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We present quantum Monte Cal@MC) simulations for a single hole in &#J model fromJ=0.4t to J
=4t on square lattices with up to 244 sites. The lower edge of the spectrum is directly extracted from the
imaginary time Green'’s function. In agreement with earlier calculations, we find flat bands around)(0,
(= ,0) and the minimum of the dispersion at /2, 7/2). For smallJ, both self-consistent Born approxi-
mation and series expansions give a bandwidth for the lower edge of the spectrum in agreement with the
simulations, whereas fal/t>1, only series expansions agree quantitatively with our QMC results. This band
corresponds to a coherent quasiparticle. This is shown by a finite-size scaling of the quasiparticl&@ight
that leads to a finite result in the thermodynamic limit for the considered valu@g.ofhe spectral function
A(IZ,a)) is obtained from the imaginary time Green'’s function via the maximum entropy method. Resonances
above the lowest edge of the spectrum are identified, whaspendence is quantitatively described by string
excitations up tal/t=2.

[. INTRODUCTION ferromagnetic background became experimentally accessible
by angle-resolved photoemission spectroscopy in undoped
Since the pioneering work by Brinkman and Rid8R) materials like SCuO,Cl, (Refs. 14 and 1b and
the dynamics of a hole in an antiferromagnet remained as 8a,Cu0,Cl,.1° The main features observed there are a mini-

recurring open problem in condensed-matter physics. Aftefyum of the dispersion &= (m/2,7/2) together with a van-
the discovery of high-temperature superconduétarsi the ishing of spectral weight beyond this point along tel)
suggestions by Andersdin the possibility of a non-Fermi- girection. The obtained spectra show that the very flat por-
liquid state in those materials, the question whether the quaion around ¢r,0), that in optimally doped materials is al-
siparticle weight of a hole vanishes due to the interactionnost degenerate with the bottom of the spectrum at
with an antiferromagnetic background became central in th¢ /2 7/2) 17 is shifted upwardsin a hole representatiory
field of strongly correlated fermions. approximately 300 meV. This contradicts the single-hole

Thﬁ %R treatmeglt led t(;]a fully in_cohe_zrentfspectrum ';‘ thespectra found theoretically so far, where essentially the lower
so-called retraceable path approximation, for an antiferro, " < trum & (/2.712) and .0 Imost
magnetic Ising-like background, in the limit—0. The re- edge of the spectrum (m/2,m/2) and (r,0) are almos

SO . S degenerate, such that additional second and third nearest-
traceable path approximation is exact in baed in infinite

. ) . ) ) . L neighbor hopping terms were suggestetf that lead to an
|d|men(§llon§but not;t%two dlrlnezs;ons smhce cotntrlbutlon? of agreement of the exact diagonalization results with experi-
oops{irugman patng may iead 1o a conerent propagation o5 - gych terms were made recently responsible also for
of the hole. Furthermore, for an Ising-like background, it was

shown within a Lanczos scherfi¢hat a finite quasiparticle the vanishing of spectral weight close ta/@,m/2) by reduc-

e . L ing the quasiparticle weigHg:*°
weight is obtained. For the case of physical interest, namely, gln thig pap%r we presgnt dynamical properties of a single

Vrﬂé?’c?aﬁrii&%%%lge dsptlc? f:ncfil(g:% un?ésa Iltzrg\(/aw?gggsreoggtuﬁole in a two-dimensional-J model on lattices with up to
: Icting ults. XaCl 54x 24 sites in the parameter range €d/t<4. Results

diagonalizations found large quasiparticle peaks at the low%ere obtained with a new QMC algori ;
gorithm, where the spin

edge Qf tthe sp;eco:ltru%qluar&t'um l:ﬂonte-CngﬁQMC) res'ultst' Ibackground is simulated with a loop algoritffhand the hole

were nterpreted as feading 1o a vanishing quasipartiCigs exactly propagated for a given configuration of the spin

weight” Since_exact_d_iagqnalizatiqns are possible only o ackground. The lower edge of the spectrum is obtained di-
very small lattices, finite-size scaling cannot be performe ectly from the asymptotic form of the imaginary time

reliably. On the other hand, QMC simulations suffered fromGreen’s function. The resulting dispersion agrees with previ-

the minus-sign problem, such that scaling was not pOSSibI'8us results obtained within SCBA and series expanéfons

with reasonable confidence. Further St'{gi?g based on tf}gr J/t<1, whereas fod/t>1 only agreement with series
self-consistent Born approximaticiSCBA) gave a fi- expansions is found. In particular, a flat dispersion is ob-

nite quasiparticle weight. However, since fluctuations of the . d d— | . | he b f
spin background are only taken into account in the frame ofdined around=(,0) very close in value to the bottom o

a spin-wave approximation, the results obtained are not corthe  band at k=(w/2,7/2), in contrast to the
clusive. Exact results for the supersymmetric palrt2t  experiments*® The asymptotics of the imaginary time
were obtained by Sorelf&, that give important benchmarks Green’s function delivers also the quasiparticle Weigaht for
for any analytical or numerical methadee Sec. IlI B, but  that band. Finite-size scaling is presented showing Zifk}
unfortunately, they cannot be rigorously extended to thds finite for the parameter range considered, such that the
physical relevant parameter range 0.4t. lower edge of the spectrum corresponds to a coherent quasi-
Quite recently, the dynamics of a single hole in an anti-particle. Furthermore, our data are consistent with another
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exact predictiort? namely, that at the supersymmetric point where &f  are projected fermion operatori{az(l

and in the thermodynamic limiz(Q)/Z(0)=(2m)?2, where _Ci’r_gcil’_og)c.’r ﬁi:za}}i’raa o S

