
(x=y=0, thick curves, for whicle,,=e,,) and through the wetting The elastic constant values were taken from a theoretical
layer between the pyramidy €0, x=d,/2, thin curvei, (b) along  study by Wright®> and are listed in Table I, along with the
the (01D) direction,x=z=0. Material parameters used are listed Values calculated for Gaf¥. There are several reasons that
in Table I. The dot dimensions a®,=8.5 nm, R,=4 nm, h  justify using the same elastic constant values in the dot and
=4.1nm,w=1nm, d,=d,=25nm, andd,=12 nm. matrix?° First, the elastic constants of GaN and AIN are
relatively close to each other, as can be seen from Table I.
magnitude inside and outside the dot. This is because th€econd, the calculated difference in the elastic constants of
GaN and AIN thicknesse.1 and 6.9 nm, respectivelgre  the two materials is less than the spread in values determined
comparable along this line for the dot sizes considered hergxperimentally for GaN and AIN. For exampl€,; equals
Between the pyramids, and cutting through the wetting layesge Gpa for AIN and 367 GPa for GaN in Table I, while the
along the(000]) direction, the strain is much larger in the experimentally reported values for AIN range from 345
GaN wetting layer than in the AIN matrix. In addition, the Gpg7 to 411 GP&® with GaN values ranging from 296
magnitude of the biaxial strain componerd;,—1/2(e,x ~ +18GP3&° to 390+ 15GPa® A similar situation is found
+eyy) is much larger in the wetting layer than along the for the other elastic constants, so that the uncertainty in the
center of the dot, where,, is in fact negative, as would be elastic constant values partly justifies their being considered
found for a purely hydrostatic strain. Thus, the major part ofo be equal. Also, the elastic constants of a material in a state
the AIN matrix in the QD array is nearly unstrained since theof high strain may differ from those for the unstrained bulk
fraction of the QD's in the total array volume is less thanmaterial, introducing further uncertainty as to the best choice
10%. Turning to the (01Q) direction, Fig. 2b) shows how of elastic constantgMaterials tend to get stiffer as they are
the magnitudes of the strain fields peak near the pyramidompressed Related to this, Keyésshowed that, to a very
edges, with smoother variations away from the edges. good approximation, the elastic constants in most Group-
The strain distribution in similar structures with smaller Ill-V semiconductors depend chiefly on the nearest-
QD’s (h=2.8 nm; total QD heighth+w=3.3 nm), was neighbor lattice spacing. He proposed an empirical scaling
studied by HRTEM in Refs. 6 and 24. These studies deducerlile, which has been supported by experimental tfafep-

strain tensor

-0.011

’-_.___.‘.w L.q | e}

-0.024

-0.03

0.02-

0.014

0.004

-0.01 4

strain tensor

-0.02 -

-0.03
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TABLE I. Material parameters of bulk GaN and AIN used to equal average compositiorx€6.5%). The average strain
calculate the strain and built-in electric fields. Elastic constant%isj(oio'o) in the QD array is then to a very good approxima-
from Ref. 25; other parameters from Ref. 33. tion equal to the uniform biaxial strain imposed by a thick
AIN buffer on a thin Al _,GaN layer withx=6.5%. Thus,

Parameter GaN AN due to the presence of the thick AIN buffer the average in-
Cy, GPa 367 396 plane strain tensor components in the QD array differ from
Cy, GPa 135 137 zero, with e,,=e,,=0.16%. This value should have been
Cys, GPa 103 108 used fores, ,,(0,0,0) in Eq.(26), in order to take into ac-
Css, GPa 405 373 count the presence of the thick AIN buffer on which the QD
C.., GPa 95 116 array was grown, with a correction of similar magnitude but
a A 3189 3112 opposite sign fok$,(0,0,0). This constant shift in the strain
c A 5185 4.982 values is less than 10% of the characteristic strain values
ee. Clnt —0.49 06 inside the dot. We neglect this shift in further calculations
15> . . . . .

Cint 0.49 06 and consider free-standing QD arrays. The strain values for
€31, . . . .
enn. CIMP 0.73 1.46 pseu_domorphlcally strained Iayers can then be dedqced from
P33' CIn? —0.029 —0.081 the figures shown here by adding a constant correction to the
es”"”" 9' 6 9' 5 axial strain components.

Ill. DETERMINATION OF PIEZOELECTRIC FIELD

plying this scaling rule to the case of QD’s suggests that the AND POTENTIAL

most appropriate choice of QD elastic constants is to con- |t js py now well established that built-in piezoelectric
sider them equal to those of the matrix mateffalve there-  fieids significantly modify the electronic structure of GaN-
fore assume equal elastic constants. For completeness, Wgsed quantum welkQW’s) and heterostructuréd.The ef-
also outline in Appendix A how the method introduced herefects are considerably stronger than those observed in cubic
can be adapted if required to take account of differing elastigsaAs-based structures for several reasons. First, introduction
constants in the dot and matrix materials. ~of a uniform strain along th€0001) direction produces a
In practice, the quantum dot arrays that have been studieghnzero piezoelectric field in nitride-based QW's, due to the
experimentally, are not free standing but rather have beegymmetry of the wurtzite crystal structure. Second, the pie-
grown pseudomorphically on a thick buffer layer. In this zoelectric constantss; and ez3, which determine the mag-
case a different constraint is imposed on the strain compajtyde of the built-in field, are several times larger than the
nentse;;, due to the requirement to minimize the elastic piezoelectric constant values found for GaAs and other
energy in the whole structurghick buffer and QD array Group-llI-V binary compoundésee Table | and Ref. 33In
rather than only in the periodic QD array. We require that theyqgition, the dimensions of a GaN or AIN unit cell differ
strain tensor components averaged over the whole Structutgightly from those of an ideal hexagonal crystal. This small
should be zero: deviation introduces what is referred to as a spontaneous
electrostatic polarizatiott which also contributes to the
J’ . d3r+j e d% =0 27 built-in piezoelectric field. Although the effects of the piezo-
buffer QD array ' electric potential have been widely studied in QW structures,
we use the Fourier-transform method to introduce here what
This equation provides the modified constraints necessary e believe is the first quantitative analysis of the variation in
determine the value cﬁﬁ-(0,0,0).[We assume that the num- piezoelectric potential in a GaN-based QD structure.
ber of periods in the QD array is large enough so that the We start with the Maxwell equation d=0 for the dis-
array can be considered as a QD superlattice and therefopdacement fieldD, which is defined here by
Eq. (26) is still valid]. For a free-standing QD array, E@7)
requires&;;(0,0,0)=0. However, if the thickness of the D=e&/E+A47(Psyairt Pspond. (28)
buffer layer is large enough, E7) then requires that the where the strain-induced polarizatid®y,;, depends on the
in-plane lattice constant of the QD array should be equal t&train tensoe,, as
that of the buffer. We can adapt EQ6) for this case simply _ "
by choosing values fo&f;(0,0,0) such that the average in- PPNr) = € wew= €l keat o€ uxqotu, (29
plane lattice constant of the array equals that of the buffe
with the array then relaxing in the direction due to the . . : _ QD
biaxial in-plane stres€ The GaN/AIN QD structures studied matl\zlx and dot materials, respectively, ani; = 6‘?!"
experimentally in Refs. 6 and 24 were grown coherently on a,_ €i.kl - The spontaneous polarization cpntrlbutllag})om, IS
thick (1.5 wm) AIN buffer. For the “large” dots studied in directed qlo_ng the axis, and can be defined in terms of the
Ref. 6 the QD’s and wetting layer occupy a very small frac—Ch‘"‘r"“Cte”StIC function as
tion of the total superlattice unit cell volumg.4% and _pM QD _ pM
4.1%, respectively, as we have usdg=d,=30 nm, d, Pspon{ 1) =Psponit [ Psponi ™ Pspond Xan(")- (30
=12 nm, w=0.5 nm, R,=8.5 nm, Ri=2.1 nm, andh By taking the Fourier transform of the Maxwell equation
=3.6nm.) Therefore we can estimate the average strain idivD=0 with D defined by Eq.(28), we find the Fourier
the QD array by replacing it with an AlL,GaN layer of  transform of the built-in piezoelectric fiel,

