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Edge magnetoplasmons in periodically modulated structures
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We present amicroscopictreatment of edge magnetoplasmons~EMP’s! within the random-phase approxi-
mation for strong magnetic fields, low temperatures, and filling factorn51(2), when aweak short-period
superlattice potential is imposed along the Hall bar. The modulation potential modifies both the spatial struc-
ture and the dispersion relation of the fundamental EMP and leads, when the modulation potential is not too
weak, to the appearance of a novel gapless mode of the fundamental EMP. For sufficiently weak modulation
strengths the phase velocity of this novel mode is almost the same as the group velocity of the edge states but
it should be quite smaller for stronger modulation. We discuss in detail the spatial structure of the charge
density of the renormalized and the novel fundamental EMP’s.
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I. INTRODUCTION

The theory of edge magnetoplasmons~EMP’s! in the
quantum Hall regime has benefitted substantially from
sults of time-resolved experiments.1 Classical2 and quantum3

models have been used to describe EMP modes through
ferent wave mechanisms at the edges of the two-dimensi
electron system~2DES!. Recently a quasimicroscopic de
scription for EMP’s in the quantum Hall regime, embraci
the edge-wave mechanisms mentioned above, has
proposed4 that takes into account the lateral confining pote
tial, the structure of the Landau levels~LL’s ! for integer
values of the filling factorn, and the dissipation that cond
tions the propagation of the modes. The lateral confin
potential is flat in the interior of the channel and smooth
the scale of the magnetic lengthl 0 but sufficiently steep tha
the LL flattening can be neglected. The theoretical fram
work was also extended to take into account nonlocal c
tributions to the current density within the random-pha
approximation.5

There has been a great number of studies of mag
totransport properties of 2DES’s modulated by on
dimensional~1D! lateral superlattices with large perioda
*100 nm.6,7 The spectrum of magnetoplasmon excitatio
has been studied in such systems as well.8 Also, many works
have been devoted to magnetotransport and related phe
ena in the case of two-dimensional~2D! lateral superlattices
both in the regime of relatively weak modulation9,10 and for
antidot arrays,11 where the 2DES cannot penetrate into t
antidot region with higher potential. Quite recently a sup
lattice field-effect transistor was designed in which the 2D
in a GaAs-based sample is subjected to a atomically pre
1D potential with period of 15 nm~Ref. 12! and vicinal
superlattices were produced witha'16 nm.13 Recently at-
tention has been focused on the transport of commensu
composite fermions in weak periodic electrostatic potent
at the half-filled LL.7

In this work we employ the self-consistent-field forma
ism, or random-phase approximation~RPA!, to study the ef-
fect of a 1D weak periodic modulation, with perioda, on the
PRB 620163-1829/2000/62~23!/15834~8!/$15.00
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fundamental EMP’s in the quantum Hall system for LL fil
ing factorsn51 ~2! and low temperatures,kBT ! \vg / l 0,
wherevg is the group velocity of edge states. Motivated
recent results on the 2DES subjected to lateral superla
potentials with short period,12,13 we restrict our study, start
ing from Sec. III, to the short-period regimea ! 2p l 0. More
precisely we will assume that exp@2(pl0 /a)2#! 1. As in
Refs. 4 and 5, our effective one-electron confining poten
contains the Hartree and exchange-correlation contribut
of the 2DES in addition to the bare confinement potent
which is assumed to be sufficiently steep, such that, at
channel edges, the LL flattening and the formation of co
pressible and incompressible strips14 can be neglected.15

In Sec. II we derive the integral equations for the wa
charge density and the electrostatic potential at the edge
periodically modulated channel. In Sec. III we present o
result for the dispersion relations and spatial structures of
fundamental EMP’s. Finally, in Sec. IV we summarize o
major conclusions.

II. INTEGRAL EQUATIONS FOR EMP’S

The noninteracting zero-thickness 2DEG, of widthW and
length Lx5L, in the presence of a strong magnetic fieldB
along thez axis and under a 1D periodic modulation, is d
scribed by the HamiltonianĤ05ĥ01Vs(x), where ĥ0

5@( p̂x1eBy/c)21 p̂y
2#/2m* 1Vy . The confining potential is

flat in the interior of the 2DES, (Vy50) and is parabolic at
its edges, andVy5m* V2(y2yr)