N i,o
Q= (m,m) is the antiferromagnetic wave vector aITdS the :(1/2)Ea,,BCiT,a(;a,BCi,ﬁi and the sum runs over nearest
staggered magnetization. The spectral functi(k,») is  neighbors only. In order to render E@,) a bilinear form in
calculated by analytic continuation with maximum entropyfermionic  operators, we perform a canonical
(MaxEnb.?? Overall agreement is found with exact diagonal- transformatiorf®

izations. At the supersymmetric point, the delta function pre-

dicted by Sorell& for the wave vectok=(0,0) is exactly chi=nfi-v-fl, o =0 _(fi+f), )
reproduced. By ex_tractin_g the contribution pf the quasipartiyyhere Yi+=(1%*0,)/2 and o .= (0 *io;)/2. The

cle from the imaginary time Green's function, a resonance,;njess fermion operators fulfill the canonical anticommuta-
above the quasiparticle band is made evident, that togeth(ﬁrOn reIations{f-T fl=6 ., anda; 5, a=x, y, or z are the
with the lower edge of the spectrum scalesJ43 in agree- Pauli matrices. The Hamiltonian becomes.

ment with the string pictufé used to described the excita- '
tions for a hole in an antiferromagnetic Ising background. _ J
Remarkably, also the prefactors of the corresponding Airy Hig=+t2, Pijf?fﬁz > Aj(Py—1), (3
functions are needed in order to properly describe the dis- () D

tance between the resonance and the quasiparticle band. where P, :(1+5'i . 51)/2, Aj=(1-n;—n;) and ni:fini _

The paperis o_rganlzed as follpws. Section Il descnb_e_s thq“he constraint to avoid doubly occupied states transforms to
model, a canonical transformation that leads to a b|I|nea1Ehe conserved and holonomic constrainy; £ =0 This
F7r, =51t .

form in spinless fermions interacting wi 3 pseudospins, onstraint simply means that a spinless fermion and a

and the algorithm. Since the Hamiltonian for the transformecgseudospim are not allowed to sit on the same site. The

t."] model is bilinear in fermionﬁthe holes, their propaga-  ,qin advantage of this formulation of tie] model is the
tion can be calculated exactly given a pseudosp_ln conflguraféct that fermions only appear in bilinear form in contrast to
tion. In Sec. Il the results are discussed. Section Il A de-

. the original formulation of thé-J model(1).

scrlpes the lower edge of the spectrum .and.how '.t 'S In order to obtain the dynamics of the hole, we calculate
obtained. In Sec. Il B the results for the quasiparticle We|ghEhe one-particle Green’s function for spin up

are shown. Section IlIC describes the spectral function
A(k,w) and the string excitations. Finally, the conclusions G(i—j,7)= _<TEi,T(T)E}L,T>:_<TfiT(T)fj>' (4)
are given in Sec. V.

whereT corresponds to the time-ordering operator. We first

Il. THE MODEL AND THE ALGORITHM perform a Trotter decomposition of the partition sum
Thet-J model is a suitable one to simulate the dynamics Z=Trexp —BH)=Tr lim {exg — (B/M)H?]
of a single hole in an antiferromagnet. On the one side, it can M—e
be obtained from the Hubbard model in the large coupling Xexg — (BIM)H2] ... exd — (BIM)HXIM (5)

limit, which at half-filling leads to the Heisenberg antiferro-
magnet. On the other side, it is the relevant one to simulatevhere the Hamilton operator is split up ird4d is the di-
the cuprates, as shown by Zhang and Rfcand hence, to  mension of the systenermsH®,H?, ... H2I. These terms
compare with experiment8*®Its Hamiltonian is can be handled easily, as they only consist of disconnected
two-site terms. At all intermediate time steps, complete sets
EiT,UEj,U_FJ(E) (éi'éj_%ﬁiﬁj)a (1) of spin states are inserted. Then the Green’s funcin
i

Hi;=-—t ;
- ( transforms agwe consider the casg=1):

i,j),o

> (v|e(opyle” P Mutem Mty ) ©lv)

> (e PMlog )
T(1,)

. (olfie d oy 0-12) | e AN ca ) |p)

+O(AT?)

Il
s M
e

=1 =7
(opple 2 ™Mon_12) .. (op2le” *™Muog 1)

=> P(0)G(i,j,r,0)+O(AT). (6)

(o8

HeremAr= B, nAr=r, Art<1, and exp—A7H(oq,0,)] is the evolution operator for the holes, given the spin configuration
(o1,07). In the case of single-hole dynamids) is the vacuum state for holes, and
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aml Y Y
<U(1,1)|e ATH"J|0‘(m,2)><<7(m,2)|e ATH“|<T(m,1)> .. -<€T(1,2)|e ATH"J|(T(1,1)>

P(o)= (7)

—Arat — A2 A2
> (oaple 2 Mlomalomale 2Tl omy) - - (Tazle” 2o )

is the probability distribution Pf a Heis?nberg antiferro- calculateG(i,j, o)V i, scales adlr, whereN is the num-
magnet for the configuratioro, where o is a vector ber of lattice points in space. Therefore, the present method
containing all intermediate states o 1),0(mz, ..., S More efficient for large systems than, e.g., projector algo-
T(n2):T(n1) .,0(1.1). The sum over spins is performed rithms for the Hubbard model, that scale with the system size
in a very efficient way by using a world-line loop algorithtn  cuPed.

