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Single-hole dynamics in thet-J model on a square lattice
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~Received 7 February 2000; revised manuscript received 26 June 2000!

We present quantum Monte Carlo~QMC! simulations for a single hole in at-J model fromJ50.4t to J
54t on square lattices with up to 24324 sites. The lower edge of the spectrum is directly extracted from the
imaginary time Green’s function. In agreement with earlier calculations, we find flat bands around (0,6p),
(6p,0) and the minimum of the dispersion at (6p/2,6p/2). For smallJ, both self-consistent Born approxi-
mation and series expansions give a bandwidth for the lower edge of the spectrum in agreement with the
simulations, whereas forJ/t.1, only series expansions agree quantitatively with our QMC results. This band

corresponds to a coherent quasiparticle. This is shown by a finite-size scaling of the quasiparticle weightZ(kW )
that leads to a finite result in the thermodynamic limit for the considered values ofJ/t. The spectral function

A(kW ,v) is obtained from the imaginary time Green’s function via the maximum entropy method. Resonances
above the lowest edge of the spectrum are identified, whoseJ dependence is quantitatively described by string
excitations up toJ/t52.
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I. INTRODUCTION

Since the pioneering work by Brinkman and Rice1 ~BR!
the dynamics of a hole in an antiferromagnet remained a
recurring open problem in condensed-matter physics. A
the discovery of high-temperature superconductors2 and the
suggestions by Anderson3 on the possibility of a non-Fermi
liquid state in those materials, the question whether the q
siparticle weight of a hole vanishes due to the interact
with an antiferromagnetic background became central in
field of strongly correlated fermions.

The BR treatment led to a fully incoherent spectrum in
so-called retraceable path approximation, for an antife
magnetic Ising-like background, in the limitJz→0. The re-
traceable path approximation is exact in one1 and in infinite
dimensions4 but not in two dimensions since contributions
loops ~Trugman paths5! may lead to a coherent propagatio
of the hole. Furthermore, for an Ising-like background, it w
shown within a Lanczos scheme,6 that a finite quasiparticle
weight is obtained. For the case of physical interest, nam
with a Heisenberg spin background, a large number of
merical methods7 led to conflicting results. Whereas exa
diagonalizations found large quasiparticle peaks at the lo
edge of the spectrum,8 quantum Monte-Carlo~QMC! results
were interpreted as leading to a vanishing quasipart
weight.9 Since exact diagonalizations are possible only
very small lattices, finite-size scaling cannot be perform
reliably. On the other hand, QMC simulations suffered fro
the minus-sign problem, such that scaling was not poss
with reasonable confidence. Further studies based on
self-consistent Born approximation~SCBA!10–12 gave a fi-
nite quasiparticle weight. However, since fluctuations of
spin background are only taken into account in the frame
a spin-wave approximation, the results obtained are not c
clusive. Exact results for the supersymmetric pointJ52t
were obtained by Sorella,13 that give important benchmark
for any analytical or numerical method~see Sec. III B!, but
unfortunately, they cannot be rigorously extended to
physical relevant parameter rangeJ;0.4t.

Quite recently, the dynamics of a single hole in an an
PRB 620163-1829/2000/62~23!/15480~13!/$15.00
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ferromagnetic background became experimentally access
by angle-resolved photoemission spectroscopy in undo
materials like Sr2CuO2Cl2 ~Refs. 14 and 15! and
Ca2CuO2Cl2.16 The main features observed there are a m

mum of the dispersion atkW5(p/2,p/2) together with a van-
ishing of spectral weight beyond this point along the~1,1!
direction. The obtained spectra show that the very flat p
tion around (p,0), that in optimally doped materials is a
most degenerate with the bottom of the spectrum
(p/2,p/2),17 is shifted upwards~in a hole representation! by
approximately 300 meV. This contradicts the single-ho
spectra found theoretically so far, where essentially the lo

edge of the spectrum atkW5(p/2,p/2) and (p,0) are almost
degenerate, such that additional second and third nea
neighbor hopping terms were suggested,15,18 that lead to an
agreement of the exact diagonalization results with exp
ments. Such terms were made recently responsible also
the vanishing of spectral weight close to (p/2,p/2) by reduc-
ing the quasiparticle weight.18,19

In this paper we present dynamical properties of a sin
hole in a two-dimensionalt-J model on lattices with up to
24324 sites in the parameter range 0.4<J/t<4. Results
were obtained with a new QMC algorithm, where the sp
background is simulated with a loop algorithm20 and the hole
is exactly propagated for a given configuration of the s
background. The lower edge of the spectrum is obtained
rectly from the asymptotic form of the imaginary tim
Green’s function. The resulting dispersion agrees with pre
ous results obtained within SCBA and series expansion21

for J/t,1, whereas forJ/t.1 only agreement with serie
expansions is found. In particular, a flat dispersion is o
tained aroundkW5(p,0) very close in value to the bottom o
the band at kW5(p/2,p/2), in contrast to the
experiments.14–16 The asymptotics of the imaginary tim
Green’s function delivers also the quasiparticle weight
that band. Finite-size scaling is presented showing thatZ(kW )
is finite for the parameter range considered, such that
lower edge of the spectrum corresponds to a coherent qu
particle. Furthermore, our data are consistent with ano
15 480 ©2000 The American Physical Society
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PRB 62 15 481SINGLE-HOLE DYNAMICS IN THE t-J MODEL ON A . . .
exact prediction,13 namely, that at the supersymmetric poi
and in the thermodynamic limit,Z(QW )/Z(0)5(2m)2, where
QW 5(p,p) is the antiferromagnetic wave vector andm is the
staggered magnetization. The spectral functionA(kW ,v) is
calculated by analytic continuation with maximum entro
~MaxEnt!.22 Overall agreement is found with exact diagon
izations. At the supersymmetric point, the delta function p
dicted by Sorella13 for the wave vectorkW5(0,0) is exactly
reproduced. By extracting the contribution of the quasipa
cle from the imaginary time Green’s function, a resonan
above the quasiparticle band is made evident, that toge
with the lower edge of the spectrum scales asJ2/3, in agree-
ment with the string picture23 used to described the excita
tions for a hole in an antiferromagnetic Ising backgroun
Remarkably, also the prefactors of the corresponding A
functions are needed in order to properly describe the
tance between the resonance and the quasiparticle band