2/2, y>yr . We assume
thatVy is smooth on the scale ofl 0 such thatV ! vc , where
vc5ueuB/m* c is the cyclotron frequency. The 1D modula
tion Vs(x)5Vs cos(Gx) is a weak periodic potential withG
52p/a; so it is assumed thatVs/2\vc! 1. Further, it will
be seen that a novel gapless mode of the fundamental E
appears only ifVs is not too small. The pertinent condition
for the weakness ofVs will be detailed below. Within the
RPA framework, the corresponding one-electron density m
trix r̂ obeys the equation of motion
15 834 ©2000 The American Physical Society
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i\
]r̂

]t
5@Ĥ~ t !,r̂ #2

i\

t
~r̂2 r̂ (0)!, ~1!

whereĤ(t)5Ĥ01V(x,y,t) with

V~x,y,t !5e2 i (v0t2qxx) (
l 52`

`

Vl~v0 ,qx ,y!eiGlx1c.c.

~2!

Without interaction the one-electron density matrixr̂ (0) is
diagonal, i.e.,̂ aur̂ (0)ub&5 f adab , where f a5$11exp@(Ea

2EF)/kBT#%21 is the Fermi-Dirac function;Ĥ0ua&5Eaua&.
Notice thatt→` corresponds to the collisionless case wh
a finite t provides the possibility of estimating roughly th
influence of collisions. Both Ĥ0 and the sum
( l 52`

` Vl(v0 ,qx ,y)eiGlx are periodic alongx with perioda.
Equation~1! can be solved by Laplace transforms.5 Tak-

ing the trace ofr̂ with the electron density operatored
(r2 r̂ ) gives the wave charge density in the form

r~v0 ,x,y!5eiqxx (
l 52`

`

r l~v0 ,qx ,y!eiGlx. ~3!

The charge densityr l(v,qx ,y)exp@i(qx1Gl)x# induces a
wave electric potentialf l(v,qx ,y)exp@i(qx1Gl)x#. From
Poisson’s equation this is given as

f l~v,qx ,y!5
2

eE2`

`

dy8K0~ uqx1Gluuy2y8u!

3r l~v,qx ,y8!, ~4!

wheree is the background dielectric constant, assumed s
tially homogeneous, andK0(x) is the modified Bessel func
tion; f andr pertain to the 2D plane. TakinguqxuW@1, we
can consider an EMP along the right edge of the channe
the form A(v,qx ,x,y)exp@2i(vt2qxx)# totally independent
of the left edge, whereA(v,qx ,x,y) is periodic alongx with
perioda.

In the absence of an external potentialVl(v,qx ,y)
5ef l(v,qx ,y). As a result, considering large time re
sponses,t@t, after some straightforward calculations w
obtain the following integral equation forrm(v,qx ,y):

rm~v,qx ,y!

5
2e2

eL (
a,b

(
l 52`

` E
0

L

dx e2 i (qx1Gm)xcb* ~r !ca~r !

3
f b2 f a

Eb2Ea1\v1 i\/tE dr̃ei (qx1Gl) x̃ca* ~ r̃ !cb~ r̃ !

3E
2`

`

dy8 K0~ uqx1Gluu ỹ2y8u!r l~v,qx ,y8!, ~5!

whereca5^r ua& and we dropped the subscript 0 fromv0.
For definiteness, we takev.0.

We consider low temperaturesT satisfying \vgn
@ l 0kBT, wherevgn is the group velocity of the edge state
of nth LL. Furthermore, we will assume the long-waveleng
limit qxl 0!1, which is well satisfied, e.g., for the fundame
a-

of

tal EMP in the low-frequency regime,v ! vc .4 Then, as-
suming that the conditionGvgn! vc is satisfied and com-
paring the terms proportional tof b* , for a givennb* , of the
right-hand side~RHS! of Eq. ~5!, we conclude that the con
tribution to the summation overna with na5nb* is much
larger than any other term of this sum or the sum
all terms with naÞnb* . The small parameter isuv
2qxvgnb*

(kxb)u/vc!1, wherevgnb*
(kxb) is the group ve-

locity of an occupied stateunb* ,kxb& of the nb* LL. The
inequality above also implies thatqxvg0 /vc!1, sincevg0
has typically the largest value amongvgn . Similar results
follow from an analysis of the terms proportional tof a* in
the summation overnb on the RHS of Eq.~5!. Hence, for
v!vc , qxvg0!vc , and Gvg0!vc , the terms withna
Þnb can be neglected. Then the integral equation for
electron charge densityrm(v,qx ,y) becomes

rm~v,qx ,y!5
e2

L (
na50

n̄

(
kxa

(
kxb

(
l 52`

` E
0

L

dx e2 i (qx1Gm)x

3cnakxb
* ~r !cnakxa

~r !