. : P : : : With the representation of Eq3), the propagation of
for a Heisenberg antiferromagnet with discretized 'magmarydown—spin elegrons cannot be gaéily cor?sidr()argd since the
time. In general we havA r=0.05, such that the extrapola- '

. oF operatorso; - cut world lines. This is certainly not a prob-
tion to A7=0 leads to values of the observables within thejoy for finite-size systems, where 8 spin symmetry is

statistical error bars. The inverse temperajfiiis taken such conserved. Sincé’(&) is the probability distribution for the

that the energy is well converge@=20 for 16<16 and  gyantum antiferromagnet, the algorithm does not suffer from

BJ=30 for 24x 24 sites, and therefore, the data correspondsign problems on bipartite lattices and nonfrustrating mag-
to the ground state. As the evolution operator for the holes igetic interactions in any dimension.

a bilinear form in the fermion operator§(i,j, , E) can be We now address the explicit calculation &fi,j, 7, o),
calculated exactly, in contrast to a direct implementation inthe Green’s function for the fermions given a spin back-
the loop algorithnf®?’where fermion paths are sampled sto- ground. In a first step, we introduce additional complete sets
chastically.G(i,j,7,o) contains a sum over all possible fer- of single fermion states in the numerator of B8}, such that
mion paths betweeni 0)and (,7). The numerical effort to  G(i,j,r,o) becomes

fi e A0 wn-12)] f, )
. - (n,1) (n—1,2)
G(i,j,ro)=(vlfj| 2 i) !
[ D <<T(n,1)|e ATH"~‘| U(n—1,2)>
—AH2(an 19,00 11) —AHY( ,
<f|(n—l,2)|e THAT(n-12) 7 (n-1,1) | f|(n71’1)) (f|(1’2)|e 0@ 71))| f|(1’1)>/ . fT| 0)
- 5 e e — 2 \ i
(om-1]e” ™M oh11)) (oagle” ™l o) o
- [ Lo [ [
= ; [5{(nv1)u l(O'(n,l) ’U(”_lvz))Q:f)lvz)Uz(o-(n_1'2)'O.(n_l’l))li:—i:i; . UZ(O'(l,Z)ao'(l,l))|ii:35i(1'1)], (8

where the sum Z; runs over all possible inter- a systematic erro©(A7?). The loop algorithif® has been
mediate one-particle states in the fermionic Hilbertextended to work in continuous tirfwhere this systematic
space{| f;)}. The propagator(;ﬁp |eAmH(op.op-1)]| f|p71)/ error is eliminated. However, in our case, it is not sufficient
(o, le=AH| ,_1) are only nonzero, wheh, andl, belong to formulate the spin dynamlgs in continuous time, but we
to the same plaquette. As the fermions only appear in bilinhave to reformulate the algorithm such that the propagation
ear form, these propagators can easily expressed oW of the fermion takes place in continuous time synchronously.
matrices (N is the size of the systemThe entries of these The following problems will arise, when a continuous time
matricesUl'Z((rp ,04) are nonzero only at the positions that loop algorithm is used to sampR():
correspond to a plaquette in the checkerboard breakup, and (i) the NxN matricesU (o ,0,) to propagate the one-
therefore only two pOSitiOl’lS in the matrices per line are I’lon-partide states are no |onger sparse matrices formed by 2
zero. The possible values for these entries are given in Tablg 2 matrices only, and they have to be recalculated from
l. As we are only interested in the Hilbert space with noscratch for every spin configuration.
double occupancy, we have to enforce the constraint at one (ji) In the case of continuous time the average number of
single position of the propagation by projecting out the fer-matricesU(o,,0) for the propagation of the fermions is
mionic states that do not respect the constraint. We do so at gJN as opposed to- 8/A 7 for discretized time. At least
7=0 corresponding to the first propagation. for large systems the number of matrices is therefore much
As discussed above, we use a loop algorithm with disfarger for continuous time than for discrete time. Both points
cretized imaginary time, to sample the probability distribu- (i) and ii) will reduce the efficiency of the algorithm drasti-
tion P(c}) of the Heisenberg antiferromagnet, which leads tocally.



PRB 62 SINGLE-HOLE DYNAMICS IN THE t-J MODEL ON A ... 15483

TABLE |. Contributions for the propagation of the hole on one [ "
plaquette. The first column shows the weight for a propagationT\100
where the hole stays on the same sitewhereas in the second - (&)
column the weight corresponds to the propagation to the adjacenfl 10 ¢
site. The third column represents the spin background on the pIa-C:«
quette. E 1k
O
X—X X+ 6—X Spin configuration ) ) ) ) , ) ) )
0 0 1l 0'10 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Tt
ol
coshArt) —sinh(A+t) T — y . y . . y .
w01 -\jit***a-
T T l|~ *+~r+++_k*++%
coshA7t) 0 Tl ,Q;O(_); - m‘“"ﬂm
exp(Ar)/2)cosiATI2) UL 7 =10 T
sipge b ®
0 sinh(At) 1T =
E s
exp@rIiQ)sinh@r2) 4 o =10
e S -
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Tt

The one-particle spectral function
FIG. 1. The energy of the lowest excitation is extracted from the
2 _ N N—1 imaginary time asymptotics of the Green'’s function, as indicated by
+ .
ON >| ow—EoTEf ) the dotted line fofa) J=0.4t (both forA7=0.2 andA 7=0.05) and
(9 (b) J=2t (A7=0.05) in a 16<16 lattice.

