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Parameter-free exchange functional
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Conventional generalized-gradient approximations for exchange energy are derived to obey the fundamental
conditions of the exact exchange functional. We present a simple analytic exchange functional that does not
contain a semiempirical parameter or an adjusted fundamental constant. We show that this functional satisfies
several significant and strict fundamental conditions, and gives accurate exchange energies for the atoms,
hydrogen through argon, within a margin of error of a few percent. It can be updated for any kind of
kinetic-energy density. Surprisingly, the present formalism exactly gives the gradient expansion coefficient for
slowly varying density.
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I. INTRODUCTION

Density-functional theory~DFT! is widely used as a self
consistent-field approach that approximates exchan
correlation energy by using a functional of the electron d
sity based on a physical model. In a recent paper,1 we
indicated that the reliability of a functional depends
whether it ~1! obeys the conditions of the exact functiona
~2! is applicable to a wide class of problems and a w
variety of systems,~3! has a simple form with a minimum
number of parameters~including fundamental constants!, ~4!
contains no additional part for obtaining specific properti
and ~5! has a progressive form that can be updated. T
one-parameter progressive functional1,2 was developed as
correlation functional that satisfies all these criteria. Ho
ever, almost all conventional generalized-gradie
approximation~GGA! exchange functionals were derived
reproduce specific properties with supplementary functi
and adjusted fundamental constants.3–5 This may cause seri
ous deficiencies in the description of some kinds of phys
situations. For example, it was been pointed out that a c
plicated form often leads to spurious wiggles in the excha
potential.5 Many believe that a parametrized functional
necessary to provide practical exchange energies. We m
ask ourselves if this is really the case.

In Sec. II, we introduce a simple analytic exchange fu
tional that contains neither a semiempirical parameter no
adjusted fundamental constant. The functional is numeric
investigated by calculating the exchange energies of atom
Sec. III. We also examine it from a physical point of view b
applying it to the conditions of the exact exchange functio
in Sec. IV. The advantages and disadvantages of the f
tional are discussed in Sec. V.

II. THEORY

The density-matrix-expansion~DME! scheme6–8 may be
one of the best strategies for developing an analytical
change functional. According to this scheme, a sp
polarized Hartree-Fock~HF! first-order density matrix for
s-spin electrons is expanded by using spherical Bessel fu
tions j n up to second order, as shown by6
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where r 5ur i2r j u and R5(r i1r j )/2 for each electron pair
( i , j ). Atomic units are used (\5e25m51, energies are in
hartree and distances in bohr!. The Fermi momentumkFs

5(6p2rs)1/3 is substituted for the averaged relative mome
tum of two electrons,ks . The kinetic-energy densityts is
defined in the form of the HF noninteracting kinetic energ
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By using Eq. ~1!, the DME of the HF exchange energ
becomes7
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To eliminate the Laplacian of the density¹2rs , the most
difficult term to integrate, Eq.~3! is changed by a partia
integration into8
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wherexs and zs are dimensionless parameters that can
expressed asxs5u¹rsu/rs

4/3, andzs5(ts23ks
2rs/5)/rs

5/3.
The momentumks is corrected fromkFs by using the ad-
justable parameter a, as ks5kFs(11axs

2) or ks

5kFsA11azs. Thesea terms are supplemented to obta
accurate exchange energies and fundamental properties

The momentumks has so far been regarded as an entir
arbitrary quantity that has the dimensions of inverse leng8

However, according to the original paper on DME,6 ks must
be essentially the relative momentum at each center-of-m
coordinateR that is averaged over the momentum space
this paper we expressks as a functional of the kinetic-energ
densityts(R) naturally, by explicitly determining the rela
tion, such that

ts~R!52K k2

2 L rs~R!5

E k2f s~R,k!d3k

E f s~R,k!d3k
rs~R!

5
3

5
ks

2~R!rs~R!. ~5!

In Eq. ~5!, the distribution function9 f s(R,k), for the spin-
polarized first-order density matrix in Eq.~1!, is approxi-
mated by using the step functionQ(ks2uku) in the momen-
tum space on the ground of the Fourier transformat
formula of the first term, 3j 1(ksr )rs /ksr , such that

f s~R,k!5
1

~2p!3E P1s
DMES R1

r

2
,R2

r

2Dexp~2 ik•r !d3r

'constrs~R!Q~ks2uku!. ~6!

It is physically justified to substituteks in Eq. ~5! for that in
the DME, because the averaged relative momentum
thought to be identical to the center-of-mass momentum
is calculated by the kinetic-energy density at the positi
From Eq.~5!, ks can be written inversely as

ks5A5ts

3rs
. ~7!

