PHYSICAL REVIEW B VOLUME 62, NUMBER 23 15 DECEMBER 2000-I

Edge magnetoplasmons in periodically modulated structures
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We present amicroscopictreatment of edge magnetoplasmd@is/1P’s) within the random-phase approxi-
mation for strong magnetic fields, low temperatures, and filling faeterl (2), when aweak short-period
superlattice potential is imposed along the Hall bar. The modulation potential modifies both the spatial struc-
ture and the dispersion relation of the fundamental EMP and leads, when the modulation potential is not too
weak, to the appearance of a novel gapless mode of the fundamental EMP. For sufficiently weak modulation
strengths the phase velocity of this novel mode is almost the same as the group velocity of the edge states but
it should be quite smaller for stronger modulation. We discuss in detail the spatial structure of the charge
density of the renormalized and the novel fundamental EMP’s.

[. INTRODUCTION fundamental EMP’s in the quantum Hall system for LL fill-
ing factorsv=1 (2) and low temperaturekgT < %ivgy/lg,

The theory of edge magnetoplasmo(BMP’s) in the  wherev is the group velocity of edge states. Motivated by
guantum Hall regime has benefitted substantially from rerecent results on the 2DES subjected to lateral superlattice
sults of time-resolved experimerit€lassical and quanturh  potentials with short periotf '3 we restrict our study, start-
models have been used to describe EMP modes through difng from Sec. Ill, to the short-period reginae< 2l ,. More
ferent wave mechanisms at the edges of the two-dimensiongkecisely we will assume that éxp(mo/a)’]<1. As in

electron systen{2DES. Recently a quasimicroscopic de- Refs. 4 and 5, our effective one-electron confining potential
scription for EMP’s in the quantum Hall regime, embracing contains the Hartree and exchange-correlation contributions

the edge-wave mechanisms mentioned above, has begh the 2DES in addition to the bare confinement potential,
proposedthat takes into account the lateral confm_mg PoteNn-,hich is assumed to be sufficiently steep, such that, at the
tial, the structure of the Landau levelsL’s) for integer

- AT . channel edges, the LL flattening and the formation of com-
values of the filling factow, and the dissipation that condi- g g

tions the propagation of the modes. The lateral confiningfress'Ible and incompressible stifbsan be neglectett

potential is flat in the interior of the channel and smooth on In Sec. | we derive the mtegra_ll equatlgns for the wave
the scale of the magnetic lengthbut sufficiently steep that charge density and the electrostatic potential at the edge of a

. . periodically modulated channel. In Sec. Ill we present our
wgrli_bvzggt;elg(l)ngxf:r? dgg t':)e?aligt?ri'oT;Cignﬁf;e;ﬁi;agi[esult for the dispersion relations and spatial structures of the
S ) o fundamental EMP’s. Finally, in Sec. IV we summarize our
tributions to the current density within the random-phase

Lo major conclusions.

approximatior?

There has been a great number of studies of magne-
totransport properties of 2DES’s modulated by one- ,
dimensional(1D) lateral superlattices with large perica II. INTEGRAL EQUATIONS FOR EMP’S
=100 nm®*’ The spectrum of magnetoplasmon excitations The noninteracting zero-thickness 2DEG, of witithand
has been studied in such systems as falso, many works lengthL,=L, in the presence of a strong magnetic fi&@d
have been devoted to magnetotransport and related phenogong thez axis and under a 1D periodic modulation, is de-

ena in the case of two-dimensior(@D) lateral superlattices . iltoniand .= RO+ £o
both in the regime of relatively weak modulatfoff and for scribed by the HamiltonianHo=h"+V(x), where h

antidot arrays! where the 2DES cannot penetrate into thez[(.px+e$y/c)'2+pf,]/Zm* +Vy . The confining potential is
antidot region with higher potential. Quite recently a super-1at in the interior of the 22DES,\(¥=O) and is parabolic at
lattice field-effect transistor was designed in which the 2DESS edges, andvy=m*Q(y—y,)2, y=y,. We assume
in a GaAs-based sample is subjected to a atomically precid@atVy is smooth on the scale &f such tha) < w., where
1D potential with period of 15 nniRef. 12 and vicinal ~ ®c=|€|/B/m*c is the cyclotron frequency. The 1D modula-
superlattices were produced wit=16 nmZ3 Recently at-  fion Vg(x)=VscosGx) is a weak periodic potential witts
tention has been focused on the transport of commensurafe27/a; so it is assumed thaty/2h w < 1. Further, it will

composite fermions in weak periodic electrostatic potentiald€ seen that a novel gapless mode of the fundamental EMP
at the half-filled LL’ appears only iV is not too small. The pertinent conditions

