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Ground state of a dissipative two-level system
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The ground state of a two-level system coupled to a dispersionless phonon bath is studied using the coherent
approximation method. The ground-state energy and the tunneling reduction factor we obtain are in good
agreement with the exact values in the whole parameter space. Since the real ground-state wave functions are
well simulated, some other physical information about the system, such as the interaction energy and the
interaction phonon numbers in each level and the whole system, are given. The interaction phonon numbers in
the two-level system are found to increase with the coupling parameters. In the intermediate coupling region,
phenomenon of the population inversion and a maximum for the interaction phonon numbers versusd0 /s have
been found. Consisting with the exact results, our results show there is no evidence of the discontinuous
localization-delocalization transition.
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I. INTRODUCTION

The two-level system coupled to a phonon bath has
tensive application in various fields of physics a
chemistry,1 such as molecular polaron formation, excito
motion, chaos in quantum, spin-phonon relaxation,2 attenua-
tion of sound in glasses,3 the motion of defects in certain
crystalline solids, and condensed matter physics. Many
proximation methods have been applied to the system.4–13

Ivić et al.12 and Loet al.13 made use of the variational prin
ciple, and predicted the existence of the discontinu
localization-delocalization transition. Their prediction is co
trary to the exact result that was obtained by Lo and Won14

via a combination of unitary transformations and numeri
diagonalization. This fault maybe caused by the fact t
variational calculations could not simulate the true grou
state well. Fessatidiset al.15 applied the Lanczos calculation
to the system, while some other researchers used the
nected moments expansion16 ~CMX! and the alternate mo
ments expansion.17 ~AMX ! Their results did not agree we
with the exact solution when the coupling was strong. R
cently, Wong and Lo applied a coupled-clust
approximation18 ~CCA! to this system with great succes
The CCA method is needed to solve a number of coup
and, in general, nonlinear equations.

The two-level system coupled to a dissipative enviro
ment is defined by the Hamiltonian

Ĥ52d0sx1(
k

\vkak
†ak1(

k
gk~ak

†1ak!sz , ~1!

whereak andak
† are boson annihilation and creation ope

tors, respectively, andsx and sz are usual Pauli matrices
The bare tunneling matrix element is given byd0, while gk
represents the coupling to thek phonon mode. The first term
in the right-hand side of Eq.~1! represents the tunnelin
effect, the second is the phonon energy, and the third is
interaction energy of the two-level system interacting w
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the phonon bath. For simplicity, we only consider the disp
sionless case (vk5v0 for all k) in this paper. From the
Hamiltonian~1!, we can see that in the extreme cased050,
Eq. ~1! represents a sets of oscillators. Thus there is a t
fold degenerate localized ground state with energyE52s.
On the other hand, when the system is uncoupled (gk50),
the eigenstate of the system are the symmetric and antis
metric combinations of the spin states with energiesE05
6d0.

In the present work we introduce the coherent approxim
tion ~CA! to the two-level system coupled to a dispersionle
phonon bath.19–22 The CA is a nonvariational, nonperturba
tion method which provides a systematic scheme to impr
the approximation of the system. The key idea of the CA
based on the fact that the interactions between the two-l
system and the phonon bath consist of the effects of
one-phonon correlations, the two-phonon correlations,
so on. The effect of theN-phonon correlation will contribute
little when N is big. So we can simulate the real system
just taking into account some rank of phonon correlatio
for instance, two- or three-phonon correlations. These tr
cation schemes are similar to the Zubarev equation of mo
decoupling schemes for Green’s functions in which t
higher-order correlation effects are averagely treated.23 In
this paper, the system is studied in a wide range of the
rameter space. In the two-level approximation, the numer
results of the interaction phonon numbers and the interac
energy are obtained. In the intermediate region, we find
there exist an interesting phenomenon near the pointd0 /s
'0.5. Whend0 /s increases across this point, the populati
of the interaction phonons invert. Also in this region, there
an existence of peaks in the curves of the interaction pho
numbers versusd0 /s due to the strong nonlinear sel
trapping effect. Consistent with the exact solution, we sh
no existence of the discontinuous localization-delocalizat
transition of the tunneling particle.