'where ei"f'k, and e?ﬁ are the piezoelectric constants for the
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= A&~ ~ strai T Pstrain .
= pont strai ] —_—— e
Ei &7[3 + PP, 31 ] Pepont 16
' (o ]
where the tilde denotes the Fourier transform. When using IR ma" o4
the Fourier transform technique to find the built-in electric 084 .
field for a free-standing QD array, we include the additional S 4 4_' 12 §
condition that the electric field averaged over the unitcellof & " | ; 1 o 2
the QD superlattice is zerdE;=0 (this follows from the & 0.0- i o
requirement that the electric-field energy is minimigzekhis g, ; 1o=
is achieved by requiring tha; is zero whené equals zero. g 044 1 3
The Fourier transform of the electrostatic potentpalis re- 0 8' P : 14 ©
lated to the built-in electric field b= —iE; /& . The Fou- o [0 8
rier transform of the piezoelectric potential is then made up .2 )
of several contributions: — 71— -8
o o 6 -4 -2 0 2 4 6
o= (Pspont+ (Pstraln_i_ ‘P&r (32) z (nm)
4 FIG. 3. Calculated variation of the built-in electrostatic potential
poPon ;(PSp'%nr P Xan(£), (33 componentsp, and total electric fieldE, along the(000Y) direction
&& (x=y=0), through the center of the pyramid shown in Fig. 2.
4 Solid line: Total built-in electrostatic potential,,, found as the
~ strai . AT ~ ~ ~ = sum of the strain-induced piezoelectric potentigl,, (dot-dashed
strain_ __ ain
=l gr§2[2(§1613+ £2823) €151 £3€31(Bra+82) line) and the spontaneous polarization tepg,, (dashed ling The
_ dotted line shows the total built-in electric field. The material pa-
+ &3€3#a3], (34 rameters used are listed in Table I.
~ A1

o€ _

0= —1 ——5[2(&18)5+ £,8%5) (5€) 15+ E3( F€) 31 (BF,+ES,) them here to get an insight into the overall built-in potential,
§ calculating the 3D distribution of the piezoelectric potential
+ &5(5€) 38l (35  and of the electric field in the GaN/AIN QD structure shown

B _ in Fig. 1. For these calculations we summed a Fourier series
where & denotes the Fourier transform of the productsijmilar to Eq.(25), with the substitutiore;; < .

xqo€ij of the QD characteristic function and the elastic strain  Figure 3 shows the calculated variation of the total

in the structure. The Fourier transform of the product is theyyiit-in electrostatic potentiakp (solid line), and electric
convolutl_on~ of the Four_ler transforms of the individual field, E, (dotted ling along the(000)) direction, through the
terms, withe therefore given by pyramid center. The total potential is found as the sum of the
_ 5 strain-induced piezoelectric potential,,;,[dot-dashed line,
“e‘ﬁ(g):z Xop(é—£)&(§). (36)  given by Eqgs.(34) and(35)], and the spontaneous polariza-
£ tion contribution, ¢gp.n [dashed line, from Eq(33)]. Both
The first contribution to the electrostatic potential in Egg) ~ contributions are of similar magnitude, and of the same sign.
is due to the difference in the spontaneous polarizations of "€ magnitude of the electric field along the QD axis ex-
the QD and matrix materials. In deriving expressi@g), we  ceeds 6 MV/cm in the wetting layer, just below the pyramid.
explicitly used that the spontaneous polarization is directedt decreases to about 4 MV/cm on moving from the pyramid
along (0002, i.e., ||:>Spon{ngpont, as calculated by Bernar- base to the top. Outside the pyramid the electric field is
dini et al3*3*and supported by several experimetité The ~ around 4 MV/cm, but of opposite sign to that inside the QD.
constant parpg/'pomof Pspontn EQ. (30) does not contribute to As wiFh the_ strain field, the_ piezoelectric_field is of similar
the potential because of the condition thgtt=0)=0. The =~ Magnitude inside and outside the pyramid, because the QD
second and third contributions teare due to the piezoelec- height plus wetting layer thickness is of the same order as the
tric field associated with the strain distribution in the QD matrix thickness along this line. Along(800Y) line between
structure. The second terfiEq. (34)] describes the piezo- the pyramids, the electric field is considerably larger in the
electric field when the piezoelectric constants of the QD and5aN wetting layer than in the AIN matrix, because the wet-
matrix are equal, while the third terpieq. (35)] arises from  ting layer thickness is much smaller than the matrix thick-
any difference in these constants between the two materialsess therew/d,<1 in Fig. 1.
In deriving Eqgs.(34) and (35 we use that for hexagonal A giant built-in electric field of several MV/cm is charac-
Group-1l1-V crystals only the following components of the teristic of GaN/AIN structures and has been observed in sev-
piezoelectric tensor are nonzer@; ,;=e,,3=€15, €317  eral experiments. For example, a built-in electric field of 1
= €3 9= €31, and ez 33— €33. MV/cm was deduced from optical measurements on a
Equations(33)—(35) give analytical formulas for the Fou- GaN/ALGa;_ N QW structure withx=0.272¢ In addition,
rier transform of the built-in electrostatic potential. Thesethe electric field was shown to depend linearly on the Al
can be used directly to calculate QD carrier spectra and wavieaction x.3® Therefore, it is natural to expect a built-in elec-
functions, as described in Sec. IV. However, we first applytric field of several MV/cm forx=1.

Er
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However, it should be noted that the calculated values of 6
the built-in electric field depend strongly on the piezoelectric
constants and on the spontaneous polarization values as-
sumed for GaN and AIN. The values of these parameters
used here are listed in Table I, and are taken from the work
of Bernardini, Fiorentini, and Vanderbilt. The piezoelectric
constante;5, was not given in Ref. 33, so we have assumed
it equal toe3;, by analogy with other hexagonal crystals that
exhibit strong piezoelectric properties. For ZnO and hexago-
nal CdS the piezoelectric constantgs, €3;, and ez; are
—0.59,—-0.61, and 1.14 ang-0.21,—0.24, and 0.44, respec-
tively (all in C/m?).®” These constants are of the same order
as for GaN or AIN which we take to justify setting;s
= e, here. There remains however some uncertainty in the

z (nm)

piezoelectric constants for GaN and AIN, and the spontane- -6 : . . . .
ous polarization values are also not known well, leading -10 5 0 5 10
therefore to uncertainty in the calculated values of the X (nm)

built-in electric field in GaN/AIN QD’s. We will return to

discuss this point in more detail in Sec. VI of this paper. 101 (b)

Figure 4 presents a 2D contour plot of the calculated total
electrostatic potential in the GaN/AIN QD of Fig. 3. The
potential difference of owe2 V between the pyramid base 5-
and top creates a deep potential well for holes at the dot
bottom and for electrons at the top. This is confirmed by Fig. 13
4(a), which shows a contour plot of the potential in tke £ 01
plane (y=0). The hole well is in fact deepest below the dot, >
in the wetting layer. Figure () shows the variation of the
electrostatic potential in the wetting layer, at —3w/4, -57
close to the deepest point in the hole well. The potential
contours are nearly circularly symmetric, and therefore only

weakly sensitive to the shape of the QD base. A similar -107

result is observed for the electron well. Because the potential . ; : . .
wells are also considerably wider in the wetting layer plane -10 -5 0 5 10
than in the growth direction, we will therefore analyze the X (nm)

symmetry of the electron and hole states in Sec. V by assum- o o
ing the dots to have circular symmetry in the 2D growth FIG_. 4. Con_tour plots of the varlatlon in the_total built-in elec-
plane. trostatic potentla_lgptotah for the QD’s of Fig. 2(a) in thex-z plane

The results presented in this section were obtained assurf ~?): @nd(b) in the wetting layer atz=—3w/4. The darkest
ing a free-standing QD array. However, as already noted i reas .show regions Of. low potgnt(a‘l!here ho.les are trappgcand

: . . - .the brighter areas regions of higher potentiahere electrons are
the previous section, the structures studied experimentally Iprapped The numbers in boxes show the magnitude of the potential
Refs. 6 and 24 were grown on a thick AIN buffer layer. The . j : .
. ; (én eV) along the different contour lines.

