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Theory of the electronic structure of GaNÕAlN hexagonal quantum dots
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~Received 25 January 2000; revised manuscript received 6 July 2000!

We present a theory of the electronic structure of GaN/AlN quantum dots~QD’s!, including built-in strain
and electric-field effects. A Green’s function technique is developed to calculate the three-dimensional~3D!
strain distribution in semiconductor QD structures of arbitrary shape and of wurtzite~hexagonal! crystal
symmetry. We derive an analytical expression for the Fourier transform of the QD strain tensor, valid for the
case when the elastic constants of the QD and matrix materials are equal. A simple iteration procedure is
described, which can treat differences in the elastic constants. An analytical formula is also derived for the
Fourier transform of the built-in electrostatic potential, including the strain-induced piezoelectric contribution
and a term associated with spontaneous polarization. The QD carrier spectra and wave functions are calculated
using a plane-wave expansion method we have developed, and a multibandk•P model. The method used is
very efficient, because the strain and built-in electric fields can be included analytically through their Fourier
transforms. We consider in detail the case of GaN/AlN QD’s in the shape of truncated hexagonal pyramids. We
present the calculated 3D strain and electrostatic potential distributions, the carrier spectra, and wave functions
in the QD’s. Due to the strong built-in electric field, the holes are localized in the wetting layer just below the
QD bottom, while electrons are pushed up to the pyramid top. Both also experience an additional lateral
confinement due to the built-in field. We examine the influence of several key factors on the calculated
confined state energies. Use of a one-band, effective-mass Hamiltonian overestimates the electron confinement
energies by;100 meV, because of conduction-band nonparabolicity effects. By contrast, a one-band valence
Hamiltonian provides good agreement with the calculated multiband ground-state energy. Varying the QD
shape has comparatively little effect on the calculated levels, because of the strong lateral built-in electric field.
Overall, the transition energies depend most strongly on the assumed built-in electric field. The calculated
variation of transition energy with quantum dot size is in good agreement with the available experimental data.
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I. INTRODUCTION

Semiconductor quantum dots~QD’s! have been of major
interest in recent years. This has largely been stimulated
progress in QD growth technology, whereby self-organiz
relatively uniform, dot layers can be achieved using
Stranski-Krastanow growth mode. Semiconductor QD’s
of interest both from a fundamental physics perspective,
abling the study of zero-dimensional objects analogous
artificial atoms, and also because of potential device appl
tions, particularly in the field of optoelectronics. Se
organized QD structures of relatively high quality have be
successfully grown using a wide range of semiconduc
compounds. These include III-V quantum dots based
GaAs,1–3 InP,4 GaSb,5 and nitride structures,6–9 as well as
Group-II–VI ~ZnSe-based10,11! Group-IV–VI ~PbS-based!,12

and Si/Ge-based QD structures.13 Nitride-based quantum
dots have a special place in this list. Wide-bandgap nitri
based quantum well~QW! and dot structures have signifi
cantly different properties compared to the ‘‘classica
GaAs-based QW and QD structures. Whereas GaAs
most other Group-III–V compounds have a cubic~zinc-
blende! crystal structure, GaN and related nitride alloys ge
erally have a hexagonal~wurtzite! structure, which leads to
strong built-in piezoelectric fields in heterostructures, of
order of MV/cm. As a consequence, self-organized GaN/A
QD’s can exhibit a large redshift in the energy of the ph
toluminescence maximum, with interband emission repor
PRB 620163-1829/2000/62~23!/15851~20!/$15.00
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about 0.5 eV below the GaN bulk bandgap.6 Moreover, un-
like GaAs QD’s, for which the electronic structure has be
widely studied ~see, e.g., Refs. 14–16 and referenc
therein!, the electronic structure of GaN/AlN QD’s has n
yet been theoretically analyzed in any detail.

Because of the rapid progress in QD growth technolo
the theoretical study of self-organized QD’s is now of ma
interest, both to interpret existing data, and also to gu
future developments. A key requirement is for a relative
simple technique to reliably calculate the electron and h
energy levels and wave functions in any arbitrary-shaped
structure. This is a considerably more difficult and compu
tionally intensive task than for a quantum well structu
where quantization only occurs along one direction, a
where Bloch’s theorem can then still be used for the ot
two dimensions. The calculation of QD energy spectra m
include the full three-dimensional quantization and the u
ally intricate shape of the QD’s. In addition, it is necessary
determine the 3D distribution of the strain and piezoelec
fields, as a prerequisite to calculating the electronic struc
of a QD. The real-space distribution of the strain and pie
electric fields is generally found using finite-difference
atomistic techniques, which require substantial compu
tional time and memory. The numerically determined str
distribution is then often Fourier transformed~numerically!
into k space, in order to set up and solve the Hamilton
matrix. We introduce here a method that considerably
duces this computational effort.
15 851 ©2000 The American Physical Society
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The main aim of this paper is to study theoretically t
electronic structure of hexagonal GaN/AlN QD structur
and to compare the results with available experimental d
To the best of our knowledge, we present the first theoret
investigation of the carrier states in GaN-based QD’s, wh
we carry out in the framework of a multibandk•P model,
including the effects of the 3D strain and built-in electri
field distributions. We present an orginal technique based
a plane-wave expansion method to calculate the electron
hole energy spectra and wave functions. With this techniq
we do not need to calculate explicitly the 3D distribution
the strain and built-in electric fields in real space. Instead,
can generate directly the Fourier transform of these distr
tions ink space, using analytical expressions which we h
derived, and present below. The QD shape enters these
pressions through the Fourier transform of its characteri
function, which can be derived analytically for a wide ran
of dot shapes. The proposed technique therefore provid
very convenient method to study the variation of the Q
properties as a function of dot shape and size. The me
used considerably reduces the computational effort c
pared to previous techniques, requiring that we calculate
carrier spectrum and wave functions of any QD structure
finding the eigenvalues and eigenvectors of a large ma
all of whose elements are derived analytically. From a ma
ematical point of view, our method is therefore based on
efficient Fourier-transform technique.

The paper is organized as follows. In the next section
develop the method to calculate the 3D strain distribution
a QD of arbitrary shape. We derive an analytical express
for the Fourier transform of the strain tensor, and pres
results for the calculated spatial dependence of the st
tensor in GaN/AlN QD’s shaped as truncated hexago
pyramids and sitting on a wetting layer. We then derive,
Sec. III, analytical formulas for the Fourier transform of t
built-in electrostatic potential, including the contribution d
to the strain-induced piezoelectric field, and also due to
difference between the spontaneous polarizations of the
and matrix materials. We demonstrate that, as previou
found for quantum wells, both contributions are of simil
magnitude in QD’s. Section IV is devoted to the develo
ment of the plane-wave expansion method for calculating
carrier spectra and wave functions in QD structures usin
multibandk•P model. We then present in Sec. V the calc
lated carrier spectra and wave functions for a range of G
AlN QD structures. We study the influence of the variati
of QD shape on the carrier spectra, as well as the influenc
nonparabolicity on the electron spectra, and of band mix
on the hole states in QD’s. Section VI compares the ca
lated carrier spectra in QD’s with the available experimen
data from Ref. 6. We show that the calculated ground-s
optical transition energy depends most strongly on the
sumed difference between the spontaneous polarization
bulk GaN and AlN. Using values in the range 0.032–0.0
C/m2 for this polarization difference, we can obtain goo
agreement between the theoretical and experimental res
Finally we summarize our results and conclusions in S
VII.

II. STRAIN CALCULATIONS

The calculation of the spatial strain distribution in a Q
structure requires the solution of a 3D problem in elastic
s
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theory, often for a nontrivial quantum dot shape. This
often achieved using finite-difference methods or atomis
techniques.14,17,18These methods require considerable co
putational effort. A simple method to calculate the stra
field in a semiconductor structure containing QD’s of ar
trary shape was presented in Ref. 19 for the case when
elastic properties are assumed to be isotropic and the el
constants of the QD and matrix materials are equal. T
effects of anisotropic elastic constants on the strain distri
tion were included later in Refs. 20 and 21 for the case o
cubic ~zinc-blende! crystal structure. We describe here th
generalization of this approach to the case of hexago
~wurtzite! crystals.

Consider a QD of arbitrary shape formed by embedd
one kind of elastic material into a second elastic mate
with different lattice constants.22 To keep the analysis a
simple as possible, we consider here the case of equal el
constants for the QD and matrix materials. The modificat
of the method to take account of different elastic constant
the dot and matrix is summarized in Appendix A. The d
placement vector in a structure containing a single quan
dot can be expressed as the convolution of the Green’s
sor, Gin(r ,r 8), and the forcesdFn spread over the surfac
V8 of the QD:

ui~r !5ui
~0!~r !1E

V8
Gin~r ,r 8!dFV~r 8!, ~1!

where the indicesi 51,2,3 denote the three spatial direction
and ui

(0) is the displacement corresponding to any init
strain. When the elastic constants are equal in the QD and
matrix, the Green’s tensorGin(r ,r 8)[Gin(r2r 8), and satis-
fies the following equation:

l iklm

]Gln~r !

]xk ]xm
52d~r !d in , ~2!

wherel iklm is the elastic modulus tensor of the materials.
Eqs.~1! and ~2!, and below, we use the usual rule for sum
mation over 1,2,3 for repeating indices unless the sum
indicated explicitly.

The surface force componentsdFn in Eq. ~1! can be ex-
pressed asdFn5snk

T dSk8 , whereS8 is a surface element a
point r 8, with the associated normal vector directed outwa
from the QD surface. We also use in Eq.~1! that ui

(0)(r )
5ui

TxQD(r ) and snk
T 5lnkprepr

T , wherexQD(r ) is the char-
acteristic function of the QD, equal to unity within the Q
and zero outside, andsnk

T ,epr
T ,ui

T are components of the
stress and strain tensors and the displacement caused b
‘‘initial’’ strain due to the lattice mismatch between the Q
and matrix materials.

For cubic and isotropic crystals we had for the initi
strain that

epr
T 5

aM2aQD

aQD
dpr[«adpr ,

whereaM and aQD are the elastic constants for the matr

and QD materials.20,21The situation is more complicated in
hexagonal crystal, where the tensorepr

T has the form
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epr
T 5S «a 0 0

0 «a 0

0 0 «c

D 5«adpr1~«ca!dp3d r3 , ~3!

with «c5(cM2cQD) /cQD and «ca5«c2«a , the difference
between the strain values along thec axis and thea axes. The
displacementui

S(r ) due to a single QD of arbitrary shap
embedded in an infinite matrix, is then given by

ui
s~r !5ui

TxQD~r !1E Gin~r2r 8!lnkprepr
T dSk8 . ~4!

Using Gauss’s theorem and rewriting Eq.~4! in terms of the
strain tensor rather than displacements, we obtain:

ei j
s ~r !5ei j

T xQD~r !1
1

2 EQD
F]Gin~r2r 8!

]xj]xk

1
]Gjn~r2r 8!