The present paper is organized as follows. In Sec. II
apply the CA to a two-state system coupled to a dispers
less bath. Numerical results are discussed in Sec. III. Fin
a summary is given in Sec. IV.
15 579 ©2000 The American Physical Society
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II. COHERENT APPROXIMATION FOR A TWO-LEVEL
SYSTEM WITH PHONON COUPLING

From the HamiltonianĤ, we can see that the two-leve
system coupled linearly to the phonon bath and the num
of the phonons is nonconservative. Therefore it is appro
ate to write the ground-state wave function of the two-le
system in the coherent-state space.

In the first level approximation, we omit the two-phono
and more higher-order correlation terms and suppose
ground state of a many-body HamiltonianĤ has the forms

u&5S u1&
u2& D5S r1uA1&

r2uA2&
D , ~2!

wherer1 ,r2 are parameters to be determined,u1& and u2&
are wave functions of the two levels.uA1&,uA2& have the
form

uA1&5expF(
k

a1~k!ak
†G u0&, ~3!
er
i-
l

he

uA2&5expF(
k

a2~k!ak
†G u0&, ~4!

whereu0& denotes the vacuum state of all the phonon mod
a i(k) is the eigenvalue ofak with akuAi&5a i(k)uAi&, i
51,2. The average number of all modes interacting w
each level is

N15

^1u(
k

ak
†aku1&

^1u1&
5(

k
ua1~k!u2, ~5!

N25

^2u(
k

ak
†aku2&

^2u2&
5(

k
ua2~k!u2, ~6!

and N5N11N2 denotes the average total number that
phonon bath interact with the two-level system. The inter
tion energy of each level interacting with the phonon bath
TABLE I. Ground-state energy calculated by different methods forS50.02, 2, and 200.

d0 /s ECA(2) /S Eexact/S ECCA(4) /S ELanczos(333) /S ECMX(3) /S EAMX(3) /S

S50.02
0.01 21.009608 21.009608 21.009605 21.009414 21.009600 21.009590
0.04 21.038434 21.038434 21.038429 21.038240 21.038403 21.038362
0.07 21.067263 21.067263 21.067257 21.067069 21.067208 21.067138
0.1 21.096095 21.096094 21.096087 21.095901 21.096016 21.095917
0.4 21.384557 21.384553 21.384535 21.384366 21.384252 21.383871
0.7 21.673279 21.673272 21.673244 21.673089 21.672763 21.672124
1.0 21.962251 21.962242 21.962204 21.962064 21.961538 21.960663
4.0 24.864129 24.864106 24.864013 24.863967 24.862069 24.859701
7.0 27.783939 27.783913 27.783804 27.783802 27.781250 27.778347

10.0 210.717225 210.717200 210.717092 210.717111 210.714286 210.711294
S52.0

0.01 21.000100 21.000212 21.000029 20.745727 20.971538 20.749238
0.04 21.001590 21.001204 21.000470 20.749580 20.902069 20.565450
0.07 21.004809 21.002728 21.001438 20.754338 20.851250 20.527121
0.1 21.009641 21.004789 21.002935 20.759994 20.814286 20.519989
0.4 21.116919 21.055737 21.047042 20.863116 20.784615 20.684991
0.7 21.276675 21.164368 21.144520 21.036099 20.963158 20.920463
1.0 21.457427 21.330803 21.295572 21.255278 21.200000 21.178257
4.0 24.067366 24.067174 24.059590 24.065555 24.058824 24.058081
7.0 27.037148 27.037131 27.035658 27.036839 27.034483 27.034327

10.0 210.025677 210.025673 210.025166 210.025575 210.024390 210.024334
S5200.0

0.01 21.000050 21.000025 21.000025 20.117091 20.210000 20.031778
0.04 21.000801 21.000401 21.000401 20.122915 20.098824 20.061906
0.07 21.002450 21.001227 21.001227 20.135064 20.104483 20.093077
0.1 21.004988 21.002503 21.002503 20.152081 20.124390 20.119670
0.4 21.074619 21.040051 21.040051 20.413028 20.406211 20.406117
0.7 21.203926 21.122659 21.122654 20.706274 20.703559 20.703541
1.0 21.366556 21.250336 21.250266 21.003880 21.002494 21.002488
4.0 24.000732 24.000732 23.991809 24.000798 24.000625 24.000625
7.0 27.000387 27.000387 26.998948 27.000384 27.000357 27.000357

10.0 210.000264 210.000264 29.999807 210.000262 210.000250 210.000250
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Eb15

^1u(
k

gk~ak
†1ak!u1&

^1u1&
5(

k
gk@a1* ~k!1a1~k!#,

~7!