3
f nakxb

2 f nakxa

Enakxb
2Enakxa

1\v1 i\/t

3E dr̃ei (qx1Gl) x̃

3cnakxa
* ~ r̃ !cnakxb

~ r̃ !f l~v,qx ,ỹ!, ~6!

where n̄ denotes the highest occupied LL. For evenn, the
RHS of Eq.~6! should be multiplied by 2, the spin degen
eracy factor; forn even the spin-splitting is neglected. Equ
tion ~6!, for m50,61,62, . . . , gives a system of integra
equations, whose solution determinesrm(v,qx ,y) in the
RHS of Eq.~3!.

BecauseVs(x) is assumed weak, the eigenfunctio
cnakxa

5^r una ,kxa& and the eigenvaluesEnakxa
of Ĥ0 can be

evaluated by second-order perturbation theory. A straight
ward calculation leads to16

una ,kxa&5@12Ṽsna

2 ~kxa!#una ,kxa& (0)1Ṽsna
~kxa!

3@ una ,kxa2G& (0)2una ,kxa1G& (0)]

1Ṽsna

2 ~kxa!@ una ,kxa12G& (0)

1una ,kxa22G& (0)]. ~7!

Here we have introduced a dimensionless parameterṼsn(kx)
characterizing the strength of the periodic potential for
nth LL, near its edge, and given by

Ṽsn~kx!5
Vs

2\Gvgn~kx!
e2(Gl0/2)2Ln@~Gl0!2/2#, ~8!

wherevgn(kx)5\21]En(kx)/]kx is the group velocity of a
state in the edge region of thenth LL and Ln(x) is the
Laguerre polynomial. Due to the smoothness of the confin
potential on thel 0 scale, the unperturbed eigenfunctions a
well approximated by cnakxa

(0) [^r una ,kxa& (0)[ca
(0)(r )
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'eikxxCn(y2y0)/AL, whereCn(y) is the harmonic oscil-
lator function. Because we have used the conditionvc
@Gvgn to obtain Eq.~7!, the small ‘‘nonresonance’’ contri
butions withnbÞna can be neglected. In the edge region t
evaluation of the eigenvalueEnakxa

[Ena
(kxa), by perturba-

tion theory, shows that the first-order correctionEna

(1)(kxa)

vanishes. As for the second-order correctionEna

(2)(kxa), the

main ‘‘resonance’’ contributions to it, withnb5na , are mu-
tually canceled due to imposed conditions. Then it can
shown thatEna

(kxa) in the edge region can be well approx

mated by the zero-order term, i.e.,Ena
(kxa)'Ena

(0)(kxa). The

energy spectrum of thenth LL, Ea
(0)'(n11/2)\vc

1m* V2(y02yr)
2/2, leads to the group velocity of the edg

statesvgn5]En(kr1ke
(n))/\]kx5\V2ke

(n)/m* vc
2 with char-

acteristic wave vectorke
(n)5(vc /\V)A2m* DFn, DFn5EF

2(n11/2)\vc , whereEF is the Fermi energy. The edge o
the nth LL is denoted byyrn5yr1 l 0

2ke
(n)5 l 0

2krn , where
krn5kr1ke

(n) , and W52yr0. We can also writevgn

5cEen /B, whereEen5VA2m* DFn/ueu is the electric field
associated with the confining potentialVy at yrn . We have
also introduced the wave vectorkr5yr / l 0

2. The typical width
of the edge region for thenth LL can be estimated here a
h l 0

2ke
(n)@ l 0, whereh!1. For all occupied LL’s, we assum

that ke
(n)@G@1/l 0. Since in Eqs.~5! and ~6! the significant

eigenstates are localized along they direction near the right
edge of the channel, i.e., withy0(kx).yr , we have consid-
ered only these eigenstates in Eqs.~7! and ~8!. Moreover, it
follows from Eq.~6! that the main contributions come from
kx'krn and kx'(krn6G); thus for the applicability of the
perturbation theory here it is sufficient to assume t
Ṽsn(krn)[Ṽsn!1.