The paper is organized as follows. Section II describes
model, a canonical transformation that leads to a bilin
form in spinless fermions interacting withS5 1

2 pseudospins,
and the algorithm. Since the Hamiltonian for the transform
t-J model is bilinear in fermions~the holes!, their propaga-
tion can be calculated exactly given a pseudospin config
tion. In Sec. III the results are discussed. Section III A d
scribes the lower edge of the spectrum and how it
obtained. In Sec. III B the results for the quasiparticle wei
are shown. Section III C describes the spectral funct
A(kW ,v) and the string excitations. Finally, the conclusio
are given in Sec. IV.

II. THE MODEL AND THE ALGORITHM

The t-J model is a suitable one to simulate the dynam
of a single hole in an antiferromagnet. On the one side, it
be obtained from the Hubbard model in the large coupl
limit, which at half-filling leads to the Heisenberg antiferr
magnet. On the other side, it is the relevant one to simu
the cuprates, as shown by Zhang and Rice,24 and hence, to
compare with experiments.14–16 Its Hamiltonian is

Ht-J52t (
^ i , j &,s

c̃i ,s
† c̃ j ,s1J(

^ i , j &
~SW i•SW j2

1
4 ñi ñ j !, ~1!
-
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where c̃i ,s
† are projected fermion operatorsc̃i ,s

† 5(1

2ci ,2s
† ci ,2s)ci ,s

† , ñi5(ac̃i ,a
† c̃i ,a , SW i

5(1/2)(a,bci ,a
† sW a,bci ,b , and the sum runs over neare

neighbors only. In order to render Eq.~1! a bilinear form in
fermionic operators, we perform a canonic
transformation:25

ci↑
† 5g i ,1 f i2g i ,2 f i

† , ci↓
† 5s i ,2~ f i1 f i

†!, ~2!

where g i ,65(16s i ,z)/2 and s i ,65(s i ,x6 is i ,y)/2. The
spinless fermion operators fulfill the canonical anticommu
tion relations$ f i

† , f j%5d i , j , ands i ,a , a5x, y, or z are the
Pauli matrices. The Hamiltonian becomes

H̃t-J51t(
^ i , j &

Pi j f i
†f j1

J

2 (
^ i , j &

D i j ~Pi j 21!, ~3!

where Pi j 5(11sW i•sW j )/2, D i j 5(12ni2nj ) and ni5 f i
†f i .

The constraint to avoid doubly occupied states transform
the conserved and holonomic constraint( ig i ,2 f i

†f i50. This
constraint simply means that a spinless fermion and
pseudospin↓ are not allowed to sit on the same site. T
main advantage of this formulation of thet-J model is the
fact that fermions only appear in bilinear form in contrast
the original formulation of thet-J model ~1!.

In order to obtain the dynamics of the hole, we calcula
the one-particle Green’s function for spin up,

G~ i 2 j ,t!52^Tc̃i ,↑~t!c̃ j ,↑
† &52^T fi

†~t! f j&, ~4!

whereT corresponds to the time-ordering operator. We fi
perform a Trotter decomposition of the partition sum

Z5Tr exp~2bH !5Tr lim
M→`

$exp@2~b/M !H1#

3exp@2~b/M !H2# . . . exp@2~b/M !H2d#%M, ~5!

where the Hamilton operator is split up in 2d (d is the di-
mension of the system! termsH1,H2, . . . ,H2d. These terms
can be handled easily, as they only consist of disconne
two-site terms. At all intermediate time steps, complete s
of spin states are inserted. Then the Green’s function~4!
transforms as~we consider the cased51):
tion
G~ i 2 j ,2t!5

(
s(1,1)

^vu ^ ^s (1,1)ue2(b2t)H̃t-Jf je
2tH̃t-Jf i

†us (1,1)& ^ uv&

(
s(1,1)

^s (1,1)ue2bH̃t-Jus (1,1)&

5(
sW

P~sW !
^vu f je

2DtH̃1(s(n,1) ,s(n21,2)) . . . e2DtH̃2(s(1,2) ,s(1,1)) f i
†uv&

^s (n,1)ue2DtH̃t-J
1

us (n21,2)& . . . ^s (1,2)ue2DtH̃t-J
2

us (1,1)&
1O~Dt2!

5(
sW

P~sW !G~ i , j ,t,sW !1O~Dt2!. ~6!

HeremDt5b, nDt5t, Dtt!1, and exp@2DtH̃(s1,s2)# is the evolution operator for the holes, given the spin configura
(s1 ,s2). In the case of single-hole dynamics,uv& is the vacuum state for holes, and
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P~sW !5
^s (1,1)ue2DtH̃t-J