If ts is equal to the Thomas-Fermi~TF! kinetic-energy den-
sity, ts

TF5(3/5)(6p2)2/3rs
5/3, ks becomes identical tokFs

5(6p2rs)1/3 for the noninteracting system. Substituting E
~7! into Eq. ~4! gives a simplets-dependent DME exchang
functional:
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~8!

We emphasize that this functional contains no adjusted
rameter and no additional part for obtaining specific prop
ties. If ts is equal tots

TF , and the gradient of the densit
¹rs is zero, Eq.~8! perfectly reproduces the local-spin
density approximation~LSDA! for the exchange energy.10

The higher-order terms are neglected in Eq.~8!,11 because it
may be hard to obtain stable values of (xs

2/ts)n for n>2 in
the numerical computation.
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It is interesting to note that Ernzerhof and Scuseria12 re-
cently proposed the localt approximation~LTA ! that, con-
trary to Eq.~8!, the lowest-order term in the expansion ofEx
is proportional tot4/5,

Ex
LTA@t#5CxE S t

CF
D 4/5

d3R, ~9!

where Cx52(3/4)(3/p)1/3 and CF5(3/10)(3p2)2/3. The
LTA also gives the LSDA exchange energy by substituti
the TF kinetic-energy density intot. However, it is clear that
it may not reproduce the dimension of exchange energy
contrast with Eq.~8!, unless the density can be expressed
a functional of only the kinetic-energy density such as in
system of slowly varying density.12

A criticism of Eq. ~7! may be that a similar formulation
was already suggested forks by an analogy to classical ther
modynamics for ideal gas.8,10,13,14 The momentum ks

5A(ts2¹2rs/4)/3rs is derived by using the Maxwell-
Boltzmann distribution function and the kinetic-energy de
sity for ideal gas. Recall that electron gas, in contrast to id
gas, constitutes a Fermi sphere in the momentum space.
distribution function for electron gas therefore resemb
rs(R)Q(ks2uku) rather than the Maxwell-Boltzmann one
and the kinetic-energy density must be 3/5 times the ide
gas one. Moreover, the Laplacian¹2rs term is an additional
term that does not contribute to the kinetic energy, becaus
is artificially introduced by making use of the relation10,14

*¹2rsd3R50.
The exchange functional,@Eq. ~8!#, has a progressive par

that can be updated for any kind of kinetic-energy dens
ts . It is also useful to examine various approximations th
have been analytically derived,10 e.g., the Weizsa¨cker correc-
tion for the TF kinetic energy density up to the second-or
~TFW!,

ts
TFW5ts

TF1
1

36

u¹rsu2

rs
, ~10!

and the Hodges correction up to the fourth-order~TFWH!,

ts
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¹2rsu¹rsu2
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rs
11/3 D . ~11!

The sixth-order term gradient correction is reported to
verge for atoms.10

III. CALCULATIONS

Let us examine the exchange functional for some type
kinetic-energy density by calculating the exchange energ
of atoms, H through Ar, with the Clementi HF Slater-typ
orbitals.15 For numerical integration, we use a 50-poi
Euler-Maclaurin quadrature16,17 for radial grids, and a 194-
point Lebedev quadrature18 for angular ones. For the exac
values, we adopted exchange energies calculated by u
the numerical HF method.19 For ts in Eq. ~8!, we will ex-
amine three types of approximated kinetic-ener
densities—ts

TF ~TF-ts), ts
TFW ~TFW-ts), and ts

TFWH
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TABLE I. Calculated exchange energies for the ground states of atoms in hartree. The exact ex
energies are calculated by the numerical Hartree-Fock method~Ref. 19!. HF-ts

(1) is the first term of HF-ts .

Atom State Exact HF-ts
(1) HF-ts TF-ts TFW-ts TFWH-ts

H 2S 20.313 20.337 20.425 20.399 20.295 20.290
He 1S 21.026 20.981 21.236 21.311 20.980 20.962
Li 2S 21.781 21.781 22.235 22.224 21.703 21.664
Be 1S 22.667 22.673 23.346 23.248 22.564 22.498
B 2P 23.748 23.649 24.526 24.471 23.620 23.540
C 3P 25.049 24.887 25.993 25.928 24.909 24.818
N 4S 26.597 26.465 27.829 27.644 26.449 26.347
O 3P 28.182 27.779 29.365 29.356 28.027 27.922
F 2P 210.011 29.449 211.295 211.349 29.867 29.758
Ne 1S 212.108 211.532 213.673 213.624 211.979 211.864
Na 2S 214.018 213.335 215.746 215.664 213.860 213.726
Mg 1S 215.994 215.166 217.848 217.746 215.830 215.673
Al 2P 218.072 217.081 220.035 219.971 217.885 217.715
Si 3P 220.284 219.173 222.412 222.339 220.078 219.895
P 4S 222.641 221.486 225.025 224.859 222.417 222.220
S 3P 225.006 223.605 227.428 227.360 224.766 224.556
Cl 2P 227.517 225.939 230.060 230.032 227.267 227.045
Ar 1S 230.185 228.539 232.978 232.866 229.923 229.688

Mean percentage — 96.525 116.085 115.294 97.820 96.49
Mean absoluteD — 0.633 1.459 1.400 0.154 0.279
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~TFWH-ts)—in addition tots
HF in Eq. ~2! ~HF-ts).