]xi ]xk
Glnkprepr

T dV8, ~5!

where integration is carried out over the QD volume. Us
the convolution theorem and then taking the Fourier tra
form gives

ẽi j
s 5ei j

T x̃QD~j!2
~2p!3

2
$j i G̃ jn~j!1j j G̃in~j!%

3lnkprjkepr
T x̃QD~j!. ~6!

Equation ~6! gives the general expression for the Four
transform of the strain tensor in a structure containing
single QD of arbitrary shape. This is a general formula va
for crystals of hexagonal or any other symmetry. Note t
the QD shape enters only as the Fourier transform of the
characteristic function.

For a hexagonal crystal the elastic modulus tensorl iklm
has five independent components:lxxxx5C11, lxxyy5C12,
lxxzz5C13, lzzzz5C33, andlyzyz5C44, whereCi j are the
elastic constants. A sixth componentlxyxy, which one might
at first expect to be independent, is related to these five
lxyxy5

1
2 (C112C12). The elastic modulus tensorl iklm for a

hexagonal crystal can also be expressed in a more ge
form in terms of the unit tensord i j :

l iklm5ad ikd lm1b~d i l dkm1d imdkl!1gd i3dk3d l3dm3

1k~d i3dk3d lm1d ikd l3dm3!1r~d imdk3d l3

1d i3dm3dkl1d i l dk3dm31d i3d l3dkm!, ~7!

where

a5C12, b5 1
2 ~C112C12!,

g5C3322C1324C441C11,

k5C132C12, r5C441
C122C11

2
. ~8!

The first two terms in Eq.~7! correspond to the isotropi
part, so the condition that the hexagonal crystal has isotro
elastic properties is thatg5k5r50, i.e., the last three
g
-

r
a
d
t
D

y
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ic

terms describe the elastic anisotropy of the hexagonal c
tal. Using Eq.~7! and the expression forepr

T @Eq. ~3!# we find

lnkprepr
T 5Rdnk1Sdn3dk3 , ~9!

where

R5~3a12b1k!«a1~a1k!«ca , ~10!

S5~g13k14r!«a1~2b1g1k14r!«ca . ~11!

Substituting Eq.~9! into Eq. ~6! then gives

ẽi j
~s!5x̃QD~j!H «ad i j 1«cad i3d j 32

~2p!3

2
R@j ijnG̃jn~j!

1j jjnG̃in~j!#2
~2p!3

2
S@j ij3G̃j 3~j!1j jj3G̃i3~j!#J .

~12!

The last step to derive an analytical formula for the Four
transformẽi j

s is to find the quantitiesG̃j 3 and the ‘‘scalar’’

productsjnG̃jn[(jG) j . To do this we start from the Fourie
transform of Eq.~2!:

l iklmjkjmG̃ln~j!5
d in

~2p!3 . ~13!

Then with the help of the explicit expression for the tens
l iklm @Eq. ~7!#, we can rewrite Eq.~13! in the following
form:

~bj21rj3
2!G̃in1@~k1r!j ij31~rj21gj3

2!d i3#G̃3n

1@~a1b!j i1~k1r!d i3j3#~jG!n5
1

~2p!3 d in . ~14!

We derive from Eq.~14! two linear equations forG3n and
(jG)n and then solve the equations so obtained.23 The first
equation is found by rewriting Eq.~14! for i 53:

Pj3G̃3n1I ~jG!n5
d3njn

~2p!3 , ~15!

where

P5~C3322C442C13!j3
21C44j

2, ~16!

I 5~C131C44!j3
2. ~17!

To get the second equation forG3n and (jG)n we multiply
Eq. ~14! by j i and sum overi to find

Qj3G̃3n1F~jG!n5
jn

~2p!3 , ~18!

where

Q5~C3322C1324C441C11!j3
21~C1312C442C11!j

2,
~19!

F5~C1312C442C11!j3
21C11j

2. ~20!

Combining Eqs.~15! and~18! we solve the 232 linear sys-
tem and find
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j3G̃3n5
1

~2p!3

1

FP2IQ
$Fd3n2I %jn , ~21!

~jG!n5
1

~2p!3

1

FP2IQ
$P2Qd3n%jn . ~22!

Finally using Eqs.~21!, ~22!, and~12!, we obtain an analyti-
cal expression for the Fourier transform of the strain ten
for the case of hexagonal crystals:

ẽi j
s 5x̃QD~j!H «ad i j 1«cad i3d j 31

RP2IS

IQ2FP
j ij j

1
SF2RQ

IQ2FP
j3

j id j 31j jd i3

2 J . ~23!

Although Eq. ~23! provides an apparently complicated e
pression for the strain tensor, it is nevertheless straight
ward to evaluate, with the expressions forP, I, Q, and F
given by Eqs.~16!, ~17!, ~19!, and~20!; and the quantitiesR
andSdefined by Eqs.~10! and~11!. It can also be shown tha
it reduces in the case of an isotropic crystal to the expres
that we previously derived forẽi j

s , namely,

ẽi j
iso~j!5«0x̃QD~j!H d i j 2

3l12m

l12m

j ij j

j2 J , ~24!

where«0[«a[«c , and l5C12 and m5C44 are the Lame´
constants for an isotropic elastic medium.

The calculated elastic constant values for GaN and Al25

are such that the anisotropic elastic constantg is of compa-
rable magnitude to the isotropic elastic constants,a and b,
while k andr are about an order of magnitude smaller. W
could therefore in principle setk andr equal to zero in the
strain distribution calculations. We choose however to ke
them nonzero, and therefore to include the full anisotropy
the elastic constants in our strain calculations below.

The elastic problem is a linear one and so the solution
a periodic QD array is obtained as a superposition of
elastic fields for single QD’s, namely,

ei j 5 (
n1 ,n2 ,n3

ei j
s ~x12n1d1 ,x22n2d2 ,x32n3d3!, ~25!

where d1 , d2 , and d3 are the periods in thex, y, and z
directions, respectively. If we assume a free-standing p
odic array of dots, then an additional condition forei j arises
from the requirement of minimum elastic energy for the p
riodic QD array. The strain tensor averaged over the elem
tary 3D superlattice unit cell is zero (ei j 50). From Eq.~25!
it follows that the coefficients for the Fourier series expa
sion of ei j are equal to@(2p)3/(d1d2d3)#ẽi j

s (jn), wherejn

52p(n1 /d1 ,n2 /d2 ,n3 /d3). Finally, therefore, we obtain
for the strain tensor in a free-standing QD array that

ei j ~r !5
~2p!3

d1d2d3
(

n1 ,n2 ,n3

ẽi j
s ~jn!exp~ i jn•r !, ~26!

where the summation is carried out over all values
n1 ,n2 ,n3 , with ẽi j

s 50 whenn15n25n350. Thus, Eq.~26!
when combined with Eq.~23! gives an analytical expression
r
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f

r
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-
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-

f

in the form of a Fourier series, for the strain distribution
any free-standing structure of hexagonal symmetry that c
tains QD’s of arbitrary shape.

The QD shape enters in Eq.~23! only in the form of the
Fourier transformx̃QD(j) of the QD characteristic function
Analytical expressions forx̃QD(j) for different shapes
~sphere, cube, cylinder, cone, square pyramid, trunca
square pyramid! are given in the Appendix of Ref. 20. Th
Fourier transform for a regularN-sided truncated pyramid is
derived in Appendix B of this paper.

We now turn to apply Eq.~26! to investigate the strain
distribution about GaN QD’s embedded in an AlN matrix.
systematic high-resolution transmission electron microsc
~HRTEM! analysis of this system24 indicates that the dots
form as truncated hexagonal pyramids standing on a
wetting layer.24 A schematic 3D view of one such QD i
shown in Fig. 1~a! with cross sections shown in Figs. 1~b!
~view in x-z plane! and 1~c! ~view in x-y plane!. In the
calculations below, the shapes of the QD’s are as prese
in Fig. 1, with the sizes and vertical repeat distances u
close to the experimental values.24

Figure 2 shows the calculated variation of the strain t
sor components along the~0001! and (011̄0) directions. For
the ~0001! direction @Fig. 2~a!#, along the line through the
pyramid center, the strain tensor components are of sim

FIG. 1. Schematic diagrams of GaN/AlN QD’s shaped as tr
cated hexagonal pyramids.~a! 3D view of a single QD standing on
a wetting layer;~b! and~c! Views of the QD structure in thex-z and
x-y planes, respectively. The QD size is determined by the dia
eters of the pyramid base and top,Rb andRt ~more precisely, these
are the diameters of the circles that circumscribe the polygons a
bottom and the top!, h is the QD height, andw is the thickness of
the wetting layer. The QD’s are modeled using a cubic superlat
with perioddx5dy in the growth plane anddz in the growth direc-
tion.
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magnitude inside and outside the dot. This is because
GaN and AlN thicknesses~5.1 and 6.9 nm, respectively! are
comparable along this line for the dot sizes considered h
Between the pyramids, and cutting through the wetting la
along the~0001! direction, the strain is much larger in th
GaN wetting layer than in the AlN matrix. In addition, th
magnitude of the biaxial strain component,ezz21/2(exx
1eyy) is much larger in the wetting layer than along t
center of the dot, whereezz is in fact negative, as would b
found for a purely hydrostatic strain. Thus, the major part
the AlN matrix in the QD array is nearly unstrained since t
fraction of the QD’s in the total array volume is less th
10%. Turning to the (0110̄) direction, Fig. 2~b! shows how
the magnitudes of the strain fields peak near the pyra
edges, with smoother variations away from the edges.