Eb252

^2u(
k

gk~ak
†1ak!u2&

^2u2&
52(

k
gk@a2* ~k!1a2~k!#,

~8!

andEb5Eb11Eb2 is the total interaction energy of the sy
tem. It is easy to see thatuA1&,uA2& have relations

uA1&5expH(
k

@a1~k!2a2~k!#ak
†J uA2&, ~9!

uA2&5expH(
k

@a2~k!2a1~k!#ak
†J uA1&. ~10!

Substituting Eq.~2! into the Schro¨dinger equation

Hu&5Eu& ~11!

and utilizing the commutation relation@aa ,ab
† #5dab , we

get

Er1uA1&52d0r2uA2&1r1(
k

a1~k!ak
†uA1&

1r1(
k

gkak
†uA1&1r1(

k
gka1~k!uA1&,

~12!

Er2uA2&52d0r1uA1&1r2(
k

a2~k!ak
†uA2&

2r2(
k

gkak
†uA2&2r2(

k
gka2~k!uA2&,

~13!

whereE is the eigenvalue of the ground-state energy. In E
~14! and~15!, we also omit two and higher correlation term
and take approximately

uA1&5expH(
k

@a1~k!2a2~k!#ak
†J uA2&

'H 11(
k

@a1~k!2a2~k!#ak
†J uA2&, ~14!

uA2&5expH(
k

@a2~k!2a1~k!#ak
†J uA1&

'H 11(
k

@a2~k!2a1~k!#ak
†J uA1&. ~15!

From Eqs.~12!–~15! and equating the coefficients ofuAi&,
ak

†uAi& ( i 51,2) in Eqs.~12! and ~13!, we have
s.

Er152d0r21r1(
k

gka1~k!, ~16!

Er252d0r11r2(
k

gka2~k!, ~17!

052d0r2(
k

@a2~k!2a1~k!#1r1(
k

a1~k!1r1(
k

gk ,

~18!

052d0r1(
k

@a1~k!2a2~k!#1r2(
k

a2~k!2r2(
k

gk .

~19!

Then the analytical solutions under the first level approxim
tion can be easily obtained:

E52s1S r 2
2r 2s

d0r 21r 1d0
D d0 , ~20!

TABLE II. Ground-state energy calculated by different metho
for d050.01, 1, and 100.

d0 /s ECA(2) /S Eexact ECCA(4) /S

d050.01
0.01 21.009804 21.009804 21.009804
0.04 21.039216 21.039216 21.039216
0.07 21.068628 21.068628 21.068628
0.1 21.098041 21.098041 21.098041
0.4 21.392187 21.392187 21.392187
0.7 21.686367 21.686366 21.686365
1.0 21.980581 21.980579 21.980574
4.0 24.924589 24.924512 24.924060
7.0 27.872005 27.871596 27.867917

10.0 210.822841 210.821663 210.806535
d051

0.01 21.003341 21.003341 21.003341
0.04 21.013454 21.013453 21.013449
0.07 21.023708 21.023704 21.023683
0.1 21.034109 21.034098 21.034033
0.4 21.147920 21.146829 21.141923
0.7 21.289023 21.279103 21.251728
1.0 21.500000 21.436545 21.375042
4.0 24.142857 24.067461 24.067031
7.0 27.076923 27.037096 27.037094

10.0 210.052632 210.025659 210.025659
d05100

0.01 21.000050 21.000050 21.000050
0.04 21.000203 21.000203 21.000202
0.07 21.000361 21.000361 21.000350
0.1 21.000525 21.000525 21.000478
0.4 21.002734 21.002726 20.991066
0.7 21.140393 21.058663 21.057693
1.0 21.367092 21.250674 21.250598
4.0 24.121464 24.062539 24.062539
7.0 27.070764 27.035727 27.035727

10.0 210.049777 210.025006 210.025006
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r 5
2s216A~2s21!224d0

2

2d0
or r 561, ~21!

a1~k!5
d0r 22d02r

d0r 21d01r
gk , ~22!