1
us (m,2)&^s (m,2)ue2DtH̃t-J

2
us (m,1)& . . . ^s (1,2)ue2DtH̃t-J

2
us (1,1)&

(
sW

^s (1,1)ue2DtH̃t-J
1

us (m,2)&^s (m,2)ue2DtH̃t-J
2

us (m,1)& . . . ^s (1,2)ue2DtH̃t-J
2

us (1,1)&

~7!
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is the probability distribution of a Heisenberg antiferr

magnet for the configurationsW , where sW is a vector
containing all intermediate states (s (1,1) ,s (m,2) , . . . ,
s (n,2) ,s (n,1) , . . . ,s (1,1)). The sum over spins is performe
in a very efficient way by using a world-line loop algorithm20

for a Heisenberg antiferromagnet with discretized imagin
time. In general we haveDt50.05, such that the extrapola
tion to Dt50 leads to values of the observables within t
statistical error bars. The inverse temperatureb is taken such
that the energy is well converged (bJ>20 for 16316 and
bJ530 for 24324 sites!, and therefore, the data correspo
to the ground state. As the evolution operator for the hole
a bilinear form in the fermion operators,G( i , j ,t,sW ) can be
calculated exactly, in contrast to a direct implementation
the loop algorithm,26,27where fermion paths are sampled st
chastically.G( i , j ,t,sW ) contains a sum over all possible fe
mion paths between (i ,0)and (j ,t). The numerical effort to
-
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calculateG( i , j ,t,sW ); i ,t scales asNt, whereN is the num-
ber of lattice points in space. Therefore, the present met
is more efficient for large systems than, e.g., projector al
rithms for the Hubbard model, that scale with the system s
cubed.

With the representation of Eq.~3!, the propagation of
down-spin electrons cannot be easily considered, since
operatorss i ,6 cut world lines. This is certainly not a prob
lem for finite-size systems, where SU~2! spin symmetry is
conserved. SinceP(sW ) is the probability distribution for the
quantum antiferromagnet, the algorithm does not suffer fr
sign problems on bipartite lattices and nonfrustrating m
netic interactions in any dimension.

We now address the explicit calculation ofG( i , j ,t,s),
the Green’s function for the fermions given a spin bac
ground. In a first step, we introduce additional complete s
of single fermion states in the numerator of Eq.~6!, such that
G( i , j ,t,sW ) becomes
G~ i , j ,t,sW !5^ v u f jS (
lW

u f l (n,1)
&
^ f l (n,1)

ue2DtH̃1(s(n,1) ,s(n21,2))u f l (n21,2)
&

^ s (n,1) ue2DtHt-J
1

u s (n21,2) &

3
^ f l (n21,2)

ue2DtH̃2(s(n21,2) ,s(n21,1))u f l (n21,1)
&

^ s (n21,2) ue2DtHt-J
2

u s (n21,1) &
. . . 3 . . .

^ f l (1,2)
ue2DtH̃2(s(1,2) ,s(1,1))u f l (1,1)

&

^ s (1,2) ue2DtHt-J
2

u s (1,1) &
^ f l (1,1)

u D f i
†u v &

5(
lW

@d l (n,1)

j U1~s (n,1) ,s (n21,2)! l (n21,2)

l (n,1) U2~s (n21,2) ,s (n21,1)! l ~n21,1!

l ~n21,2! . . . U2~s (1,2) ,s (1,1)! l ~1,1!

l ~1,2!d i
l (1,1)#, ~8!
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where the sum ( lW runs over all possible inter
mediate one-particle states in the fermionic Hilb

space$u f l &%. The propagatorŝ f l p
ue2DtH̃(sp ,sp21)u f l p21

&/

^ sp ue2DtHu sp21 & are only nonzero, whenl p andl q belong
to the same plaquette. As the fermions only appear in bi
ear form, these propagators can easily expressed byN3N
matrices (N is the size of the system!. The entries of these
matricesU1,2(sp ,sq) are nonzero only at the positions th
correspond to a plaquette in the checkerboard breakup,
therefore only two positions in the matrices per line are n
zero. The possible values for these entries are given in T
I. As we are only interested in the Hilbert space with
double occupancy, we have to enforce the constraint at
single position of the propagation by projecting out the f
mionic states that do not respect the constraint. We do s
t50 corresponding to the first propagation.

As discussed above, we use a loop algorithm with d
cretized imaginary time, to sample the probability distrib
tion P(sW ) of the Heisenberg antiferromagnet, which leads
t

-

nd
-
le

ne
-
at

-
-
o

a systematic errorO(Dt2). The loop algorithm20 has been
extended to work in continuous time,28 where this systematic
error is eliminated. However, in our case, it is not sufficie
to formulate the spin dynamics in continuous time, but
have to reformulate the algorithm such that the propaga
of the fermion takes place in continuous time synchronou
The following problems will arise, when a continuous tim

loop algorithm is used to sampleP(sW ):
~i! the N3N matricesU(sp ,sq) to propagate the one

particle states are no longer sparse matrices formed b
32 matrices only, and they have to be recalculated fr
scratch for every spin configuration.

~ii ! In the case of continuous time the average numbe
matricesU(sp ,sq) for the propagation of the fermions i
;bJN as opposed to;b/Dt for discretized time. At least
for large systems the number of matrices is therefore m
larger for continuous time than for discrete time. Both poin
~i! and~ii ! will reduce the efficiency of the algorithm drast
cally.
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The one-particle spectral function

A~kW ,v!5(
f ,s

u^ f ,N21 uckW ,su 0,N &u2d~v2E0
N1Ef

N21!

~9!

is connected with the Green’s function in imaginary time
T50, by the spectral theorem

G~kW ,t!5E
2`

`

dv
exp~2tv!

p
A~kW ,v!. ~10!

Hereu 0,N & is the ground state at half-filling with energyE0
N

and u f ,N21 & are states in theN21 particle Hilbert space
with energyEf

N21 . We perform the inversion of Eq.~10!,

that due to the statistical errors ofG(kW ,t) is an extremely
ill-posed problem, by means of MaxEnt, where theA(kW ,v)
obtained is the one that maximizes the probabilityP(AuG),
given the Green’s functionG(kW ,t). Correlations in the
imaginary time data were taken into account by consider
the covariance matrix. The default model for the MaxE
analysis is taken flat without prior knowledge. Details abo
MaxEnt can be found in the comprehensive review article
Gubernatis and Jarrell.22

Finally, we would like to stress, that part of the dynamic
data presented below were obtained without use of Max
but directly extracted from the imaginary time Green’s fun
tion. This is possible due to the high statistics and stabi
attainable with the present algorithm. The slowest decay
exponential, that corresponds to the excitation with low
energy can be extracted simply by fitting the tail of t
Green’s function at large values oft. This leads to the value
of the excitation and its corresponding weight, as shown
Secs. III A and III B. Furthermore, in connection with Max
Ent, the next higher excitation can be obtained by subtrac
the contribution from the lowest one from the Green’s fun
tion. This procedure is discussed in Sec. III C.