The strain distribution in similar structures with small
QD’s (h52.8 nm; total QD height,h1w53.3 nm), was
studied by HRTEM in Refs. 6 and 24. These studies dedu

FIG. 2. Position dependence of the strain tensor compone
calculated using Eq.~26! for the GaN/AlN QD structure shown in
Fig. 1; ~a! along the~0001! direction through the pyramid cente
~x5y50, thick curves, for whichexx5eyy) and through the wetting
layer between the pyramids (y50, x5dx/2, thin curves!; ~b! along

the (011̄0) direction,x5z50. Material parameters used are liste
in Table I. The dot dimensions areRb58.5 nm, Rt54 nm, h
54.1 nm,w51 nm, dx5dy525 nm, anddz512 nm.
he

e.
r

f

id

d

that the GaN dots are totally strained with respect to the A
matrix. In addition, assuming uniform biaxial strain in th
GaN QD, Arleyet al.24 managed to obtain good agreeme
between the simulated and measured interplanar dista
profiles through the GaN dot. Therefore it was concluded
Ref. 24 that, to a first approximation, the strain distribution
uniform throughout each dot, with a value corresponding
the biaxial strain imposed by the surrounding AlN matr
For these smaller QD’s we have also calculated the st
distribution. Along the~0001! direction through the QD, the
strain tensor components exhibit similar variations as th
for large dots, which are presented in Fig. 2~a!. However, for
smaller dots the average strain value within the dot is larg
and the strain value also decreases more rapidly outside
dot. In particular, we found that2exx;1.7% – 2.1% inside
the dot, whileexx decreases to;0.4% between the dots. T
a first approximation, these results agree with those of R
24, where it was estimated thatexx;0 outside andexx
;2.5% inside the dot. It would be interesting to model t
results of the HRTEM measurements of Ref. 24 using a m
detailed simulation based on the predicted strain distribu
about each dot, rather than just assuming a uniform bia
strain model. Such an analysis is beyond the scope of
present paper. We note however that the model used in
24 is inconsistent with a range of calculations, all of whi
show that a single lattice-mismatched quantum dot int
duced pseudomorphically into an infinite matrix material w
always distort the material surrounding the dot.14–16,19,20In
fact, this strain field outside the dot plays an important r
in dot formation leading to the vertical correlation of the do
in the array. In such a vertically correlated QD array t
strain fields from neighboring dots overlap outside the do
so that nonzero strain tensor components must always e
in the matrix between the dots, as shown in Fig. 2~a!, where
eii is nonzero along the~0001! direction through the dots.

The strain distributions in Fig. 2 were determined usi
AlN elastic constant values in the dot and matrix regio
The elastic constant values were taken from a theoret
study by Wright25 and are listed in Table I, along with th
values calculated for GaN.25 There are several reasons th
justify using the same elastic constant values in the dot
matrix.20 First, the elastic constants of GaN and AlN a
relatively close to each other, as can be seen from Tab
Second, the calculated difference in the elastic constant
the two materials is less than the spread in values determ
experimentally for GaN and AlN. For example,C11 equals
396 GPa for AlN and 367 GPa for GaN in Table I, while th
experimentally reported values for AlN range from 34
GPa27 to 411 GPa;28 with GaN values ranging from 296
618 GPa29 to 390615 GPa.30 A similar situation is found
for the other elastic constants, so that the uncertainty in
elastic constant values partly justifies their being conside
to be equal. Also, the elastic constants of a material in a s
of high strain may differ from those for the unstrained bu
material, introducing further uncertainty as to the best cho
of elastic constants.~Materials tend to get stiffer as they ar
compressed.! Related to this, Keyes31 showed that, to a very
good approximation, the elastic constants in most Gro
III–V semiconductors depend chiefly on the neare
neighbor lattice spacing. He proposed an empirical sca
rule, which has been supported by experimental data.32 Ap-

ts,



th
on

,
re

st

di
ee
is
p
tic

th
tu

y
-
th
fo

e

l t

-
fe

d
n

c

n

n
a-

ck

in-
om
n

D
ut
n
ues
ns
for

rom
the

ic
-

ubic
tion

the
ie-

-
he
her

r
all
ous

o-
es,
hat
in

e

e

n

to
nt

15 856 PRB 62A. D. ANDREEV AND E. P. O’REILLY
plying this scaling rule to the case of QD’s suggests that
most appropriate choice of QD elastic constants is to c
sider them equal to those of the matrix material.20 We there-
fore assume equal elastic constants. For completeness
also outline in Appendix A how the method introduced he
can be adapted if required to take account of differing ela
constants in the dot and matrix materials.

In practice, the quantum dot arrays that have been stu
experimentally, are not free standing but rather have b
grown pseudomorphically on a thick buffer layer. In th
case a different constraint is imposed on the strain com
nents ei j , due to the requirement to minimize the elas
energy in the whole structure~thick buffer and QD array!,
rather than only in the periodic QD array. We require that
strain tensor components averaged over the whole struc
should be zero:

E
buffer

ei j d3r1E
QD array

ei j d3r50. ~27!

This equation provides the modified constraints necessar
determine the value ofẽi j

s (0,0,0). @We assume that the num
ber of periods in the QD array is large enough so that
array can be considered as a QD superlattice and there
Eq. ~26! is still valid#. For a free-standing QD array, Eq.~27!
requires ẽi j

s (0,0,0)50. However, if the thickness of th
buffer layer is large enough, Eq.~27! then requires that the
in-plane lattice constant of the QD array should be equa
that of the buffer. We can adapt Eq.~26! for this case simply
by choosing values forẽi j

s (0,0,0) such that the average in
plane lattice constant of the array equals that of the buf
with the array then relaxing in thez direction due to the
biaxial in-plane stress.26 The GaN/AlN QD structures studie
experimentally in Refs. 6 and 24 were grown coherently o
thick ~1.5 mm! AlN buffer. For the ‘‘large’’ dots studied in
Ref. 6 the QD’s and wetting layer occupy a very small fra
tion of the total superlattice unit cell volume~2.4% and
4.1%, respectively, as we have useddx5dy530 nm, dz
512 nm, w50.5 nm, Rb58.5 nm, Rt52.1 nm, andh
53.6 nm.) Therefore we can estimate the average strai
the QD array by replacing it with an Al12xGaxN layer of

TABLE I. Material parameters of bulk GaN and AlN used
calculate the strain and built-in electric fields. Elastic consta
from Ref. 25; other parameters from Ref. 33.

Parameter GaN AlN

C11, GPa 367 396
C12, GPa 135 137
C13, GPa 103 108
C33, GPa 405 373
C44, GPa 95 116
a, Å 3.189 3.112
c, Å 5.185 4.982
e15, C/m2 20.49 20.6
e31, C/m2 20.49 20.6
e33, C/m2 0.73 1.46
Pspont, C/m2 20.029 20.081
e 9.6 9.6
e
-

we
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to
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equal average composition (x56.5%). The average strai
ẽi j

s (0,0,0) in the QD array is then to a very good approxim
tion equal to the uniform biaxial strain imposed by a thi
AlN buffer on a thin Al12xGaxN layer with x56.5%. Thus,
due to the presence of the thick AlN buffer the average
plane strain tensor components in the QD array differ fr
zero, with exx5eyy50.16%. This value should have bee
used forẽxx,yy

s (0,0,0) in Eq.~26!, in order to take into ac-
count the presence of the thick AlN buffer on which the Q
array was grown, with a correction of similar magnitude b
opposite sign forẽzz

s (0,0,0). This constant shift in the strai
values is less than 10% of the characteristic strain val
inside the dot. We neglect this shift in further calculatio
and consider free-standing QD arrays. The strain values
pseudomorphically strained layers can then be deduced f
the figures shown here by adding a constant correction to
axial strain components.

III. DETERMINATION OF PIEZOELECTRIC FIELD
AND POTENTIAL

It is by now well established that built-in piezoelectr
fields significantly modify the electronic structure of GaN
based quantum wells~QW’s! and heterostructures.33 The ef-
fects are considerably stronger than those observed in c
GaAs-based structures for several reasons. First, introduc
of a uniform strain along the~0001! direction produces a
nonzero piezoelectric field in nitride-based QW’s, due to
symmetry of the wurtzite crystal structure. Second, the p
zoelectric constantse31 and e33, which determine the mag
nitude of the built-in field, are several times larger than t
piezoelectric constant values found for GaAs and ot
Group-III–V binary compounds~see Table I and Ref. 33!. In
addition, the dimensions of a GaN or AlN unit cell diffe
slightly from those of an ideal hexagonal crystal. This sm
deviation introduces what is referred to as a spontane
electrostatic polarization,33 which also contributes to the
built-in piezoelectric field. Although the effects of the piez
electric potential have been widely studied in QW structur
we use the Fourier-transform method to introduce here w
we believe is the first quantitative analysis of the variation
piezoelectric potential in a GaN-based QD structure.

We start with the Maxwell equation divD50 for the dis-
placement fieldD, which is defined here by

D5« rE14p~Pstrain1Pspont!, ~28!

where the strain-induced polarization,Pstrain depends on the
strain tensorekl as

Pi
strain~r !5e i ,klekl5e i ,kl

M ekl1de i ,klxQDekl , ~29!

where e i ,kl
M and e i ,kl

QD are the piezoelectric constants for th
matrix and dot materials, respectively, andde i ,kl5e i ,kl

QD

2e i ,kl
M . The spontaneous polarization contributionPspont, is

directed along thec axis, and can be defined in terms of th
characteristic function as

Pspont~r !5Pspont
M 1@Pspont

QD 2Pspont
M #xQD~r !. ~30!

By taking the Fourier transform of the Maxwell equatio
div D50 with D defined by Eq.~28!, we find the Fourier
transform of the built-in piezoelectric fieldE,

s
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Ẽi52
4pj ij l

« rj
2 @ P̃l

spont1 P̃l
strain#, ~31!

where the tilde denotes the Fourier transform. When us
the Fourier transform technique to find the built-in elect
field for a free-standing QD array, we include the addition
condition that the electric field averaged over the unit cel
the QD superlattice is zero:Ēi50 ~this follows from the
requirement that the electric-field energy is minimized!. This
is achieved by requiring thatẼi is zero whenj equals zero.
The Fourier transform of the electrostatic potentialw, is re-
lated to the built-in electric field byw̃52 iẼ i /j i . The Fou-
rier transform of the piezoelectric potential is then made
of several contributions:

w̃5w̃spont1w̃strain1w̃de, ~32!

w̃spont52 i
4pj3

« rj
2 ~Pspont

QD 2Pspont
M !x̃QD~j!, ~33!

w̃strain52 i
4p

« rj
2 @2~j1ẽ131j2ẽ23!e151j3e31~ ẽ111ẽ22!

1j3e33ẽ33#, ~34!

w̃de52 i
4p

« rj
2 @2~j1ẽ13

x 1j2ẽ23
x !~de!151j3~de!31~ ẽ11

x 1ẽ22
x !

1j3~de!33ẽ33
x #, ~35!

where ẽi j
x denotes the Fourier transform of the produ

xQDei j of the QD characteristic function and the elastic str
in the structure. The Fourier transform of the product is
convolution of the Fourier transforms of the individu
terms, withẽi j

x therefore given by

ẽi j
x ~j!5(

j̃

xQD~j2 j̃ !ẽi j ~ j̃ !. ~36!

The first contribution to the electrostatic potential in Eq.~32!
is due to the difference in the spontaneous polarization
the QD and matrix materials. In deriving expression~33!, we
explicitly used that the spontaneous polarization is direc
along ~0001!, i.e., uPspontu[P3

spont, as calculated by Bernar
dini et al.33,34and supported by several experiments.35,36The
constant partPspont

M of Pspontin Eq. ~30! does not contribute to
the potential because of the condition thatw(j50)50. The
second and third contributions tow are due to the piezoelec
tric field associated with the strain distribution in the Q
structure. The second term@Eq. ~34!# describes the piezo
electric field when the piezoelectric constants of the QD a
matrix are equal, while the third term@Eq. ~35!# arises from
any difference in these constants between the two mater
In deriving Eqs.~34! and ~35! we use that for hexagona
Group-III–V crystals only the following components of th
piezoelectric tensor are nonzero:e1,135e2,235e15; e3,11
5e3,225e31, ande3,335e33.

