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Ground state of a dissipative two-level system
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The ground state of a two-level system coupled to a dispersionless phonon bath is studied using the coherent
approximation method. The ground-state energy and the tunneling reduction factor we obtain are in good
agreement with the exact values in the whole parameter space. Since the real ground-state wave functions are
well simulated, some other physical information about the system, such as the interaction energy and the
interaction phonon numbers in each level and the whole system, are given. The interaction phonon numbers in
the two-level system are found to increase with the coupling pararadtethe intermediate coupling region,
phenomenon of the population inversion and a maximum for the interaction phonon numbersdyéssusve
been found. Consisting with the exact results, our results show there is no evidence of the discontinuous
localization-delocalization transition.

[. INTRODUCTION the phonon bath. For simplicity, we only consider the disper-
sionless casedy=w, for all k) in this paper. From the
The two-level system coupled to a phonon bath has exHamiltonian(1), we can see that in the extreme cage-0,
tensive application in various fields of physics andEd. (1) represents a sets of oscillators. Thus there is a two-
chemistry* such as molecular polaron formation, exciton fold degenerate localized ground state with enefgy —s.
motion, chaos in quantum, spin-phonon relaxafiattenua-  On the other hand, when the system is uncouplpd=0),
tion of sound in glassesthe motion of defects in certain the eigenstate of the system are the symmetric and antisym-
crystalline solids, and condensed matter physics. Many agnetric combinations of the spin states with enerdigs-

proximation methods have been applied to the syé@f. = % . .
IVié et al’2 and Loet al® made use of the variational prin- In the present work we introduce the coherent approxima-

ciple, and predicted the existence of the discontinuoud©? (CA) torﬁrﬁ?ztz""o"e"e' system coupled to a dispersionless
localization-delocalization transition. Their prediction is con- phonon bath.”** The CA is a nonvariational, nonperturba-

. tion method which provides a systematic scheme to improve
trary to the exact result that was obtained by Lo and Wéng the approximation gf the syster?/m The key idea of the CF:)A is

vi_a a cor_nbination qf unitary transformations and numerical ased on the fact that the interactions between the two-level
d|ago_nallzat|on. Th_|s fault maybe (_:aUSEd by the fact tha ystem and the phonon bath consist of the effects of the
variational calculations could not simulate the true groun ne-phonon correlations, the two-phonon correlations, and
state well. Fessatidist al1® applied the Lanczos calculations so on. The effect of th&l-phonon correlation will contribute

to the system, while some other researchers used the Cofytle when N is big. So we can simulate the real system by

nected moments expansiSn(CMX) and the alternate mo- jyst taking into account some rank of phonon correlations,

ments expansiol’. (AMX) Their results did not agree well for instance, two- or three-phonon correlations. These trun-
with the exact solution when the coupling was strong. Recation schemes are similar to the Zubarev equation of motion
centy, Wong and Lo applied a coupled-clusterdecoupling schemes for Green’s functions in which the

approximatioh® (CCA) to this system with great success. higher-order correlation effects are averagely treateih

The CCA method is needed to solve a number of coupledhis paper, the system is studied in a wide range of the pa-

and, in general, nonlinear equations. rameter space. In the two-level approximation, the numerical
The two-level system coupled to a dissipative environ-results of the interaction phonon numbers and the interaction
ment is defined by the Hamiltonian energy are obtained. In the intermediate region, we find that

there exist an interesting phenomenon near the pgjns
R ~0.5. Whend, /s increases across this point, the population
H=—6q0,+ Z hwkalakJr E gk(aIJrak)aZ, (1) of the interaction phonons invert. Also in this region, there is
K k an existence of peaks in the curves of the interaction phonon
+ _ ) numbers versusdy/s due to the strong nonlinear self-

wherea, anda, are boson annihilation and creation opera-trapping effect. Consistent with the exact solution, we show
tors, respectively, and and o, are usual Pauli matrices. no existence of the discontinuous localization-delocalization
The bare tunneling matrix element is given By, while g, transition of the tunneling particle.
represents the coupling to thephonon mode. The first term The present paper is organized as follows. In Sec. Il we
in the right-hand side of Eq(l) represents the tunneling apply the CA to a two-state system coupled to a dispersion-
effect, the second is the phonon energy, and the third is thiess bath. Numerical results are discussed in Sec. llI. Finally
interaction energy of the two-level system interacting witha summary is given in Sec. IV.
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Il. COHERENT APPROXIMATION FOR A TWO-LEVEL