III. FUNDAMENTAL EMP’S FOR nÄ1„2…

We first consider the casen51 and then indicate how th
results change forn52. Forn51, we haven̄50 in Eq. ~6!.
We will look for gapless edge modes, withv→0 for qx

→0, and assume that 1@Ṽs0*exp@2(Gl0/2)2#, whereṼs0
5(Vs/2\Gvg0)exp@2(Gl0/2)2#, which implies the short-
period regime, i.e., exp@2(Gl0/2)2#!1. Furthermore, it fol-
lows that now we assume that the periodic potential is
too weak such that the conditionVs/2\vg0G*1 is fulfilled.
From Eq.~6! for m50, we can write the integral equatio
for r0(v,qx ,y) in the form

r0~v,qx ,y!5@ F̂11F̂2#

3E
2`

`

dy8K0~ uqxuu ỹ2y8u!r0~v,qx ,y8!,

~9!

where the integral functionalF̂1 is given as

F̂15
e2

p\eE2`

`

dkxaP~y,kxa!
f 0,kxa2qx

2 f 0,kxa

v2vg0~kxa!qx1 i /t

3E
2`

`

dỹ$P~ ỹ,kxa!1Ṽs0
2 @P~ ỹ,kxa2G!

1P~ ỹ,kxa1G!#%, ~10!
e

t

t

with P(y,kxa)5uC0@y2y0(kxa)#u2. The integral functional
F̂2 is given as

F̂25
e2

p\eE2`

`

dkxaṼs0
2 @P~y,kxa2G!1P~y,kxa1G!#

3
f 0,kxa2qx

2 f 0,kxa

v2vg0~kxa!qx1 i /tE2`

`

dỹ P~ ỹ,kxa!. ~11!

In Eqs.~9!–~11!, for qx→0, we can make the approximatio
( f 0,kxa2qx

2 f 0,kxa
)'qxd(kxa2kr0). After integration over

kxa , we obtain

r0~v,qx ,ȳ!5
e2

p\e

qx

ṽ
H C0

2~ ȳ!E
2`

`

dȳ8@C0
2~ ȳ8!

1Ṽs0
2 @C0

2~ ȳ81Gl0
2!1C0

2~ ȳ82Gl0
2!##

1Ṽs0
2 @C0

2~ ȳ1Gl0
2!1C0

2~ ȳ2Gl0
2!#

3E
2`

`

dȳ8C0
2~ ȳ8!J

3E
2`

`

dȳ9K0~ uqxuu ȳ82 ȳ9u!r0~v,qx ,ȳ9!,

~12!

where ȳ5y2yr0, and ṽ5v2qxvg01 i /t. In order to sim-
plify the notation we taker i(v,qx ,y)[r i(v,qx ,ȳ), i 50,
61, . . . .

Similarly, omitting minor terms in Eq.~6! we obtain, for
m51,

r1~v,qx ,ȳ!5
e2

p\e
Ṽs0

qx

ṽ
C0~ ȳ!

3@C0~ ȳ1Gl0
2!2C0~ ȳ2Gl0

2!#

3E
2`

`

dỹ C0
2~ ỹ!

3E
2`

`

dȳ8K0~ uqxuu ỹ2 ȳ8u!r0~v,qx ,ȳ8!.

~13!

From Eq. ~6! we find, for m521, r21(v,qx ,y)
[r1(v,qx ,y).

The general solution of the linear homogeneous integ
equation, Eq.~12!, can be sought in the form

r0~v,qx ,y!5r0
(0)~v,qx!C0

2~ ȳ!1r0
(1)~v,qx!

3@C0
2~ ȳ1Gl0

2!1C0
2~ ȳ2Gl0

2!#. ~14!

Substituting Eq.~14! into Eq. ~12! and equating the coeffi
cients ofC0

2( ȳ) and @C0
2( ȳ1Gl0

2)1C0
2( ȳ2Gl0

2)# on both
sides of Eq.~12!, we obtain two linear homogeneous equ
tions for r0

( i )(v,qx), i 50,1:
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r0
(0)5

e2

p\e

qx

ṽ
„@a00~qx!12Ṽs0

2 a00
00~qx ,Gl0

2!#r0
(0)

12$a00
00~qx ,Gl0

2!1Ṽs0
2 @a00~qx!

1a00
00~qx ,2Gl0

2!#%r0
(1)
… ~15!

and

r0
(1)5

e2

p\e
Ṽs0

2 qx

ṽ
$a00~qx!r0

(0)12a00
00~qx ,Gl0

2!r0
(1)%,

~16!

where the coefficientsann
mm are given by5

ann
mm~qx ,Dy!5E

2`

` E
2`

`

dx dx8Cn
2~x!Cm

2 ~x8!

3K0~ uqxuux2x81Dyu!. ~17!