III. RESULTS

We concentrate in the following on three aspects of
dynamics of a single hole in a Heisenberg antiferromag

TABLE I. Contributions for the propagation of the hole on on
plaquette. The first column shows the weight for a propaga
where the hole stays on the same sitex, whereas in the secon
column the weight corresponds to the propagation to the adja
site. The third column represents the spin background on the
quette.

x→x x1d→x Spin configuration
0 0 ↓ ↓

↓ ↓
cosh(Dtt ) 2sinh(Dtt ) ↑ ↑

↑ ↑
cosh~Dtt !

exp~DtJ/2!cosh~DtJ/2!

0 ↑ ↓
↑ ↓,

↓ ↑
↓ ↑

0 sinh(Dtt )
exp(DtJ/2)sinh(DtJ/2)

↓ ↑
↑ ↓,

↑ ↓
↓ ↑
t

g
t
t
y

l
nt
-
y
g
t

n

g
-

e
t.

First we consider in Sec. III A the lower edge of the spe
trum. This is a quantity that can be obtained by several ot
methods, including various Monte-Carlo algorithms, su
that the relative accuracy of each one and the region in
rameter space, where each method gives best results, ca
assessed. In our case, this quantity is obtained from
asymptotic behavior of the one-particle Green’s function
imaginary time. However, not only the energy but also t
weight of such an excitation can be extracted from the
ymptotics, leading to the quasiparticle weight, as discus
in Sec. III B. The present algorithm is up to now the only o
capable of extracting this information for thet-J model free
of approximations on large lattices~in general up to 16
316 and forJ/t52 up to 24324 sites!. For small lattice
sizes, the results can be compared with exact diagona
tions, whereas for large systems only comparisons with
proximate methods like SCBA can be made. Finally, t
whole spectrum is considered in Sec. III C, where the sp
tral function A(kW ,v) is discussed. Using the informatio
from the lower edge of the spectrum, a resonance above
quasiparticle band is identified, which is very well describ
as a string excitation.

A. The lower edge of the spectrum

The accuracy and stability of the data allow, in our ca
to obtain the lower edge of the spectrum directly from t
slope of the one-particle Green’s function as a function
imaginary timet, for large values oft. Figure 1 shows the
asymptotics in imaginary time for two values of the coupli
constant, showing that the most accurate results are obta
whenJ/t52. J/t50.4 is the smallest coupling, where such
procedure can be applied. In order to check the results
tained at the smallest coupling, we made additional calcu
tions at Dtt50.2 ~all other calculations are done atDtt

FIG. 1. The energy of the lowest excitation is extracted from
imaginary time asymptotics of the Green’s function, as indicated
the dotted line for~a! J50.4t ~both forDt50.2 andDt50.05) and
~b! J52t (Dt50.05) in a 16316 lattice.

n

nt
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FIG. 2. Lower edge of the spectrum along the symmetry lines of the Brillouin zone for~a! J/t50.4 and~b! J/t52 in a 16316 lattice.
Comparisons are made with VMC~circles!, GFMC for J/t50.4 (3), and series expansion~Ref. 21! for J/t52 ~dotted line!.
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50.05), where larger values oftt can be reached. The re
sulting Green’s functions are the same within the error b
indicating a smallDt effect.

Figure 2 shows the lower edge of the spectrum forJ/t
50.4 andJ/t52 in a 16316 sites system. The energies a
displayed with respect to the ground-state energy of
Heisenberg antiferromagnet. The results are compared
variational Monte Carlo~VMC!,29 Green’s function Monte
Carlo ~GFMC!,30 and series expansions,21 whenever data is
available. AtJ/t50.4 @Fig. 2~a!#, where our results are mos
affected by fluctuations, we observe good agreement w
GFMC. The behavior of the statistical error is similar in bo
methods, with larger fluctuations aroundkW5(0,0) and
(p,p). Around kW5(p,0) our results show somewhat larg
fluctuations. ForJ/t50.4 VMC,29 also appears to be ver
accurate concerning the lower edge. When its energies
compared to our calculations and the GFMC technique,
s,

e
ith

th

re
e

find that their energies are within the error bars of the ex

QMC calculations. AtkW5(0,0), the variational result is a
the lower edge of the error bars of our calculation, and h
the smallest statistical error of all three approaches. At
specific k point both GFMC and our approach have lar
fluctuations before the state with lowest energy is clea
reached. As mentioned above, additional calculations w
Dtt50.2 were performed, in order to check the results o
tained, without observing significant changes.

Figure 2~b! shows that atJ/t52, where our algorithm
leads to much more accurate results, the variational res
are too high in energy, but still close to our numerica
exact ones. For values ofJ/t>1, additional results from se
ries expansions21 are available. AtJ/t52 we observe in gen-
eral a very good agreement. Around (p,0) we see that serie
expansions slightly underestimate the energy of the hole.
general features of the lower edge are not substantially m
FIG. 3. Lower edge of the spectrum along the symmetry lines of the Brillouin zone for~a! J/t50.6, ~b! J/t50.8, ~c! J/t51.2, and~d!
J/t54 in a 16316 lattice.
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fied when going fromJ/t50.4 to J/t54. This is shown in
Fig. 3, where the only changes observed are an overall
in energy with respect to the Heisenberg antiferromagnet
a change in the bandwidth. The shift in energy can be
lowed by considering the dependence ofe(p/2,p/2) on J/t.
This dependence is rather accurately described bye(J/t)/t
523.281a1(J/t)2/3, wherea1 is the first eigenvalue of the
dimensionless Airy equation~see Fig. 13 in Sec. III C!. Such
a scaling of the hole energies is found in thet-Jz model in
the continuum limit for small values ofJz ,23,10,12when loops
along the path of the hole are disregarded. In that case
constant is22Az21, wherez is the coordination number
The resulting string picture gives an accurate description

the lowest excitations close tokW5(p/2,p/2). As will be
shown in Sec. III C, the next higher excitation can also
described by the string picture.