SYSTEM WITH PHONON COUPLING |A2>=exr{§ a,(K)aj||0), (4)

From the HamiltoniarH, we can see that the two-level
. where|0) denotes the vacuum state of all the phonon modes,
system coupled linearly to the phonon bath and the numbecr('(k) is the eigenvalue ofy, with agA)=a;(K)|A), i
of the phonons is nonconservative. Therefore it is appropri-:'1 > The ave?a e numberk of all r;odles ir%terac'éir; with
ate to write the ground-state wave function of the two-leveleac’h .Ievel is 9 9
system in the coherent-state space.

In the first level approximation, we omit the two-phonon

and more higher-order correlation terms and suppose the <1|2 alak|1>
ground state of a many-body Hamiltonighhas the forms N, = K | :2 |y (K)|2 (5)
(1|1) " '
1)\ [palA1)
= = : )
|2> p2|A2> <2|E alak|2>
k
where p,,p, are parameters to be determin¢tly and |2) szTZZ lay(K)|?, (6)
are wave functions of the two levelfA,),|A,) have the (212) K
form

and N=N;+ N, denotes the average total number that the
phonon bath interact with the two-level system. The interac-

|0), 3) tion energy of each level interacting with the phonon bath is
defined as

|A1>=ex;{§ ay(k)ay

TABLE I. Ground-state energy calculated by different methodsSer0.02, 2, and 200.

dols Ecaz)/S Eexacd S Eccay/S ELanczos(3¢3) /S Ecmx(z) /S Eamxs) /S
S=0.02

0.01 —1.009608 —1.009608 —1.009605 —1.009414 —1.009600 —1.009590

0.04 —1.038434 —1.038434 —1.038429 —1.038240 —1.038403 —1.038362

0.07 —1.067263 —1.067263 —1.067257 —1.067069 —1.067208 —1.067138
0.1 —1.096095 —1.096094 —1.096087 —1.095901 —1.096016 —1.095917
0.4 —1.384557 —1.384553 —1.384535 —1.384366 —1.384252 —1.383871
0.7 —1.673279 —1.673272 —1.673244 —1.673089 —1.672763 —1.672124
1.0 —1.962251 —1.962242 —1.962204 —1.962064 —1.961538 —1.960663
4.0 —4.864129 —4.864106 —4.864013 —4.863967 —4.862069 —4.859701
7.0 —7.783939 —7.783913 —7.783804 —7.783802 —7.781250 —7.778347

10.0 —10.717225 —10.717200 —10.717092 —10.717111 —10.714286 —10.711294

S=2.0

0.01 —1.000100 —1.000212 —1.000029 —0.745727 —0.971538 —0.749238

0.04 —1.001590 —1.001204 —1.000470 —0.749580 —0.902069 —0.565450

0.07 —1.004809 —1.002728 —1.001438 —0.754338 —0.851250 —0.527121
0.1 —1.009641 —1.004789 —1.002935 —0.759994 —0.814286 —0.519989
0.4 —1.116919 —1.055737 —1.047042 —0.863116 —0.784615 —0.684991
0.7 —1.276675 —1.164368 —1.144520 —1.036099 —0.963158 —0.920463
1.0 —1.457427 —1.330803 —1.295572 —1.255278 —1.200000 —1.178257
4.0 —4.067366 —4.067174 —4.059590 —4.065555 —4.058824 —4.058081
7.0 —7.037148 —7.037131 —7.035658 —7.036839 —7.034483 —7.034327