In this work we employ the self-consistent-field formal- for the weakness o¥/s will be detailed below. Within the
ism’ or random_phase approximatidﬁPA), to Study the ef- RPA’\\ framework, the Correspondlng one-electron denSIty ma-
fect of a 1D weak periodic modulation, with periadon the  trix p obeys the equation of motion
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tal EMP in the low-frequency regimey < w¢.* Then, as-

iﬁi—f=[ﬂ(t),ﬁ]—@(ﬁ—ﬁ(°)), (1)  suming that the conditiov 4,< w, is satisfied and com-
T paring the terms proportional tig;«, for a givennz«, of the
whereH (t) = Ho+V(x,y,t) with right-hand sidgRHS) of Eqg. (5), we conclude that the con-
tribution to the summation over, with n,=ng« is much
_ * _ larger than any other term of this sum or the sum of
V(X,y,t)=ef'(“’°t7qxx)l Em Vi(@o,0y,y)e'®*+c.c. all terms with n,#ng. The small parameter ijw

@ —qxvgnﬂ*(kxg)llwc<1, whereugnﬂ*(kxﬁ) is the group ve-
R locity of an occupied statén g« kyg) of the ng« LL. The
Without interaction the one-electron density mati%) is  inequality above also implies thato 4o/ wc<1, sincevyg
diagonal, i.e.(a|p©|B)=f,5,5, wheref,={1+exd(E has typically the largest value among,. Similar results
9 y ’ 1% B aapB « n:( a m’g
—Ep)/kgT]} L is the Fermi-Dirac functionfo|a)=E,|a). follow from an analysis of the terms proportional tg« in
Notice thatr— corresponds to the collisionless case whileth® summation oven, on the RHS of Eq(5). Hence, for
a finite 7 provides the possibility of estimating roughly the ®<®c, dxgo<wc, and Gugo<w, the terms withn,
influence of collisions. Both A~ and the sum #ng can be neglected. Then the integral equation for the
. . O .
S Vi(wg,0y,y)e'®™ are periodic along with perioda. electron charge densifym(«,dy.y) becomes
Equation(1) can be solved by Laplace transform$ak-

> -
N e L _
ing the trace ofp with the electron density operat@s Pl @,0y,Y)=— > > > > dx e (Ot Gmx
A o L ni=o kg, kg 12— Jo
(r—r) gives the wave charge density in the form B
. X% 1o, (D)t o (1)
pwo.x,y) =€ 3 pi(wg,0y, )™ (3) (¢
I=—c nakxﬂ nakxa
X -
The charge density(w,qy.y)exdi(g+Gl)x] induces a En ks~ Engk, ThoHIAIT
wave electric potentialg,(w,q,,y)exdi(d,+Gl)x]. From
Poisson’s equation this is given as XJ drei(axtGhx
2 (= ’ ’ * > - N
¢|(w,qx,y)=;f%dy Ko(lax+Gllly=y'[) X ke (D k (Nd1(0.05.y),  (6)
Xp(w,9yx,y"), (4) wheren denotes the highest occupied LL. For eventhe

_ _ . RHS of Eq.(6) should be multiplied by 2, the spin degen-
wheree is the background dielectric constant, assumed spaeracy factor; forv even the spin-splitting is neglected. Equa-
tially homogeneous, anky(x) is the modified Bessel func- tion (6), for m=0,-1,+2, ..., gives a system of integral
tion; ¢ andp pertain to the 2D plane. Taking,/W>1, we  equations, whose solution determings(w,qy,y) in the
can consider an EMP along the right edge of the channel aRHS of Eq.(3).
the form A(w, gy, x,y)exf —i(wt—ge)] totally independent BecauseV(x) is assumed weak, the eigenfunctions
of the left edge, wher\(w,qy,xy) is periodic alongcwith -, _r|n_ k) and the eigenvalues, , of A, can be

perioda. i . . :
In the absence of an external potentid|(w,ds.y) a;?gji:gu?gt;ic?en;dgr{%er perturbation theory. A straightfor