Figure 4 shows the bandwidth obtained in our simulatio
compared with exact diagonalizations,33 GFMC,30

SCBA,11,12 VMC,29 and series expansions.21 For J/t,0.8
good agreement is found among all methods, whereas
larger values ofJ, only series expansions and VMC agr
with our data. This, and the fact that the string picture giv
a good representation of the lowest lying states, suggest
a perturbation expansion as performed in series expans
can be used to interpret the distinctive features of the lo
edge. In particular, the flat band observed aroundkW5(p,0)
and the fact that the degeneracy between this point ankW
5(p/2,p/2), suggested by some approaches,31 is clearly
lifted, as shown by our simulation, are very well reproduc
by series expansions. The flat bands can be well observe
all considered values ofJ/t, when considering the lowe
edge~Figs. 2 and 3! and the complete spectral function~Fig.
11!. Our data clearly show forJ/t>0.6, that the neighboring
points of kW5(p,0) are generally slightly higher in energ
The band in this area does not seem to be completely flat
it changes its curvature with local minima of the dispers
at the points (p,d) and (p2d,0), when going along the
~1,0! and ~0,1! directions, respectively, with thecaveatthat
they are well defined beyond the error bars only forJ/t.1.
In all the cases we findd'0.3p. This region with a very flat
band spans an extremely large area in the Brillouin zone

FIG. 4. Bandwidth of the lower edge as a function ofJ/t.
e(0,0)2e(p/2,p/2) in a 16316 lattice compared with exact diago
nalization (434 sites, open circles!, GFMC ~cross!, VMC ~open
boxes!, SCBA ~dashed line!, and series expansions~full line!.
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A flat band on a similarly wide region in the Brillouin
zone aroundkW5(p,0) is also observed in photoemissio
spectroscopy of cuprates close to the Fermi energy in
optimally doped compounds. As doping is reduced, that p
tion of the spectrum opens a pseudogap and weight is tr
ferred to higher energies,17 until in the undoped materials
this portion is about 2J ('300 meV! above the minimum at
kW5(p/2,p/2).14–16The energy difference between the poin
kW5(p/2,p/2) and kW5(p,0) is in our simulation aboutD
5(0.2560.10)t ('J/2 for J50.4t). The rather large error
corresponds mainly toJ/t,1. No significant dependence o
J/t can be observed in the whole range under considerat
in contrast to the results from SCBA and series expansio
However, it could be that theJ dependence is masked in ou
case by large fluctuations, taking into account that the va
tions observed for this quantity by SCBA and series exp
sions are much smaller than the one observed for the b
width. SCBA ~Ref. 11! gives values ranging from 0.17t
(J/t51) to 0.12t (J/t54), that are smaller than the value
we obtain. On the other hand, series expansions21 obtain val-

FIG. 5. ~a! Extrapolation of G̃(kW ,2t)[G(kW ,2t)exp@(ek

2e0)t# for N5838 and 24324 at J/t52. Finite-size scaling for

~b! kW5(p/2,p/2) and~c! kW5(p,0).

FIG. 6. Finite-size scaling ofZ(kW ) at J/t50.6 for ~a! kW

5(p/2,p/2) and~b! kW5(p,0). The crosses are values from exa
diagonalization results~Refs. 33 and 32!.
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15 486 PRB 62BRUNNER, ASSAAD, AND MURAMATSU
ues between 0.15t at J/t51 and 0.25t at J/t52.5. The val-
ues obtained by series expansions are consistent with
results for large values ofJ/t.

B. The quasiparticle weight

The quasiparticle weight is the weight of the exponen
with the slowest decay, that is the exponential that de
mines the lower edge of the spectrum. This weight is

Z~kW !5 lim
2t→`

G~2t,kW !exp@~ekW2e0!t#. ~11!

In the following we focus on the thermodynamic limit o
Z(kW ) for the wave vectorskW5(p,0) andkW5(p/2,p/2). Fig-
ures 5 and 6 show the finite-size scaling on these two po
for J/t52 andJ/t50.6, respectively. For bothk andJ val-
ues, an appreciable quasiparticle weight is obtained, dem
strating that the lower edge of the spectrum describes
band of a coherent quasiparticle. The determination of

FIG. 7. Quasiparticle weight as a function ofJ/t for kW

5(p/2,p/2) ~circles! andkW5(p,0) ~3!. The result from exact di-
agonalization~Ref. 33! in a 434 lattice is given by the triangle
The data points atJ/t50.4 are considered as an upper bound.

FIG. 8. Quasiparticle weight as a function ofJ/t for kW

5(p/2,p/2) ~circles! and kW5(p,0) ~3! in a 16316 lattice ~the
values forJ/t50.4 are an upper bound only!. We compare our
result with SCBA, where the dashed line corresponds to the qu

particle weight forkW5(p,0) and the full line corresponds tokW

5(p/2,p/2). The data points were taken from Ref. 11.
ur
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quasiparticle weight is only accurate forJ/t>0.6. Below that
value, the quality of the data is less satisfactory~see Fig. 1!
and, forJ/t50.4 the value presented can be taken only as
upper bound. The size dependence ofZ(p/2,p/2) and
Z(p,0) is not very large and scales linearly with the inver
linear size of the system forJ/t>0.6, in agreement with
SCBA.11 The size dependence at (p/2,p/2) is systematically
larger than at (p,0). The sizes considered areL3L, with L
516, 12, 8, and 4. AtJ/t52 we use additionally a 24324
lattice. Values from exact diagonalization32,8,33 were in-
cluded when available.