10.0 —10.025677 —10.025673 —10.025166 —10.025575 —10.024390 —10.024334

S=200.0

0.01 —1.000050 —1.000025 —1.000025 —0.117091 —0.210000 —0.031778

0.04 —1.000801 —1.000401 —1.000401 —0.122915 —0.098824 —0.061906

0.07 —1.002450 —1.001227 —1.001227 —0.135064 —0.104483 —0.093077
0.1 —1.004988 —1.002503 —1.002503 —0.152081 —0.124390 —0.119670
0.4 —1.074619 —1.040051 —1.040051 —0.413028 —0.406211 —0.406117
0.7 —1.203926 —1.122659 —1.122654 —0.706274 —0.703559 —0.703541
1.0 —1.366556 —1.250336 —1.250266 —1.003880 —1.002494 —1.002488
4.0 —4.000732 —4.000732 —3.991809 —4.000798 —4.000625 —4.000625
7.0 —7.000387 —7.000387 —6.998948 —7.000384 —7.000357 —7.000357

10.0 —10.000264 —10.000264  —9.999807 —10.000262  —10.000250 —10.000250
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TABLE Il. Ground-state energy calculated by different methods

(1@ gal+ag|1) for 5,=0.01, 1, and 100.
Ep1= =2 gl et (k) +ay(k)],
' (112) K ! ' dols Ecaz)/S Eexact Ecca@)/S
7 _
56=0.01
0.01 —1.009804 —1.009804  —1.009804
(2| gu(al+ay)|2) 0.04 —1.039216 —-1.039216  —1.039216
k
0.07 —1.068628 ~1.068628 —1.068628
Epo=— =— a3 (K)+ ay(k)],
b2 (2|2) zk: Gl ez (k) az(K)] 0.1 —1.098041 ~1.098041  —1.098041
(8) 0.4 —1.392187 —1.392187 —1.392187
. . . 7 ~1. 7 -1 -1
andEy=E,;+ Ey, is the total interaction energy of the sys- 0 68636 686366 686365
tem. It is easy to see théA,),|A,) have relations 1.0 —1.980581 —1.980579  —1.980574
' 171772 4.0 —4.924589 —4.924512  —4.924060
7.0 —7.872005 —-7.871596 —7.867917
|A)= exp[ > [ay(k)— az(k)]al] 1AL, (9) 10.0 ~10.822841 ~10.821663 —10.806535
k
5(): 1
0.01 —1.003341 ~1.003341 —1.003341
ALY —ex (k) — an(k)1al LAY, 10 0.04 —1.013454 —1.013453 —1.013449
[A2) p[ ; Laz(l)~ as(k)] "] A 10y ~1.023708 ~1.023704  —1.023683
o . o , 0.1 —1.034109 —1.034098  —1.034033
Substituting Eq(2) into the Schrdinger equation 0.4 1.147920 1146829  —1.141923
0.7 —1.289023 —~1.279103 —1.251728
H[)=E[) 1) 1.0 —1.500000 —1.436545 —1.375042
and utilizing the commutation relatiofa, ,a}]= 8,5, we 4.0 —4.142857 —4.067461  —4.067031
get 7.0 —7.076923 ~7.037096  —7.037094
10.0 —10.052632 —10.025659 —10.025659
; 8o=100
Ep1|Ar) == op2| Ax) + Pl; ay(K)ag|Ag) 0.01 —1.000050 —1.000050  —1.000050
0.04 —1.000203 —1.000203  —1.000202
; 0.07 —1.000361 ~1.000361  —1.000350
+Pl; gkak|A1>+P1§ gkaa(K)[Aq), 0.1 ~1.000525 ~1.000525  —1.000478
0.4 ~1.002734 —~1.002726  —0.991066
(12 0.7 —1.140393 ~1.058663 —1.057693
1.0 —1.367092 —1.250674 —1.250598
EpolAs) = — Supal A + 0, S an(K)al|A 4.0 —4.121464 —4.062539  —4.062539
palA2) op1lAs)+p2 el A2) 7.0 —7.070764 ~7.035727 —7.035727
10.0 —10.049777 —10.025006 —10.025006
—02; gkaE|A2>—92; gkaa(K)|A2),
(13 Epy=— 50P2+P1; gka(k), (16)

whereE is the eigenvalue of the ground-state energy. In Egs.