=e¢|(w,04,Y). As a result, considering large time re-
sponsest>r, after some straightforward calculations we

=11 -V? (QFRY
obtain the following integral equation for,(,qy,Y): M ko) =11 Vs“a(kxa)]ln“ Ka) Vsna(kxa)

p(@:Ch¥) X[ [N ko= G) = [Ny ket G) )
+ V2, (Keo)[|Ng Kyt 2G)@

2¢? S .
= X, | dxe G y(n)

@B 15— +ny Kya—2G)O). (7

o fe—fa drel @ GXy* () (T) Here we have introduced a dimensionless paramétgk,)
Eg—E.thotit/r Yal)¥p characterizing the strength of the periodic potential for the
nth LL, near its edge, and given by

><f _dy" Ko(la+Gllly=y' D@,y (9 v,
where ¢, = (r|a) and we dropped the subscript O fram. 211G gn(k)
For definiteness, we take>0. wherevgn(kx)zf’flaEn(kx)/&kX is the group velocity of a

We consider low temperature§ satisfying fivg,  state in the edge region of theth LL and L,(x) is the
>1okgT, whereuv, is the group velocity of the edge states Laguerre polynomial. Due to the smoothness of the confining
of nth LL. Furthermore, we will assume the long-wavelengthpotential on thd, scale, the unperturbed eigenfunctions are
limit g,l,<1, which is well satisfied, e.g., for the fundamen- well approximated by (%) =(r|n, ke @=y(r)

nakxa

Ven(ke) = e (G027 [(Glg)%/2],  (8)
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~ekx W (y—yo)/L, whereW (y) is the harmonic oscil-
lator function. Because we have used the condition
>Gu g, to obtain Eq.(7), the small “nonresonance” contri-

butions withn;#n, can be neglected. In the edge region the

evaluation of the eigenvaldénakmE Ena(km), by perturba-
tion theory, shows that the first-order correctiﬁﬁla)(kxa)

vanishes. As for the second-order correctiBifi(k,,), the
main “resonance” contributions to it, with;=n,, are mu-
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with TI(Y,Ky.) =P o[y —Yo(k)1|?. The integral functional
F, is given as

~ e2 o0 ~
FZ:_wﬁej_wdkxavg"[n(y'kxa_G)+H(y.kxd+G)]
fo,an—qX_ fo’an

X -
w_vgo(an)qx+|/

" dngk,. v

tually canceled due to imposed conditions. Then it can be

shown thaEna(an) in the edge region can be well approxi-
mated by the zero-order term, i.&, (ky,)~E{”(Ky,). The

energy spectrum of thenth LL, EQ~(n+1/2)hw,

+m* Q?(yo—Y,)?%/2, leads to the group velocity of the edge
statesy gn= 9E(k, + k") /. dk, =7 Q%K /m* wZ with char-
acteristic wave vectok{(" = (w./AQ)\2m*Ag,, Ap,=Er
—(n+1/2)hw., whereEg is the Fermi energy. The edge of
the nth LL is denoted byy,,=y,+13k{"=12k.,, where
kin=k +k{", and W=2y,,. We can also writevg,
=CE,,/B, whereE.,=Q2m*Ag,/|€| is the electric field
associated with the confining potenthd) aty,,. We have
also introduced the wave vectyr=y, /Iﬁ. The typical width
of the edge region for thath LL can be estimated here as
712kV>1,, wheren<1. For all occupied LL's, we assume
thatk{">G>1/,. Since in Eqs(5) and (6) the significant
eigenstates are localized along thdirection near the right
edge of the channel, i.e., wityy(k,)>y,, we have consid-
ered only these eigenstates in EG&.and(8). Moreover, it
follows from Eq.(6) that the main contributions come from
k.,~k;, andk,~(k,,£G); thus for the applicability of the