Equations~33!–~35! give analytical formulas for the Fou
rier transform of the built-in electrostatic potential. The
can be used directly to calculate QD carrier spectra and w
functions, as described in Sec. IV. However, we first ap
g

l
f

p

t

e

of

d

d

ls.

ve
y

them here to get an insight into the overall built-in potenti
calculating the 3D distribution of the piezoelectric potent
and of the electric field in the GaN/AlN QD structure show
in Fig. 1. For these calculations we summed a Fourier se
similar to Eq.~25!, with the substitutionei j ↔w.

Figure 3 shows the calculated variation of the to
built-in electrostatic potential,w total ~solid line!, and electric
field, Ez ~dotted line! along the~0001! direction, through the
pyramid center. The total potential is found as the sum of
strain-induced piezoelectric potential,wstrain @dot-dashed line,
given by Eqs.~34! and ~35!#, and the spontaneous polariz
tion contribution,wspon @dashed line, from Eq.~33!#. Both
contributions are of similar magnitude, and of the same s
The magnitude of the electric field along the QD axis e
ceeds 6 MV/cm in the wetting layer, just below the pyram
It decreases to about 4 MV/cm on moving from the pyram
base to the top. Outside the pyramid the electric field
around 4 MV/cm, but of opposite sign to that inside the Q
As with the strain field, the piezoelectric field is of simila
magnitude inside and outside the pyramid, because the
height plus wetting layer thickness is of the same order as
matrix thickness along this line. Along a~0001! line between
the pyramids, the electric field is considerably larger in t
GaN wetting layer than in the AlN matrix, because the w
ting layer thickness is much smaller than the matrix thic
ness there (w/dz!1 in Fig. 1!.

A giant built-in electric field of several MV/cm is charac
teristic of GaN/AlN structures and has been observed in s
eral experiments. For example, a built-in electric field of
MV/cm was deduced from optical measurements on
GaN/AlxGa12xN QW structure withx50.27.36 In addition,
the electric field was shown to depend linearly on the
fraction x.36 Therefore, it is natural to expect a built-in ele
tric field of several MV/cm forx51.

FIG. 3. Calculated variation of the built-in electrostatic potent
componentsw, and total electric fieldE, along the~0001! direction
(x5y50), through the center of the pyramid shown in Fig.
Solid line: Total built-in electrostatic potentialw total, found as the
sum of the strain-induced piezoelectric potential,wstrain ~dot-dashed
line! and the spontaneous polarization termwspon~dashed line!. The
dotted line shows the total built-in electric field. The material p
rameters used are listed in Table I.
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However, it should be noted that the calculated values
the built-in electric field depend strongly on the piezoelec
constants and on the spontaneous polarization values
sumed for GaN and AlN. The values of these parame
used here are listed in Table I, and are taken from the w
of Bernardini, Fiorentini, and Vanderbilt.33 The piezoelectric
constante15, was not given in Ref. 33, so we have assum
it equal toe31, by analogy with other hexagonal crystals th
exhibit strong piezoelectric properties. For ZnO and hexa
nal CdS the piezoelectric constantse15, e31, and e33 are
20.59,20.61, and 1.14 and20.21,20.24, and 0.44, respec
tively ~all in C/m2!.37 These constants are of the same or
as for GaN or AlN which we take to justify settinge15
5e31 here. There remains however some uncertainty in
piezoelectric constants for GaN and AlN, and the sponta
ous polarization values are also not known well, lead
therefore to uncertainty in the calculated values of
built-in electric field in GaN/AlN QD’s. We will return to
discuss this point in more detail in Sec. VI of this paper.

Figure 4 presents a 2D contour plot of the calculated to
electrostatic potential in the GaN/AlN QD of Fig. 3. Th
potential difference of over 2 V between the pyramid bas
and top creates a deep potential well for holes at the
bottom and for electrons at the top. This is confirmed by F
4~a!, which shows a contour plot of the potential in thex-z
plane (y50). The hole well is in fact deepest below the d
in the wetting layer. Figure 4~b! shows the variation of the
electrostatic potential in the wetting layer, atz523w/4,
close to the deepest point in the hole well. The poten
contours are nearly circularly symmetric, and therefore o
weakly sensitive to the shape of the QD base. A sim
result is observed for the electron well. Because the poten
wells are also considerably wider in the wetting layer pla
than in the growth direction, we will therefore analyze t
symmetry of the electron and hole states in Sec. V by ass
ing the dots to have circular symmetry in the 2D grow
plane.

The results presented in this section were obtained ass
ing a free-standing QD array. However, as already note
the previous section, the structures studied experimental
Refs. 6 and 24 were grown on a thick AlN buffer layer. T
presence of this buffer layer introduces a nonzero aver
electric field into the QD array, pointing along the grow
direction. Its magnitude can be estimated using a similar
proach to that used for the strain field in the previous sect
We estimate the value of this additional constant elec
field by again replacing the QD array by an effecti
Al12xGaxN layer with x56.5% ~see Sec. III!. We assume
that the AlN buffer thickness is 1.5mm and the QD array
thickness is 0.24mm, which corresponds to 20 periods of th
QD superlattice in the growth direction.6 When we impose
the requirement that the electric field averaged through
complete structure is zero, we calculate that the piezoele
and spontaneous-polarization induced electric fields
Epiezo50.26 MV/cm andEspont50.32 MV/cm AlGaN ~QD
array! layer. This correction is about 10% of the total built-
electric field inside the dot. It is smaller than the uncertai
in the calculated value of the built-in electric field due
uncertainties in the piezoelectric constants and spontan
polarization values. In addition, the field due to the buf
layer points entirely along the growth direction, and
f
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causes no change to the variation in the lateral confinem
potential for any fixed value ofz, such as we considered i
Fig. 4~b!. We therefore ignore the influence of the buff
layer for the electronic structure calculations.

IV. PLANE-WAVE EXPANSION METHOD

We describe in this section our method to calculate
carrier spectrum and wave functions of QD structures, us
the analytical expressions for the built-in strain and elec
fields derived in the two previous sections.

The multiband envelope function approximation is wide
used to calculate carrier spectra in semiconductor quan
structures. It has proved to be a convenient and reliable t
describing well, e.g., the experimentally observed variat
in interband transition energies due to quantum size effe
in quantum well~QW! and QD structures.38,39 In the enve-
lope function method, the carrier states in a quantum str

FIG. 4. Contour plots of the variation in the total built-in ele
trostatic potential,w total , for the QD’s of Fig. 2,~a! in thex-z plane
(y50), and ~b! in the wetting layer atz523w/4. The darkest
areas show regions of low potential~where holes are trapped!, and
the brighter areas regions of higher potential~where electrons are
trapped!. The numbers in boxes show the magnitude of the poten
~in eV! along the different contour lines.
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ture are calculated by solving a Schro¨dinger-like equation
with an effective multiband Hamiltonian,ĤC5EC. The
number of bands included,NH and the form ofĤ differ
depending on the particular multiband Hamiltonian that
chosen. From a mathematical point of view the effect
Hamiltonian equation describes a system of coupled dif
ential equations. By using a plane-wave method, we
solve this system of equations using a Fourier-transfo
technique. From a physical point of view, this corresponds
describing the carrier states in terms of a linear combina
of suitably chosen bulk states,40 associated with a periodi
array of bulk wave vectors. The effective Hamiltonian c
then be naturally represented in the form

Ĥ5Ĥ01V̂, ~37!

where the ‘‘perturbation’’V̂ describes the difference be
tween the potential in the quantum structure considered
the potential in the bulk HamiltonianĤ0 used for the basis
states. The eigenstates of the bulk Hamiltonian are chose
the basis states for the plane-wave expansion; each of t
eigenstates then has the form

Cp,n,S~r !5
1

Ad1d2d3
(
a51

NH

Ba
S~p,n!ua~r !exp$ i @~pi2jn!r #%,

~38!

wherea51, . . . ,NH labels the basic Bloch functionsua(r ),
p is the ‘‘quasimomentum’’ label for the 3D superlattice
quantum dots, (jn) i52pni /di , n is the plane-wave number
andSdenotes the different types of state included~e.g., dou-
bly degenerate electron, heavy-, light-hole- and spin-split
bands forNH58). The operator matrixV̂ in Eq. ~37! is
obtained from the bulklike Hamiltonian by making the su
stitution ki→2 i ]/] i , to take account of the spatial depe
dence of the band parameters. Details of the interface bo
ary conditions are included by an appropriate application
the differential operators at each interface. Each wave fu
tion of the effective HamiltonianĤ is then found as a serie
expansion with respect to the plane-wave states of Eq.~38!:

Cp~r !5(
S

(
n

Cp,n,SCp,n,S~r !, ~39!

where the summation overS takes into account such effec
as light- and heavy-hole mixing in heterostructures. The n
step is to obtain the matrixA, whose eigenvectors and eige
values are the coefficientsCp,n,S and the energy spectrum o
the QD. This matrix has the form

Ai 8 i5ES~p2jn!dS8Sdn8,n

1 (
a851

NH

(
a51

NH

@Ba8
i 8 #* Ba

i Ṽa8,a
i 8 i

~n,n8!, ~40!

where the numbersi 8 and i denote the set of quantum num
bers (p,n,S), ES(k) is the energy dispersion of the bu
state of typeS, and Ṽa8,a(n,n8) is the Fourier transform o
Va8,a :
s
e
r-
n

o
n

nd

as
se

ff

d-
f

c-

xt

Ṽa8,a~n,n8!5
1

d1d2d3
E

V0

ei jn8rVa8,ae2 i jnr d3r . ~41!

