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Parameter-free exchange functional
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Conventional generalized-gradient approximations for exchange energy are derived to obey the fundamental
conditions of the exact exchange functional. We present a simple analytic exchange functional that does not
contain a semiempirical parameter or an adjusted fundamental constant. We show that this functional satisfies
several significant and strict fundamental conditions, and gives accurate exchange energies for the atoms,
hydrogen through argon, within a margin of error of a few percent. It can be updated for any kind of
kinetic-energy density. Surprisingly, the present formalism exactly gives the gradient expansion coefficient for
slowly varying density.

I. INTRODUCTION r r
POMEI R+ > R- E)
Density-functional theoryDFT) is widely used as a self-
consistent-field approach that approximates exchange- 3j1(k,r) 35j5(k,r) Vzpa(R)
correlation energy by using a functional of the electron den- = TPU( o13r ( 4 —74(R)
sity based on a physical model. In a recent papere 7 o
indicated that the reliability of a functional depends on 3,
whether it(1) obeys the conditions of the exact functional, + gkoPG(R) + (1)

(2) is applicable to a wide class of problems and a wide
variety of systems(3) has a simple form with a minimum wherer=|r;—r;| and R=(r;+r; )/2 for each electron pair
number of parameteréncluding fundamental constantg4)  (i,j). Atomic units are usedi(=e’=m=1, energies are in
contains no additional part for obtaining specific properueshaftfee and distances in bohiThe Fermi momentunke,,
and (5) has a progressive form that can be updated. The= (67 2p,) 2 is substituted for the averaged relative momen-
one-parameter progressive functidrfavas developed as a tum of two electronsk, . The kinetic-energy density, is
correlation functional that satisfies all these criteria. How-defined in the form of the HF noninteracting kinetic energy,
ever, almost all conventional generalized-gradient- oce

approximation(GGA) exchange functionals were derived to

reproduce specific properties with supplementary functions sTo E f 2 |V"”'0|2d3R_ 2 f TR, (2)

and adjusted fundamental constattsThis may cause seri-

ous deficiencies in the description of some kinds of physicaBy using Eg.(1), the DME of the HF exchange energy
situations. For example, it was been pointed out that a comPecome
plicated form often leads to spurious wiggles in the exchange DME
potential® Many believe that a parametrized functional is Ex oo Ke 7]

necessary to provide practical exchange energies. We must 2 J |PDME R+1/2 R—r/2)|2

ask ourselves if this is really the case. =
In Sec. Il, we introduce a simple analytic exchange func-
tional that contains neither a semiempirical parameter nor an
adjusted fundamental constant. The functional is numerically - E
investigated by calculating the exchange energies of atoms in
Sec. lll. We also examine it from a physical point of view by
applying it to the conditions of the exact exchange functional
in Sec. IV. The advantages and disadvantages of the func- tz k(rp(r)
tional are discussed in Sec. V.
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To eliminate the Laplacian of the densi%’p,, the most
difficult term to integrate, Eq(3) is changed by a partial
Il. THEORY integration int8

The density-matrix-expansiotDME) schem&® may be EPME b, Ky 7o)
one of the best strategies for developing an analytical ex-
change functional. According to this scheme, a spin- o3 x2
polarized Hartree-FockHF) first-order density matrix for Y 2 f kz Pa k"’ adPo 12 —Zy
o-spin electrons is expanded by using spherical Bessel func-
tions j,, up to second order, as shown®by (4)

d°R,
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wherex, andz, are dimensionless parameters that can be It is interesting to note that Ernzerhof and Scuséria-
expressed as,=|Vp,|/p*3, andz,=(7,—3k?p,/5)/p2®.  cently proposed the local approximation(LTA) that, con-

(o8 o

The momentunk, is corrected fromkg, by using the ad- trary to Eq.(8), the lowest-order term in the expansionEf
justable parametera, as k,=kg,(1+ax?) or k, is proportional tor*?,
=Kg,V1+az,. Thesea terms are supplemented to obtain 45
accurate exchange energies and fundamental properties. ELTA 7-]=fo (l) d®R, 9
The momentunk, has so far been regarded as an entirely Cr
arbitrary quantity that has the dimensions of inverse Ieﬁgth.where C,=—(3/4)(3/)*® and Cp=(3/10)(372)%%. The
However, according to the original paper on DME, must | TA also gives the LSDA exchange energy by substituting
be essentially the relative momentum at each center-of-magfie TF kinetic-energy density inta However, it is clear that
coordinateR that is averaged over the momentum space. INt may not reproduce the dimension of exchange energy in
this paper we expreds, as a functional of the kinetic-energy contrast with Eq(8), unless the density can be expressed as
density 7,(R) naturally, by explicitly determining the rela- 5 functional of only the kinetic-energy density such as in a
tion, such that system of slowly varying densit}f.
A criticism of Eq. (7) may be that a similar formulation
f k2f (R,k)d%k was already suggested flog byoalr; ﬁnalogy to classical ther-
p(R) modynamics for ideal gd5®!*'* The momentumk,
f f (RIOdK 7 =(7,—V?p,14)I3p, is derived by using the Maxwell-
o(RK) Boltzmann distribution function and the kinetic-energy den-
sity for ideal gas. Recall that electron gas, in contrast to ideal
gas, constitutes a Fermi sphere in the momentum space. The
distribution function for electron gas therefore resembles
p-(R)O(k,—|k|) rather than the Maxwell-Boltzmann one,
! ) . L . X and the kinetic-energy density must be 3/5 times the ideal-
polarized f|r§t-0rder density r?‘a”'x n Ecj;), IS ‘approxI- gas one. Moreover, the Laplaci&itp,, term is an additional
mated by using the step functié(k,— |k|) in the momen- o0 that does not contribute to the kinetic energy, because it