In Egs.(9)—(11), for g,— 0, we can make the approximation
(fo,kqux—fo,kxa)QQﬁ(km—kro)- After integration over

K., We obtain

eZ

(0. y)=
Po 0x.Y whe

S v [~ avrvay)

w — 00

+VE[ Wiy +GIg)+Wi(y' —GIH]I]
+V4[Pi(y+Gly)+¥3(y—-Gld)]

<[ v

X J_de'KodqxllV’ =YD pol®.8x.y"),
(12

where?=y—y,0, andﬂ)=w—qxugo+ilr. In order to sim-

perturbation theory here it is sufficient to assume thaPlify the notation we takepi(w,dy,y)=pi(@,dy.y), i=0,

Vsn(krn)EVsn<1-
lll. FUNDAMENTAL EMP'S FOR  »=1(2)

We first consider the case=1 and then indicate how the
results change for=2. Forv=1, we haven=0 in Eq. (6).
We will look for gapless edge modes, with—0 for q,
—0, and assume that=1V ,=exf —(Gly2)?], whereV,
=(VS/ZﬁGvgo)exr[—(GIOIZ)Z], which implies the short-
period regime, i.e., eXp-(Gly2)?]<1. Furthermore, it fol-

lows that now we assume that the periodic potential is not

too weak such that the conditiony/2Av 4,G=1 is fulfilled.
From Eq.(6) for m=0, we can write the integral equation
for po(w,qy,y) in the form

pol,0y,Y) =[F1+F5]

><J_wdy’Ko(qull?—y’l)po(w,qx,y’),

9
where the integral functiondt; is given as
~ e (= dk. TI(V K O,kxa—qx_fo,km
Fl‘%f,w el b))t 77
% | dIG k) + VG K~ G)
+TL(Y kot G) T}, (10

+1,....
Similarly, omitting minor terms in Eq(6) we obtain, for
m=1,
— e _ gy —
p1(w,0x,Y)= mvsog‘l’o(w

X[Wo(y+GI2)—Wo(y—Gl3)]
<] dywi)

xLd?’Ko<|qx||'9—V’|>po<w,qx,V').
(13

From Eqg. (6) we find,
Epl(w!qx iy)

The general solution of the linear homogeneous integral
equation, Eq(12), can be sought in the form

for m=—-1, p_i(w,qx.y)

po(@,0x,Y)=pS 0,00 PE(y) + pSP(@,0y)

X[Wi(y+GIH)+Ti(y—GlH]. (19

Substituting Eq(14) into Eqg. (12) and equating the coeffi-
cients of W2(y) and [W2(y+Gl2)+W¥2(y—GI3)] on both
sides of Eq.(12), we obtain two linear homogeneous equa-
tions for p{’(w,q,), i=0,1:
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2
e
0

q ~
e = (30 0 +2V5a5( ., G15) 1ot

+2{ad) a,.G13) + Vil ag(ay)

+ady(cx. 2G13) 1}p6) (15
and
1) & ) O (0) . .00 20 (1)
Po :%Vsoi{aoo(qX)Po +2agy(dx,Gl5)ps '}
(16)
where the coefficienta" are given by
ama.an= || axaxwioowied)
XKo(|aul[x=x"+A4y]). 17)

Here an"(ax,Ay) =amm(dx,Ay), any (dx,Ay)=an, (.
—Ay), andad¥ay,0)=ag(q,). We will assume zq,l3/a
<1. Notice thatagy(gy)~In(1/q,lo)+3/4 and, forAyl/l,
>1,  agyax.Ay)=In(2ia,lo) — y—In(Ay/lg)~In(1/g,Ay)
+0.1, wherey is the Euler constant.