Figure 7 shows that the extrapolated quasiparticle we
increases withJ/t both for kW5(p,0) andkW5(p/2,p/2). At
J/t54 the quasiparticle reaches about 80% of its maxim
value. The changes of the quasiparticle weight withJ/t are
small whenJ/t>1 and the slope becomes steeper for sma
values. Estimates of the quasiparticle weight were given b
by VMC ~Ref. 29! and SCBA,11 the difference being rathe
small. The general trend is that VMC overestimates it

si-

FIG. 9. Finite-size scaling for the quasiparticle weight atQW

5(p,p) for J/t52. The cross in the thermodynamic limit i
(2m)2, m being the staggered magnetization.

FIG. 10. Z(kW ) along the symmetry lines in the Brillouin zone fo
J/t52 in a 24324 lattice.
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FIG. 11. Spectral function for a 16316 system and~a! J/t50.4, ~b! 0.6, ~c! 0.8, ~d! 1.2, ~e! 2, and~f! 4. The vertical lines indicate

resonances above the quasiparticle peak atkW5(p/2,p/2) as obtained in Sec. III C, Fig. 16.
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small J whereas SCBA overestimates it at largeJ. For defi-
niteness we compare our results with SCBA for a 16316
system in Fig. 8. We find a rather good agreement betw
both methods. As in our caseZ(p,0).Z(p/2,p/2) for all
considered values ofJ/t. At small values ofJ (0.01<J/t
<0.5) SCBA finds a scaling ofZ(p/2,p/2)50.31J2/3 and
Z(p,0)50.35J0.7. For J/t>1, the results from SCBA over
estimates the quasiparticle weight at the two considerek
points, with an increasing deviation for larger values ofJ/t.
Based on the quantitative agreement of SCBA with our
sults for smallJ, we can confidently conclude that the qu
siparticle atkW5(0,p) and (p/2,p/2) should be finite for all
values ofJ in the physically relevant region~i.e., J/t*0.1).

As mentioned in the introduction, there are exact res
for the quasiparticle weight at the supersymmetric point
two dimensions.13 On the one hand,Z(kW50)51/2, a re-
quirement that is fulfilled by our simulation, where th
Green’s function at that particulark point consists of a single
n

-

ts
n

exponential. In contrast to this, the estimate of SCBA is
proximately 0.45 and that of VMC'0.32. Furthermore,
Sorella showed that Z(QW )/Z(0)<(2m)2, where m2

5S(QW )/N, S(QW ) being the magnetic structure factor at th
antiferromagnetic wave vector. The equality is reached in
thermodynamic limit. Figure 9 shows the evolution with sy
tem size ofZ(QW ) together with results from exact diagona
ization for a 434 system and (2m)2.0.37 for L→`. Al-
though large error bars show that the determination ofZ(kW )
is less satisfactory forkW5QW than atkW5(p/2,p/2), the data
are consistent with the exact result. It was further suggest13

that if Z(kW1QW )/Z(kW )5(2m)2 is satisfied forkWÞ0, a jump in
the quasiparticle weight should be observed on crossing
border of the magnetic zone. Figure 10 showsZ(kW ) along the
symmetry directions in the Brillouin zone for a 24324 sys-
tem andJ/t52. Our data do not show any sizable jum
Unfortunately, it is not possible to consider arbitrarily lon



15 488 PRB 62BRUNNER, ASSAAD, AND MURAMATSU
FIG. 11. ~Continued!.
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imaginary times since as Eq.~11! shows, the errors are am
plified exponentially. Therefore, our results cannot be c
sidered as a proof of continuity. However, in view of th
good agreement with the above-mentioned exact results
consider them as a convincing evidence.

C. Spectral function and string excitations

The results discussed in Sec. III A for the lower edge
the spectrum and in Sec. III B for the quasiparticle weig
can be recognized in the spectral function~Fig. 11! obtained
by using MaxEnt. For clarity, the maximum of each curve
normalized to 1 in the plots. The small numbers on the ri
hand side of the figures correspond to the maximal value
A(kW ,v) when the integral*2`

` dv A(kW ,v) is properly nor-
malized top/2. The lower edge of the spectrum remains li
in the previous section, but the accuracy of its location
A(kW ,v) is reduced by MaxEnt. The peaks around (0,p) and
(p/2,p/2) are generally very sharp, in agreement with t
fact that a finite quasiparticle weight was found in Sec. III
A transfer of weight from high to low energies can be o
served, whenJ/t is increased, consistent with the increase
the quasiparticle weight~Fig. 7 in Sec. III B!.

When compared to the one-dimensional~1D! case,34 it is
seen that the high-energy excitations in the 2D case are
tremely broad. The total bandwidth remains essentially c
stant as a function ofJ in contrast to the 1D case, where
scales as 4t1J.

For values of the coupling in the rangeJ/t<2 we observe
satellite peaks in the region aroundkW5(p/2,p/2) ~Fig. 11!
next to the lowest energy peak, which is extremely sharp
corresponds to a quasiparticle. Thed peak cannot be handle
satisfactorily by MaxEnt. As can be seen by comparison
Figs. 2 and 11, MaxEnt gives some weight at energies lo
than the band edge. This additional weight has to be
anced in some way, such that this error propagates to
other side of thed peak. Small peaks in the vicinity of thed
peak, therefore, cannot be resolved. In order to resolve st
tures close to the quasiparticle peak, we subtract the e
-
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t
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nential corresponding to the lowest energy~see Fig. 12!. The
thus modified Green’s function can now be used as inpu
MaxEnt.