Here ann
mm(qx ,Dy)5amm

nn (qx ,Dy), ann
mm(qx ,Dy)5ann

mm(qx ,
2Dy), anda00

00(qx,0)5a00(qx). We will assume 2pqxl 0
2/a

!1. Notice thata00(qx)' ln(1/qxl 0)13/4 and, for Dy/ l 0

@1, a00
00(qx ,Dy)' ln(2/qxl 0)2g2 ln(Dy/l0)'ln(1/qxDy)

10.1, whereg is the Euler constant.

A. Dispersion relations

The dimensionless frequenciesv85ṽ/(e2qx /p\e) of
the branches resulting from the determinantal solution of
two linear homogeneous equations forr0

( i )(v,qx), Eqs.~15!
and ~16!, are given by

v68 5
1

2
a00~qx!12Ṽs0

2 a00
00~qx ,Gl0

2!6
1

2
a00~qx!

3„118Ṽs0
2 a00

21~qx!$a00
00~qx ,Gl0

2!

1Ṽs0
2 @a00~qx!1a00

00~qx ,2Gl0
2!#%…1/2. ~18!

From Eq. ~18! it follows that the effect of the modulation
potential on the fundamental EMP is quite strong. Ap
from the renormalization of the fundamental EMP ofn50
LL with dispersion

v18 'a00~qx!14Ṽs0
2 a00

00~qx ,Gl0
2! ~19!

it leads to the existence of anovel fundamental EMP ofn
50 LL with dispersion

v28 '2Ṽs0
4 a00

21~qx!$2@a00
00~qx ,Gl0

2!#22a00~qx!

3@a00~qx!1a00
00~qx,2Gl0

2!#%. ~20!

Substituting the coefficients into Eq.~20!, we obtain the dis-
persion relation~DR! of the novel fundamental EMP

v2'Fvg02
12

e
Ṽs0

4 syx
0 ln~Gl0!Gqx2 i /t, ~21!

where syx
0 5ne2/2p\ and n51(2). Note that for Ṽs0

<1021 and vg0>106 cm/s, which is a typical value in
GaAs-based heterostructures, the correction in the phas
locity of this novel mode should be quite small. However,
e

t

ve-

general, e.g., for a slightly largerṼs0 and a slightly smaller
vg0, this contribution should be taken into account and c
lead to a substantial decrease of the phase velocity of
novel fundamental EMP from its maximum possible val
vg0. We point out that this contribution to Rev2 stems from
the electron-electron interaction and the strength of the p
odic modulation as well. Equation~21! is valid for

Ṽs0
2 @

1

3ln~Gl0!

evg0

2syx
0 S 2p

ke
(0)a

D 2

. ~22!

Notice that the RHS of the inequality~22! is typically very
small. Under this condition, the second-order correction
the group velocityvg0(kr0)5vg0@122Ṽs0

2 (2p/ke
(0)a)2# can

be neglected. As discussed above this is equivalent to
glectingE0

(2)(kxa).
From Eq.~19! the DR for the renormalized fundament

EMP can be written as

v1'qxvg01
2

e
syx

0 qx$ ln~1/qxl 0!1 3
4 14Ṽs0

2

3 ln@1/~qxGl0
2!#%2 i /t. ~23!

The term proportional toṼs0
2 shows a strong renormalizatio

of the fundamental EMP that depends on the strength and
period of the modulation for given value ofqx .

For a GaAs-based 2DEG and negligible dissipation,
dispersion laws for the renormalized, by the superlattice
tential and intra-LL Coulomb coupling, fundamental EM
and for the novel fundamental EMP, caused by the perio
modulationVs(x), are shown in Fig. 1 by the top and botto
solid curves, respectively. The DR’s corresponding to
v2 and v1 modes here are obtained using Eqs.~21! and
~23!, respectively. For the assumed parameters these e
tions very well approximate the exact DR’s given by E

FIG. 1. Dispersion relations forv6 modes, in units ofv*
5e2/p\e l 0, for n51 andB59 T. The upper solid curve is the
renormalized fundamental EMP of then50 LL and the lower solid
one is the novel fundamental EMP, due to the effect of the mo
lation potential. The dashed curve is the fundamental EMP in
absence of the modulation. The parameters of a GaAs-based sa
are given in the text and we tookDF05\vc/2, a'18.5 nm, and

Ṽs05exp(22).
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~18!. For the sake of comparison, the dashed curve in Fi
shows the fundamental EMP ofn50 LL in the absence of
the superlattice potential.