presence of this buffer layer introduces a nonzero averag
electric field into the QD array, pointing along the growth o )
direction. Its magnitude can be estimated using a similar ap=2US€S no change to the variation in the lateral confinement
proach to that used for the strain field in the previous sectionPOtential for any fixed value af, such as we considered in
We estimate the value of this additional constant electrid 9 4b). We therefore ignore the influence of the buffer
field by again replacing the QD array by an effective @Y€ for the electronic structure calculations.
Al,_,GaN layer with x=6.5% (see Sec. I)l. We assume
that the AIN buffer thickness is 1.pmm and the QD array
thickness is 0.24um, which corresponds to 20 periods of the
QD superlattice in the growth directiénWhen we impose We describe in this section our method to calculate the
the requirement that the electric field averaged through thearrier spectrum and wave functions of QD structures, using
complete structure is zero, we calculate that the piezoelectrithe analytical expressions for the built-in strain and electric
and spontaneous-polarization induced electric fields aréelds derived in the two previous sections.
Epiezo=0.26 MV/cm and Egpo,=0.32 MV/cm AlGaN (QD The multiband envelope function approximation is widely
array) layer. This correction is about 10% of the total built-in used to calculate carrier spectra in semiconductor quantum
electric field inside the dot. It is smaller than the uncertaintystructures. It has proved to be a convenient and reliable tool,
in the calculated value of the built-in electric field due to describing well, e.g., the experimentally observed variation
uncertainties in the piezoelectric constants and spontaneoirs interband transition energies due to quantum size effects
polarization values. In addition, the field due to the bufferin quantum well(QW) and QD structure®3° In the enve-
layer points entirely along the growth direction, and solope function method, the carrier states in a quantum struc-

IV. PLANE-WAVE EXPANSION METHOD
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ture are calculated by solving a ScHiager-like equation
with an effective multiband HamiltoniarH¥ =E¥. The
number of bands includedy,, and the form ofH differ

depending on the particular muliband Hamiltonian that isthe matrix elementy,,, , dependinearly on the strain ten-
chosen. From a mathematical point of view the effectivegy components and on the built-in electric potential. There-
Hamiltonian equation describes a system of coupled differ e the Fourier transform o, ,, is expressed through the
ential equations. By using a plane-wave method, we Cafqrier transforms of the strain tensor, the built-in electro-
solve this system of equations using a Fourier-transformy e notential, and the QD characteristic functigsp , in-
technique. From a physical point of view, this corresponds tq.q;ce in the previous sections. Using a plane-wave expan-

descr_ibing the carrier states in terms.of a Iingar compina}tio%ion method in conjunction with the techniques introduced in
of sunafblg ;:khosen bulk staté%r,]ass?fuatgd with ?II periodic evious sections, there is then no need to calculate the full
array of bulk- wave vectors. The effective Hamiltonian cangpasia distribution of the strain and of the built-in electric

Vo o(n,n’)= JQ eV, e 5 d3r. (41
0

1
d;dzds

then be naturally represented in the form field, unlike in other methods. This simple trick considerably
o reduces the computation time to set up calculations and
H=H,+V, 37 makes the plane-wave method very effective for the further

. study of QD optical properties and modeling QD devices.
where the “perturbation”V describes the difference be- We also note that the number of bulk statgsiane waves”)
tween the potential in the quantum structure considered anghhich must be included to obtain a given level of accuracy,
the potential in the bulk Hamiltoniaﬁlo used for the basis is reduced in periodic structures with partly coupled QD’s. In
states. The eigenstates of the bulk Hamiltonian are chosen agldition, the maximum number of bulk plane-wave states,
the basis states for the plane-wave expansion; each of theb§', which can be included along any directionin an
eigenstates then has the form envelope-function calculation, is less than the number of

atomic layers in one period of the QD superlattice along that

NH < direction:N{"*<d. /a;. The envelope-function approximation
Wpns(h)= a0, Z BL(p.nu,(rexpli[(pi—£&)r]l},  is generally valid only when the envelope function varies
didydg et (38 smoothly over distances of the order of the lattice constant

a;. As a result, all terms with large wave vectors in the

wherea=1, ... Ny labels the basic Bloch functions,(r), Fourier series_ I(_i>277/ai),_should be neglected,_ since the)_/
p is the “quasimomentum” label for the 3D superlattice of Must be negligibly small in the envelope-function approxi-
quantum dots, £,);=2#n; /d; , n is the plane-wave number mation. This therefore provides an estimate for the maximum
andS denotes the different tly’pes of state included., dou- " number of plane waves that should be included in the matrix
bly degenerate electron, heavy-, light-hole- and spin-split-offXPansion of Eqi40). It also provides a means of testing the
bands forN,=8). The operator matri¥/ in Eq. (37) is appl|cab|I|ty_of the plane-wave expansion m_ethod to calcu-
obtained frokrin the' bulklike Hamiltonian by makiﬁg the sub- late the carrier spectrum and wave functions in any given QD

. . : structure. If the number of plane waves required along a
stitution ki— —id/d;, to take account of the spatial depen- P g g

Earticular direction to calculate the wave function and carrier

dence of the band parameters. Details of the interface boun nergy of a given level is less than the maximum number

ary conditions are included by an appropriate application of max then the plane-wave expansion method should be

. . ; i
the differential operators at each interface. Each wave funcva"d_ This is because the terms in B40), which have large

tion of t.he effective Hamiltoniam is then found as a series wave vectors K, >27/a;) and which should therefore be
expansion with respect to the plane-wave states ofl&):  h5wn away, do indeed make a negligibly small contribution
to the solution of the Schdinger-like equatioA ¥ =EW.
qu(r)ZE 2 Cons¥pns(r), (39) We find for all the QD structures co.nsidered in this.pap.er
S n that the number of plane waves required along any direction

h h _ Sakes | h eff is always much less thad"®* and it is therefore appropriate
where the summation ovétakes into account such effects 1, ;se the plane-wave expansion method.

as light- and heavy-hole mixing in heterostructures. The next- \yg y,rn next to consider a suitable form of the multiband
step is to obtain the matrik, whose eigenvectors and eigen- Hamiltonian for GaN/AIN QD structures. For hexagonal

values are the coefficients;, , s and the energy spectrum of gomiconductors, with wurtzite symmetry, the band structure

the QD. This matrix has the form near the energy gap can be well described using the Kane
eight-bandk-P Hamiltonian. A particularly characteristic
Airi =Es(p~ &) 8556w n feature of wurtzite GaN and AIN is their very small spin-
Ny Ny orbit splitting valuesAg,, of order 5-10 meV, compared to
+> > [B,1*B.V] (nn), (40)  several hundred meV for most other Group-lll-V and
al—pa=1_ ¢ e Group-1I-VI semiconductors. To simplify the Hamiltonian,

) _ and reduce the size of the matrix in E40), we therefore
where the numbers andi denote the set of quantum num- peglect the spin-orbit splitting when calculating the elec-
bers p,n,S), Es(k) is the energy dispersion of the bulk tronic structure of GaN/AIN QD’s. This is justified because
state of typeS, andV, ,(n,n’) is the Fourier transform of of the uncertainty in several other key parameters, including
Voot in particular the magnitude of the spontaneous polarization
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constantsPgy,n in GaN and AIN. We show later, in Sec. VI,

PRB 62

TABLE Il. Band parameters of bulk GaN and AIN.