A. Dispersion relations

The dimensionless frequencies’ = w/(e?qy/mhe) of
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FIG. 1. Dispersion relations fow. modes, in units ofw,
=e?/mhely, for v=1 andB=9 T. The upper solid curve is the
renormalized fundamental EMP of the=0 LL and the lower solid
one is the novel fundamental EMP, due to the effect of the modu-
lation potential. The dashed curve is the fundamental EMP in the
absence of the modulation. The parameters of a GaAs-based sample
are given in the text and we todkgy=fw /2, a~18.5 nm, and

Vg=exp(=2).

general, e.g., for a slightly Iargé?so and a slightly smaller
vgo, this contribution should be taken into account and can
lead to a substantial decrease of the phase velocity of the
novel fundamental EMP from its maximum possible value
vgo- We point out that this contribution to Re stems from

the branches resulting from the determinantal solution of thehe electron-electron interaction and the strength of the peri-

two linear homogeneous equations td})(w,qx), Egs.(15
and(16), are given by

, _E 2V/2 500 GI2 +1
W= 2 aOO( ) + SOaOO(QX ) O) ) aOO(qX)
X (1+8V%a00 (a0{ag(ax.G13)

+ V2l aoe(ax) +ady(ax, 2G15) TH*2 (19

odic modulation as well. Equatiof2l) is valid for

2w )2
k®a
Notice that the RHS of the inequalit22) is typically very
small. Under this condition, the second-order correction in

the group velocity go(ko) =vgol 1—2V5(27/k{Va)?] can

1 €Vgo
3IN(Glo) 209,

Vi3> (22)

From Eq.(18) it follows that the effect of the modulation be neglected. As discussed above this is equivalent to ne-

potential on the fundamental EMP is quite strong. Apartglecting E&(k

from the renormalization of the fundamental EMP rof 0
LL with dispersion
o', ~agday) +4V5agq dy, G13) (19

it leads to the existence of movel fundamental EMP oh
=0 LL with dispersion

o’ ~2Vians (a){2[ad(ax. G13) 12— an(ax)
X [@gd(Gx) + 2004, 2G15) 1}

Substituting the coefficients into ER0), we obtain the dis-
persion relationNDR) of the novel fundamental EMP

(20

2., .
W_~1Vgo™ ?Vsoo'yxln(GIO) qx_|/7'a (21)

where o3,=ve?/2nfi and v=1(2). Note that for Vg,
<10"! and v4=10° cm/s, which is a typical value in

xa) -
From Eq.(19) the DR for the renormalized fundamental
EMP can be written as

~ 2 0 aIn(Lgylo)+ 3 + 472
W ~0got Enyqx{ n(l/a,lo)+7+4Vg

XIn[1/(q,GI3) ]} —il 7. (23

The term proportional t&2, shows a strong renormalization
of the fundamental EMP that depends on the strength and the
period of the modulation for given value df,.

For a GaAs-based 2DEG and negligible dissipation, the
dispersion laws for the renormalized, by the superlattice po-
tential and intra-LL Coulomb coupling, fundamental EMP,
and for the novel fundamental EMP, caused by the periodic
modulationV4(x), are shown in Fig. 1 by the top and bottom
solid curves, respectively. The DR’s corresponding to the
w_ and o, modes here are obtained using E¢&l) and

GaAs-based heterostructures, the correction in the phase v3), respectively. For the assumed parameters these equa-
locity of this novel mode should be quite small. However, intions very well approximate the exact DR’s given by Eq.
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06 y ' ' A =+Gl3 in comparison with the usual one at=0.

4 Furthermore, substituting Eq.(20) in Eqg. (16),
we obtain  p((w_,a)/piP(w_,q)~—2[In(1/alo)
0.44 L . —In(Gly) V[In(1/q,l ) +3/4]>—2. This means that the am-
plitude of the edge charges localizedyat + G123 has abso-
lute value approximately twice smaller in comparison with

0.21 e 1 that of the charge distortion localizedyat 0; in addition, it
Vi - has the opposite sign. Furthermore, the ratio of amplitudes of
‘“ Po e the novel fundamental EMP is independent \8g for the
0 assumed conditions, while in the case of the renormalized
00 02 04 06 08 10 fundamental EMP such ratio tends to zero. The same results
g [ (107 ho!d fo_r v=2. Thus the novel mo.de has a spatial structure
x 0 quite different both from the spatial structure of the funda-
FIG. 2. Dispersion relation ofs. modes for values of the Mental EMP(.e., in the absence of modulatioand from the

modulation strengtﬁ/so=2.18 meV(solid curve, 1.09 meV(dot- renormalized mode. .
dashegl and 0.73 meVdasheglandv=1 andB=9 T. Top(bot- We proceed now to evaluate the charge density