FIG. 1. Tunneling reduction factortCA versusd0 for s5(a)
200, ~b! 2.0, ~c! 0.02. The lines withd, 3, andn representtCA

(2) ,
tCCA

(4) , andtexact, respectively.
a2~k!5
d0r 22d01r

d0r 21d01r
gk , ~23!

wherer 5r2 /r1 , s5(kgk
2 . It is clear that the ground-stat

energies~20! for the first-level CA equal toE052d0 when

FIG. 2. Tunneling reduction factortCA versuss for d05(a) 100,
~b! 1.0, ~c! 0.01. The lines withd, 3, andn representtCA

(2) , tCCA
(4) ,

andtexact, respectively.
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the system is uncoupled (gk50). The tunneling reduction
faction tCA

(1) can be defined as

tCA
(1)5r 2

2r 2

d0r 21r 1d0

. ~24!

FIG. 3. Interaction phonon numbersN versusd0 for s5(a) 200,
~b! 2.0, ~c! 0.02. The lines withd, 3, andn representN1 , N2,
andN, respectively.
In the second level of the approximation we include in t
ground-state wave function the effect of two-phonon cor
lations and calculate the ground state more accurately.
higher-order correlation terms, which are relatively sma
are omitted:

FIG. 4. Interaction phonon numbersN versuss for d05(a) 100,
~b! 1.0, ~c! 0.01. The lines withd, 3, andn representN1 , N2,
andN, respectively.
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FIG. 5. Interaction energyEb versusd0 for s5(a) 200,~b! 2.0,
~c! 0.02. The lines withd, 3, andn representEb1 , Eb2, andEb ,
respectively.
u&5S u1&
u2& D5S Fr11 (

k1 ,k2

f 1~k1 ,k2!ak1

† ak2

† G uA1&

Fr21 (
k1 ,k2

f 2~k1 ,k2!ak1

† ak2

† G uA2&
D ,

~25!

-

e
.

wherer1 ,r2 , f 1(k1 ,k2), f 2(k1 ,k2) are functions to be deter
mined.uA1& anduA2& are the same as Eqs.~3! and~4! and the
relation of uA1& and uA2& are expanded approximately to th
second levelak1

† ak2

† uAi& ( i 51,2) rather by the use of Eqs

~14! and ~15!:

FIG. 6. Interaction energyEb versuss for d05(a) 100,~b! 1.0,
~c! 0.01. The lines withd, 3, andn representEb1 , Eb2, andEb ,
respectively.



PRB 62 15 585GROUND STATE OF A DISSIPATIVE TWO-LEVEL SYSTEM
uA1&'H 11(
k

@a1~k!2a2~k!#ak
†1

1

2 (
k1 ,k2

@a1~k1!2a2~k1!#@a1~k2!2a2~k2!#ak1

† ak2

† J uA2&, ~26!

uA2&'H 11(
k

@a2~k!2a1~k!#ak
†1

1

2 (
k1 ,k2

@a2~k1!2a1~k1!#@a2~k2!2a1~k2!#ak1

† ak2

† J uA1&. ~27!

Substituting Eq.~25! in the Schro¨dinger equation~11! and equating the coefficients ofuAi&,ak
†uAi&,ak1

† ak2

† uAi& ( i 51,2), in

the corresponding equations yields

E52s2d0r 1
2d0r 222rP1

d0r 21~12P1!r 1d02P2

, ~28!

P15

~d0r 21r 1d0!6A~d0r 21r 1d0!22
8sd0r 2~r 212d0r 11!

d0~11r 2!12r

r 212d0r 11

d01r

2
, ~29!