how small changes in the assunteg,,values significantly

modify the calculated optical transition energies. By setting”arameter GaN AN
the spin-orbit splitting to zero instead of 5-10 meV, theg agqy 35 6.3
88 Hamiltonian decouples into two independenk 4 Agl b a\/ 0.022 —~0.104
Hamiltonians, one for spin-up and the other for spin-down, b eV 0.005 0.004
states. Using as basis states=|St), u,=|(X+iY)1/v2), Az'b eV 0.005 0.004
Us=|[(X—=iY)1/v2), and u,=|Z1), the effective 44 Ai" 7'7 of 74' 1P
HamiltonianH,, is then given by A, _05E 058
As 6.73 3.68
Pk, P k- A, -3.36° —2.17
Eg l:)sz
V2 ) As —3.3%° —2.27
Ag —4.7F —2.2P
P k- o D,, eV 0.7 0.7
. F K H ) f
Ho=| v2 . (42 Dy eV 2.1 2.1
D3, eV 1.4 1.4
Plk‘*‘ K E H Dy, eV —0.7° -0.7
%) Ds, eV -0.7 -0.7
f
Pk, —-H H* N DS, e\{) 1.4 1.4
m;/mq 0.20 0.33
where me/mg° 0.18 0.25
a. eV -4.08 —4.08
H=iAgkzky, “3 “Reference 51.
~ _ bReference 50.
K=Ag(k;— k§+2|kxky), (44 cReference 48.
YReference 52.
A=—A+AKHA K+ k§), (450  °Reference 49.
fAssumed to be equal to that of GaN.
,  h? [mg {(Eg+A1+A,)(Eg+2A,)—2A3)E,
F=A;+\+6. (47) Lo2my |\ m; (Eg+A,)(Eg+A;+A,)—Af

52
In the above equation€&y and A, are the band-gap and 62
crystal-field splitting of bulk GaNA; to Ag are the band JZ

rameters of GaN in the four-band model- th o adh the above expressions f&; andP, , we allow for non-
parameters ot >a € four-ba 0C€l, The COrreSPoNtz ¢ yaues of ,= Ao/3 andA,. This allows us to describe
ing parameterd; to Ag for a 3xX 3 valence-band Hamil-

toni ) by the 83 | f Ea(4? q accurately the electron effective mass and conduction-band
onian are given by the s lower corner o q(42), an nonparabolicity in the four-band Hamiltonian, both of which
are presented in Table Il in units 6f/(2m,) (wheremy is

the f lect The t ts of band ¢ are crucial to determining the electron-ground- and excited-
recleat;%e@ec ron massThe two sets of band parameters areg . -onfinement energies.

The Fourier transform of the “perturbation” matrﬁ(a,,a

2 2 in Eq. (42) is given by
~ mg P -
A1=A1+?E—, A2:A2, (48)
’ SE, 0 0 0
% _p. 2o p? % _p Mo P 9 - 0 oF S(K*¥) —&(H*) ;
= -5 =, = -5 =, V ! —
3=A3 57 E, 4=Aat 33 E, (n',n) 0 SK SF sH , (53
0 —06H S(H* N
y N Pi A=A 4 V2o PiPy (50) "
5= A5T 772 = » Re=NgT ~ 317 )
h? Eq h*  Eg

where

whereP, andP, are the momentum matrix elements of bulk
GaN, related to the bulk electron effective massesandm;

~— D~ ~ ~ ~
by OEc=UcXopt adP(B11+ 8+ 83 — ¢

+oa(8]; +83, +83), (54)

h? (mo )(E9+A1+A2)(Eg+2A2)—2A§

Eg+24A, ’
(51 OF = 8AXqpt SN+ 6, (55)



PRB 62 THEORY OF THE ELECTRONIC STRUCTURE B. .. 15861

)~ QDx QD= 4m N =X in GaN/AIN QD’s, including the influence on the results of
oN UiXoo* D1 €ast D711t 822) = ¢+ 0D 1855 the QD shape and of the Hamiltonian used in calculations.
+ 6D, (Y] +83, ) +[ SALK K+ SA(Ky Ky The dot shapes and sizes are chosen to be close to the
D experimental data of Arlegt al,?* and are as shown in Fig.
+kyky) Ixqp» (56) 1. We take the dot and matrix compositions to be pure GaN
0D Dw L = e e L and AIN, respectively, neglecting interdiffusion of Ga and Al
60=Dg3 B33t D (€111€) + 0D383; +0D4(8]; +8% atoms across the dot boundaries. This is consistent with the
[ SRk, + ALKk, +KIKy) TR, (57  results of Arleyet al,?* who used HRTEM and numerical

simulations to determine the atomic interplanar distances
across the GaN dots. The composition profiles were then

— QD= N = X mX T _BX T
OK=Dg" (111 2i€1,~82) + 6D5(8]; +2i81, ) fitted using a “trial and error” comparison between the ex-

+ A5k} + k) (ke +iky) X op. (58)  Perimental and simulated curvésfrom which they con-
Y Y cluded that there is no intermixing between Ga and Al in
5H=DSD(T§13+ié23)+5D6(é’{3_+ié§3_) GaN dots. This contrasts with InAs/GaAs QD’s, where

strong intermixing has been obsen/&d>%®We neglect in
As | ) S our calculations the relatively weak interdiffusion of Ga and
+ - Lka(ktiky)po(ke+ik)) Ixgo: (59 Al atoms (0.15 monolayefsobserved in the wetting layer
between the dots, since, as we show below, the electrons and
and wheres(K*) and §(H*) are obtained fromK and sH holes are strongly localized inside the dots and therefore the
[Egs. (58) and (59)] by making the substitutiori — —i composition of the wetting layer outside the dot has negli-
(which is not the same as complex conjugatioin Egs. gible effect on these localized states. Thus, our assumption
(54)—(59), k=p— &, andk’ =p’ — &,/ are the total quasimo- that the dot/matrix compositions are pure GaN/AIN is con-

menta; the Fourier transforms of quantities likg, and®;; sistent with the existing experimental dat:*’
are taken atr=n—n’; 8}, is the Fourier transform of the =~ The dot base diameter ) was observed to depend
product[1— xgplej;, which is given by convolution o&;; approximately linearly on dot heighh, in Ref. 47. We as-

andyqp [see Eq(36)]; qp stands for the Fourier transform sume that the QD top diameter R, also varies linearly
of [1— xonl; U andU, are the barrier heights for electrons with h. We calc_:ulate below th(_e dependence of the carrier
and for holes at arunstrained GaN/AIN heterojunction; ~€nergy spectra in QD’s on dot size, as we vary the QD height
SA=AM—ARP  sD;=DM-D?P andsA;=AM-ARP are from h=2 nm toh=4.1nm and the base and top diameters
the material parameter differences. We emphasize ahat from R,=5.0nm toR,=8.5; andR;=2 andR;=4 nm, re-
terms in the above equations can be found analytically usingzeCt'VeW: consistent with the dot geometries of Ref. 47. The
the expressions for the Fourier transforms of the strain tensdand-structure parameters that we use are listed in Table
; (given in Sec. I}, and of the built-in electrostatic poten- I There is some uncertainty in the publish&dvalues.
tial % (given in Sec. Il). Thus, using the Fourier-transform For example, the published values & range from—0.51
technique, we have derived analytical expressions for all théRef. 48 to —0.91(Ref. 49 for GaN and from—0.58 (Ref.
elements of the main matri& of Eqg. (40), whose eigenval- 51) to —0.27(Ref. 49 for AIN. There is less variation in the
ues and eigenvectors are then the energies and wave furRherA; values. The values of the deformation potentia|s
tions of the carriers localized in the given QD structure. ~ and a. are even less well-known than thg values. We
The plane-wave expansion method developed above fgould not find any published data for the’s anda, in AIN;
also well suited to and has been successfully applied to calve therefore assumed them to be equal to those of GaN.
culate carrier spectra and wave functions in QD structuredhere is also a wide spread in the published theoretical and
based on other material systefi414?An expression for the €xperimental values for the valence-band discontinuity at
Fourier transform of the strain tensor in a cubic crystal isAIN/GaN interfaces, withAE, ranging from 0.5(Refs. 53
derived in Ref. 20; while the piezoelectric potential in a cu-and 54 to 1.4 eV>>*® Reference 54 also suggests that the
bic crystal is easily obtained using the method developed ifyalence-band discontinuity depends on the growth tempera-
Sec. IIl. The plane-wave expansion method is also very contlre. We use here the recent experimental Vdlaé AE,
venient for further modeling of the optical properties and=0.5=0.2 eV. Because the strong built-in electric field cre-
laser gain characteristics of QD structuféé*In contrast to  ates very deep potential wells for electrons and hotes
other methods, where the carrier wave functions and opticdfigs. 5 and § any uncertainty in the value &E, has much
matrix elements are found numerically in real space and thelgss effect on the calculated energy levels in GaN/AIN QD’s
by numerical 3D integration, the plane-wave expansiorthan for other material systems. The greatest uncertainty in
method developed here allows the optical matrix elements téhe calculated confined state energies arises from uncertain-
be expressed analytically through the coefficieDs, s [see ties in the values of the material parameters that determine
Eq. (39)], which thereby considerably reduces the computathe magnitude of the built-in electric field.