As we have discussed, the renormalization effect invol
essentially intra-LL Coulomb coupling. In Fig. 1 the param
eters are m* '6.1310229 g, e'12.5, and V'7.8
31011 s21.17 Assumingn51 and B59 T, these param-
eters lead tovc /V'30. Here v* 5e2/p\e l 0'0.3vc'7
31012 s21 is a characteristic frequency. We have also
sumed DF05\vc/2, Ṽs05exp(22)!1, and a5p l 0 /A2.
This gives vg0'V l 0'6.53105 cm/s, a'18.5 nm, Vs
52.9 meV. Observe that for these parameters, the sec
term in the RHS of Eq.~21! is more than 50 times smalle
than the first term,vg0. Hence, the curvev5qxvg0 will
practically coincide with the solid curve at the bottom
Fig. 1.

The dispersion laws corresponding to thev1 and v2

modes, given by Eq.~18!, are depicted in Fig. 2 by the to
and bottom curves, respectively. The solid, dot-dashed,
dashed curves correspond toṼs050.3, 0.2, and 0.1, respec
tively. The data of the bottom curves were multiplied by t
factor 30. The parameters are the same as in Fig. 1 ex
DF05\vc/8, a'20.6 nm. This leads to vg0'3.25
3105 cm/s and to modulation strengthsVs'2.18 meV,
1.09 meV, and 0.73 meV forṼs050.3, 0.2, and 0.1, re
spectively. Notice that in this case exp@2(Gl0/2)2#'0.2. It is
seen that by varying the amplitudeVs of the periodic poten-
tial, strong modifications in the DR of the fundamen
modes can occur. We observe that the phase velocity of
novel EMP decreases from its maximum valuevg0 by in-
creasingṼs0. It can be shown that the DR’s given by Eq
~21! and ~23! still represent well all curves in Fig. 2.

B. Spatial structure

If we substitute Eq. ~19! into Eq. ~16!, we obtain
r0

(1)(v1 ,qx)/r0
(0)(v1 ,qx)'Ṽs0

2 . As a consequence

only a small distortion of the edge charge occurs atȳ

FIG. 2. Dispersion relation ofv6 modes for values of the

modulation strengthṼs052.18 meV~solid curve!, 1.09 meV~dot-
dashed!, and 0.73 meV~dashed! andn51 andB59 T. Top~bot-
tom! curves represent the dispersion laws forv1 and v2 modes,
respectively. The values ofv2 are multiplied by 30. The param
eters are the same as in Fig. 1, exceptDF05\vc/8, a'20.6 nm. It
follows thatvg0'3.253105 cm/s and exp@2(Gl0/2)2#'0.2.
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56Gl0
2, in comparison with the usual one atȳ50.

Furthermore, substituting Eq. ~20! in Eq. ~16!,
we obtain r0

(0)(v2 ,qx)/r0
(1)(v2 ,qx)'22@ ln(1/qxl 0)

2 ln(Gl0)#/@ln(1/qxl 0)13/4#.22. This means that the am
plitude of the edge charges localized atȳ56Gl0

2 has abso-
lute value approximately twice smaller in comparison w
that of the charge distortion localized atȳ50; in addition, it
has the opposite sign. Furthermore, the ratio of amplitude
the novel fundamental EMP is independent onVs0 for the
assumed conditions, while in the case of the renormali
fundamental EMP such ratio tends to zero. The same res
hold for n52. Thus the novel mode has a spatial structu
quite different both from the spatial structure of the fund
mental EMP~i.e., in the absence of modulation! and from the
renormalized mode.

We proceed now to evaluate the charge dens
r1(v,qx ,y) induced by r0(v,qx ,y) for the two new
branches: the renormalized fundamental EMP and the n
fundamental EMP. For both fundamental EMP’s we obta
from Eq. ~13!,

r1~v,qx ,y!5r1~v,qx!C0~ ȳ!@C0~ ȳ1Gl0
2!

2C0~ ȳ2Gl0
2!#, ~24!

where, using Eq.~16!, we find

r1~v,qx!5r0
(1)~v,qx!/Ṽs0 . ~25!

Then for the renormalized fundamental EMP the re
tive amplitude

j1[r1~v1,qx ,y!/r0~v1,qx ,y!

'Ṽs0 exp@2~Gl0/2!2#,

where the small factor exp@2(Gl0/2)2#&Ṽs0 comes from the
exponentially small overlapping of the wave functions in t
products of Eq.~24!. Similarly, for the novel fundamenta
EMP, v2 , we obtain that

r1~v2 ,qx!

r0
(0)~v2 ,qx!

'2
a00~qx!