P25
d0r 11

d01r
P1 . ~30!
ra

or-
and
be
Here r satisfies a simple equation

2d0r 41~2d0s2d01d0P1!r 31~d0P222P1s!r 2

1~d02d0P112P2s22d0s!r 1~d0
22P2d0!

50 ~31!

and can be evaluated numerically for givens and d0. The
corresponding interaction phonon numbers and the inte
tion energies in the second-level approximation are

N15S Ca1

Ca D 2

s

1
4s2r 3d0~d01r !Ca1

2

@d0~11r 2!12r #Ca412d0s2r 3~d01r !Ca1
2

,

~32!

N25S Ca2

Ca D 2

s

1
4s2r 2d0~d0r 11!Ca2

2

@d0~11r 2!12r #Ca412d0s2r 2~d0r 11!Ca2
2

,

~33!

N5N11N2 , ~34!
c-

Eb152s
Ca1

Ca

1
4d0s2r 3~d01r !Ca1Ca

@d0~11r 2!12r #Ca412d0s2r 3~d01r !Ca1
2

,

~35!

Eb2522s
Ca2

Ca

2
4d0s2r 2~d0r 11!Ca2Ca

@d0~11r 2!12r #Ca412d0s2r 2~d0r 11!Ca2
2

,

~36!

Eb5Eb11Eb2 , ~37!

where

Ca15P21d0r 22d02r 2rP1 , ~38!

Ca25P21d0r 22d01r 2rP1 , ~39!

Ca52P21d0r 21d01r 2rP1 . ~40!

Finally, following the same idea as shown above, the c
relation terms whose order higher than three are omitted
the ground-state wave function for the third level CA can
written as
u&5S Fr11 (
k1 ,k2

f 1~k1 ,k2!ak1

† ak2

† 1 (
k1 ,k2 ,k3

b1~k1 ,k2 ,k3!ak1

† ak2

† ak3

† G uA1&

Fr21 (
k1 ,k2

f 2~k1 ,k2!ak1

† ak2

† 1 (
k1 ,k2 ,k3

b2~k1 ,k2 ,k3!ak1

† ak2

† ak3

† G uA2&
D ~41!
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TABLE III. Ground-state energy calculated by CA in the different level approximations forS50.02.

d0 /s ECA(1) /S ECA(2) /S ECA(3) /S tCA
(3) Eb(3) /s Eexact/S texact

0.01 21.009600 21.009608 21.009608 0.960804 20.999608 21.009608 0.960820
0.04 21.038403 21.038434 21.038434 0.960850 20.998434 21.038434 0.960910
0.07 21.067208 21.067263 21.067263 0.960895 20.997263 21.067263 0.961000
0.1 21.096016 21.096095 21.096094 0.960940 20.996094 21.096094 0.961089
0.4 21.384252 21.384557 21.384553 0.961383 20.984553 21.384553 0.961968
0.7 21.672763 21.673279 21.673272 0.961817 20.973272 21.673272 0.962819
1.0 21.961539 21.962251 21.962242 0.962242 20.962242 21.962242 0.963641
4.0 24.862069 24.864129 24.864106 0.966027 20.864106 24.864106 0.970575
7.0 27.781250 27.783939 27.783913 0.969130 20.783917 27.783913 0.975719

10.0 210.714286 210.717225 210.717200 0.971720 20.717200 210.717200 0.979635
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and the approximate relation betweenuA1& and uA2& can be
written as

uA1&'H 11(
k

@a1~k!2a2~k!#ak
†

1
1

2 (
k1 ,k2

@a1~k1!2a2~k1!#

3@a1~k2!2a2~k2!#ak1

† ak2

†

1
1

6 (
k1 ,k2 ,k3

@a1~k1!2a2~k1!#@a1~k2!2a2~k2!#

3@a1~k3!2a2~k3!#ak1

† ak2

† ak3

† J uA2&, ~42!

uA2&'H 11(
k

@a2~k!2a1~k!#ak
†

1
1

2 (
k1 ,k2

@a2~k1!2a1~k1!#

3@a2~k2!2a1~k2!#ak1

† ak2

†

1
1

6 (
k1 ,k2 ,k3

@a2~k1!2a1~k1!#@a2~k2!2a1~k2!#

3@a2~k3!2a1~k3!#ak1

† ak2

† ak3

† J uA1&. ~43!