tion time, enabling more efficient modeling of QD laser  This is confirmed by Fig. 5, which shows the calculated
characteristics. variation of the conduction-ban@CB) and heavy-hole va-

lence bandVB) edges along thé0001) direction. The solid
lines show the band-edge profiles through the pyramid center
(x=y=0), including both the strain deformation potentials
We present in this section the results of calculations of thend the built-in electrostatic potential of Fig. 3, while the
carrier spectra and wave functions of electron and hole statetashed lines show the band-edge profiles with the electro-

V. NUMERICAL RESULTS
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FIG. 5. Calculated variation of the conduction-band egB, X (nm)
upper figure and heavy-hole valence-band edd¥8, lower fig-
ure) along the(0003) direction for the QD’s of Fig. 2. Solid lines: FIG. 6. Calculated 2D map ofa) the conduction-bandCB)

profiles through the pyramid centex<y=0), including the strain  edge, andb) the valence-bantvB) edge for the GaN/AIN QD's of
dt_eformatlon poten_tlals, and the buﬂ_t-ln electrostatic potential ofrig. 2 including the strain deformation potentials and the built-in
Fig. 3; for comparison, the dashed lines show the band-edge prqsiectrostatic potential. The darkest regions correspond to potential
files, with the built-in electrostatic potential set to zero. Dottedye||s (q) for electrons in the upper figure, ario) for holes in the

lines: band edges along th{B001) direction through the wetting |ower figure. The boundaries between the QD or wetting layer and
layer atx=d,/2,y=0. Material parameters used are listed in Tablesthe matrix are indicated by thick-black lines.

I and II.

6(a)], and the holes in the wetting layer, just below the pyra-
static potential set to zero. This clearly demonstrates how themid base/darkest region of Fig. ®)].
built-in electric fields crucially influence the carrier states in  Figure 7 shows the probability density distribution,
the QD. The electric field strongly separates the carriersj¥(r)|2, for the first five electron states in the hexagonal
electrons are pushed up to the QD top and holes are push&@hN/AIN QD of Fig. 2, calculated using thexd4 Hamil-
down into the wetting layer, below the pyramid base. Thetonian of Eq.(42). Because of the built-in electric field, the
effect of the built-in potential is much stronger within the 3D potential well for the lowest electron states has roughly
dots than in the wetting layer between the dots. The dottethe shape of a short cylinder. We therefore analyze the elec-
line shows the variation of the band-edge profile alongtron states in the GaN/AIN QD by comparing them with
(0009 atx=d,/2, y=0, from which it can be seen that the those of an infinitely deep, cylindrical 3D potential well. The
VB edge between the dots is 600 meV above the VB edgelectron states in such a cylinder are characterized by three
under the dot. The hole states therefore experience both quantum numbers,n, ,m), wheren, is the quantum num-
strong lateral and vertical confining potential due to theber along the cylinder axig n, is the radial quantum num-
built-in fields, and are localized in the wetting layer, directly ber, andm is thez component of the angular momentum. In
below the pyramid. The lateral confinement for holes, andbur case the cylinder is flat and we therefore need only con-
for electrons, is confirmed by Fig. 6, which shows a contoursider states withn,=1. States withn,=2,3,4... are at
plot of the calculated CB and VB profiles in thxez plane  higher energy, as confirmed by Fig. 7, which shows that the
(y=0). These plots clearly illustrate that the electrons willfirst five states have only one maximum in thelirection,
be localized near the pyramid tdplarkest region of Fig. and are therefora,=1 states. The ground-stael is sym-
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FIG. 7. Probability density distributiod ¥ (r)|?, for the five
lowest electron states in the GaN/AIN QD of Fig. 2, calculated in
the framework of an 8-bankl- P model with zero spin-orbit split-

ting. The energies of the electron states are calculated, respectivel

to be E;=3.020 eV, E,=3.094 eV, E;=3.095 eV, E,
=3.198 eV, andE;=3.250 eV(whereE=0 corresponds to the
unstrained bulk GaN valence-band efdgParker areas indicate
larger values of W (r)|2. The left-hand plots shoy¥ (r)|? in the
x-y plane atz=3h/4, while the right-hand plots show the cross
section in a plane through theaxis and the thin line on the corre-
sponding left-hand plot. Right-hand plots f&xl and E2 in the
planey=0, E3 andE5 for x=0, andE4 for the planex=y. Ma-
terial parameters used are listed in Tables | and Il

metric in thex-y plane, withm=0 andn,=0 (see Fig. 7.

This is followed by two almost degenerate stef@sandE3.
These states would be degenerate in the flat cylinder, with
m=*+1. The degenerate wave functions can be chosen to
have a form similar to E2 and E3, with WV,
ccos(@)Ji(kyar) and Wiecsin(@)di(kqqar) (where Jp, is the
Bessel function of ordem, whosenth root is given by
Rk,n, and withR the radius of the cylindér The probability
density of the second staté,, has two maxima, atp
=0,m, while E3 has two maxima, ap= = /2 (see Fig. 7.

The total probability density associated with the electrons in
statesE2 and E3 is then cylindrically symmetric, with
(|W,|?+|W4/?)*d3(kyyr). Likewise, the wave functions
calculated forE4 andE5 show them to be similar to states
with m==*2, which vary in the plane approximately as
sin(2¢) and cos(2), respectively. The contour plot fdE5
nevertheless clearly deviates from cag(3ymmetry, as the
lobes along thes axis have considerably smaller magnitude
than those along thg axis. This reduction in the symmetry
of the E5 state accounts for it being at a higher energy than
E4, although the two states would be degenerate in a cylin-
drical potential. The wave functions and degeneracy of the
first three electron states are then as expected for a cylindri-
cal potential, due to the approximately circular symmetry of
the lateral confinement due to the built-in electrostatic poten-
tial. However, the hexagonal symmetry of the dot in Xhg
plane, and the cubic array of dots, which we have chosen,
then become of greater importance for higher states, leading
to the asymmetry of th&5 state, and the splitting of its
degeneracy with th&4 state.

Figure 8 shows the probability density distribution,
|W(r)|? for the first five holes states in the hexagonal GaN/
AIN QD of Fig. 2, calculated with the spin-orbit splitting set
to zero, using a valence-band Hamiltonidp, based on the
lower-right 3x 3 part of the Hamiltonian matrix of Eq42),

and with the paramete; replaced by thé\; values. Usage

of the full 4X 4 Hamiltonian would have had little effect on
the calculated results for the first five hole states. The
valence-band basis statesto u, used in Eq(42) are quan-
tized with respect to th€0002) direction, with angular mo-
mentum values oft1, —1, and 0, respectively, about tlze
axis. The band structure of bulk GaN along t0601) direc-

tion can then be described in terms of three independent
doubly degenerate bands, with=|(X+iY)1/v2) and u;
=|(X—=iY)1/v2) describing the heavy-hole spin-upiH)
bands, andi,=|Z1) describing the light-hole spin-uf.H)
band. There are, in addition, two further spin-down HH
bands, and a spin-down LH band, which we do not need to
consider. The calculated hole states can then be interpreted
based on this 33 Hamiltonian,H, . If we initially use a
diagonal approximation to analyze the confined valence
gtates[settinng H=0 in Eq. (42)] then we can separately
solve for each of the three valence bands in a flat, cylindrical
potential, as was done for the electron states above. It can be
seen from Figs. 4, 6, and 8 that the holes are considerably
more tightly confined along th@®001) direction than within

the plane of the wetting layer, so that again we need only
consider states witln,=1. Because the lattice constant of
GaN is larger than that of AIN, the wetting layer is under
biaxial compression, and so the light-holg,) valence-band
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these effects combine to shift the light-hole states well away
from the valence-band edge.