The matrix elementsVa8,a dependlinearly on the strain ten-
sor components and on the built-in electric potential. The
fore the Fourier transform ofVa8,a is expressed through th
Fourier transforms of the strain tensor, the built-in elect
static potential, and the QD characteristic functionxQD, in-
troduced in the previous sections. Using a plane-wave exp
sion method in conjunction with the techniques introduced
previous sections, there is then no need to calculate the
spatial distribution of the strain and of the built-in electr
field, unlike in other methods. This simple trick considerab
reduces the computation time to set up calculations
makes the plane-wave method very effective for the furt
study of QD optical properties and modeling QD device
We also note that the number of bulk states~‘‘plane waves’’!
which must be included to obtain a given level of accura
is reduced in periodic structures with partly coupled QD’s.
addition, the maximum number of bulk plane-wave stat
Ni

max, which can be included along any directioni, in an
envelope-function calculation, is less than the number
atomic layers in one period of the QD superlattice along t
direction:Ni

max,di /ai . The envelope-function approximatio
is generally valid only when the envelope function vari
smoothly over distances of the order of the lattice const
ai . As a result, all terms with large wave vectors in t
Fourier series (ki.2p/ai), should be neglected, since the
must be negligibly small in the envelope-function appro
mation. This therefore provides an estimate for the maxim
number of plane waves that should be included in the ma
expansion of Eq.~40!. It also provides a means of testing th
applicability of the plane-wave expansion method to cal
late the carrier spectrum and wave functions in any given
structure. If the number of plane waves required along
particular direction to calculate the wave function and carr
energy of a given level is less than the maximum num
Ni

max, then the plane-wave expansion method should
valid. This is because the terms in Eq.~40!, which have large
wave vectors (ki.2p/ai) and which should therefore b
thrown away, do indeed make a negligibly small contributi
to the solution of the Schro¨dinger-like equationĤC5EC.
We find for all the QD structures considered in this pap
that the number of plane waves required along any direc
is always much less thanNi

max and it is therefore appropriat
to use the plane-wave expansion method.

We turn next to consider a suitable form of the multiba
Hamiltonian for GaN/AlN QD structures. For hexagon
semiconductors, with wurtzite symmetry, the band struct
near the energy gap can be well described using the K
eight-bandk•P Hamiltonian. A particularly characteristic
feature of wurtzite GaN and AlN is their very small spin
orbit splitting values,Dso, of order 5–10 meV, compared t
several hundred meV for most other Group-III–V an
Group-II–VI semiconductors. To simplify the Hamiltonian
and reduce the size of the matrix in Eq.~40!, we therefore
neglect the spin-orbit splitting when calculating the ele
tronic structure of GaN/AlN QD’s. This is justified becaus
of the uncertainty in several other key parameters, includ
in particular the magnitude of the spontaneous polariza
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constants,Pspont, in GaN and AlN. We show later, in Sec. V
how small changes in the assumedPspontvalues significantly
modify the calculated optical transition energies. By sett
the spin-orbit splitting to zero instead of 5–10 meV, t
838 Hamiltonian decouples into two independent 434
Hamiltonians, one for spin-up and the other for spin-do
states. Using as basis statesu15uS↑&, u25u(X1 iY)↑/&&,
u35u(X2 iY)↑/&&, and u45uZ↑&, the effective 434
HamiltonianĤ0 is then given by

Ĥ05S Eg
P'k1

&

P'k2

&
Pikz

P'k2

&
F K* 2H*

P'k1

&
K F H

Pikz 2H H* l

D , ~42!

where

H5 iÃ6kzk1 , ~43!

K5Ã5~kx
22ky

212ikxky!, ~44!

l52D11Ã1kz
21Ã2~kx

21ky
2!, ~45!

u5Ã3kz
21Ã4~kx

21ky
2!, ~46!

F5D11l1u. ~47!

In the above equations,Eg and D1 are the band-gap an
crystal-field splitting of bulk GaN;Ã1 to Ã6 are the band
parameters of GaN in the four-band model; the correspo
ing parametersA1 to A6 for a 333 valence-band Hamil-
tonian are given by the 333 lower corner of Eq.~42!, and
are presented in Table II in units of\2/(2m0) ~wherem0 is
the free-electron mass!. The two sets of band parameters a
related by

Ã15A11
2m0

\2

P'
2

Eg
, Ã25A2 , ~48!

Ã35A32
2m0

\2

P'
2

Eg
, Ã45A41

m0

\2

Pi
2

Eg
, ~49!

Ã55A51
m0

\2

Pi
2

Eg
, Ã65A61

&m0

\2

PiP'

Eg
, ~50!

whereP' andPi are the momentum matrix elements of bu
GaN, related to the bulk electron effective massesm' andmi

by

Pi
25

\2

2m0
S m0

me
i 21D ~Eg1D11D2!~Eg12D2!22D3

2

Eg12D2
,

~51!
g

n

d-

P'
2 5

\2

2m0
S m0

me
'21D $~Eg1D11D2!~Eg12D2!22D3

2%Eg

~Eg1D2!~Eg1D11D2!2D3
2 .

~52!

In the above expressions forPi and P' , we allow for non-
zero values ofD25Dso/3 andD3 . This allows us to describe
accurately the electron effective mass and conduction-b
nonparabolicity in the four-band Hamiltonian, both of whic
are crucial to determining the electron-ground- and excit
state confinement energies.

The Fourier transform of the ‘‘perturbation’’ matrixṼa8,a
in Eq. ~41! is given by

Ṽ~n8,n!5S dEc 0 0 0

0 dF d~K* ! 2d~H* !

0 dK dF dH

0 2dH d~H* ! dl

D , ~53!

where

dEc5Ucx̃QD
2 1ac

QD~ ẽ111ẽ221ẽ33!2w̃

1dac~ ẽ11
x21ẽ22

x21ẽ33
x2!, ~54!

dF5dD1x̃QD
2 1dl1du, ~55!

TABLE II. Band parameters of bulk GaN and AlN.

Parameter GaN AlN

Eg ,a eV 3.5 6.3
D1 ,b eV 0.022 20.104
D2 ,b eV 0.005 0.004
D3 ,b eV 0.005 0.004
A1 27.24c 24.17a

A2 20.51c 20.58a

A3 6.73c 3.68a

A4 23.36c 22.17a

A5 23.35c 22.27a

A6 24.72c 22.21a

D1 , eV 0.7d,e 0.7f

D2 , eV 2.1d 2.1f

D3 , eV 1.4d 1.4f

D4 , eV 20.7d 20.7f

D5 , eV 20.7d 20.7f

D6 , eV 1.4d 1.4f

m'
c /m0

b 0.20 0.33
mi

c/m0
b 0.18 0.25

ac eV 24.08e 24.08f

aReference 51.
bReference 50.
cReference 48.
dReference 52.
eReference 49.
fAssumed to be equal to that of GaN.
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dl52Uvx̃QD
2 1D1

QDẽ331D2
QD~ ẽ111ẽ22!2w̃1dD1ẽ33

x2

1dD2~ ẽ11
x21ẽ22

x2!1@dA1kz8kz1dA2~kx8kx

1ky8ky!#x̃QD
2 , ~56!

du5D3
QDẽ331D4

QD~ ẽ111ẽ22!1dD3ẽ33
x21dD4~ ẽ11

x21ẽ22
x2!

1@dA3kz8kz1dA4~kx8kx1ky8ky!#x̃QD
2 , ~57!

dK5D5
QD~ ẽ1112i ẽ122ẽ22!1dD5~ ẽ11

x212i ẽ12
x22ẽ22

x2!

1dA5~kx81 iky8!~kx1 iky!x̃QD
2 , ~58!

dH5D5
QD~ ẽ131 i ẽ23!1dD6~ ẽ13

x21 i ẽ23
x2!

1
dA6

2
@kz8~kx1 iky!pz~kx81 iky8!#x̃QD

2 , ~59!

and whered(K* ) andd(H* ) are obtained fromdK anddH
@Eqs. ~58! and ~59!# by making the substitutioni→2 i
~which is not the same as complex conjugation!. In Eqs.
~54!–~59!, k5p2jn andk85p82jn8 are the total quasimo
menta; the Fourier transforms of quantities likex̃QD

2 and ẽi j

are taken att5n2n8; ẽ12
x2 is the Fourier transform of the

product@12xQD#ei j , which is given by convolution ofẽi j

andx̃QD
2 @see Eq.~36!#; x̃QD

2 stands for the Fourier transform
of @12xQD#; Uc andUv are the barrier heights for electron
and for holes at anunstrained GaN/AlN heterojunction;
dAi5Ai

M2Ai
QD, dDi5Di

M2Di
QD, anddD i5D i

M2D i
QD are

the material parameter differences. We emphasize thaall
terms in the above equations can be found analytically us
the expressions for the Fourier transforms of the strain ten
ẽi j ~given in Sec. II!, and of the built-in electrostatic poten
tial w̃ ~given in Sec. III!. Thus, using the Fourier-transform
technique, we have derived analytical expressions for all
elements of the main matrixA of Eq. ~40!, whose eigenval-
ues and eigenvectors are then the energies and wave
tions of the carriers localized in the given QD structure.

The plane-wave expansion method developed abov
also well suited to and has been successfully applied to
culate carrier spectra and wave functions in QD structu
based on other material systems.21,41,42An expression for the
Fourier transform of the strain tensor in a cubic crystal
derived in Ref. 20; while the piezoelectric potential in a c
bic crystal is easily obtained using the method develope
Sec. III. The plane-wave expansion method is also very c
venient for further modeling of the optical properties a
laser gain characteristics of QD structures.43,44 In contrast to
other methods, where the carrier wave functions and opt
matrix elements are found numerically in real space and t
by numerical 3D integration, the plane-wave expans
method developed here allows the optical matrix element
be expressed analytically through the coefficientsCp,n,S @see
Eq. ~39!#, which thereby considerably reduces the compu
tion time, enabling more efficient modeling of QD las
characteristics.

V. NUMERICAL RESULTS

We present in this section the results of calculations of
carrier spectra and wave functions of electron and hole st
g
or

e

nc-

is
l-
s

s
-
in
n-

al
n

n
to

-

e
es

in GaN/AlN QD’s, including the influence on the results
the QD shape and of the Hamiltonian used in calculation

The dot shapes and sizes are chosen to be close to
experimental data of Arleyet al.,24 and are as shown in Fig
1. We take the dot and matrix compositions to be pure G
and AlN, respectively, neglecting interdiffusion of Ga and
atoms across the dot boundaries. This is consistent with
results of Arleyet al.,24 who used HRTEM and numerica
simulations to determine the atomic interplanar distan
across the GaN dots. The composition profiles were t
fitted using a ‘‘trial and error’’ comparison between the e
perimental and simulated curves,24 from which they con-
cluded that there is no intermixing between Ga and Al
GaN dots. This contrasts with InAs/GaAs QD’s, whe
strong intermixing has been observed.41,45,46 We neglect in
our calculations the relatively weak interdiffusion of Ga a
Al atoms ~0.15 monolayers! observed in the wetting laye
between the dots, since, as we show below, the electrons
holes are strongly localized inside the dots and therefore
composition of the wetting layer outside the dot has ne
gible effect on these localized states. Thus, our assump
that the dot/matrix compositions are pure GaN/AlN is co
sistent with the existing experimental data.6,24,47

The dot base diameter (2Rb) was observed to depen
approximately linearly on dot height,h, in Ref. 47. We as-
sume that the QD top diameter (2Rt), also varies linearly
with h. We calculate below the dependence of the car
energy spectra in QD’s on dot size, as we vary the QD he
from h52 nm toh54.1 nm and the base and top diamete
from Rb55.0 nm toRb58.5; andRt52 andRt54 nm, re-
spectively, consistent with the dot geometries of Ref. 47. T
band-structure parameters that we use are listed in T
II.48–52There is some uncertainty in the publishedAi values.
For example, the published values ofA2 range from20.51
~Ref. 48! to 20.91 ~Ref. 49! for GaN and from20.58 ~Ref.
51! to 20.27~Ref. 49! for AlN. There is less variation in the
otherAi values. The values of the deformation potentialsDi
and ac are even less well-known than theAi values. We
could not find any published data for theDi ’s andac in AlN;
we therefore assumed them to be equal to those of G
There is also a wide spread in the published theoretical
experimental values for the valence-band discontinuity
AlN/GaN interfaces, withDEv ranging from 0.5~Refs. 53
and 54! to 1.4 eV.55,56 Reference 54 also suggests that t
valence-band discontinuity depends on the growth temp
ture. We use here the recent experimental value54 of DEv
50.560.2 eV. Because the strong built-in electric field cr
ates very deep potential wells for electrons and holes~see
Figs. 5 and 6!, any uncertainty in the value ofDEv has much
less effect on the calculated energy levels in GaN/AlN QD
than for other material systems. The greatest uncertaint
the calculated confined state energies arises from uncer
ties in the values of the material parameters that determ
the magnitude of the built-in electric field.