tum space on the ground of the Fourier transformations gificially introduced by making use of the relattr*
formula of the first term, B,(k,r)p,/k,r, such that V% d3RZO. y g

The exchange functiondlEq. (8)], has a progressive part
R4+ L,R— [) exp(—ik-r)dr that can be updated for any kind of kinetic-energy density
2 2 7. Itis also useful to examine various approximations that
have been analytically derivéfle.qg., the Weiz&zker correc-
~constp,(R) O (k,—[k]). (6) tion for the TF kinetic energy density up to the second-order

It is physically justified to substitutke, in Eq. (5) for that in (TFW),
the DME, because the averaged relative momentum is 1 |Vp,|2

2

k
TU<R>=2<7>p(,<R>=

3 2
= ZK2(RIp,(R). ®)

In Eq. (5), the distribution function f ,(R,k), for the spin-

— 1 DME
f(r(Rrk)_ (ZW)SJ Plo’

thought to be identical to the center-of-mass momentum that miPW=71F % , (10
is calculated by the kinetic-energy density at the position. Po
From Eq.(5), k., can be written inversely as and the Hodges correction up to the fourth-or(EFWH),
k. = ﬁ 7) ATFWH_ TFW,, 1 ( |VZPU|2 _ g V2P0|VP0|2
7 N3, N (U RN o T
If 7, is equal to the Thomas-Fer(iiF) kinetic-energy den- 1|Vp,|*
sity, 7.7 =(3/5)(67%)%p>"3, k, becomes identical td,, 3 s ) (19)
=(67°p,) Y for the noninteracting system. Substituting Eq. o
(7) into Eq.(4) gives a simpler,-dependent DME exchange the sixth-order term gradient correction is reported to di-
functional: verge for atomg?
1 27w 7x2p%B
ne __* 3 oPo | 13 lll. CALCULATIONS
Epo Voo 7s]=— 5 ; J5TUPG 1 Tosr, d°R.

(8) Let us examine the exchange functional for some types of
kinetic-energy density by calculating the exchange energies
We emphasize that this functional contains no adjusted paof atoms, H through Ar, with the Clementi HF Slater-type
rameter and no additional part for obtaining specific properorbitals!® For numerical integration, we use a 50-point
ties. If 7, is equal tor}", and the gradient of the density Euler-Maclaurin quadratut&!” for radial grids, and a 194-
Vp, is zero, Eq.(8) perfectly reproduces the local-spin- point Lebedev quadratuf&for angular ones. For the exact
density approximatioLSDA) for the exchange enerdy. values, we adopted exchange energies calculated by using
The higher-order terms are neglected in B8),'! because it the numerical HF methotf. For 7, in Eq. (8), we will ex-
may be hard to obtain stable values &f,,(ra)” forn=2in amine three types of approximated Kkinetic-energy
the numerical computation. densities—'" (TF-r,), '*W (TFW-r,), and 7 FWH
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TABLE I. Calculated exchange energies for the ground states of atoms in hartree. The exact exchange
energies are calculated by the numerical Hartree-Fock mé®etd 19. HF-7{") is the first term of HF=, .