The u, anduj states have the same diagonal matrix ele-
mentF, in Eq. (42), so that in the diagonal approximation,
each would therefore separately give a set of confined va-
lence states with the same symmetry characteristics as the
electron statest1 to E5. When we now “switch on” the
mixing between the three sets of valence bands, we find that
the LH (u,) states barely contribute to the band-edge va-
lence states. The mixing between tiheandus states gives
rise to a doubly degenerate ground state, for which the two

/1@
H2 statesH1 andH?2 have wave functions that are found in Fig.
!_/1

8 to be slightly prolate along theandy directions[although
their combined probability density|¥,|%+|¥,|?), is to a
good approximation circularly symmetficThe off-diagonal
matrix elementk, mixesu, states with angular momentum
componentm with ujy states with componenin{+2). This
then qualitatively changes the character of the excited va-
lence statesH3 toH5 in Fig. 8, so thatH3 for instance has
four probability density lobes in the-y plane, rather than

H3 the two lobes observed for each of the doubly degené&rate
andE3 states.
I@I Electronic structure calculations become considerably
simpler if a multiband effective Hamiltonian can be replaced

by a one-band model to calculate electron and hole confined
state energies in QW or QD structures. We therefore turn
now to investigate the validity of using a one-band Hamil-
tonian to determine electron and hole confined state energies
in GaN/AIN QD’s.

H4 The one-band effective-mass Hamiltonians for electrons
I@I and heavy holes are assumed, respectively, to have the form
h%l 1 1 1

1x1 —
Helzc = UcXQD+ 7 kxﬂ kc+ kyﬂ ky+ kzm_é kz

+ac(exxt eyy+ €)= ¢ (60)
and
H5 HE=~ Uy oot (Ast A+ (Ag+ Ag— Ag)(K+KD)
+(D1+D3)e,,+ (Dot Dy—Ds) (et eyy) - ¢,
(61)

where all the Hamiltonian parameters have been defined ear-
lier. The one-band energy spectrum calculations were carried
out using the same method as described in the previous sec-
tion, namely, using Eqs37)—(41), which are valid for an

FIG. 8. Probability density distributiof¥ (r)|? for the first five
hole states in the GaN/AIN QD of Fig. 2, calculated using>a33

Hamiltonian, with the spin-orbit splitting set to zero. The energies"’“bllzt.ralry Hgamr:ltomatﬂ of anytslze'a lect b) hol
of the hole states are calculated, respectively, to Hhe=E, igure 9 shows the variation @8 electron andb) hole

=0.726 eV, E,=0.693 eV, E,=0.671 eV, andEs=0.662 eV co_nfined state energy, as a function (_)f d(_)t siz_e, palculated
(where E=0 again corresponds to the unstrained bulk GaNUSiNg an appropriate multiband Hamiltonidsolid lines,
valence-band edgeDarker areas correspond to larger values of@nd the one-band, effective-mass Hamiltonians of E6(S.
|¥(r)|2. The left-hand plots showW(r)|? in the x-y plane atz ~ and(61). We see from Fig. @) that the difference between
= —w/2, while the right-hand plots show a cross section intte  the results of the one-band and four-band model is around
plane aty=0. Material parameters used are listed in Tables | and 11100 meV for the ground electron levEll in the smallest2

nm) dot considered, and decreases only slightly to about 70
energy is shifted down in energy compared to the heavy-holeneV for the 4 nm dot. The calculated differences are even
band edges. In addition, the light-hole effective mass is conlarger for the higher levelg2 E3E4, .. . .
siderably smaller than that of the heavy holes, so that the This result is initially very surprising. The one-band
n,=1 contribution to the light-hole confinement energy is model assumes the conduction-band dispersion to be para-
considerably larger than that of the heavy holes. Both obolic, and has been shown to give a generally accurate esti-
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4.50 unstrained GaN, and the built-in electric field causes the
conduction-band-edge energy to vary rapidly with position
through the QD. The energy shitE counted from the CB
edge then varies strongly as we move from the QD center
(AE~O0) to the top of the pyramid wherAE~700 meV
(see the band-edge profile in Fig). Most of the electron
wave function is localized near the top of the pyramid, so
that the average value &E is then large. As a result, the
conduction-band nonparabolicity has a marked effect on the
calculated electron energy levels in GaN/AIN QDsge Fig.
9(a)].

Similar effects for holes should be much weaker, because
the hole confinement along th@001) direction is deter-
mined primarily by the heavy-hole effective mass. The
heavy-hole dispersion remains parabolic to larger wave vec-

tors, and the larger mass also leads to the heavy-hole having
20 25 30 35 40 45 a tighter vertical confinement. Figurgl® shows that the
Dot height (nm) one-band heavy-hole Hamiltonian of E@1) can be suc-
cessfully applied to predict approximately the same hole

- = = 1x1 model (effective mass)
N — 8x8 model

4254 g4

Electron energy (eV)

0.8 - == 1x1model (effective mass)

3x3model ground-state energy as is obtained using the33valence
Hamiltonian based on E¢42).
071 All the calculations presented above were for hexagonal
oe. QD’s, shaped as in Fig. 1. Such a shape is consistent with the
< underlying crystal symmetry, and also with the hexagonal
2 05' symmetry observed in the dot reflection high-energy electron
3 ’ ' diffraction pattern by Arleyet al?* However, it remains a
S 4l complex problem to completely determine the QD shape
> from experiment. The high-resolution TEM studies carried
2 43 out for instance in Ref. 24 probe a vertical dot cross section,
] thereby giving values for the bottom and top rdliiandR;,
024 and the widthw of the wetting layer. HRTEM does not di-
] rectly confirm the dot shape. To study the effect of a change
014 in QD shape on the energy spectra, we have therefore con-
sidered 4-sided, 6-sided, and 20-sided regular truncated pyra-
20 25 30 35 40 45 mids, and calculated the electron and hole energy levels in
Dot height (nm) each case as a function of dot size. The 20-sided pyramid is

included to model a truncated conical structure. We can
FIG. 9. Variation of(a) the electron andb) hole energy levels change the QD shape by varying just one parameter in the
as a function of QD height, calculated using different models for thecalculation, namely, the number of corn&g, e €ntering in
bulk band structure. Solid lines: energies calculated using a fourthe Fourier transform of the QD characteristic functisee
band model for electronéhree-band model for holgseach with  Appendix B. We kept the bottom and top siz& andR;,
the spin-orbit interaction set to zero. Dashed lines: energies calclfixed for a given dot height. Figure 10 shows the calculated
lated using one-band effective-mass models. The zero of energy iﬂiependence of the QD ground-state energy levels on size for
set at the VB edge of bulk unstrained GaN. Material parametergne three different dot shapes. The variation of the QD shape
usz_ad are listed i_n Tai_oles I'and II. The dot geometry varies with QDghifts the electron and hole energies, but does not change
height as described in the text. qualitatively the structure of the wave functions, which re-
main similar to those of Figs. 7 and 8. The energy levels in
mate of the ground-state confinement energy, e.g., in GaAshe hexagonal N.,me=6) and conelike QD’S N come= 20)
AlGaAs quantum well structure$;®® even for large are very close to each other, differing by only about 20 meV;
confinement energies, where nonparabolicity effects are behe volume of the square-based pyramidl.=4) is sig-
coming important. For a bulk semiconductor, the relativenificantly less than for the two other shapes and therefore the
deviation between the electron energies at fikeid the 1 electron and hole ground levels are50—100 meV higher
X1 and 4<4 models is of ordeAE/E4, whereAE is mea-  and lower, respectively, than in the hexagonal and conelike
sured from the conduction-bari@B) edge. A similar esti- structures(see Fig. 10 Nevertheless, as shown in the next
mate can also be applied for the QD case. In wide-band gagection, the uncertainty in the QD energy states due to any
semiconductors such as GaN, the effect of nonparabolicityincertainty in the dot shape, is much smaller than that due to
on the electron energy is therefore weaker than in narrowethe uncertainty in the material parameters that determine the
gap semiconductors like GaAs or even InAs, so we mighimagnitude of the built-in electric field.
expect that nonparabolicity effects should be negligible in
the GaN QD’s, particularly as the electron ground-state en- VI. COMPARISON WITH EXPERIMENT
ergy in the 2 nm dot is at 3.6 eV, close to the bulk GaN
conduction-band-edge energy of 3.5 eV. However, the zero We now turn to compare our numerical results with avail-
of energy in Fig. 9 is set at the valence-band edge of bulkable experimental dafaThe GaN/AIN QD structures con-
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29 T T 4 T T
09 =20 25 30 35 40 45 FIG. 11. Calculated dependence of the ground-state transition