(14) and(15), we also omit two and higher correlation terms

and take approximately Ep,=— Sop1+ pr>s Graa(K), (17)
K

|
0=— 50,)1; [a1<k>—a2<k>]+p2§ a2<k>—p2§ Ok
|A2>=exp[§ [az<k)—al<k)]alj |A;) (19)

Then the analytical solutions under the first level approxima-
1+, [az(k)—al(k)]al] |AL). (15)  fion can be easily obtained:
k

|A1>=exp[; [aa(k) =~ (k) Jag f|Az)

0=_50P2§k: [az(k)_al(k)]+P1§k: Cfl(k)+P1§k: Ok »
(18)

1+§ [ar(K)—ax(k)]att|A), (14

2r%s

From Egs.(12—(15) and equating the coefficients pA;), E=—s+ - -
Sof 2+ 1+ 8,

aj|A;) (i=1,2) in Egs.(12) and(13), we have

r— 99, (20
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FIG. 1. Tunneling reduction factorc, versusd, for s=(a)
200, (b) 2.0, (c) 0.02. The lines with®, X, andA represent{2),
78, and 7egacn rESpectively.

25— 1+ (25— 1)?—46;
r:

25,

r=+1, (21

ay(K)= ——— 0k, (22
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(C) s/d,

FIG. 2. Tunneling reduction factat-, versuss for 6,=(a) 100,
(b) 1.0,(c) 0.01. The lines witt®, X, andA representZ), 752, ,
and Teyact, respectively.

50r2_ 50+I’

ay(k)= ——
2( ) 50r2+50+rg

ks (23)

wherer=p,/p4, SIEkgﬁ. It is clear that the ground-state
energieq20) for the first-level CA equal t&y= — 5, when
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FIG. 3. Interaction phonon numbeéxsversuss, for s=(a) 200,
(b) 2.0, (c) 0.02. The lines with®, X, and A represeniN,, N, FIG. 4. Interaction phonon numbexsversuss for d,=(a) 100,

andN, respectively. (b) 1.0, (c) 0.01. The lines with®, X, and A represeniN;, N,

andN, respectively.

the system is uncoupledg{=0). The tunneling reduction

faction 7¢a can be defined as In the second level of the approximation we include in the

ground-state wave function the effect of two-phonon corre-
2r2 lations and calculate the ground state more accurately. The
(24)  higher-order correlation terms, which are relatively small,
are omitted:

WV, =
TeATT Sor2+r+68y
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(c) 3,/s

0

FIG. 5. Interaction energ,, versusd, for s=(a) 200,(b) 2.0,

(c) 0.02. The lines witl®, X, andA represent,;, Ey,, andE,,
respectively.

(|1>) [pl+k§2 fa(ky,ko)af a,||As)
|>_ |2> - ’

pat 2 Talky ko)agay, [Az)
1,72

(29
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8,=100

E,/5,

0.01 0.1 1 10

E/5,

0.01 0.1 1 10

(c) E,/3,

FIG. 6. Interaction energi, versuss for §,=(a) 100,(b) 1.0,
(c) 0.01. The lines with®, X, andA represent,;, Ey,, andE,,
respectively.

wherepq,p»,f1(kq,k,),fo(kq,ks) are functions to be deter-
mined.|A;) and|A,) are the same as Eq8) and(4) and the
relation of|A;) and|A,) are expanded approximately to the
second IevebllaI2|Ai) (i=1,2) rather by the use of Egs.

(14) and (15):
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|A)~ 1"‘2 [a1(K)— ay(k) ]al+ Z [a1(Ky) —aa(ky) [ aa(ks) — az(kz)]ak aj }|A2> (26)
1
|Ay)~ 1+; [az(k)_al(k)]al+§k2k [aa(Ky) = ag(ky) ][ aa(ks) — al(kz)]ak aj ]|A1> (27)
1:82