The resultant expressions are very lengthy and will not
presented here. Following the same way we took in the
and the second level approximation, the energyE and other
physical quantities can be obtained.

It should be noted that we can systematically improve
approximation of the results by including more higher lev
correlations. In Sec. III, we will see that the results of t
two-level approximation are close enough to the exact s
tions. So there is no need to take higher level CA. This a
shows the efficiency of our method.
e
st

e
l

-
o

III. NUMERICAL RESULTS AND DISCUSSION

In Tables I and II, we show the ground-state energ
calculated by the coupled-cluster approximation (ECCA), the
Lanczos scheme (ELanczos), the connected moments expa
sion (ECMX), the alternate moments expansion (EAMX), and
the exact numerical diagonalization (Eexact), as well as CA in
the second-level approximation (ECA(2)). It is clear that
ECA(2) andECCA are better thanELanczos, EAMX , andECMX ,
and show good agreement with the exact results. Howe
in the intermediate regiond0's'\v0'1, the results are
not as good as those whend0 is far from s. The differences
are a few percent. In some cases,ECA(2) are lower than the
exact results. This is because of that the CA is an unva
tional approach. When more correlation terms are con
ered, the results will gradually approach the exact ones.

In Figs. 1 and 2, we plot the tunneling reduction fact
tCA

(2) versusd0 for S50.2,2,200 andS for d050.01,1,100.
Our results show that there is no abrupt jump in the value
the reduction factor asd0 or s varies. These mean that the
is no evidence of the discontinuous localizatio
delocalization transition. The results are consistent w
those of the exact calculations and the CCA. Figures 1 an
also show that our reduction factor valuestCA

(2) are closer to
the exact values than those of CCA for all cases. This m
indicate that the CA can well simulate the ground state of
real system in the whole parameter space.

The numbers of phonons interacting with each level a
the whole two-level system are shown in Figs. 3 and 4. As
increase, the system interacts with more phonons, i.e.,
total phonon numbersN increases monotonically withs/d0.
Whend050.01, both levels have the same phonons, wher
d051.0 and 100 the levelu1& will occupy most of the pho-
nons if the coupling is strong enough (s/d0.1.0). In Fig.
3~c! and 4~c!, we show weak coupling situations wheres is
very small (s<0.1). In this case, the two-level system
mainly controlled by the tunneling effect and the two leve
almost have the same numbers of the interaction phon
This also can be seen in Figs. 4~a! and 4~b! while s/d0
<0.1. The strong coupling situations are shown in Fig. 3~a!,
where s5200. Whend0 /s,1.0 the coupling effect takes
advantage and the levelu1& tends to occupy more interactio
phonons. But compared to the weak coupling cases, the n
bers of the phonons in the levelu2& still changes little. When
d0 /s increase, the tunneling effect becomes more import
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TABLE IV. Ground-state energy calculated by CA in the different level approximations ford050.01.

s/d0 ECA(1) /S ECA(2) /S ECA(3) /S tCA
(3) Eb(3) /s Eexact/S texact

0.01 21.0098039 21.0098039 21.0098039 0.999803920.9998039 21.009804 0.999808
0.04 21.0392157 21.0392160 21.0392160 0.999216020.9992160 21.039216 0.999231
0.07 21.0686275 21.0686284 21.0686284 0.998628420.9986284 21.068628 0.998655
0.1 21.0980392 21.0980411 21.0980411 0.998041120.9980411 21.098041 0.998079
0.4 21.3921569 21.3921870 21.3921869 0.992186920.9921869 21.392187 0.992339
0.7 21.6862745 21.6863669 21.6863665 0.986366520.9863665 21.686366 0.986630
1.0 21.9803922 21.9805807 21.9805795 0.980579520.9805795 21.980579 0.980953
4.0 24.9215686 24.9245887 24.9245101 0.924510120.9245101 24.924512 0.925882
7.0 27.8627451 27.8720048 27.8715819 0.871581920.8715819 27.871596 0.873798

10.0 210.8039216 210.8228408 210.8216041 0.821604120.8216041 210.821663 0.824552
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HenceN1 decrease quickly correspondingly and both lev
tend to occupy the same numbers of phonons. Whiled0 /s is
close to 10, the interaction phonon numbers with two lev
decrease asymptotically to zero.