energyE1-H1 on the total QD height for different assumed values
of the spontaneous polarization differena®Ps,on=Pop—Pw -
Solid line: using the value oA Pg,q,=0.052 C/nt (Ref. 33 (see
Table )); dashed lineAPgpon=0.032 C/m. The two solid circles
with error bars are the experimental points from Ref. 6. Material
parameters use@xcept for the spontaneous polarizajiane given

in Tables | and Il. The dot geometry varies with QD height as
follows: the wetting layer width is kept constant=0.5 nm; the
QD heighth is varied from 1.8 nm to 3.6 nm, the top diameter
equals to the total QD height=h+w; the bottom diameterR,
varies linearly on the QD height froR,= 8.5 nm for a large dot of
h=3.6 nm andR;=4.0 nm for a small dot oh=1.8 nm.

0.8 o
0.7 o
0.6 o

05

Hole energy (eV)

0.4 =
0.3 =

0.2 =

0.1 -
in reasonable agreement, if we take account of the error bars
T N . for the experimental points. The calculated value of each
20 25 3.0 3.5 4.0 45 .
dot height (nm) transition energy depgnds, however, on t_he values as;umed
for the different material parameters used in the calculations.
FIG. 10. Variation of(a) the electron andb) hole ground-state The energy levels of the carriers in the QD’s are mainly
energy level as a function of dot height, calculated for different QDdetermined by the strong built-in electric field. We therefore
shapes. Solid lines: hexagonal truncated pyranNg,f.=6), as  consider in more detail the influence of the assumed sponta-
shown in Fig. 1, dashed lines: square truncated pyramicheous polarization difference.
(Ncome=4); dot-dashed lines: 20-sided truncated pyramifd e The only values available foPg,, are those calculated
=20), used to model a truncated cone. The zero of energy is set &y Bernardini, Fiorentini, and Vanderbit. These give the
the VB edge of bulk unstrained GaN. Material parameters used argpontaneous polarization difference, which determines the
listed in Tables | and II. The dot geometrical parameters vary withcontribution from the spontaneous polarization to the built-in
QD height as described in the text. The valueRgf R, W, dx,  electric field, asA Pgyon=0.052 C/nf (see Table )l Assum-
dy, andd, are the same for each shape for a given dot hdight ing that this value is the upper limit foA Pspont and to
check the influence oAPg,,, on the carrier spectrum, we
sidered in this section were chosen to be as close as possililave also calculated the dependence of the transition energy
to the structures grown and studied in Refs. 6, 24, and 47n the QD size setting Pg,oto 0.032(dashed line in Fig.
Low-temperature photoluminescen@dl) spectra have been 11). This value is consistent with a previous analysis of the
reported for two sampléspne with “large” QD’s of height  optical properties of GaN/AIGaN QW structur&sLeroux
~4 nm, and the other with smaller dots2 nm high. The et al® found that the best fit to the experimentally observed
energies of the PL maximum in each of these two samplesariation of PL peak energy with QW width was obtained for
are shown by the filled circles in Fig. 11, along with the a series of GaN/Al;:GygN QW's by assuming a built-in
calculated dependence on QD size of Bie-H1 transition field of 450 kV/cm. This compares with the value of about
energy. The PL maximum for the large dot lies about 0.55/50 kV/cm predicted by Bernardini, Fiorentini, and
eV belowthe bandgap of bulk GaN, providing clear evidenceVanderbilts® parameters(see Table I The GaN QW'’s
for the strong built-in electric field in this QD structure. The studied in Ref. 35 were found from x-ray measurements to
transition energy for the large dot, calculated using the mabe nearly relaxed. If we therefore assume that the built-in
terial parameters in Table (solid line in Fig. 11, lies a  electric field is entirely due to the spontaneous polarization
further 200 meV lower, at about 2.75 eV. For “small” dots difference, we can estimate from the experimental data that
the calculated transition energy nearly coincides with thatA P~ 0.052< 450/756= 0.031(C/nP), suggesting that the
deduced from the experiment. Therefore we can concludspontaneous polarization values calculated by Bernardini,
that the theoretical and experimental transition energies ar€iorentini, and Vanderbilt may be overestimated. Other

0.0
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papers®®®have also concluded that the value of the spontator heterostructure containing QD’s of arbitrary shape. The
neous polarization difference should be less than that calcunethod is a natural combination of the plane-wave expan-
lated in Ref. 33 and shown in Table I. In particular, a de-sion and Fourier-transform techniques used to derive the
tailed analysis of experimental data on AlGaN/GaN QW’'s built-in strain and electric-field distributions. Each carrier
demonstrated that the value AfPgy,, is lower than that Wwave function is expressed in a serir—_zs_ expansion based ona
predicted by Bernardini, Fiorentini, and VanderBiias was ~ suitable set of bulk states. The coefficients of the series and
also concluded from modeling of experimental results orfh€ carrier energy levels in any QD are then found as the

AlGaN/GaN heterostructure field-effect transist®frsdow- eigenvectors and eigenvalues of a Hamiltonian matrix, all of
ever, other recent experimefts®® have shown that the whose matrix elements can be found analytically. The pro-

built-in electric fields calculated using Bernardini, Fiorentini, posed technique does not require explicit calculation of the

and Vanderbilt's parameters agree well with those deduce D spatiz_:ll distribution of the buiIt-_in strain and electric

from experiment. Therefore some controversy remains rel€lds. This makes the method effective and fast not only for
lated to the values of the spontaneous polarization constantgpe.wum calcglatlons, but also for further modeling of the
The transition energies for large GaN/AIN QD’s calculatedOpt_:_(;]al %rqlpe_rtlels of thef?(? structures._ Linfl h

in this paper using the lower and upper valuesAd?, ne bul t-m eGeCIt\U(,:AIIlIe D,asT:; crlfma influence orr: Le

(0.032 dashed line in Fig. 11 and 0.052 &/wplid ling are  ~2He! Stgtes i QD's. N 30”0”5 are pusned up
both consistent with the available experimental data, so the}tf) t ele to% an D OI es 3:;.’ pus be h O‘INn Into the dwr?ttllng
further data is required in order to determine more accuratel yer below the QD. In addition, both electrons and holes

the value ofA Py, Finally we note that all calculations to Xperence a S|g_n|f|cant _Iaterall confinement due to the
. . built-in electrostatic potential. This creates an effective 3D
data have assumed the magnitudeAé,,to be indepen-

dent of strain, and to vary linearly with composition, and potential for electrons and holes, with flat, circular symme-

likewise for the magnitude of the piezoelectric constants.try' The form of the electron and hole wave functions in

; GaN/AIN QD'’s is therefore very similar to what would be
Further work would be useful to confirm the accuracy of L )
) expected for an infinitely deep flat cylinder. For the holes,
these assumptions.