Substituting Eq(25) in the Schidinger equatior{11) and equating the coefficients mi>,aE|Ai>,aElaEZ|Ai> (i=1,2),in

the corresponding equations yields

26,r2—2rP,
E=—s—r + (28
50r2+(l_ Pl)r + 50_
8s8r2(r2+258,r+1
(Sor2+T1+385)*+ \/(50r2+r+50)2— o™ o +1)
So(1+r2)+2r  Sy+r
Pi= > > (29
r<+26pr+1
oor +1
T (30
|
Herer satisfies a simple equation Ca;
Ep = ZSC—
— 8ol *+(2895— 89+ 8gP1) 3+ (8gP,— 2P;s)r? a
+ (89— 8gP1+2P,S—2848)1 + (82— Py ) 4805r3(8+r)CayCa
_o (31) [50(1+r2)+2r]Ca"'+25032r‘°’(50+r)Ca1
and can be evaluated numerically for giverand &,. The (39
corresponding interaction phonon numbers and the interac- Ca,
tion energies in the second-level approximation are Ep2= —ZSa
2
- ? s 45,522 8o +1)Ca,Ca
a - 1
[So(1+12)+2r]Ca*+28,5%r%(8,r +1)Cas
. 4s%r35,( 5y+r1)Cas (36)
So(1+r12)+2r]Ca*+25,5%r3(5,+r)Ca2’
[ O( ) ] 0 ( 0 ) 1 Eb:Eb1+ Eb2! (37)
(32) where
Ny Ca, ZS Cay=P,+ 8or 2= 8o—r — Py, (38)
C
2 Cay,=P,+ 8yr?— Sp+r—rPy, (39)
2.2 2
+ A4S 00(Sor +1)C8; 5 Ca=—P,+ 8gr2+ 8p+r—rPy. (40)
2 4 2.2 !
[Go(1+1%)+2r]Ca’+26sT%(dor +1)Cay Finally, following the same idea as shown above, the cor-
(33 relation terms whose order higher than three are omitted and
the ground-state wave function for the third level CA can be
N=N;+N,, (39 written as

p1t E fa(ky,ko)ay ag, + E Ba(ky.kz ka)al af ak3

pot E fa(ka,kp)a ak2+ Z Ba(k1.kz ka)ak aj ak3

A1)

kq.kp.k3

(41)
|A2)

kq.kp.k3
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TABLE Ill. Ground-state energy calculated by CA in the different level approximation$+£00.02.

Sols  Ecawy/S Eca)/S Eca)/S S Eba) /s Eexac!S

0.01 —1.009600 —1.009608 —1.009608 0.960804 —0.999608 —1.009608 0.960820
0.04 —1.038403 —1.038434 —1.038434 0.960850 —0.998434 —1.038434 0.960910
0.07 —1.067208 —1.067263 —1.067263 0.960895 —0.997263 —1.067263 0.961000
0.1 —1.096016 —1.096095 —1.096094 0.960940 —0.996094 —1.096094 0.961089
0.4 —1.384252 —1.384557 —1.384553 0.961383 —0.984553 —1.384553 0.961968
0.7 —1.672763 —1.673279 —1.673272 0.961817 —0.973272 —1.673272 0.962819
1.0 —1.961539 —1.962251 —1.962242 0.962242 —0.962242 —1.962242 0.963641
40 —4.862069 —4.864129 —4.864106 0.966027 —0.864106 —4.864106 0.970575
70 —7.781250 —7.783939 —7.783913 0.969130 —0.783917 —7.783913 0.975719
10.0 —10.714286 —10.717225 —10.717200 0.971720 —0.717200 —10.717200 0.979635

and the approximate relation betweg) and|A,) can be 1. NUMERICAL RESULTS AND DISCUSSION

written .
tten as In Tables | and Il, we show the ground-state energies

calculated by the coupled-cluster approximati@£,), the
Lanczos schemeH| ;nez09, the connected moments expan-
|A)~ 1+E [al(k)—az(k)]al sion (Ecux), the_alter_nate m(_)me_nts expansidinfix ), an_d
K the exact numerical diagonalizatioBd,,.), as well as CA in
1 the second-level approximatiorEga,)). It is clear that
+= > [ag(ky)—as(ky)] Eca(z) andEcca are better thatl| anczos Eavx » @andEcuy
2 K5k and show good agreement with the exact results. However,
in the intermediate regiod,~s~fwy~1, the results are

_ t ot
X[aa(ky) — az(ka)Jay a, not as good as those whey is far froms. The differences
1 are a few percent. In some cas€g, ;) are lower than the
+ = E [aq(ky)— an(ky)][a1(Ky) — an(Ky)] exact results. This is because of that the CA is an unvaria-
6 k%G ks tional approach. When more correlation terms are consid-
ered, the results will gradually approach the exact ones.
X[ aq(ks)—ay(kg)la) af al tA,), (42 In Figs. 1 and 2, we plot the tunneling reduction factor
1 "2 "3