This is confirmed by Fig. 5, which shows the calculat
variation of the conduction-band~CB! and heavy-hole va-
lence band~VB! edges along the~0001! direction. The solid
lines show the band-edge profiles through the pyramid ce
(x5y50), including both the strain deformation potentia
and the built-in electrostatic potential of Fig. 3, while th
dashed lines show the band-edge profiles with the elec
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static potential set to zero. This clearly demonstrates how
built-in electric fields crucially influence the carrier states
the QD. The electric field strongly separates the carrie
electrons are pushed up to the QD top and holes are pu
down into the wetting layer, below the pyramid base. T
effect of the built-in potential is much stronger within th
dots than in the wetting layer between the dots. The do
line shows the variation of the band-edge profile alo
~0001! at x5dx/2, y50, from which it can be seen that th
VB edge between the dots is 600 meV above the VB e
under the dot. The hole states therefore experience bo
strong lateral and vertical confining potential due to t
built-in fields, and are localized in the wetting layer, direc
below the pyramid. The lateral confinement for holes, a
for electrons, is confirmed by Fig. 6, which shows a conto
plot of the calculated CB and VB profiles in thex-z plane
(y50). These plots clearly illustrate that the electrons w
be localized near the pyramid top@darkest region of Fig.

FIG. 5. Calculated variation of the conduction-band edge~CB,
upper figure! and heavy-hole valence-band edges~VB, lower fig-
ure! along the~0001! direction for the QD’s of Fig. 2. Solid lines
profiles through the pyramid center (x5y50), including the strain
deformation potentials, and the built-in electrostatic potential
Fig. 3; for comparison, the dashed lines show the band-edge
files, with the built-in electrostatic potential set to zero. Dott
lines: band edges along the~0001! direction through the wetting
layer atx5dx/2, y50. Material parameters used are listed in Tab
I and II.
e

s;
ed

e

d
g

e
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d
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l

6~a!#, and the holes in the wetting layer, just below the py
mid base@darkest region of Fig. 6~b!#.

Figure 7 shows the probability density distributio
uC(r )u2, for the first five electron states in the hexagon
GaN/AlN QD of Fig. 2, calculated using the 434 Hamil-
tonian of Eq.~42!. Because of the built-in electric field, th
3D potential well for the lowest electron states has roug
the shape of a short cylinder. We therefore analyze the e
tron states in the GaN/AlN QD by comparing them wi
those of an infinitely deep, cylindrical 3D potential well. Th
electron states in such a cylinder are characterized by t
quantum numbers (nz ,nr ,m), wherenz is the quantum num-
ber along the cylinder axisz, nr is the radial quantum num
ber, andm is thez component of the angular momentum.
our case the cylinder is flat and we therefore need only c
sider states withnz51. States withnz52,3,4, . . . are at
higher energy, as confirmed by Fig. 7, which shows that
first five states have only one maximum in thez direction,
and are thereforenz51 states. The ground-stateE1 is sym-

f
o-

s

FIG. 6. Calculated 2D map of~a! the conduction-band~CB!
edge, and~b! the valence-band~VB! edge for the GaN/AlN QD’s of
Fig. 2, including the strain deformation potentials and the built
electrostatic potential. The darkest regions correspond to pote
wells ~a! for electrons in the upper figure, and~b! for holes in the
lower figure. The boundaries between the QD or wetting layer
the matrix are indicated by thick-black lines.
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FIG. 7. Probability density distribution,uC(r )u2, for the five
lowest electron states in the GaN/AlN QD of Fig. 2, calculated
the framework of an 8-bandk•P model with zero spin-orbit split-
ting. The energies of the electron states are calculated, respect
to be E153.020 eV, E253.094 eV, E353.095 eV, E4

53.198 eV, andE553.250 eV~whereE50 corresponds to the
unstrained bulk GaN valence-band edge!. Darker areas indicate
larger values ofuC(r )u2. The left-hand plots showuC(r )u2 in the
x-y plane atz53h/4, while the right-hand plots show the cros
section in a plane through thez axis and the thin line on the corre
sponding left-hand plot. Right-hand plots forE1 and E2 in the
planey50, E3 andE5 for x50, andE4 for the planex5y. Ma-
terial parameters used are listed in Tables I and II.
metric in thex-y plane, withm50 andnr50 ~see Fig. 7!.
This is followed by two almost degenerate statesE2 andE3.
These states would be degenerate in the flat cylinder, w
m561. The degenerate wave functions can be chosen
have a form similar to E2 and E3, with C2

}cos(f)J1(k11r ) and C3}sin(f)J1(k11r ) ~where Jm is the
Bessel function of orderm, whose nth root is given by
Rkmn , and withR the radius of the cylinder!. The probability
density of the second stateE2 , has two maxima, atf
50,p, while E3 has two maxima, atf56p/2 ~see Fig. 7!.
The total probability density associated with the electrons
states E2 and E3 is then cylindrically symmetric, with
(uC2u21uC3u2)}J1

2(k11r ). Likewise, the wave functions
calculated forE4 andE5 show them to be similar to state
with m562, which vary in the plane approximately a
sin(2f) and cos(2f), respectively. The contour plot forE5
nevertheless clearly deviates from cos(2f) symmetry, as the
lobes along thex axis have considerably smaller magnitu
than those along they axis. This reduction in the symmetr
of the E5 state accounts for it being at a higher energy th
E4, although the two states would be degenerate in a cy
drical potential. The wave functions and degeneracy of
first three electron states are then as expected for a cylin
cal potential, due to the approximately circular symmetry
the lateral confinement due to the built-in electrostatic pot
tial. However, the hexagonal symmetry of the dot in thex-y
plane, and the cubic array of dots, which we have chos
then become of greater importance for higher states, lea
to the asymmetry of theE5 state, and the splitting of its
degeneracy with theE4 state.

Figure 8 shows the probability density distributio
uC(r )u2 for the first five holes states in the hexagonal Ga
AlN QD of Fig. 2, calculated with the spin-orbit splitting se
to zero, using a valence-band HamiltonianHv , based on the
lower-right 333 part of the Hamiltonian matrix of Eq.~42!,
and with the parametersÃi replaced by theAi values. Usage
of the full 434 Hamiltonian would have had little effect o
the calculated results for the first five hole states. T
valence-band basis statesu2 to u4 used in Eq.~42! are quan-
tized with respect to the~0001! direction, with angular mo-
mentum values of11, 21, and 0, respectively, about thez
axis. The band structure of bulk GaN along the~0001! direc-
tion can then be described in terms of three independ
doubly degenerate bands, withu25u(X1 iY)↑/&& and u3
5u(X2 iY)↑/&& describing the heavy-hole spin-up~HH!
bands, andu45uZ↑& describing the light-hole spin-up~LH!
band. There are, in addition, two further spin-down H
bands, and a spin-down LH band, which we do not need
consider. The calculated hole states can then be interpr
based on this 333 Hamiltonian,Hv . If we initially use a
diagonal approximation to analyze the confined valen
states@settingK5H50 in Eq. ~42!# then we can separatel
solve for each of the three valence bands in a flat, cylindr
potential, as was done for the electron states above. It ca
seen from Figs. 4, 6, and 8 that the holes are consider
more tightly confined along the~0001! direction than within
the plane of the wetting layer, so that again we need o
consider states withnz51. Because the lattice constant
GaN is larger than that of AlN, the wetting layer is und
biaxial compression, and so the light-hole (u4) valence-band

ly,
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energy is shifted down in energy compared to the heavy-h
band edges. In addition, the light-hole effective mass is c
siderably smaller than that of the heavy holes, so that
nz51 contribution to the light-hole confinement energy
considerably larger than that of the heavy holes. Both

FIG. 8. Probability density distribution,uC(r )u2 for the first five
hole states in the GaN/AlN QD of Fig. 2, calculated using a 333
Hamiltonian, with the spin-orbit splitting set to zero. The energ
of the hole states are calculated, respectively, to beE15E2

50.726 eV, E350.693 eV, E450.671 eV, andE550.662 eV
~where E50 again corresponds to the unstrained bulk G
valence-band edge!. Darker areas correspond to larger values
uC(r )u2. The left-hand plots showuC(r )u2 in the x-y plane atz
52w/2, while the right-hand plots show a cross section in thex-z
plane aty50. Material parameters used are listed in Tables I and
le
-
e

f

these effects combine to shift the light-hole states well aw
from the valence-band edge.

The u2 andu3 states have the same diagonal matrix e
ment F, in Eq. ~42!, so that in the diagonal approximation
each would therefore separately give a set of confined
lence states with the same symmetry characteristics as
electron states,E1 to E5. When we now ‘‘switch on’’ the
mixing between the three sets of valence bands, we find
the LH (u4) states barely contribute to the band-edge
lence states. The mixing between theu2 andu3 states gives
rise to a doubly degenerate ground state, for which the
statesH1 andH2 have wave functions that are found in Fi
8 to be slightly prolate along thex andy directions@although
their combined probability density, (uC1u21uC2u2), is to a
good approximation circularly symmetric#. The off-diagonal
matrix elementK, mixesu2 states with angular momentum
componentm with u3 states with component (m12). This
then qualitatively changes the character of the excited
lence states (H3 to H5 in Fig. 8!, so thatH3 for instance has
four probability density lobes in thex-y plane, rather than
the two lobes observed for each of the doubly degenerateE2
andE3 states.

Electronic structure calculations become considera
simpler if a multiband effective Hamiltonian can be replac
by a one-band model to calculate electron and hole confi
state energies in QW or QD structures. We therefore t
now to investigate the validity of using a one-band Ham
tonian to determine electron and hole confined state ener
in GaN/AlN QD’s.