the ground-state energy calculated using a one-band
(effective-masps Hamiltonian agreed well with that using a
VIl. SUMMARY AND CONCLUSIONS 3X 3 valence-band Hamiltonian. By contrast, despite GaN
being a wide-band-gap semiconductor, we found it essential
In summary, we have introduced in this paper an efficiento include conduction-band nonparabolicity effects when cal-
method to calculate the strain and built-in electric-field dis-culating the electron spectrum in GaN/AIN QD’s. A one-
tribution and the electronic structure of GaN/AIN QD struc- band effective-mass Hamiltonian overestimated the electron
tures, and then applied the technique to address a range gfound-state energy by about 70—100 meV compared to the
issues concerning such dot structures. results of a 4 4 model, because of the strong vertical con-
We first introduced an approach based on a Green’s funGinement due to the built-in electric field. We also briefly
tion tensor formalism to calculate the 3D strain diStribUtionconsidered the influence of dot Shape on the QD carrier spec-
in QD structures of arbitrary shape, and with hexagonatrum, comparing a 6-sided and a 20-sided regular truncated
(wurtzite) crystal symmetry. We presented a detailed derivapyramid (the latter structure is truncated conelik&he cal-
tion of an analytical expression for the Fourier transform ofcylated ground-state energies were within 20 meV of each
the QD strain tensor, valid for the case when the elastigther, implying that our overall results and conclusions are
constants of the QD and matrix materials are equal. We aigenerally insensitive to some uncertainties in the QD shape.
gued that this is normally a reasonable assumption for burieginally, the calculated dependence of the energy position of
semiconductor quantum dots, but also outlined a simple itthe first PL maximum on QD size is found to be in good
eration procedure that could treat the strain distribution in theygreement with two experimental points from Ref. 6 for
case of unequal elastic constants. We obtain a compact angarge” and “small” GaN/AIN QD’s (heights respectively
lytical expression for the Fourier transform of the strain ten-—4.1 nm and 2.3 nin
sor. The 3D Spatial distribution of the strain tensor is then We conclude that the method introduced here gives valu-
found easily as the sum of the Fourier series. able information on the electronic structure of GaN/AIN
We then used a similar technique to calculate the Fouriefuantum dots, and should also be particularly convenient for
transform of the built-in electric f|9|d, inClUding the strain- a range of future StudieS, inc|uding mode”ng of 0ptica| tran-

induced piezoelectric field and the contribution due to thesjtion rates, and laser gain characteristics of realistic quan-
spontaneous polarization. The two sets of field terms giveym dot structures.

approximately equal contributions to the calculated built-in
electric field in GaN/AIN QD structures, where the overall ACKNOWLEDGMENTS

electric field magnitude can be of the order of several MV/ hi all d by Brite/ .
cm. For example, using the piezoelectric constants and spon-_| NS Paper was partially supported by Brite/Euram project

taneous polarization values predicted by Bernardini, Fioren-BE338l(RainboW' The visit of A.D.A. to the University of
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We next introduced an efficient technique to calculate the When the QD and matrix materials have different elastic
carrier energy spectrum and wave functions in a semicondu@onstants, the elastic modulus tenagy,,, then depends on

APPENDIX A: EFFECT OF DIFFERING ELASTIC
CONSTANTS IN THE QD AND MATRIX MATERIALS
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the space coordinate, and the Green’s function satisfies the
following equation:

ﬁXk |klm(r) GIn(r r )——5(r—r )5|n1 (Al)

A-mmm oo

where )\lklm(r) AmXoo(n) + Am(N[1—xep(r)], and
AP and\ ], are the elastic tensors corresponding to the
QD and matrix materials, respectively. L=
We outline here a method to find the Fourier transform of X
the elastic strain tensor for a single QB,S,J—e(O)Jr &,
where the partef; of the total strain tensor is due to the
displacement given by the second, integral term in(Epof
Sec. Il of this paper. The method is based on first determin-
ing a zeroth-order solution to E¢AL), similar to the solu- (Mg — A ~ _F\am
tion presented in Sec. Il. We then introduce an iterative tech- St (5)\)"('“&(2 Xoo(§=&)en-4(£). N>0.
nigue that can be used to determine a converging series of (A7)
corrections to the strain distribution.
We start with the Fourier transform of E¢AL) for the
Green'’s tensor:

W

FIG. 12. Schematic view of the pyramid segment.

It can be shown that the linear system of equations described
by Eqg. (A5) has the following solution:

)\M|m§k§mé|n(§,r,)

e'N'“=(2”)3[F<N><§>§|GN (H+FL(HénGI(H],
SN ~ Y é “‘ ' 2 p mp m
+( x).mmszg Xao( £~ €)EnGin(£ 1) (48)
= %ge“f'r'ém , (A2)  whereG}! is the Green’s tensor for the matrix material given

by Egs.(14), (21), and(22). Thus, application of EqgA6)
where we introduced\)igm=\ 30— AN, . In deriving Eq. and (A8) provides an analytical route to evaluate a zeroth-
(A2) we have used the f0||ow|ng property of the Fourier order solutiong", of the integral equation f&; and also
transform, namely, thaflfz—zg/ (E—E)Fo(&). Then, to determine hlgher order correctiorg', usmg the itera-
using Eqs.(1) and (A2) we obtain a set of linear equations tve Scheme described above.

for the strain componenﬁj :

APPENDIX B: FOURIER TRANSFORM OF xqp FOR A

)\i’\l/ldmgk’ém(g)"'(‘”\)iklmgkz }QD(§_~§ )“élm(é) TRUNCATED REGULAR N-SIDED PYRAMID
We derive here an analytical formula for the Fourier
= —)\ﬁi'greg,gkj(QD( &, (A3) transform of the characteristic functigp,p(r) correspond-

ing to a truncated regulad-sided pyramid. We first derive
where\Jc, €, is given by Eq.(9). This series of coupled the Fourier transform for a single segment of a pyramid
integral equations foe” can be solved numerically using which has arN-sided polygonal basgee Fig. 12 The Fou-
standard techniques. However, it is more convenient to solvéier transform XQD(§) of the characteristic function of a
them using a variant of perturbation theory involving the general shap€) is given by
following iterative procedure. In most cases of interest the
values of the dot and matrix elastic constants are relatively
close, so that §\)/A<1. The effect of a finite value of\
can then be considered using a perturbation series expansion.
Let the strain tensdé|,, be represented by the series

~ — 1 —ié&r
Xool®= 553 | €€ av. ®Y)

~ For the pyramid segment shown in Fig. 12 the integBdl

B =R R A4 has the ?grm ’ ’ o=

where”'moc(é)\/)\)’\'. The convergence of the series in Eq.

(A4) should be guaranteed sincéN)/\<1. For theNth yox!xo _ heed 1—X/x0) _

term in Eq.(A4) we obtain the following set of equations:  Yps= f dx e '§Xxf dy e*'gyyf dz e ¢,
YoX/Xg 0

Maméken'=FN(&), (A5) (B2)

where where hg, is the segment heightx,=R,cosa, Yo
© =R}, sine, and for anN-sided pyramidy = 77/N. Evaluation
Fi%(9=—\pepréiXqn( ), (A6)  of this integral is straightforward and gives
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- 1 Yo sedl _iep pyramid segments, _each turned sequentially by an angle
Xps=— 77| lel Xo, = &x— &yt &7 e 'sz0seg 27/N around thez axis:
fygz Xo Xo
Yo hseg N—1
=l Xo— &+ E—+ E— 2pm 2pm
e Yo 6= 3 m{cos(% v 27 e
p=0
i Yo
X @ 16xNseg— | (x —¢ —5—) 2pm 2pm
|70 S By —sin i & +co b & .63 (B5)
N N
Yo
tle Xo,—§x+§y—)], (B3) . . .
Xo Finally, the truncated pyramid can be regarded as the “dif-
where ference” of two pyramids. The Fourier transform of the
characteristic function of the truncated pyramid is therefore
a 1 . given by
Ie(a,b)zf ePXdx= —[ePa—1].
0 ib
~ o~ _ ,'gzh,..
To find the Fourier transform of the pyramid we then use the Xan(8) =Xpyl &Ry ) —e 7 &R hs), - (BE)

principle of superposition and the fact that the Fourier trans-
form of the volumeV (which is the image of volum¥ after ~ Where the origin of the coordinate system is at the center of

coordinate transform=TT, T=T'r), is given by the QD baseR, and R, are the respective horizontal dis-
tances from thez axis to a bottom and top corner of the
Fy(&)= FY/(E) (B4) truncated pyramidh is the height of the truncated pyramid

5 and xpy(&,R,hyy,) is the Fourier transform for a pyramid
where é=T"¢. Thus, the Fourier transform of thé-sided  with base segment sizR and heighthy,,, hs=Rh/(R,
pyramid,’x,(§) can be expressed as the superpositioN of —R;) andh;=R,h/(R,—Ry).
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