Atom State Exact HF-7) HF-7, TF-7, TFW-7,  TFWH-7,
H 2s —0.313 —0.337 —0.425 —0.399 —0.295 —0.290
He s —1.026 —0.981 —1.236 —1.311 —0.980 —0.962
Li 2s —1.781 —1.781 —2.235 —2.224 —1.703 —1.664
Be s —2.667 —2.673 —3.346 —3.248 —2.564 —2.498
B 2p —3.748 —3.649 —4.526 —4.471 —3.620 —3.540
C 3p —5.049 —4.887 —5.993 —5.928 —4.909 —4.818
N 4s —6.597 —6.465 —7.829 —7.644 —6.449 —6.347
(@) 3p —8.182 —-7.779 —9.365 —9.356 —8.027 —7.922
F 2p —10.011 —9.449 —11.295 —11.349 —9.867 —9.758
Ne s —12.108 —11.532 —13.673 —13.624 —11.979 —11.864
Na 2s —14.018 —13.335 —15.746 —15.664 —13.860 —13.726
Mg s —15.994 —15.166 —17.848 —17.746 —15.830 —15.673
Al 2p —18.072 —17.081 —20.035 —19.971 —17.885 —17.715
Si p —20.284 —19.173 —22.412 —22.339 —20.078 —19.895
P 4s —22.641 —21.486 —25.025 —24.859 —22.417 —22.220
S p —25.006 —23.605 —27.428 —27.360 —24.766 —24.556
Cl 2p —27.517 —25.939 —30.060 —30.032 —27.267 —27.045
Ar s —30.185 —28539 —-32978 —32.866 —29.923 —29.688
Mean percentage — 96.525 116.085 115.294 97.820 96.493
Mean absolut&\ — 0.633 1.459 1.400 0.154 0.279
(TFWH-7,)—in addition to7"'" in Eq. (2) (HF-7,). We performed investigations to make suk&®" satisfies

Table | summarizes the calculated and HF exchange erthese conditions. In Table Il, we indicate the conditions met
ergies for the ground state of atoms. As the table indicatesry K"®" for 7/!F (K""""™) and for 77" (K!""™). TheK,
Eq. (8) provides 10—20 % higher exchange energiesrfir,  value, of Becke (B88)3 Perdew-Wang (PW91),* and
energies similar to those far'" . The first term in7!F pro-  Perdew-Burke-Ernzerhof PBE) functionals are also exam-
vides much higher atomic exchange energies than does tliged.

LSDA exchange functional that corresponds to the first term (A) K, keeps within the bounds of<0K,<4.231 (the
in 77F 20 This may be due to the delocalization d}" rela-  €lectron correlation effect is not taken into accodft* The

tive to the electron density,, becauser! /7" has been Vvalue of K" does not go beyond these bounds, because,
regarded as an indicator of nonlocalffyCompared with ap- @sX, increases from zero t®, it increases from 1.861, the
proximated energies, TFW; results in more accurate ex- value of the LSDA exchange functional, to (25/7)(8}4"
change energies with errors of only a few percent. This=2-216 atx,=(6/5)6"°7**=11.457, and then decreases
seems to be a result of the employed kinetic-energy densitjnonotonically to zero. We found tht(tﬂF'T" sometimes ex-
values. Actually,7/™" provides kinetic energies that are ceeds these bounds.

closer to the exact valué$.The accuracy of TFWs, sug- (B) For coordinate scaliny, K, is scaled & (a) a con-
gests that a GGA-type kinetic-energy density may be suitegtant under uniform scaling, and in high- and low-density
to the DME scheme because of the similarity in the fundadimits; (b) O(A*®) under nonuniform scaling of theandy

mental physical models. coordinates; andc) O(A Y under nonuniform scaling of
the x coordinate. The uniform scaling conditida) is satis-
. HF-7, TFW-7,, HF TFW
IV. FUNDAMENTAL CONDITIONS fied byKU and Ko‘ , because botha and T, are

20 ] o scaled as.%r,, and follow the condition for the noninteract-
In a recent papet, we summarized some significant and ing kinetic energy?* T p,]=A2TJp]. However, K TR,

strict conditions in the exchange energy oy does not satisfy nonuniform scaling conditiofiy and (c)

1 because of the erroneowsdependency of!*: O(\ ~2?)
E=—5 > f p¥3K , d°R. (120 for the Iow-HdFensity limit andO(\*3) for the high-density
o limit. For K" 77, we cannot determine the dependency,

o

The K, term for the exchange functional in E() is ex- beczasuse there is no equality for the nonuniform scaling of

pressed as (C) K, reproduces that of the LSDA exchange functional

) 242,503 (K5SPA) for constant density. The kinetic-energy densities,
Knevi_ m 5/3[ XoPq } (13 including 7;" and 7,7, decrease to;" at this limit. K5
n :

. P . . . . .
57,7 108r, is therefore identical withK55P* at a constant density.
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TABLE II. Some strict physical conditions forK, in the exact exchange functionak,
= —(1/2)20fp§’3K0d3R. The present exchange functiond®&W-7,, and HF-,) are compared with ap-
proximate exchange functionalRefs. 3—-5 and 10 In condition(B), \ is a coordinate-scaling parameter.
Condition (D) indicates limy__oK,=3(3/4m) " 1+{5/81(67%)%*x;+O(x;)], and the gradient expansion
coefficient is the conventional 5/16246)%. The PBE functional contains a linear-response term. In condi-
tion (E), p, is the density for a one-electron system. The B88 functional obeys condRjoonly for

exponentialp.