The one-band effective-mass Hamiltonians for electro
and heavy holes are assumed, respectively, to have the

Helec
1315UcxQD

2 1
\2

2 Fkx

1

mc
i kc1ky

1

mc
i ky1kz

1

mc
' kzG

1ac~exx1eyy1ezz!2w ~60!

and

Hhole
13152UvxQD

2 1~A11A3!kz
21~A21A42A5!~kx

21ky
2!

1~D11D3!ezz1~D21D42D5!~exx1eyy!2w,

~61!

where all the Hamiltonian parameters have been defined
lier. The one-band energy spectrum calculations were car
out using the same method as described in the previous
tion, namely, using Eqs.~37!–~41!, which are valid for an
arbitrary Hamiltonian of any size.

Figure 9 shows the variation of~a! electron and~b! hole
confined state energy, as a function of dot size, calcula
using an appropriate multiband Hamiltonian~solid lines!,
and the one-band, effective-mass Hamiltonians of Eqs.~60!
and ~61!. We see from Fig. 9~a! that the difference betwee
the results of the one-band and four-band model is aro
100 meV for the ground electron levelE1 in the smallest~2
nm! dot considered, and decreases only slightly to about
meV for the 4 nm dot. The calculated differences are ev
larger for the higher levelsE2,E3,E4, . . . .

This result is initially very surprising. The one-ban
model assumes the conduction-band dispersion to be p
bolic, and has been shown to give a generally accurate

s

f

I.



A

b
ive

g
ci
w
gh
i

en
N
e
ul

the
on

ter

so
e
the

use

he
ec-
ving

ole

nal
the

nal
ron

pe
ed
ion,

-
ge

con-
yra-
s in
id is
an
the

ted
for

ape
nge
e-
in

V;

the

like
xt
any
e to
the

il-
-

th
ou

lc
gy
te
QD

PRB 62 15 865THEORY OF THE ELECTRONIC STRUCTURE OF . . .
mate of the ground-state confinement energy, e.g., in Ga
AlGaAs quantum well structures,57,58 even for large
confinement energies, where nonparabolicity effects are
coming important. For a bulk semiconductor, the relat
deviation between the electron energies at fixedk in the 1
31 and 434 models is of orderDE/Eg , whereDE is mea-
sured from the conduction-band~CB! edge. A similar esti-
mate can also be applied for the QD case. In wide-band
semiconductors such as GaN, the effect of nonparaboli
on the electron energy is therefore weaker than in narro
gap semiconductors like GaAs or even InAs, so we mi
expect that nonparabolicity effects should be negligible
the GaN QD’s, particularly as the electron ground-state
ergy in the 2 nm dot is at 3.6 eV, close to the bulk Ga
conduction-band-edge energy of 3.5 eV. However, the z
of energy in Fig. 9 is set at the valence-band edge of b

FIG. 9. Variation of~a! the electron and~b! hole energy levels
as a function of QD height, calculated using different models for
bulk band structure. Solid lines: energies calculated using a f
band model for electrons~three-band model for holes!, each with
the spin-orbit interaction set to zero. Dashed lines: energies ca
lated using one-band effective-mass models. The zero of ener
set at the VB edge of bulk unstrained GaN. Material parame
used are listed in Tables I and II. The dot geometry varies with
height as described in the text.
s/

e-

ap
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er
t

n
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unstrained GaN, and the built-in electric field causes
conduction-band-edge energy to vary rapidly with positi
through the QD. The energy shiftDE counted from the CB
edge then varies strongly as we move from the QD cen
(DE;0) to the top of the pyramid whereDE;700 meV
~see the band-edge profile in Fig. 5!. Most of the electron
wave function is localized near the top of the pyramid,
that the average value ofDE is then large. As a result, th
conduction-band nonparabolicity has a marked effect on
calculated electron energy levels in GaN/AlN QD’s@see Fig.
9~a!#.

Similar effects for holes should be much weaker, beca
the hole confinement along the~0001! direction is deter-
mined primarily by the heavy-hole effective mass. T
heavy-hole dispersion remains parabolic to larger wave v
tors, and the larger mass also leads to the heavy-hole ha
a tighter vertical confinement. Figure 9~b! shows that the
one-band heavy-hole Hamiltonian of Eq.~61! can be suc-
cessfully applied to predict approximately the same h
ground-state energy as is obtained using the 333 valence
Hamiltonian based on Eq.~42!.

All the calculations presented above were for hexago
QD’s, shaped as in Fig. 1. Such a shape is consistent with
underlying crystal symmetry, and also with the hexago
symmetry observed in the dot reflection high-energy elect
diffraction pattern by Arleyet al.24 However, it remains a
complex problem to completely determine the QD sha
from experiment. The high-resolution TEM studies carri
out for instance in Ref. 24 probe a vertical dot cross sect
thereby giving values for the bottom and top radiiRb andRt ,
and the widthw of the wetting layer. HRTEM does not di
rectly confirm the dot shape. To study the effect of a chan
in QD shape on the energy spectra, we have therefore
sidered 4-sided, 6-sided, and 20-sided regular truncated p
mids, and calculated the electron and hole energy level
each case as a function of dot size. The 20-sided pyram
included to model a truncated conical structure. We c
change the QD shape by varying just one parameter in
calculation, namely, the number of cornersNcornerentering in
the Fourier transform of the QD characteristic function~see
Appendix B!. We kept the bottom and top sizesRb andRt ,
fixed for a given dot height. Figure 10 shows the calcula
dependence of the QD ground-state energy levels on size
the three different dot shapes. The variation of the QD sh
shifts the electron and hole energies, but does not cha
qualitatively the structure of the wave functions, which r
main similar to those of Figs. 7 and 8. The energy levels
the hexagonal (Ncorner56) and conelike QD’s (Ncorner520)
are very close to each other, differing by only about 20 me
the volume of the square-based pyramid (Ncorner54) is sig-
nificantly less than for the two other shapes and therefore
electron and hole ground levels are;60–100 meV higher
and lower, respectively, than in the hexagonal and cone
structures~see Fig. 10!. Nevertheless, as shown in the ne
section, the uncertainty in the QD energy states due to
uncertainty in the dot shape, is much smaller than that du
the uncertainty in the material parameters that determine
magnitude of the built-in electric field.

VI. COMPARISON WITH EXPERIMENT

We now turn to compare our numerical results with ava
able experimental data.6 The GaN/AlN QD structures con
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sidered in this section were chosen to be as close as pos
to the structures grown and studied in Refs. 6, 24, and
Low-temperature photoluminescence~PL! spectra have bee
reported for two samples,6 one with ‘‘large’’ QD’s of height
'4 nm, and the other with smaller dots,'2 nm high. The
energies of the PL maximum in each of these two samp
are shown by the filled circles in Fig. 11, along with th
calculated dependence on QD size of theE1-H1 transition
energy. The PL maximum for the large dot lies about 0
eV belowthe bandgap of bulk GaN, providing clear eviden
for the strong built-in electric field in this QD structure. Th
transition energy for the large dot, calculated using the m
terial parameters in Table I~solid line in Fig. 11!, lies a
further 200 meV lower, at about 2.75 eV. For ‘‘small’’ do
the calculated transition energy nearly coincides with t
deduced from the experiment. Therefore we can concl
that the theoretical and experimental transition energies

FIG. 10. Variation of~a! the electron and~b! hole ground-state
energy level as a function of dot height, calculated for different Q
shapes. Solid lines: hexagonal truncated pyramid (Ncorner56), as
shown in Fig. 1; dashed lines: square truncated pyra
(Ncorner54!; dot-dashed lines: 20-sided truncated pyramid (Ncorner

520), used to model a truncated cone. The zero of energy is s
the VB edge of bulk unstrained GaN. Material parameters used
listed in Tables I and II. The dot geometrical parameters vary w
QD height as described in the text. The values ofRb , Rt , w, dx ,
dy , anddz are the same for each shape for a given dot heighth.
ble
7.

s

5

-

t
e
re

in reasonable agreement, if we take account of the error
for the experimental points. The calculated value of ea
transition energy depends, however, on the values assu
for the different material parameters used in the calculatio
The energy levels of the carriers in the QD’s are main
determined by the strong built-in electric field. We therefo
consider in more detail the influence of the assumed spo
neous polarization difference.

The only values available forPspont are those calculated
by Bernardini, Fiorentini, and Vanderbilt.33 These give the
spontaneous polarization difference, which determines
contribution from the spontaneous polarization to the built
electric field, asDPspont50.052 C/m2 ~see Table I!. Assum-
ing that this value is the upper limit forDPspont, and to
check the influence ofDPspont on the carrier spectrum, we
have also calculated the dependence of the transition en
on the QD size settingDPspont to 0.032~dashed line in Fig.
11!. This value is consistent with a previous analysis of t
optical properties of GaN/AlGaN QW structures.35 Leroux
et al.35 found that the best fit to the experimentally observ
variation of PL peak energy with QW width was obtained f
a series of GaN/Al0.11G0.89N QW’s by assuming a built-in
field of 450 kV/cm. This compares with the value of abo
750 kV/cm predicted by Bernardini, Fiorentini, an
Vanderbilt’s33 parameters~see Table I!. The GaN QW’s
studied in Ref. 35 were found from x-ray measurements
be nearly relaxed. If we therefore assume that the buil
electric field is entirely due to the spontaneous polarizat
difference, we can estimate from the experimental data
DPspont50.0523450/75050.031~C/m2!, suggesting that the
spontaneous polarization values calculated by Bernard
Fiorentini, and Vanderbilt may be overestimated. Oth

d

at
re
h

FIG. 11. Calculated dependence of the ground-state trans
energyE1-H1 on the total QD height for different assumed valu
of the spontaneous polarization difference,DPspont5PQD2PM .
Solid line: using the value ofDPspont50.052 C/m2 ~Ref. 33! ~see
Table I!; dashed line:DPspont50.032 C/m2. The two solid circles
with error bars are the experimental points from Ref. 6. Mate
parameters used~except for the spontaneous polarization! are given
in Tables I and II. The dot geometry varies with QD height
follows: the wetting layer width is kept constant,w50.5 nm; the
QD height h is varied from 1.8 nm to 3.6 nm, the top diamet
equals to the total QD height 2Rt5h1w; the bottom diameter 2Rb

varies linearly on the QD height fromRb58.5 nm for a large dot of
h53.6 nm andRt54.0 nm for a small dot ofh51.8 nm.
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papers59,60 have also concluded that the value of the spon
neous polarization difference should be less than that ca
lated in Ref. 33 and shown in Table I. In particular, a d
tailed analysis of experimental data on AlGaN/GaN QW’59

demonstrated that the value ofDPspont is lower than that
predicted by Bernardini, Fiorentini, and Vanderbilt,33 as was
also concluded from modeling of experimental results
AlGaN/GaN heterostructure field-effect transistors.60 How-
ever, other recent experiments61–63 have shown that the
built-in electric fields calculated using Bernardini, Fiorenti
and Vanderbilt’s parameters agree well with those dedu
from experiment. Therefore some controversy remains
lated to the values of the spontaneous polarization consta
The transition energies for large GaN/AlN QD’s calculat
in this paper using the lower and upper values ofDPspont
~0.032 dashed line in Fig. 11 and 0.052 C/m2, solid line! are
both consistent with the available experimental data, so
further data is required in order to determine more accura
the value ofDPspont. Finally we note that all calculations t
data have assumed the magnitude ofDPspont to be indepen-
dent of strain, and to vary linearly with composition, a
likewise for the magnitude of the piezoelectric constan
Further work would be useful to confirm the accuracy
these assumptions.