AK,0)=2, [(F,N=1]cg,
f.o

is connected with the Green'’s function in imaginary time at o
T=0, by the spectral theorem First we consider in Sec. Il A the lower edge of the spec-

trum. This is a quantity that can be obtained by several other
| o exp —Tw) . methods, including various Monte-Carlo algorithms, such
G(k,m)= jfx d“’TA(kv“’)- (10 that the relative accuracy of each one and the region in pa-
rameter space, where each method gives best results, can be
Here| ON ) is the ground state at half-filling with ener@y) ~ assessed. In our case, this quantity is obtained from the
and| f,N—1) are states in th&l—1 particle Hilbert space asymptotic behavior of the one-particle Green’s function in
with energyE} ~*. We perform the inversion of Eq10), ~ imaginary time. However, not only the energy but also the
that due to the statistical errors G‘(IZ, 7) is an extremely weight of such an excitation can be extracted from the as-

il-posed problem, by means of MaxEnt, where m(slz,w) ymptotics, leading to the quasiparticle weight, as discussed

: ) . in Sec. Il B. The present algorithm is up to now the only one
obtained is the one that maximizes the probabifigA|G), capable of extracting this information for the) model free

_given the Green's functiorG(k,_T). Correlations in _the_ of approximations on large lattice$n general up to 16
imaginary time data were taken into account by consideringc 16 and forJ/t=2 up to 24x 24 site$. For small lattice

the covariance matrix. The default model for the MaxEntsjzes, the results can be compared with exact diagonaliza-
analysis is taken flat vy|thout prior knowl_edge. Detaﬂs labOUttions, whereas for large systems only comparisons with ap-
MaxEnt can be found in the comprehensive review article byyroximate methods like SCBA can be made. Finally, the
Gubernatis and Jarréﬁ. _whole spectrum is considered in Sec. Il C, where the spec-

Finally, we would like to stress, that part of the dynamical ral function A(Iz,w) is discussed. Using the information

data presented below were obtained without use of MaxE om the lower edge of the spectrum, a resonance above the

but directly extracted from the imaginary time Green’s func- S o - S .
. o . > - . quasiparticle band is identified, which is very well described
tion. This is possible due to the high statistics and stab|I|tyas a string excitation.

attainable with the present algorithm. The slowest decaying
exponential, that corresponds to the excitation with lowest
energy can be extracted simply by fitting the tail of the

Green’s function at large values ef This leads to the value - )
of the excitation and its corresponding weight, as shown in The accuracy and stability of the data allow, in our case,
Secs. IllA and Il B. Furthermore, in connection with Max- to obtain the lower edge of the spectrum directly from the
Ent, the next higher excitation can be obtained by subtractin§lope of the one-particle Green’s function as a function of
the contribution from the lowest one from the Green’s func-Imaginary timer, for large values ofr. Figure 1 shows the

tion. This procedure is discussed in Sec. Il C. asymptotics in imaginary time for two values of the coupling
constant, showing that the most accurate results are obtained,

whenJ/t=2. J/t=0.4 is the smallest coupling, where such a

procedure can be applied. In order to check the results ob-
We concentrate in the following on three aspects of theained at the smallest coupling, we made additional calcula-

dynamics of a single hole in a Heisenberg antiferromagnetions at Art=0.2 (all other calculations are done atrt

A. The lower edge of the spectrum

Ill. RESULTS
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FIG. 2. Lower edge of the spectrum along the symmetry lines of the Brillouin zon@)fdft=0.4 and(b) J/t=2 in a 16 16 lattice.
Comparisons are made with VM@ircles, GFMC for J/t=0.4 (X), and series expansigRef. 21 for J/t=2 (dotted ling.

=0.05), where larger values aft can be reached. The re- find that their energies are within the error bars of the exact

sulting Green'’s functions are the same within the error barsppmc calculations. Atk=(0,0), the variational result is at
indicating a smallA 7 effect. the lower edge of the error bars of our calculation, and have
Figure 2 shows the lower edge of the spectrum Jr  the smallest statistical error of all three approaches. At this
;0.4 andJ/t_=2 in a 16x 16 sites system. The energies areéspecifick point both GFMC and our approach have large
displayed with respect to the ground-state energy of thg .y ations before the state with lowest energy is clearly

Heisenberg antiferromagnet. The results are compared with,-heq. As mentioned above, additional calculations with
A7t=0.2 were performed, in order to check the results ob-

variational Monte CarldVMC),?® Green’s function Monte

Carlo (GFMO),* and series expansiofSwhenever data is tained, without observing significant changes.

available. AtJ/tzO.4_[F|g. 2(a)], where our results are most Figure 2b) shows that atl/t=2, where our algorithm
affected by fluctua_ltlons, we Ob_S?r"e 9000! agreement Wit ads to much more accurate results, the variational results
GFMC. The behavior of the statistical error is similar in both ;. 14 high in energy, but still close to our numerically
methods, with larger fluctuations arounkt=(0,0) and  exact ones. For values dft=1, additional results from se-
(7r,7). Around k= (7,0) our results show somewhat larger ries expansiorfs are available. A/t=2 we observe in gen-
fluctuations. Ford/t=0.4 VMC?2® also appears to be very eral a very good agreement. Around,() we see that series
accurate concerning the lower edge. When its energies aexpansions slightly underestimate the energy of the hole. The
compared to our calculations and the GFMC technique, weeneral features of the lower edge are not substantially modi-

08T ﬂ J/t=06 (a) 1 L4r ]l J/t=08 (b)
04 } % . or 1 11 1
= ot 1 T 06T 1
1 I
—04f t t . I 1 0.2t f i T £
e
A Ppifigd . [P Fp
—08f . —o2ft .
©,0) (m 0. 0.0) ©.0) ) ) 0.0
7.6
247 IL Jt=12 (c) 1 Jft=4 (d
20 1 t 1 T2
+ J‘.f N *
= + | = 68T
v + © 1 1”[ 1 i1
121 * : 1 : ] oaf 1 I t :
L. -I-_}{_-I-{-*{__}i- ol {'{- s -I—_I__I_.I.‘I-{-_I__I_;-%
08 4 1 ’ I
©,0) (m,m) o ©,0) ©,0) ) o ©,0)

FIG. 3. Lower edge of the spectrum along the symmetry lines of the Brillouin zon@fdft=0.6, (b) J/t=0.8,(c) J/t=1.2, and(d)
J/t=4 in a 16 16 lattice.