2Ṽs0a00
00~qx ,Gl0

2!
→2

1

2Ṽs0

, ~26!

where the limit holds forqx→0. Now the relative amplitude
is j2[r1(v2 ,qx ,y)/r0(v2 ,qx ,y)5exp@2(Gl0/2)2#/2Ṽs0.
Hence,j2 lies in the interval@0.1,1#, i.e., the amplitude of
oscillations of the charge distortion}r61(v,qx ,y) can be of
the same order of magnitude as that}r0(v,qx ,y). A further
treatment of Eq.~6! for m52 ~and n̄50) shows that the
charge distortionsr2(v,qx ,y)5r22(v,qx ,y) as compared
with r0(v,qx ,y) for these two new branches have an ad
tional small factor}Ṽs0 exp@23(Gl0/2)2#&Ṽs0

4 with respect
to the relative strengthj6 of r61(v,qx ,y). Therefore, terms
with u l u>2 in Eq. ~3! can be neglected both for the reno
malized fundamental EMP and the novel fundamental EM
As a result, from Eq.~3!, we obtain straightforwardly the
dimensionless form factors, r6(x,y)[r65Ap l 0 exp
(2iqxx)r(v6 ,x,y)/r0

(0)(v6 ,qx), as
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r1~x,y!5Ap l 0$C0
2~ ȳ!1Ṽs0

2 @C0
2~ ȳ1Gl0

2!

1C0
2~ ȳ2Gl0

2!#12Ṽs0 cos~Gx!C0~ ȳ!

3@C0~ ȳ1Gl0
2!2C0~ ȳ2Gl0

2!#% ~27!

for the renormalized fundamental mode, and

r2~x,y!5Ap l 0H C0
2~ ȳ!2

1

2
@C0

2~ ȳ1Gl0
2!1C0

2~ ȳ2Gl0
2!#

2
1

Ṽs0

cos~Gx!C0~ ȳ!@C0~ ȳ1Gl0
2!

2C0~ ȳ2Gl0
2!#J ~28!

for the novel fundamental mode. In order to exhibit expl
itly the x dependence of the form factors, for the same
rameters as used in Fig. 1, we show them in Fig. 3 forx0

(m)

5a(m11/2)/2, m50,61,62, . . . , with cos(2px0
(m)/a)50,

and forx1
(m)5ma, with cos(2px1

(m)/a)51. The solid and dot-

ted curves showr1(x,y) as a function ofY5 ȳ/ l 0 for x1
(m)

5ma andx0
(m)5a(m11/2)/2, respectively. We see that th

dotted curve is exactly symmetrical with respect to theY
50 axis. The deviations of the solid curve from this for
come from contributions to the form factor that are comm
surate with the unidirectional modulation. Also in Fig.
r2(x,y) is shown by dot-dashed and dashed curves forx1

(m)

andx0
(m) , respectively. Notice that the dashed curve is sy

metric while the dot-dashed curve is clearly asymmetric.
Fig. 4, we present results for the charge densities of
renormalized and novel fundamental EMP’s for the sa
parameters that are used to obtain the solid curves in Fig
That is, in Fig. 4 we useṼs050.3 andGl0'2.53 in Eqs.~27!
and ~28!.

FIG. 3. Form factor for the fundamental EMP as a function

Y5 ȳ/ l 0, where ȳ5y2yr0, and yr0 is the edge ofn50 LL. The
renormalized mode is indicated respectively by solid and do
curves for x1

(m)5ma and x0
(m)5a(m11/2)/2, with m50,61,

62, . . . , and thenovel EMP by dot-dashed and dashed curve
x1

(m) andx0
(m) , respectively. The parameters used are the same

Fig. 1.
-
-

-

-
n
e
e
2.

IV. CONCLUSIONS

We have presented a fullymicroscopicmodel for EMP’s
in the RPA framework valid for integern51 and 2 in the
case of an applied 1D weak modulationVs(x)
5Vs cos(2px/a), and confining potentials that are smooth
the l 0 scale but still sufficiently steep at the edges that
flattening14 can be neglected.15 The model also takes into
account nonlocal responses and incorporates only very w
dissipation. The main results of the present work are as
lows.

~i! The strength of the periodic modulation, if not to
small, reshapes noticeably the spatial structure of the u
fundamental EMP ofn50 LL,5 normal and parallel to the
edge, and substantially modifies the dispersion relation le
ing to a renormalized fundamental EMP ofn50 LL. For
instance, in Fig. 1, we have seen that the group velocity
the renormalized fundamental EMP is more than 4% gre
than that of the fundamental EMP without modulation f
qxl 050.831022. Therefore, in time-resolved experiment
the periodic potential will imply a modulation of the propa
gation time of the signal due the renormalized fundamen
EMP. As we have seen, this renormalization depends on
strength and period of the modulation potential.