In the intermediate coupling region whered0's in Fig.
3~b!, the tunneling and coupling effect compete against e
other and the peaks occur in the curves of interaction pho
numbers versusd0 /s. This effect is the so-called strong non
linear self-trapping effect. There is also a phenomenon
phonon number inversion near the pointd0 /s50.5 in Fig.
3~b!. Whend0 /s,0.5, the interaction phonons in the lev
u1& are more than inu2&. As d0 /s increases tod0 /s'0.5,
population inversion occurs. The numbers of the interact
phonons in the levelu2& rise quickly and exceed the numbe
in u1& thereafter.

In Figs. 5 and 6, we show interaction energyEb1 ,Eb2 for
each level and the total interaction energyEb for the system.
In some cases, for example,s52.0,200 andd051.0,100, the
interaction energies with levelu1& have positive values. Bu
the total interaction energies are still below zero and m
the system stable. Whens is small, the same interaction pho
nons in each level consequently leads to the similarity in
interaction energy for each level. In Figs. 6~a! and 6~b!, the
enhancement of the coupling effect make the interaction
ergy Eb1 for the level u1& rise andEb2 for the level u2&
decrease. But the interaction energyEb for the whole system
does not very much. It remains a little below zero in t
whole parameter space. Whend0 /s reduce to zero, the tun
neling effect becomes weak, hence the curves in Figs. 3
5 become flat. The saturation values for the interaction p
non numbers and the interaction energy turn close to
results of the systems which consist of a sets of oscillato

As we stressed before, our method is not a variational
but rather a systemic approximation method. We show h
some results of the third-level approximation. In Tables
and IV, we show the CA results for different level approx
mations. In Table III, the coupling parameters is fixed to be
0.02, and the bare tunneling factord0 varies. In Table IV,d0
is fixed to be 0.01 ands changes. It is clear that in th
third-level approximation the ground-state energyECA(3) and
the tunneling reduction factortCA

(3) are closer to the exac
results obtained in Ref. 14. In fact, in most cases, both va
are almost the same in the precision of 1026. The binding
energyEb(3) is defined asEb(3)5ECA(3)2E05ECA(3)1d0.

In Fig. 7, we plot the ground-state energyE versus 1/Ntr
s
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for s50.02 andd0 /s51.0 and 10.0, whereNtr is the trunca-
tion size of the CA. Extended the lines to theE axis, theE
intercept may represent the ‘‘infinite’’ order truncation lev
for the CA. Obviously, the two intercept values are ve
close to the numerical ones. This also indicates the con
gency and the validity for the CA.

IV. CONCLUSION

In this paper we have investigated the ground-state pr
erties of a two-level system coupled to a dispersionless p
non bath by the coherent approximation. In the first le
approximation, we considered the effect of the one-phon
correlation, and obtained analytic solutions which are mu
closer to the exact results than the ones obtained by
variational method. In the second level approximation,
took into account the effect of the two-phonon correlati
and obtained very good energies and tunneling reduction
tors. In our method, the interaction energies, the interac
phonon numbers of each level, and the whole two-level s
tem, which depend on the bare tunneling matrix elementd0
and coupling parameters, are also calculated. The number
phonons in the levelu1& is found to grow withs while that in

FIG. 7. Ground-state energyE versus 1/Ntr , for s50.02. The
lines with d andn representd0/s51.0 and 10.0, respectively.
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u2&, does not vary much. In the intermediate coupling reg
d0's'1, we found a maximum value for the interactio
phonon numbers versusd0 /s and a phenomenon of popula
tion inversion. We also confirmed the conclusion that ther
no discontinuous localization-delocalization transition for t
system. This conclusion is obtained by the exact and C
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