PRB 62 SINGLE-HOLE DYNAMICS IN THE t-J MODEL ON A ... 15485

2 T
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* 0.4 __’ﬁ—ﬁ—é’—&
0.3
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FIG. 4. Bandwidth of the lower edge as a function bt. 0.5
€(0,0)— e(/2,m/2) in a 16X 16 lattice compared with exact diago- 0.4 W
nalization (4<4 sites, open circlés GFMC (cros3, VMC (open N 8'3 i © k= (r/2/2) ]
boxes, SCBA (dashed ling and series expansiofflll line). o1t )
0 0.1 0.2 0.3
N7V =1/L

fied when going fromJ/t=0.4 to J/t=4. This is shown in
Fig. 3, where the only changes observed are an overall shift FIG. 5. (a) Extrapolation of (K, 7)=G(K,— r)exd(e,
in er:lergy \/_Vl'tr;hresbpecéI tq dt?he I:Elsemter_g ant|ferromaggetfafl1geozf] for N=8%8 and ?4< 24 atJ/t=2. Finite-size scaling for
a change in the bandwidth. The shift in energy can be foly, ¢ 5 o) and(e) K= (.0).

lowed by considering the dependenceebir/2,7/2) on J/t.
This dependence is rather accurately described It - . L o
_ _3_28p+ a,(J/1)?3 wherea, is the fi?/st eigenvalu(gyg‘ the A flat band on a similarly wide region in the Brillouin
dimensionless Airy equatiofsee Fig. 13 in Sec. IlIiC Such ~ Zone aroundk=(,0) is also observed in photoemission
a scaling of the hole energies is found in th@, model in ~ SPEctroscopy of cuprates close to the Fermi energy in the
the continuum limit for small values d,,2%°12when loops optimally doped compounds. As doping is reduced, that por-

along the path of the hole are disregarded. In that case, t %Orrr]e?jf ':2eh?pr?ecrtrgrr?e?piggsuﬁtiﬁ)siﬁuti%gﬁﬁ daondeév?:]gar:telisar;ans—
constant is—2+z—1, wherez is the coordination number. 9 gies, P '

. . . . . his portion is about 2 (=300 me\j above the minimum at

The resulting string picture gives an accurate description o _ (w/2,m/2) -The energy difference between the points
the lowest excitations close th=(m/2,7/2). As will be b 77/ ’77/ ' e gy . imulati b Z
shown in Sec. lIC, the next higher excitation can also be—_((()gszizzl)o;rz~ J72(Z‘To'?)\]lSOIzt)ou;hzmrq;tr?g:)?arageogrror
deiﬁgl?fed4b;/htgv?/ss:;:2gbggcotl\l:vri(cal.th obtained in our simulationscorresloonOIS mainly tQ/t<1. No significant dependence on
compared  with exact diagonalizatiohs, GFMC qlt can be observed in the whole range undgr conS|dera}t|on,
SCBAL2 \MC 2° and . iRk F, 3/ <0’8 in contrast to the results from SCBA and series expansions.

’ "~ and series expansions.For J/t<0. However, it could be that thé dependence is masked in our
good agreement is found .among aII'methods, whereas fo<,rase by large fluctuations, taking into account that the varia-
Ia_rger values Oﬂ'. only series expansions a_nd V_MC ad'€€ions observed for this guantity by SCBA and series expan-
with our data. This, and the fact that the string picture 9iVeinns are much smaller than the one observed for the band-
a good representation of the lowest lying states, suggest thWidth. SCBA (Ref. 11 gives values ranging from 0.17

a perturbation expansion as performed in series expansio §/t=1) t0 0.12 (J/t=4), that are smaller than the values

can be used .to interpret the distinctive featuresaof the IoweWe obtain. On the other hand, series expangiooistain val-
edge. In particular, the flat band observed arokrd 7,0)

and the fact that the degeneracy between this pointl%nd
=(m/2,72), suggested by some approachless clearly 047 (a) k=(n,0)
lifted, as shown by our simulation, are very well reproduced A
by series expansions. The flat bands can be well observed for 02
all considered values aod/t, when considering the lower
edge(Figs. 2 and Band the complete spectral functigrig.

11). Our data clearly show fai/t=0.6, that the neighboring 04 () k= (n/2,7/2)

points of k=(,0) are generally slightly higher in energy. N w
The band in this area does not seem to be completely flat, but 02

it changes its curvature with local minima of the dispersion

0 0.1 0.2 0.3

at the points {r,8) and (7— 6,0), when going along the N
(1,00 and (0,2) directions, respectively, with theaveatthat ) )
they are well defined beyond the error bars only Jar>1. FIG. 6. Finite-size scaling ofZ(k) at J/t=0.6 for (a) k

In all the cases we find~0.37. This region with a very flat = (#/2,%/2) and(b) k=(=,0). The crosses are values from exact
band spans an extremely large area in the Brillouin zone. diagonalization resultéRefs. 33 and 32
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FIG. 7. Quasiparticle weight as a function dft for K
= (w/2,7/2) (circles andk=(,0) (X). The result from exact di-
agonalization(Ref. 33 in a 4X4 lattice is given by the triangle.
The data points al/t=0.4 are considered as an upper bound.