tom) curves represent the dispersion laws éor andw_ modes,  P1(®.0dx.y) induced by po(w,qy.y) for the two new
respectively. The values ab_ are multiplied by 30. The param- Pranches: the renormalized fundamental EMP and the novel

eters are the same as in Fig. 1, excp§=%w./8, a~20.6 nm. It ~ fundamental EMP. For both fundamental EMP’s we obtain,

wlw. (107
\,
\

follows thatv 40~3.25x 10° cm/s and exp-(Gly/2)2]~0.2. from Eq.(13),

(18). For the sake of comparison, the dashed curve in Fig. 1 p1(@,0y,Y)=p1(@,0) Po(Y) [ ¥o(y+Gl3)

shows the fundamental EMP of=0 LL in the absence of _ 5

the superlattice potential. —Wo(y—Glg]l, (24

As we have discussed, the renormalization effect involves , ,
essentially intra-LL Coulomb coupling. In Fig. 1 the param-Where, using Eq(16), we find
eters are m*~6.1x10%° g, e~125, and QO~7.8 ~
x 10" s71.17 Assumingr=1 andB=9 T, these param- p1(@,00)=p5 0,00/ V. (25)
eters lead tow./Q~30. Here w, =e?/whelg~0.3w.~7 _
x 102 s is a characteristic frequency. We have also as-Then for the renormalized fundamental EMP the rela-

sumed Apg=fw./2, Vo=exp2)<l, and a=mly/y2. V& amplitude

This gives vyo~Qly~6.5<10° cm/s, a~18.5 nm, V; B

=2.9 meV. Observe that for these parameters, the second £r=pi(0:,0%.Y) po(@,dx,Y)
term in the RHS of Eq(21) is more than 50 times smaller iy _ 2

than the first termypy,. Hence, the curves=q,vqo Will Vso exi —(Glo/2)7],
practically coincide with the solid curve at the bottom of
Fig. 1.

The dispersion laws corresponding to the and w_
modes, given by Eq18), are depicted in Fig. 2 by the top
and bottom curves, respectively. The solid, dot-dashed, an
dashed curves correspond\ig,=0.3, 0.2, and 0.1, respec-
tively. The data of the bottom curves were multiplied by the prlo— .0y ao( Ox) 1 26
factor 30. The parameters are the same as in Fig. 1 except  p{®(w_,qy) 2Vgad(ay,G12) Vg
Apo=fwc/8, a=~20.6 nm. This leads tovy~3.25
x10° cm/s and to modulation strengthé,~2.18 meV, where the limit holds fog,— 0. Now the relative amplitude
1.09 meV, and 0.73 meV foV,=0.3, 0.2, and 0.1, re- iS é-=pi(w_,0x.Y)/po(®w_,Gy.Y)=exd —(Gly/2)1/2Vy,.
spectively. Notice that in this case éxp(Gly/2)?]~0.2. Itis  Hence,£_ lies in the interval 0.1,1], i.e., the amplitude of
seen that by varying the amplitudlg of the periodic poten- oscillations of the charge distortionp..,(,qy,y) can be of
tial, strong modifications in the DR of the fundamental the same order of magnitude as thaiy(w,0y,y). A further
modes can occur. We observe that the phase velocity of theeatment of Eq(6) for m=2 (and n=0) shows that the
novel EMP decreases from its maximum valug by in-  charge distortiong,(w,qy,,y)=p_»(w,0y,y) as compared
creasingVy,. It can be shown that the DR’s given by Eqs. With po(w,0y,y) for these two new branches have an addi-

where the small factor ekp (Gly/2)?]<V, comes from the
exponentially small overlapping of the wave functions in the
products of Eq.(24). Similarly, for the novel fundamental
IaMP, ®_, we obtain that

(21) and(23) still represent well all curves in Fig. 2. tional small factorxV, exd —3(Gly/2)2]< V4, with respect
to the relative strength.. of p.;(w,qy,Y). Therefore, terms
B. Spatial structure with [I[=2 in Eq. (3) can be neglected both for the renor-