72) versus s, for $=0.2,2,200 ands for 8§,=0.01,1,100.
Our results show that there is no abrupt jump in the value of
the reduction factor ag, or s varies. These mean that there
is no evidence of the discontinuous localization-
|As)~1{ 1+ 2 [as(k)— al(k)]al delocalization transition. The results are consistent with
K those of the exact calculations and the CCA. Figures 1 and 2
also show that our reduction factor valugg! are closer to

1
+3 > [aa(ky)—ai(ky)] the exact values than those of CCA for all cases. This may
kake indicate that the CA can well simulate the ground state of the
X[aa(ka) = Cvl(kz)]f:lllal2 real system in the whole parameter space.

The numbers of phonons interacting with each level and
the whole two-level system are shown in Figs. 3 and 4sAs

P kE [aa(ky) = ag(ky) ][aa(ks) — as(ka)] increase, the system interacts with more phonons, i.e., the
SR total phonon numbersl increases monotonically wits 8.
When §,=0.01, both levels have the same phonons, whereas
X[az(kS)_al(kS)]allaEZal3 |A1). (43 5,=1.0 and 100 the levall) will occupy most of the pho-

nons if the coupling is strong enougk/$y>1.0). In Fig.

3(c) and 4c), we show weak coupling situations whesés
The resultant expressions are very lengthy and will not berery small §<0.1). In this case, the two-level system is
presented here. Following the same way we took in the firsiainly controlled by the tunneling effect and the two levels
and the second level approximation, the enefggnd other ~ almost have the same numbers of the interaction phonons.
physical quantities can be obtained. This also can be seen in Figs(a# and 4b) while s/ &,

It should be noted that we can systematically improve the<0.1. The strong coupling situations are shown in Fi@,3
approximation of the results by including more higher levelwhere s=200. When 6,/s<1.0 the coupling effect takes
correlations. In Sec. Ill, we will see that the results of theadvantage and the levidl) tends to occupy more interaction
two-level approximation are close enough to the exact soluphonons. But compared to the weak coupling cases, the num-
tions. So there is no need to take higher level CA. This alsdoers of the phonons in the levi@) still changes little. When
shows the efficiency of our method. 6p/s increase, the tunneling effect becomes more important.
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TABLE IV. Ground-state energy calculated by CA in the different level approximationgfer0.01.

sId&  Ecaw/S Ecaz)/S Eca)/S ) Eba)/s Eexac!S
0.01 —1.0098039 —1.0098039 —1.0098039 0.9998039—0.9998039 —1.009804 0.999808
0.04 —1.0392157 —1.0392160 —1.0392160 0.9992160—0.9992160 —1.039216 0.999231
0.07 —1.0686275 —1.0686284 —1.0686284 0.9986284—0.9986284 —1.068628 0.998655
0.1 —1.0980392 —1.0980411 —1.0980411 0.9980411—0.9980411 —1.098041 0.998079
0.4 —1.3921569 —1.3921870 —1.3921869 0.9921869—0.9921869 —1.392187 0.992339
0.7 —1.6862745 —1.6863669 —1.6863665 0.9863665—0.9863665 —1.686366 0.986630
1.0 —1.9803922 —1.9805807 —1.9805795 0.9805795—0.9805795 —1.980579 0.980953
4.0 —4.9215686 —4.9245887 —4.9245101 0.9245101—0.9245101 —4.924512 0.925882
7.0 —7.8627451 —7.8720048 —7.8715819 0.8715819-—0.8715819 —7.871596 0.873798
10.0 —10.8039216 —10.8228408 —10.8216041 0.8216041—0.8216041 —10.821663 0.824552

HenceN,; decrease quickly correspondingly and both levelsfor s=0.02 ands,/s=1.0 and 10.0, wherdl,, is the trunca-

tend to occupy the same numbers of phonons. Wajles is

tion size of the CA. Extended the lines to tReaxis, theE

close to 10, the interaction phonon numbers with two IeVel":mtercept may represent the “infinite” order truncation level

decrease asymptotically to zero.
In the intermediate coupling region wheég~s in Fig.