FIG. 9. Finite-size scaling for the quasiparticle weight@t
=(m,m) for J/t=2. The cross in the thermodynamic limit is
(2m)2, m being the staggered magnetization.

ues between 0.1%atJ/t=1 and 0.2 at J/t=2.5. The val- quasiparticle weight is only accurate fbit=0.6. Below that
ues obtained by series expansions are consistent with oi@lue, the quality of the data is less satisfacttge Fig. 1
results for large values af/t. and, forJ/t=0.4 the value presented can be taken only as an
upper bound. The size dependence &fw/2,7/2) and
Z(,0) is not very large and scales linearly with the inverse
linear size of the system fad/t=0.6, in agreement with

The quasiparticle weight is the weight of the exponentialSCBA!! The size dependence at/2,7/2) is systematically
with the slowest decay, that is the exponential that detertarger than at €,0). The sizes considered are< L, with L

B. The quasiparticle weight

mines the lower edge of the spectrum. This weight is =16, 12, 8, and 4. AB/t=2 we use additionally a 2424
A A lattice. Values from exact diagonalizatisdi>3 were in-
Z(k)= lim G(—7,k)exd (eg— €g) 7] (11 cluded when available.
—To Figure 7 shows that the extrapolated quasiparticle weight

In the following we focus on the thermodynamic limit of INcréases withl/t both fork=(,0) andk=(m/2,m/2). At
7(R) for th toré=(70) andk=(m/2.7/2) . Fi J/t=4 the quasiparticle reaches about 80% of its maximal
- §eg SO;nde6WsE;1VoewvtehCec:‘Iirnit_efgée)sacglin; gr: tr;gse)iwclagg)oint\glalue' The changes of the quasiparticle weight with are
for J/t=2 andJ/t—0.6, respectively. For botk andJ val- mall whenJ/t=1 and the slope becomes steeper for smaller

. S Co ; values. Estimates of the quasiparticle weight were given both
ues, an appreciable quasiparticle weight is obtalned,. demorg)—y VMC (Ref. 29 and SCBA! the difference being rather
strating that the lower edge of the spectrum describes thgmall. The general trend is that VMC overestimates it at

band of a coherent quasiparticle. The determination of the

0.5

0.5 —_— : x\}\ - , j/,

04 . - é 5] 9y i\}\%{ I

03f  FE @ - NHL
%02 L - ;3 | HHHHHHH /HH&/{/{

0 05 1 1.5 2 15 3 35 4
J/t 017

FIG. 8. Quasiparticle weight as a function dft for K
=(m/2,7/2) (circles and k=(,0) (X) in a 16x 16 lattice (the

values forJ/t=0.4 are an upper bound onlyWe compare our (0,0) (m,0) X (m, ) (0,0)
result with SCBA, where the dashed line corresponds to the quasi-
particle weight fork=(,0) and the full line corresponds to FIG. 10.Z(I2) along the symmetry lines in the Brillouin zone for

=(/2,7/2). The data points were taken from Ref. 11. J/It=2 in a 24X 24 lattice.
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FIG. 11. Spectral function for a 2616 system anda) J/t=0.4, (b) 0.6, (c) 0.8, (d) 1.2, (e) 2, and(f) 4. The vertical lines indicate
resonances above the quasiparticle pedf@a(m/Z,w/Z) as obtained in Sec. Il C, Fig. 16.

small J whereas SCBA overestimates it at larfyd-or defi-  exponential. In contrast to this, the estimate of SCBA is ap-
niteness we compare our results with SCBA for a<li6  proximately 0.45 and that of VME&O0.32. Furthermore,
system in Fig. 8. We find a rather good agreement betweegorella showed thatZ(Q)/Z(0)<(2m)2, where m?
both methods. As in our cas&(w,0)>Z(w/2,m/2) for all  _ g §)/N, 5(3) being the magnetic structure factor at the
considered valges al/t. A,t small values ofJ (0'02,15‘]“ antiferromagnetic wave vector. The equality is reached in the
=0.5) SCBA finds a scaling of(w/2,m/2)=0.31)"" and thermodynamic limit. Figure 9 shows the evolution with sys-

Z(m,0)=0.350>". For Jjt=>1, the results from SCBA over- tem size ofZ(Q) together with results from exact diagonal-
estimates the quasiparticle weight at the two considéred ization for a 44 system and (&)2~0.37 for L—cc. Al-

points, with an increasing deviation for larger valuesiff N
Based on the quantitative agreement of SCBA with our rethough large error bars show that the determinatiod &)
sults for smallJ, we can confidently conclude that the qua-is less satisfactory fok=Q than atk=(m/2,7/2), the data
siparticle atk=(0,7) and (w/2,7/2) should be finite for all are consisteilt Witrl the exact result. It was further sugg&bted
values ofJ in the physically relevant regioG.e., J/t=0.1). thatifZ(k+ Q)/Z(k)=(2m)? is satisfied fok#0, ajumpin