VII. SUMMARY AND CONCLUSIONS

In summary, we have introduced in this paper an effici
method to calculate the strain and built-in electric-field d
tribution and the electronic structure of GaN/AlN QD stru
tures, and then applied the technique to address a rang
issues concerning such dot structures.

We first introduced an approach based on a Green’s fu
tion tensor formalism to calculate the 3D strain distributi
in QD structures of arbitrary shape, and with hexago
~wurtzite! crystal symmetry. We presented a detailed deri
tion of an analytical expression for the Fourier transform
the QD strain tensor, valid for the case when the ela
constants of the QD and matrix materials are equal. We
gued that this is normally a reasonable assumption for bu
semiconductor quantum dots, but also outlined a simple
eration procedure that could treat the strain distribution in
case of unequal elastic constants. We obtain a compact
lytical expression for the Fourier transform of the strain te
sor. The 3D spatial distribution of the strain tensor is th
found easily as the sum of the Fourier series.

We then used a similar technique to calculate the Fou
transform of the built-in electric field, including the strain
induced piezoelectric field and the contribution due to
spontaneous polarization. The two sets of field terms g
approximately equal contributions to the calculated built
electric field in GaN/AlN QD structures, where the over
electric field magnitude can be of the order of several M
cm. For example, using the piezoelectric constants and s
taneous polarization values predicted by Bernardini, Fior
tini, and Vanderbilt,33 we find the electric field in a GaN/AlN
QD of height 4.1 nm to be around 6 MV/cm at the QD ba
and 4 MV/cm at the QD top. Such giant built-in electr
fields are characteristic for GaN/AlN QD structures.

We next introduced an efficient technique to calculate
carrier energy spectrum and wave functions in a semicond
-
u-
-

n

d
e-
ts.

at
ly

.
f

t
-

of

c-

l
-
f
ic
r-
d

t-
e
na-
-
n

r

e
e

l
/
n-
-

e

e
c-

tor heterostructure containing QD’s of arbitrary shape. T
method is a natural combination of the plane-wave exp
sion and Fourier-transform techniques used to derive
built-in strain and electric-field distributions. Each carri
wave function is expressed in a series expansion based
suitable set of bulk states. The coefficients of the series
the carrier energy levels in any QD are then found as
eigenvectors and eigenvalues of a Hamiltonian matrix, al
whose matrix elements can be found analytically. The p
posed technique does not require explicit calculation of
3D spatial distribution of the built-in strain and electr
fields. This makes the method effective and fast not only
spectrum calculations, but also for further modeling of t
optical properties of the QD structures.

The built-in electric field has a crucial influence on th
carrier states in GaN/AlN QD’s. The electrons are pushed
to the QD top and holes are pushed down into the wett
layer below the QD. In addition, both electrons and ho
experience a significant lateral confinement due to
built-in electrostatic potential. This creates an effective
potential for electrons and holes, with flat, circular symm
try. The form of the electron and hole wave functions
GaN/AlN QD’s is therefore very similar to what would b
expected for an infinitely deep flat cylinder. For the hole
the ground-state energy calculated using a one-b
~effective-mass! Hamiltonian agreed well with that using
333 valence-band Hamiltonian. By contrast, despite G
being a wide-band-gap semiconductor, we found it essen
to include conduction-band nonparabolicity effects when c
culating the electron spectrum in GaN/AlN QD’s. A on
band effective-mass Hamiltonian overestimated the elec
ground-state energy by about 70–100 meV compared to
results of a 434 model, because of the strong vertical co
finement due to the built-in electric field. We also briefl
considered the influence of dot shape on the QD carrier s
trum, comparing a 6-sided and a 20-sided regular trunca
pyramid ~the latter structure is truncated conelike!. The cal-
culated ground-state energies were within 20 meV of e
other, implying that our overall results and conclusions
generally insensitive to some uncertainties in the QD sha
Finally, the calculated dependence of the energy position
the first PL maximum on QD size is found to be in goo
agreement with two experimental points from Ref. 6 f
‘‘large’’ and ‘‘small’’ GaN/AlN QD’s ~heights respectively
;4.1 nm and 2.3 nm!.

We conclude that the method introduced here gives va
able information on the electronic structure of GaN/A
quantum dots, and should also be particularly convenient
a range of future studies, including modeling of optical tra
sition rates, and laser gain characteristics of realistic qu
tum dot structures.
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APPENDIX A: EFFECT OF DIFFERING ELASTIC
CONSTANTS IN THE QD AND MATRIX MATERIALS

When the QD and matrix materials have different elas
constants, the elastic modulus tensorl iklm then depends on
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the space coordinate, and the Green’s function satisfies
following equation:

]

]xk
l iklm~r !

]

]xm
Gln~r ,r 8!52d~r2r 8!d in , ~A1!

where l iklm(r )5l iklm
QD xQD(r )1l iklm

M (r )@12xQD(r )#, and
l iklm

QD and l iklm
M are the elastic tensors corresponding to

QD and matrix materials, respectively.
We outline here a method to find the Fourier transform

the elastic strain tensor for a single QD,ẽi j
s 5ẽi j

(0)1ẽi j
c ,

where the partei j
c of the total strain tensor is due to th

displacement given by the second, integral term in Eq.~1! of
Sec. II of this paper. The method is based on first determ
ing a zeroth-order solution to Eq.~A1!, similar to the solu-
tion presented in Sec. II. We then introduce an iterative te
nique that can be used to determine a converging serie
corrections to the strain distribution.

We start with the Fourier transform of Eq.~A1! for the
Green’s tensor:

l iklm
M jkjmG̃ln~j,r 8!

1~dl! iklmjk(
j̃

x̃QD~j2 j̃ !j̃mG̃ln~ j̃ ,r 8!

5
1

~2p!3 e2 i j•r8d in , ~A2!

where we introduce (dl) iklm[l iklm
QD 2l iklm

M . In deriving Eq.
~A2! we have used the following property of the Fouri
transform, namely, thatf 1f 2̃5Sj8 f̃ 1(j2j8) f̃ 2(j8). Then,
using Eqs.~1! and ~A2! we obtain a set of linear equation
for the strain componentsẽi j

c :

l iklm
M jkẽm

c ~j!1~dl! iklmjk(
j̃

x̃QD~j2 j̃ !ẽlm~ j̃ !

52l ikpr
QD epr

T jkx̃QD~j!, ~A3!

wherelnkpr
QD epr

T is given by Eq.~9!. This series of coupled
integral equations forẽi j

c can be solved numerically usin
standard techniques. However, it is more convenient to s
them using a variant of perturbation theory involving t
following iterative procedure. In most cases of interest
values of the dot and matrix elastic constants are relativ
close, so that (dl)/l!1. The effect of a finite value ofdl
can then be considered using a perturbation series expan
Let the strain tensorẽlm

c be represented by the series

ẽlm
c 5ẽ0

lm1ẽ1
lm1ẽ2

lm1¯ , ~A4!

where ẽN
lm}(dl/l)N. The convergence of the series in E

~A4! should be guaranteed since (dl)/l!1. For theNth
term in Eq.~A4! we obtain the following set of equations:

l iklm
M jkeN

lm5Fi
~N!~j!, ~A5!

where

Fi
~0!~j!52l ikpr

QD epr
T jkx̃QD~j!, ~A6!
he

e

f
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-
of

e
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on.

Ei
~m!~j!52~dl! iklnjk(

j̃

x̃QD~j2 j̃ !eN21
lm ~ j̃ !, N.0.

~A7!

It can be shown that the linear system of equations descr
by Eq. ~A5! has the following solution:

eN
lm5

~2p!3

2
@Fp

~N!~j!j lGmp
N ~j!1Fp

~N!~j!jmGlp
M~j!#,

~A8!

whereGin
M is the Green’s tensor for the matrix material give

by Eqs.~14!, ~21!, and~22!. Thus, application of Eqs.~A6!
and ~A8! provides an analytical route to evaluate a zero
order solution,e0

lm , of the integral equation forẽi j
s and also

to determine higher-order corrections,eN
lm , using the itera-

tive scheme described above.

APPENDIX B: FOURIER TRANSFORM OF xQD FOR A
TRUNCATED REGULAR N-SIDED PYRAMID

We derive here an analytical formula for the Fouri
transform of the characteristic functionxQD(r ) correspond-
ing to a truncated regularN-sided pyramid. We first derive
the Fourier transform for a single segment of a pyram
which has anN-sided polygonal base~see Fig. 12!. The Fou-
rier transform,xQD(j), of the characteristic function of a
general shapeV is given by

x̃QD~j!5
1

~2p!3 E
V

e2 i j•r dV. ~B1!

For the pyramid segment shown in Fig. 12 the integral~B1!
has the form

x̃PS5E
0

x0
dx e2 i jxxE

2y0x/x0

y0x/x0
dy e2 i jyyE

0

hseg~12x/x0!

dz e2 i jzz,

~B2!

where hseg is the segment height,x05Rb cosa, y0
5Rb sina, and for anN-sided pyramida5p/N. Evaluation
of this integral is straightforward and gives

FIG. 12. Schematic view of the pyramid segment.
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x̃PS52
1

jyjz
H I eS x0 ,2jx2jy

y0

x0
1jz

hseg

x0
De2 i jzbseg

2I eS x02jx1jy

y0

x0
1jz

hseg

x0
D

3e2 i jxhseg2I eS x02jx2jy

y0

x0
D

1I eS x0 ,2jx1jy

y0

x0
D J , ~B3!

where

I e~a,b!5E
0

a

eibx dx5
1

ib
@eiba21#.

To find the Fourier transform of the pyramid we then use
principle of superposition and the fact that the Fourier tra
form of the volumeṼ ~which is the image of volumeV after
coordinate transformr5Tr̃ , r̃5TTr ), is given by

FV~j!5FṼ~ j̃ !, ~B4!

where j̃5TTj. Thus, the Fourier transform of theN-sided
pyramid,x̃pyr(j) can be expressed as the superposition oN
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