for the CA. Obviously, the two intercept values are very
close to the numerical ones. This also indicates the conver-

3(b), the tunneling and coupling effect compete against eac%enCy and the validity for the CA
other and the peaks occur in the curves of interaction phono '
numbers versus,/s. This effect is the so-called strong non-
linear self-trapping effect. There is also a phenomenon of
phonon number inversion near the poif/s=0.5 in Fig.
3(b). When 6,/s<0.5, the interaction phonons in the level | this paper we have investigated the ground-state prop-
|1) are more than if2). As /s increases ta%/s~0.5,  grties of a two-level system coupled to a dispersionless pho-
population inversion occurs. The numbers of the interaction, g path by the coherent approximation. In the first level
phonons in the levgR) rise quickly and exceed the numbers approximation, we considered the effect of the one-phonon
in|1) t_hereafter. . . correlation, and obtained analytic solutions which are much
In Figs. 5 and 6, we S_hOW mt_eractlon eneigy Epz for  cjoser to the exact results than the ones obtained by the
each level and the total interaction enegyfor the systém. \4riational method. In the second level approximation, we
In some cases, for exampkes2.0,200 andso=1.0,100, the (40 into account the effect of the two-phonon correlation
interaction energies with levél) have positive values. But 5nq obtained very good energies and tunneling reduction fac-
the total interaction energies are still below zero and makeqyrs |n our method, the interaction energies, the interaction
the system stable. Whesis small, the same interaction pho- nhon6n numbers of each level, and the whole two-level sys-
nons in each level consequently leads to the similarity in th‘?em, which depend on the bare tunneling matrix elengnt
interaction energy for each level. In Figsaband @b), the  onq coupling parametey are also calculated. The number of

enhancement of the coupling effect make the interaction e’bhonons in the levelL) is found to grow withs while that in
ergy Ep; for the level |1) rise andEy, for the level |2)

decrease. But the interaction enefgyfor the whole system
does not very much. It remains a little below zero in the
whole parameter space. Whép/s reduce to zero, the tun-
neling effect becomes weak, hence the curves in Figs. 3 an
5 become flat. The saturation values for the interaction pho-
non numbers and the interaction energy turn close to the
results of the systems which consist of a sets of oscillators.
As we stressed before, our method is not a variational one
but rather a systemic approximation method. We show herems
some results of the third-level approximation. In Tables Ill — 107145 | ]
and IV, we show the CA results for different level approxi- ~ -10-7150 - 1
mations. In Table Ill, the coupling parameteis fixed to be
0.02, and the bare tunneling factéy varies. In Table IV.,5,
is fixed to be 0.01 and changes. It is clear that in the
third-level approximation the ground-state enekgy 3y and
the tunneling reduction factor) are closer to the exact
results obtained in Ref. 14. In fact, in most cases, both value:
are almost the same in the precision of $0The binding
energyEb(3) is defined afb(3): ECA(3)_ EOZ ECA(3)+ 50.
In Fig. 7, we plot the ground-state energyersus 1N,

IV. CONCLUSION

-1.9616 |- -
-1.9618 |- -
-1.9620 |- -

-1.9622 |- -

AN

-1.9624 z

-10.7155 |- -
-10.7160 |- -
-10.71865 |- -

-10.7170 |- 4

.10_7175-.|.|.|.|.|.|.|.|.|.|
0.0

FIG. 7. Ground-state enerdy versus 1IN, , for s=0.02. The
lines with @ and A represent0/s=1.0 and 10.0, respectively.



15588 HAN RONGSHENG, GAO XIANLONG, AND WANG KELIN PRB 62

|2), does not vary much. In the intermediate coupling regioncalculations, but is opposite to the prediction of the varia-
So~s~1, we found a maximum value for the interaction tional approach.

phonon numbers versu% /s and a phenomenon of popula-

tion inversion. We also confirmed the conclusion that there is ACKNOWLEDGMENTS

no discontinuous localization-delocalization transition for the  This work was partially supported by the President Foun-
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