As mentioned in the introduction, there are exact resultshe quasiparticle weight should be observed on crossing the
for the quasiparticle weight at the supersymmetric point inporder of the magnetic zone. Figure 10 sh&gk) along the
two dimensions® On the one handZ(k=0)=1/2, a re- symmetry directions in the Brillouin zone for a 224 sys-
quirement that is fulfilled by our simulation, where the tem andJ/t=2. Our data do not show any sizable jump.
Green'’s function at that particul&rpoint consists of a single Unfortunately, it is not possible to consider arbitrarily long
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FIG. 11.(Continued.

imaginary times since as E{L1) shows, the errors are am- nential corresponding to the lowest enefgge Fig. 12 The
plified exponentially. Therefore, our results cannot be conthus modified Green’s function can now be used as input of
sidered as a proof of continuity. However, in view of the MaxEnt.
good agreement with the above-mentioned exact results, we Before proceeding to the results, let us remark that, when
consider them as a convincing evidence. the MaxEnt results obtained with the modified Green'’s func-
tion, i.e., after the subtraction of the lowest exponential, are
viewed closely, on occasions, an additional peak appears at
) ] the bottom of the spectrufithis effect can be seen, e.g., for
The results discussed in Sec. Ill A for the lower edge of( /2 7/2) in Fig. 13. To exclude, that this peak corresponds
the spectrum and in Sec. llI B for the quasiparticle weightyy 5 real physical effect, we take several modified Green’s
can be recognized in the spectral functiig. 11) obtained  fnctions, that are consistent with the exponential of the low-
by using MaxEnt. For clarity, the maximum of each curve isgst peak, within the statistical error. Therefore, we take the
normalized to 1 in the plots. The small numbers on the righjgwest and the highest exponential, that are consistent with
hand side of the figures correspond to the maximal value ofhe results obtained in Sec. Il A, and use them as input of
A(k,w) when the integrall” .dw A(k,w) is properly nor- MaxEnt. As can be seen in Fig. 14, the new peak that ap-
malized tow/2. The lower edge of the spectrum remains likepears below the low-energy peak of the original function,
in the previous section, but the accuracy of its location inand hence is artificial, is only observed in two cases with

A(K,w) is reduced by MaxEnt. The peaks around#)0and  Varying position, whereas the two other peaks can be always
(m/2,w12) are generally very sharp, in agreement with theobserved, no matter which exponential is subtra¢eaays
fact that a finite quasiparticle weight was found in Sec. 111 B.Within the statistical errojs The position of these high-
A transfer of weight from high to low energies can be ob-€nergy peaks is not changed by the different subtractions,
served, wherd/t is increased, consistent with the increase inonly the width is affected. In all cases discussed, a small shift
the quasiparticle weighfFig. 7 in Sec. 1l B. of these structures can be observed with respect to the ones
When compared to the one-dimensiofiD) case™ it is in the spectrum without the subtraction. However, the posi-
seen that the high-energy excitations in the 2D case are efions assumed by these structures after the subtraction is not
tremely broad. The total bandwidth remains essentially conaffected by the different subtractions within the values al-
stant as a function o in contrast to the 1D case, where it lowed by the statistical errors. We conclude that the initial
scales as #%+J.
For values of the coupling in the rang&<2 we observe

satellite peaks in the region arouke: (7/2,7/2) (Fig. 11)

next to the lowest energy peak, which is extremely sharp and
corresponds to a quasiparticle. Th@eak cannot be handled
satisfactorily by MaxEnt. As can be seen by comparison of
Figs. 2 and 11, MaxEnt gives some weight at energies lower
than the band edge. This additional weight has to be bal-
anced in some way, such that this error propagates to the
other side of the peak. Small peaks in the vicinity of th® FIG. 12. Original Green’s function and Green’s function with
peak, therefore, cannot be resolved. In order to resolve strugubtraction(lower curve for a 16x16 system andl/t=2 at k
tures close to the quasiparticle peak, we subtract the expe=(=/2,7/2).

C. Spectral function and string excitations

W, e
3 35 4
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FIG. 13. Original spectrunifull line) and after subtraction 3 e
(dashed ling along the line ¢/2ky). In the direction toward
(7r/2,0) the lowest resonance approaches the position of the quasi
particle peak and merges with it, whereas towand2(s) the dis- ; . )
tance stays approximately constant. In the second case, the mai |-, N .
effect is a broadening of the resonances. Shown is>alBssystem e ]
with J/t=0.6.

small shift is due to the inability of MaxEnt to concentrate
the weight of the delta function of the quasiparticle peak to a
single energy value. 7

The result of the procedure described above is shown ir 0 2 4 6
Fig. 15. For (r/2,7/2) there are only little changes of the w/t
position of the maxima of the existing peaks at snil FIG. 14. Green's function and resulting spectral function before

compared to the full spectral functidexcept the low-energy  anq after subtraction of the lowest exponentz(k) exd —e(k7)] on
pe.ak, that disappearedVe can further observe, that the sat- a 16<16 lattice, J/t=0.6, andK= (w/2,7/2). We estimateZ(K)
ellite peak next to the low-energy pe_ak can now be seen f0r=o.17eto.025 ande(K) = —0.90+0.03 (see Sec. lll A In () we
all values ofJ/t=<2. One should notice, that no additional h o ) .