) ) ) malized fundamental EMP and the novel fundamental EMP.
llf we subsgltute Eq.(1~9)2 into Eq. (16), we obtain  ag 5 result, from Eq(3), we obtain straightforwardly the
PN w0/ pf (0, .a)~V5. As a consequence, dimensionless form  factors, p.(X,y)=p. = /7lyexp
only a small distortion of the edge charge occursyat (—igX)p(w- xY)p(w- q), as
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FIG. 3. Form factor for the fundamental EMP as a function of  FIG. 4. The same as in Fig. 3, but with the parameters used for
Y=yll,, wherey=y—vy,o, andy,, is the edge oh=0 LL. The plotting the solid curves in Fig. 2.
renormalized mode is indicated respectively by solid and dotted
curves for xX™=ma and x{™=a(m+1/2)/2, with m=0,+1, V. CONCLUSIONS
*2,..., and thenovel EMP by dot-dashed and dashed curve for
x{™ andx{™ , respectively. The parameters used are the same as in We have presented a fullpicroscopicmodel for EMP’s
Fig. 1. in the RPA framework valid for integer=1 and 2 in the
case of an applied 1D weak modulation/(x)
=V, cos(2mx/a), and confining potentials that are smooth on

— 2/ 1L \72 2,y 2
P O6Y) =\l o W(y) + Va WGy + GIG) the |, scale but still sufficiently steep at the edges that LL

FW2(y= GIZ) ]+ 2V cOI GX) W oY) flattening* can be neglectet?. The model also takes into
account nonlocal responses and incorporates only very weak
x[qfo(y+G|(2))_q;0(y_G|(2))]} (27) %Svssipation. The main results of the present work are as fol-

(i) The strength of the periodic modulation, if not too
small, reshapes noticeably the spatial structure of the usual
fundamental EMP oh=0 LL,°> normal and parallel to the

1 o o edge, and substantially modifies the dispersion relation lead-
p(x,y)z\/;IO{‘If%( )—Ewg(y+e|g)+wg(y—e|g>] ing to a renormalized fundamental EMP nf=0 LL. For
instance, in Fig. 1, we have seen that the group velocity of
the renormalized fundamental EMP is more than 4% greater
—;COS(GX)\I’O(V)[\PO(WG%) than that of t_h2e fundamenta_l EMP without modula_tion for
Vo 0xlp=0.8x10"“. Therefore, in time-resolved experiments,
the periodic potential will imply a modulation of the propa-
gation time of the signal due the renormalized fundamental
EMP. As we have seen, this renormalization depends on the
strength and period of the modulation potential.
. ) (i) The strength of the periodic modulation, even quite
for the novel fundamental mode. In order to exhibit exphc-sma”, leads to the appearance of ttwvelfundamental EMP
itly the x dependence of the form factors, for the same payith acoustical dispersion relation and phase velocity typi-
rameters as used in Fig. 1, we show them in F('n%- 3B cally equal, in a GaAs-based sample, to the group velocity of
=a(m+1{r%))/2, m=0,x1,x2, oy with cos(2m"/8)=0,  the edge statesyqo, independent ofVg and a, if Vi
and forxi"’ =ma, with cos(27x}"/a)=1. The S_O|Id and dot- =(Vsa/47rﬁvgo)exp:—(rrlola)z]$10*1 andu go= 106 cmis.
ted curves show . (X,y) as a function ofY =y/l for x(lm) That is, this holds for a sufficiently weak periodic modula-

=ma andx{"=a(m+1/2)/2, respectively. We see that the tion. However, already fo¥/¢y~0.2 andv o=10° cm/s, the
dotted curve is exactly symmetrical with respect to e phase velocity of the novel fundamental EMP can be sub-
=0 axis. The d_evia_tions of the solid curve from this form stantia”y smaller tham;go, as one can see in Fig_ 2, due to
come from contributions to the form factor that are commenthe combined effect of a short-period lateral superlattice and
surate with the unidirectional modulation. Also in Fig. 3, the electron-electron interaction. In addition, its spatial struc-