Table I summarizes the calculated and HF exchange
ergies for the ground state of atoms. As the table indica
Eq. ~8! provides 10–20 % higher exchange energies forts

HF ,
energies similar to those forts

TF . The first term ints
HF pro-

vides much higher atomic exchange energies than does
LSDA exchange functional that corresponds to the first te
in ts

TF .20 This may be due to the delocalization ofts
HF rela-

tive to the electron densityrs , becausets
TF/ts

HF has been
regarded as an indicator of nonlocality.21 Compared with ap-
proximated energies, TFW-ts results in more accurate ex
change energies with errors of only a few percent. T
seems to be a result of the employed kinetic-energy den
values. Actually,ts

TFW provides kinetic energies that ar
closer to the exact values.10 The accuracy of TFW-ts sug-
gests that a GGA-type kinetic-energy density may be su
to the DME scheme because of the similarity in the fun
mental physical models.

IV. FUNDAMENTAL CONDITIONS

In a recent paper,20 we summarized some significant an
strict conditions in the exchange energy forKs :

Ex52
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2 (
s

E rs
4/3Ksd3R. ~12!

The Ks term for the exchange functional in Eq.~8! is ex-
pressed as
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We performed investigations to make sureKs
new satisfies

these conditions. In Table II, we indicate the conditions m
by Ks

new for ts
HF (Ks

HF-ts) and forts
TFW (Ks

TFW-ts). TheKs

value, of Becke ~B88!,3 Perdew-Wang ~PW91!,4 and
Perdew-Burke-Ernzerhof5 ~PBE! functionals are also exam
ined.

~A! Ks keeps within the bounds of 0,Ks,4.231 ~the
electron correlation effect is not taken into account!.22,23The
value ofKs

TFW-ts does not go beyond these bounds, becau
asxs increases from zero tò , it increases from 1.861, the
value of the LSDA exchange functional, to (25/7)(3/4p)1/3

52.216 at xs5(6/5)65/6p2/3511.457, and then decrease
monotonically to zero. We found thatKs

HF-ts sometimes ex-
ceeds these bounds.

~B! For coordinate scalingl, Ks is scaled as24 ~a! a con-
stant under uniform scaling, and in high- and low-dens
limits; ~b! O(l1/3) under nonuniform scaling of thex andy
coordinates; and~c! O(l21/3) under nonuniform scaling o
the x coordinate. The uniform scaling condition~a! is satis-
fied byKs

HF-ts andKs
TFW-ts , because bothts

HF andts
TFW are

scaled asl5ts , and follow the condition for the noninterac
ing kinetic energy,24 Ts@rl#5l2Ts@r#. However,Ks

TFW-ts

does not satisfy nonuniform scaling conditions~b! and ~c!
because of the erroneousl dependency ofts

TFW : O(l22/3)
for the low-density limit andO(l4/3) for the high-density
limit. For Ks

HF-ts , we cannot determine thel dependency,
because there is no equality for the nonuniform scaling
ts .25

~C! Ks reproduces that of the LSDA exchange function
(Ks

LSDA) for constant density. The kinetic-energy densitie
including ts

HF andts
TFW , decrease tots

TF at this limit. Ks
new

is therefore identical withKs
LSDA at a constant density.
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TABLE II. Some strict physical conditions forKs in the exact exchange functional,Ex

52(1/2)(s*rs
4/3Ksd3R. The present exchange functionals~TFW-ts and HF-ts) are compared with ap-

proximate exchange functionals~Refs. 3–5 and 10!. In condition ~B!, l is a coordinate-scaling paramete
Condition~D! indicates limxs→0Ks53(3/4p)1/3@11$5/81(6p2)2/3%xs

21O(xs
4)#, and the gradient expansio

coefficient is the conventional 5/162(6p2)2/3. The PBE functional contains a linear-response term. In con
tion ~E!, r1 is the density for a one-electron system. The B88 functional obeys condition~F! only for
exponentialr.