Conditions LSDA B88 PW91 PBE TFW; HF-7,
(A) 0<K,<4.231 Yes No Yes Yes Yes No
(B-a) K, [ p)]=const Yes Yes Yes Yes Yes Yes
(B-b) |im)\ﬂowaU[p§¥\]:O()\1/3) No No No No No —
(B-0) lim, _ K,[px]= o(n "B No No No No No —
(C) K,=3(3/4)*"? for constantp Yes Yes Yes Yes Yes Yes
(D) GEA limit for slowly varying p — No Yes? Yes? Yes? Yes?
(E) K,=0O(g*?) for p;=0p;,0<qg=<1 No No No No No Yes
(F)lim, _K,=p,*R* No Yes? No No No No

(D) K, expands at a slowly varying density limik{ only be possible to obtain the~! term by incorporating a

—0) ag® logarithmic function explicitly in the form oK, .
13
; _al 2 22 4
xl,l,ToK”_?’(“W) ( I+ 162(67T2)2,3X(,+0(X0)) : V. CONCLUSIONS
(14) In this paper, we derived a DME-type exchange func-

Surprisingly,K """ is solved to give just twice of the gra- tionalt that hadsdf";, simlple f?rm,fand bctontgins no gf(_jjusted pa-
dient expansion coefficient at this limit despite the indepen-r.ame er or addifional portion for obtaining spectiic proper-

- ties. The functional is adapted to any kind of kinetic-energy

dent derivation, . ST .
functional through the kinetic-energy density part.

The exchange energies of H-Ar atoms were calculated by

X2+ O(Xi))- this functional. Consequently, we found that the functional
provides accurate exchange energies within a margin of error

(150  of a few percent for the Thomas-Fermi-Weizkar kinetic-

Notice that B88 and PBE functionals give coefficients that"er9y density. To ensure the physical validity of the present

e close o SBI(6Y**-0.004063: 0004514 m s 100 e 1 Celermines e snfeant ond s
functionals and 0.003 612 in PBE functionals. Hence we sus: 7 y

ST ) ) tional correlation functionals. It was proved that this func-
pect that the coefficient is incorrectly halved. This remains to[. o I .
HE-x ional satisfies many of the significant and strict fundamental

be proven. FoK ;" ", it should also give the (F:orre_ct gradi- congitions for providing an exact gradient expansion coeffi-
ent expansion coefficient by analogy, becatf3e obviously  cient and for being self-interaction-free. The advantages of

3 1/3
lim KTFW'TU:3<—) 1
41

o
Xy—0

B —
81(6772)2/3

approaches ™" at a slowly varying limit’ the DME-type exchange functional are as follows.
(E) For the densitypg=dp; (0<q<1, p; is a one- (1) It keeps a high physical validity. It meets significant

electron density K, is scaled a0(g?®) to become self- and tight fundamental conditions of the exact exchange func-
interaction fre€® It is striking thatKEF'T” satisfies this con- tional, despite the fact that it was not derived to obey these
conditions.

dition, because™'" is scaled exactly agr'" for p,=qp;. . _ S
y e ot 7 it ; (2) It has a simple form that contains no semiempirical
As far as we know, there is still no conventional functional ple p
parameter and no adjusted fundamental constant.

. e F-7, _
that obeys this condition. The formula &f; may there (3) Despite the fact that it is a parameter-free functional, it

forehoffer a; dlre_ct|0r|1 for developmgF% ;elf-|nteract|on-|free gives accurate exchange energies for atoms within an error
exchange functional. By contrask, ™ is not correctly . ihe order of a few percent.

TFW :
scaled due o the erroneogsdependency ofr,”™ in the (4) Because it can be corrected for any kind of kinetic-
constituentr,,” . energy functional, the functional is a progressive exchange

(F) To reproduce the asymptotic behavior of the exchangéunctional that can be easily updated.
energy densit’ e,,——1/2R for R—x, wheree,, is de- Compared to conventional parametrized exchange func-

fined asEy==,fp,(R) €&, (R)d°R, K, asymptotically ap- tionals, our analytic functional gives slightly less accurate
proachesp, *R™* at the limit. Near the limit,K"®" ap-  atomic exchange energies. However, it can be refined by
proaches consi” for "7 and consp, ' for iF. The  replacing the kinetic-energy density, or upgrading the ap-
K,'s of the B88 functional follow the asymptotic behavior proximation in the derivation. Actually, we can easily obtain
for exponentially decaying density, because they contain auch more accurate results by using a parametrized kinetic-

term that reduces them tq,/(3 Inx,) at the limit?® It may  energy density, e.gz,= 7" +x2/36(1+0.00242), that re-
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