Before proceeding to the results, let us remark that, w
the MaxEnt results obtained with the modified Green’s fun
tion, i.e., after the subtraction of the lowest exponential,
viewed closely, on occasions, an additional peak appear
the bottom of the spectrum@this effect can be seen, e.g., fo
(p/2,p/2) in Fig. 13#. To exclude, that this peak correspon
to a real physical effect, we take several modified Gree
functions, that are consistent with the exponential of the lo
est peak, within the statistical error. Therefore, we take
lowest and the highest exponential, that are consistent w
the results obtained in Sec. III A, and use them as inpu
MaxEnt. As can be seen in Fig. 14, the new peak that
pears below the low-energy peak of the original functio
and hence is artificial, is only observed in two cases w
varying position, whereas the two other peaks can be alw
observed, no matter which exponential is subtracted~always
within the statistical errors!. The position of these high
energy peaks is not changed by the different subtractio
only the width is affected. In all cases discussed, a small s
of these structures can be observed with respect to the
in the spectrum without the subtraction. However, the po
tions assumed by these structures after the subtraction is
affected by the different subtractions within the values
lowed by the statistical errors. We conclude that the init

FIG. 12. Original Green’s function and Green’s function wi

subtraction~lower curve! for a 16316 system andJ/t52 at kW

5(p/2,p/2).
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small shift is due to the inability of MaxEnt to concentra
the weight of the delta function of the quasiparticle peak t
single energy value.

The result of the procedure described above is show
Fig. 15. For (p/2,p/2) there are only little changes of th
position of the maxima of the existing peaks at smallJ/t
compared to the full spectral function~except the low-energy
peak, that disappeared!. We can further observe, that the sa
ellite peak next to the low-energy peak can now be seen
all values ofJ/t<2. One should notice, that no addition
weight has been produced at high energies, but the nor
ization has changed~again the maximal value is normalize
to 1, not the area of the spectral function!.

At (p/2,p/2) @Fig. 15~a!# the resolution of the second
lowest excitation is quite clear, when applying the abo
method, whereas at (p,0) @Fig. 15~b!# the results are eithe
not accurate enough, or the corresponding excitation
weaker. ForJ/t51.2 the resolution is not good enough
separate the two resonances at (p,0). Generally the excita
tions at higher energies at (p,0) are broader than a
(p/2,p/2), so that the positions of the maxima are not
well defined. Similar structures were observed in ex
diagonalization8,7 and in SCBA,12 and were ascribed to strin
excitations.

When the string picture is valid, as it is expected in t
t-Jz model the hole is confined by a linear potential, lead
to (k independent! eigenvalues of the energy23,12,35given by

En /t522A31an~Jz /t !2/3, ~12!

where an are the eigenvalues of a dimensionless A
equation.10 The first three eigenvalues are given byan
52.33, 4.08, and 5.52. In Fig. 16 the results for the first th

FIG. 13. Original spectrum~full line! and after subtraction
~dashed line! along the line (p/2,ky). In the direction toward
(p/2,0) the lowest resonance approaches the position of the q
particle peak and merges with it, whereas toward (p/2,p) the dis-
tance stays approximately constant. In the second case, the
effect is a broadening of the resonances. Shown is a 16316 system
with J/t50.6.
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excitations are given forkW5(p/2,p/2), and are compared to
the predictions from SCBA. The error bars on the second
third peak are obtained as the width of the MaxEnt peak
half intensity, the error bars of the first peak are taken as
Sec. III A. We find, that forJ/t<2 the lowest peak can b
accurately described by e0(p/2,p/2)52EH23.28t
12.33(J/t)2/3t, whereEH is the Heisenberg energy per sit
and the second peak bye1(p/2,p/2)52EH23.28t
14.08(J/t)2/3t. The value of 3.28t1EH is the result ob-
tained from SCBA,12 whereas the prefactors of (J/t)2/3 are
exactly the values of the dimensionless Airy function, imp
ing that the first two peaks behave~within our error bars!
exactly as it is expected by the string picture. In contras
this, a fit from SCBA for the first three excitations in thet-J

si-

ain

FIG. 14. Green’s function and resulting spectral function bef

and after subtraction of the lowest exponential:Z(kW )exp@2e(kWt)# on

a 16316 lattice, J/t50.6, andkW5(p/2,p/2). We estimateZ(kW )

50.17660.025 ande(kW )520.9060.03 ~see Sec. III A!. In ~a! we
show the original Green’s function~top curve!, and results when

subtracting the exponentials corresponding to the valuese(kW )5

(20.9020.03)t, e(kW )520.90t, and e(kW )5(20.9010.03)t. The
MaxEnt results in~b! correspond~from bottom to top! the original

spectral function, and to the results fore(kW )520.90t, (20.90
20.03)t, and (20.9010.03)t, respectively. For Fig. 15, we sub

tract the exponentialZ(kW )exp@2e(kW)t#, and consider the mean va

ues ofZ(kW ) ande(kW ).
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FIG. 15. Change of the spectral function when subtracting the first excitation for~a! (p/2,p/2) and~b! (p,0). The energy is shifted by
an arbitrary amountj (j522.8t,22t,2t,1t for J/t50.6,0.8,1.2,2, respectively!, in order to display the spectra for different values ofJ/t
in the same energy range. The dotted line is the original result, the full line gives the modified one.
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model for values ofJ/t<0.4, results inan52.16, 5.46, and
7.81, also with the exponent 2/3,12 leading to a clear dis-
agreement with our data. The third peak that can be reso
cannot be explained by the string picture, since its distanc
the lower band edge is independent ofJ and has a value o
about 4t. The existence of a string excitation is not restrict
to (p/2,p/2), but it can also be observed between (p/2,p/2)
and (p/2,3p/4). This is demonstrated for the valueJ/t
50.6 ~see Fig. 13!.