p-(xy) is shown by dot-dashed and dashed curvesfB e is strongly dependent on both, and a. The spatial
andx{™ , respectively. Notice that the dashed curve is symsructure, with respect to the edge of the 0 LL, becomes
metric while the dot-dashed curve is Clearly asymmetric. |nsubstantia||y asymmetric for some regionsxpfas one can
Fig. 4, we present results for the charge densities of thgee by the dot-dashed curve in Figs. 3 and 4. We have also
renormalized and novel fundamental EMP’s for the sameyptained that in the latter case the contributions to the spatial
parameters that are used to obtain the solid curves in Fig. tructure of the novel fundamental EMP that are commensu-
That s, in Fig. 4 we us¥¢=0.3 andGl,~2.53 in Eqs(27)  rate with the periodic modulation can be of the same order of
and (28). magnitude as those that are independent. of

for the renormalized fundamental mode, and

—Wo(y—Gl3)] (28)
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(iii) The measurement of the velocity of the novel EMP, This mode arises from a rather strong quantum-mechanical
due to its independence of the modulation parameters, in eoupling of the charge distortions at the edge ofy,k with
wide range of them, can be a useful tool for obtaining di-those due to the periodic potential, WOiGIé. Further-
rectly the group velocity of edge states. Furthermore, a qualimore, these three charge distortions are strongly coupled by
tative analysis, using results of previous stutlies well the the Coulomb interaction. We speculate that the frequency of
above findings, shows that the dominant contribution to théhe novel fundamental EMP is close to some characteristic
damping rate of the novel EMP is absent. Then we mayrequency for the system of these charge distortions. At this

speculate that the damping rate of the novel mode could be'esonance,” the charge distortions for the novel fundamen-
rather small. tal EMP have comparable intensitiesee Sec. Il B. On the

The simple analytical form of the lateral confining poten- Other hand, the “resonance” condition does not hold for the
tial V, used here is a rather good approximation of that calfenormalized fundamental EMP and the charge distortion at
culated numerically in the Hartree approximatinyhen the ~ Yro iS always much larger than thoseyag* GI3, i.e., in this
bare confining potential is sufficiently steep such that the LLcase the effect of the periodic potential on the mode charac-
do not have a flat region at the Fermi level. Furthermore, outeristics is rather small. This picture explains why the new
main results still hold for confining potentials that are fundamental EMP cannot be obtained in the limiting case
smooth on the scale df, in the edge region, i.e., when the Vs—0, but it is possible to obtain the well-known funda-
typical group velocity in this region satisfies the relation 0 mental EMP (Ref. 5 from the renormalized fundamental
<vgo<wclo. Moreover, the confining potential here should EMP found here. We point out that the dipole and other
be sufficiently smooth in order to hold the conditioy, ~ Multipole modes fow=1, obtained in Refs. 4 and 5, should
<w./G, whereG=2mx/a. Notice that the consideration of Not be confused with the novel fundamental EMP. In particu-
the smoothness of the confining potential essentially simplilar, for the latter mode the normalized total charge density
fies the calculation of the eigenfunctions and eigenvalues foiransverse to the eddépdy] is finite and rather large. For

- - . : : in Fi 2=q,1,=0.5
RO andFl, and the analysis of the integral equati@. No- ~ Parameters taken in Fig. 1 and for 8.50 “=q./o=0.
tice that the conditiom o< wl can be achieved in the Har- ¢ 10", we obtain 0.2-|[pdy|=0.1. As|fpdy|~1 for the

tree approximation but not in the Hartree-Fock approxima-reno"mal!zed fundamental E,MP’ we have exadiydyl
tion because the exchange term leads to a logarithmically O for dipole and other multipole EMPs.
divergentv 4o.'®*° However, when electron correlations are
taken into account, a smooth spatial behavior of LL results
near the edges ang,, is small*® This work was supported by the Brazilian FAPESP, Grant

Finally we discuss the physical origin of the new funda-Nos. 98/10192-2 and 95/0789-3, and by Canadian NSERC
mental mode. We emphasize that this novel mode is obtaine@rant No. OGP0121756. O. G. B. acknowledges partial sup-
only when the relatiolVs=2%v 4G is assumed, which does port by the Ukrainian SFFI Grant No. 2.4/665and N.S. is
not violate the condition of weak modulatioN <2 w,.. grateful to CNPq for financial support.
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