~ii ! The strength of the periodic modulation, even qu
small, leads to the appearance of thenovelfundamental EMP
with acoustical dispersion relation and phase velocity ty
cally equal, in a GaAs-based sample, to the group velocity
the edge states,vg0, independent ofVs and a, if Ṽs0
5(Vsa/4p\vg0)exp@2(pl0 /a)2#<1021 andvg0>106 cm/s.
That is, this holds for a sufficiently weak periodic modul
tion. However, already forṼs0'0.2 andvg0&106 cm/s, the
phase velocity of the novel fundamental EMP can be s
stantially smaller thanvg0, as one can see in Fig. 2, due
the combined effect of a short-period lateral superlattice
the electron-electron interaction. In addition, its spatial str
ture is strongly dependent on bothṼs0 and a. The spatial
structure, with respect to the edge of then50 LL, becomes
substantially asymmetric for some regions ofx, as one can
see by the dot-dashed curve in Figs. 3 and 4. We have
obtained that in the latter case the contributions to the spa
structure of the novel fundamental EMP that are commen
rate with the periodic modulation can be of the same orde
magnitude as those that are independent ofx.

f

d

r
in

FIG. 4. The same as in Fig. 3, but with the parameters used
plotting the solid curves in Fig. 2.
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~iii ! The measurement of the velocity of the novel EM
due to its independence of the modulation parameters,
wide range of them, can be a useful tool for obtaining
rectly the group velocity of edge states. Furthermore, a qu
tative analysis, using results of previous studies4 as well the
above findings, shows that the dominant contribution to
damping rate of the novel EMP is absent. Then we m
speculate that the damping rate of the novel mode could
rather small.

The simple analytical form of the lateral confining pote
tial Vy used here is a rather good approximation of that c
culated numerically in the Hartree approximation,15 when the
bare confining potential is sufficiently steep such that the
do not have a flat region at the Fermi level. Furthermore,
main results still hold for confining potentials that a
smooth on the scale ofl 0 in the edge region, i.e., when th
typical group velocity in this region satisfies the relation
,vg0!vcl 0. Moreover, the confining potential here shou
be sufficiently smooth in order to hold the conditionvg0
!vc /G, whereG52p/a. Notice that the consideration o
the smoothness of the confining potential essentially sim
fies the calculation of the eigenfunctions and eigenvalues
ĥ0 andĤ0 and the analysis of the integral equation~5!. No-
tice that the conditionvg0!vcl 0 can be achieved in the Har
tree approximation but not in the Hartree-Fock approxim
tion because the exchange term leads to a logarithmic
divergentvg0 .18,19 However, when electron correlations a
taken into account, a smooth spatial behavior of LL resu
near the edges andvg0 is small.18

Finally we discuss the physical origin of the new fund
mental mode. We emphasize that this novel mode is obta
only when the relationVs*2\vg0G is assumed, which doe
not violate the condition of weak modulation,Vs!2\vc .
.
,

.
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e
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e
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This mode arises from a rather strong quantum-mechan
coupling of the charge distortions at the edge of LLyr0 with
those due to the periodic potential, atyr06Gl0

2. Further-
more, these three charge distortions are strongly coupled
the Coulomb interaction. We speculate that the frequenc
the novel fundamental EMP is close to some characteri
frequency for the system of these charge distortions. At
‘‘resonance,’’ the charge distortions for the novel fundame
tal EMP have comparable intensities~see Sec. III B!. On the
other hand, the ‘‘resonance’’ condition does not hold for t
renormalized fundamental EMP and the charge distortion
yr0 is always much larger than those atyr06Gl0

2, i.e., in this
case the effect of the periodic potential on the mode cha
teristics is rather small. This picture explains why the n
fundamental EMP cannot be obtained in the limiting ca
Vs→0, but it is possible to obtain the well-known funda
mental EMP ~Ref. 5! from the renormalized fundamenta
EMP found here. We point out that the dipole and oth
multipole modes forn51, obtained in Refs. 4 and 5, shou
not be confused with the novel fundamental EMP. In partic
lar, for the latter mode the normalized total charge dens
transverse to the edgeu*rdyu is finite and rather large. Fo
parameters taken in Fig. 1 and for 0.531022>qxl 0>0.5
31024, we obtain 0.2.u*rdyu*0.1. As u*rdyu'1 for the
renormalized fundamental EMP, we have exactlyu*rdyu
50 for dipole and other multipole EMPs.4,5
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