The results above lead to the conclusion that the low
excitations can be well described by the string picture. Ho
ever, it should be kept in mind that the string picture ori
nates in the Ising limit forJ/t!1, and that it is based on th
continuum limit, that seems far away from our case w
strings of lengths between two and a maximum of five latt
points, that correspond to the first two string excitatio
Moreover, the string picture predicts a band without disp
sion, that is clearly not the case in our simulations. A way

FIG. 16. The first three excitations atkW5(p/2,p/2). At J/t
50.4 only two peaks were resolved. The lines represent the s
tions obtained by solving the linear string potential for the hole
the t-Jz model.
ed
to

st
-

-

e
.

r-
o

reconcile this paradoxical situation is given by the very go
quantitative agreement between QMC and ser
expansions21 for the dispersion of the quasiparticle and
bandwidth for a fairly large range inJ. As shown by the
expansion around the Ising limit, a coherent motion of t
hole is made possible after the creation of strings due
hopping processes, by appropriate spin flips, the shor
string being of length two. The lowest-order contribution a
pears in third order, where the points (p/2,p/2) and (p,0)
are degenerate. Fourth and higher-order processes rem
this degeneracy, giving rise to a band that agrees qua
tively very well with the one obtained in QMC. Therefore o
top of the coherent motion determined byJ' , stringlike ex-
citations are possible and related toJz and t. Such a possi-
bility was already proposed by Be´ran, Poilblanc, and Laugh
lin ~BPL!32 on the basis of exact diagonalizations on sm
systems and is confirmed unambiguously by our simulati
on large systems.

At J/t*2 the excitations fall below the values predicte
by the string picture. In those regions the string picture is
longer valid, as the relaxation of the disturbed spin bond
faster than the motion of the hole.

IV. CONCLUSIONS

A new QMC algorithm was presented that allows a rath
accurate determination of the single-hole dynamics in a tw
dimensional HeisenbergS21/2 antiferromagnet. The main
advantages of this algorithm are the combination of the lo
algorithm for the update of the spins and the exact evolut
of the hole for a given spin configuration. Due to the diver
ing correlation length at zero temperature, large autocorr
tion times should be expected for algorithms with local u
dates, a problem that is avoided here by the global updat
the spins. On the other hand, the exact evolution of the h
for a given spin background avoids further statistical err
that would be introduced if the hole is updated stochastica

u-
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as in recently proposed approaches.26,27 In fact, the accuracy
achieved allows for a determination of several dynami
quantities on large lattice sizes, leading to the possibility o
finite-size scaling of, e.g., the quasiparticle weight.

First ~Sec. III A! we discussed the lower edge of the spe
trum that is obtained directly from the asymptotics in ima
nary time of the Green’s function. This quantity is accessi
to different techniques, that are however, with the excep
of GFMC, either restricted to small lattice sizes or appro
mate. The comparison shows that very accurate results
given by series expansions over a large range of parame
supporting thus the interpretation of the relevant phys
processes for the coherent motion of the hole in the fram
a perturbative expansion around the Ising limit. This pictu
is further enforced by our study of the quasiparticle weig
~Sec. III B! and the spectral function~Sec. III C!. In Sec.
III B it was shown, that indeed the lower edge of the sp
trum describes the coherent propagation of a hole with fi
quasiparticle weight. This is the case for all the parame
ranges studied, and due to the good agreement with SC
especially for small values ofJ, one can conclude that thi
coherent propagation takes place for essentiallyJ.0. Fur-
thermore, by considering structures next to the lowest p
in the spectral function~Sec. III C!, it is seen that the lowes
excitations around the wave vectorkW5(p/2,p/2) are very
well described by the levels of strings usually discussed
the t-Jz model, giving further support to the perturbativ
picture, where the hole creates strings during its mot
through the lattice, that are healed by exchange proces
leading thus to coherence. In fact, the strings for the first
levels, that agree quantitatively with our simulations, cor
spond to a length of two and five lattice sites. Strings
length two are the dominant contributions in series exp
sions for the dispersion of the quasiparticle. Moreover,
findings showing the existence of string resonances ab
the quasiparticle pole lend support to a picture developed
,
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BPL,32 where the composite nature of the quasiparticle
advanced. In previous exact diagonalization studies, the
istence of such resonances, that were first observed in 434
lattices33 were not clearly identified on larger lattices.8 We
have shown in Sec. III C that they can be quantitatively ide
tified with string excitations. However, they are visible on
in a rather narrow region along the linekx.p/2, p/2&ky
&3p/4, such that in small lattices with up to 26 sites, the
features can be very much affected by boundary effects.
lowing BPL, the quasiparticle can be viewed as a light ho
attached to a spinon by a confining potential, the one t
gives rise to the spectrum of string excitations.

A comparison with experiments14–16fails due to the small
gap between the lowest peak atkW5(p/2,p/2) and the flat
band around kW5(p,0). It was suggested by sever
authors15,18,19 that this shift might be obtained introducin
hopping terms to second and third nearest neighbors.
thermore, it was found in exact diagonalizations19 that such
extra terms lead to a noticeable reduction of the quasipar
weight. Since exact diagonalizations with second and th
nearest neighbors in lattices with 18 and 26 sites suffer c
siderably under finite-size effects, a discussion of the in
ence of longer range hopping on the quasiparticle wei
must be carried out in much larger lattices. Such studies
presently under way.
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32P. Béran, D. Poilblanc, and R. B. Laughlin, Nucl. Phys. B473,

707 ~1996!.
33E. Dagotto, R. Joynt, S. Bacci, and E. Gagliano, Phys. Rev. B41,

9049 ~1990!.
34M. Brunner, F. F. Assaad, and A. Muramatsu, Eur. Phys. J. B16,

209 ~2000!.
35V. Elser, D. Huse, B. Shraiman, and E. Siggia, Phys. Rev. B41,

6715 ~1990!.