Conditions LSDA B88 PW91 PBE TFW-ts HF-ts

~A! 0,Ks,4.231 Yes No Yes Yes Yes No
~B-a! Ks@rl#5const Yes Yes Yes Yes Yes Yes
~B-b! lim

l→0,̀
Ks@rll

xy #5O(l1/3) No No No No No —
~B-c! lim

l→0,̀
Ks@rl

x #5O(l21/3) No No No No No —
~C! Ks53(3/4p)1/3 for constantr Yes Yes Yes Yes Yes Yes
~D! GEA limit for slowly varying r — No Yes? Yes? Yes? Yes?
~E! Ks5O(q2/3) for rq5qr1 ,0,q<1 No No No No No Yes
~F! lim

R→`
Ks5rs

21/3R21 No Yes? No No No No
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~D! Ks expands at a slowly varying density limit (xs

→0) as26

lim
xs→0

Ks53S 3

4p D 1/3S 11
5

162~6p2!2/3
xs

21O~xs
4 !D .

~14!

Surprisingly,Ks
TFW-ts is solved to give just twice of the gra

dient expansion coefficient at this limit despite the indep
dent derivation,

lim
xs→0

Ks
TFW-ts53S 3

4p D 1/3S 11
5

81~6p2!2/3
xs

21O~xs
4 !D .

~15!

Notice that B88 and PBE functionals give coefficients th
are close to 5/81(6p2)2/350.004 063: 0.004 514 in B88
functionals and 0.003 612 in PBE functionals. Hence we s
pect that the coefficient is incorrectly halved. This remains
be proven. ForKs

HF-ts , it should also give the correct grad
ent expansion coefficient by analogy, becausets

HF obviously
approachests

TFW at a slowly varying limit.27

~E! For the densityrq5qr1 (0,q<1, r1 is a one-
electron density!, Ks is scaled asO(q2/3) to become self-
interaction free.28 It is striking thatKs

HF-ts satisfies this con-
dition, becausets

HF is scaled exactly asqts
HF for rq5qr1.

As far as we know, there is still no conventional function
that obeys this condition. The formula ofKs

HF-ts may there-
fore offer a direction for developing a self-interaction-fr
exchange functional. By contrast,Ks

TFW is not correctly
scaled due to the erroneousq dependency ofts

TFW in the
constituentts

TF .
~F! To reproduce the asymptotic behavior of the excha

energy density29 exs→21/2R for R→`, whereexs is de-
fined asEx5(s*rs(R)exs(R)d3R, Ks asymptotically ap-
proachesrs

21/3R21 at the limit. Near the limit,Ks
new ap-

proaches constrs
7/3 for ts

TFW and constrs
21/3 for ts

HF . The
Ks’s of the B88 functional follow the asymptotic behavio
for exponentially decaying density, because they conta
term that reduces them toxs /(3 lnxs) at the limit.29 It may
-

t

s-
o

l

e

a

only be possible to obtain theR21 term by incorporating a
logarithmic function explicitly in the form ofKs .

V. CONCLUSIONS

In this paper, we derived a DME-type exchange fun
tional that has a simple form, and contains no adjusted
rameter or additional portion for obtaining specific prope
ties. The functional is adapted to any kind of kinetic-ener
functional through the kinetic-energy density part.

The exchange energies of H-Ar atoms were calculated
this functional. Consequently, we found that the function
provides accurate exchange energies within a margin of e
of a few percent for the Thomas-Fermi-Weizsa¨cker kinetic-
energy density. To ensure the physical validity of the pres
functional, we then determined which significant and str
conditions forKs are violated by the functional and conve
tional correlation functionals. It was proved that this fun
tional satisfies many of the significant and strict fundamen
conditions for providing an exact gradient expansion coe
cient and for being self-interaction-free. The advantages
the DME-type exchange functional are as follows.

~1! It keeps a high physical validity. It meets significa
and tight fundamental conditions of the exact exchange fu
tional, despite the fact that it was not derived to obey th
conditions.

~2! It has a simple form that contains no semiempiric
parameter and no adjusted fundamental constant.

~3! Despite the fact that it is a parameter-free functiona
gives accurate exchange energies for atoms within an e
on the order of a few percent.

~4! Because it can be corrected for any kind of kinet
energy functional, the functional is a progressive excha
functional that can be easily updated.

Compared to conventional parametrized exchange fu
tionals, our analytic functional gives slightly less accura
atomic exchange energies. However, it can be refined
replacing the kinetic-energy densityts or upgrading the ap-
proximation in the derivation. Actually, we can easily obta
much more accurate results by using a parametrized kine
energy density, e.g.,ts5ts

TF1xs
2/36(110.0024xs

2), that re-
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producests
TFW for a slowly varying density. At the presen

stage of DFT, there is still no kinetic-energy functional th
is either physically valid or applicable to a wide class
problems, as far as we know. We expect that the excha
functional would become a powerful tool in the developme
of an orbital-free theory with a sophisticated kinetic-ener
functional.
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