. . . ow the original Green's functioftop curve, and results when
weight has been produced at high energies, but the normal-

ization has changethgain the maximal value is normalized subtracting the exf’onemials co”eSp?nding to the val(é3=
to 1, not the area of the spectral function (—0.90-0.03), €(k)=—0.9Q, and e(k)=(—0.90+0.03). The

At (m/2,712) [Fig. 15a)] the resolution of the second- MaxEnt results inlb) correspondfrom bottom to top the original

lowest excitation is quite clear, when applying the aboveSPectral function, and to the results fetk)=—0.9Q, (-0.90
method, whereas atn(0) [Fig. 15b)] the results are either ~0-03). and (~0.90+0.03)t, respectively. For Fig. 15, we sub-
not accurate enough, or the corresponding excitation i§act the exponentia(k)exq —e(K)7], and consider the mean val-
weaker. Ford/t=1.2 the resolution is not good enough to ues ofZ(k) and e(k).
separate the two resonances at(@). Generally the excita-
tions at higher energies atw(0) are broader than at
(7/2,7/12), so that the positions of the maxima are not a
well defined. Similar structures were observed in exac
diagonalizatioft” and in SCBA? and were ascribed to string
excitations.

When the string picture is valid, as it is expected in the
t-J, model the hole is confined by a linear potential, leading
to (k independenteigenvalues of the energfy*?°given by

excitations are given fok= (m/2,m/2), and are compared to
Sthe predictions from SCBA. The error bars on the second and
hird peak are obtained as the width of the MaxEnt peak at
alf intensity, the error bars of the first peak are taken as in
Sec. Il A. We find, that ford/t=<2 the lowest peak can be
accurately  described by eq(7/2,7/2)=—-E{—3.28
+2.33(0/t)%*, whereE,, is the Heisenberg energy per site,
and the second peak bye (7/2,7/2)=—E,—3.28
+4.08(/t)%%. The value of 3.2B+E, is the result ob-
E, /t=—2\3+a,(J,/t)?3, (12  tained from SCBA}? whereas the prefactors of/t)** are
exactly the values of the dimensionless Airy function, imply-
where a, are the eigenvalues of a dimensionless Airying that the first two peaks behaveithin our error bars
equation'® The first three eigenvalues are given by,  exactly as it is expected by the string picture. In contrast to
=2.33, 4.08, and 5.52. In Fig. 16 the results for the first threehis, a fit from SCBA for the first three excitations in thd
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FIG. 15. Change of the spectral function when subtracting the first excitatiq@fétr/2,77/2) and(b) (7,0). The energy is shifted by
an arbitrary amoung (¢=—2.8,—2t,—t,+t for J/t=0.6,0.8,1.2,2, respectivelyin order to display the spectra for different valueslaf
in the same energy range. The dotted line is the original result, the full line gives the modified one.

model for values 0f)/t<0.4, results il,=2.16, 5.46, and reconcile this paradoxical situation is given by the very good
7.81, also with the exponent 213 leading to a clear dis- quantitative agreement between QMC and series
agreement with our data. The third peak that can be resolveeipansion&" for the dispersion of the quasiparticle and its
cannot be explained by the string picture, since its distance tbandwidth for a fairly large range id. As shown by the

the lower band edge is independentJoind has a value of expansion around the Ising limit, a coherent motion of the
about 4. The existence of a string excitation is not restrictedhole is made possible after the creation of strings due to
to (7/2,7/2), but it can also be observed betweeriZ,7/2) hopping processes, by appropriate spin flips, the shortest
and (w/2,37/4). This is demonstrated for the valuFt string being of length two. The lowest-order contribution ap-
=0.6 (see Fig. 13 pears in third order, where the pointg/@,7/2) and (r,0)

The results above lead to the conclusion that the lowesare degenerate. Fourth and higher-order processes remove
excitations can be well described by the string picture. Howthis degeneracy, giving rise to a band that agrees qualita-
ever, it should be kept in mind that the string picture origi-tively very well with the one obtained in QMC. Therefore on
nates in the Ising limit fod/t<1, and that it is based on the top of the coherent motion determined by, stringlike ex-
continuum limit, that seems far away from our case withcitations are possible and relatedpandt. Such a possi-
strings of lengths between two and a maximum of five latticebility was already proposed by Ban, Poilblanc, and Laugh-
points, that correspond to the first two string excitationslin (BPL)*? on the basis of exact diagonalizations on small
Moreover, the string picture predicts a band without dispersystems and is confirmed unambiguously by our simulations
sion, that is clearly not the case in our simulations. A way toon large systems.

At J/t=2 the excitations fall below the values predicted
by the string picture. In those regions the string picture is no
longer valid, as the relaxation of the disturbed spin bonds is
faster than the motion of the hole.

127

IV. CONCLUSIONS

A new QMC algorithm was presented that allows a rather
accurate determination of the single-hole dynamics in a two-
dimensional Heisenber§—1/2 antiferromagnet. The main
advantages of this algorithm are the combination of the loop
algorithm for the update of the spins and the exact evolution
. . . , . of the hole for a given spin configuration. Due to the diverg-
0 0.5 ! L3 2 ing correlation length at zero temperature, large autocorrela-
tion times should be expected for algorithms with local up-

FIG. 16. The first three excitations &= (m/2,m7/2). At J/t ~ dates, a problem that is avoided here by the global update of
=0.4 only two peaks were resolved. The lines represent the solihe spins. On the other hand, the exact evolution of the hole
tions obtained by solving the linear string potential for the hole infor a given spin background avoids further statistical errors
the t-J, model. that would be introduced if the hole is updated stochastically,

e(n/2,7/2)
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as in recently proposed approacf&$’In fact, the accuracy BPL,? where the composite nature of the quasiparticle is
achieved allows for a determination of several dynamicabldvanced. In previous exact diagonalization studies, the ex-
guantities on large lattice sizes, leading to the possibility of astence of such resonances, that were first observedia 4
finite-size scaling of, e.g., the quasiparticle weight. lattices® were not clearly identified on larger latticBsVe
First(Sec. Il A) we discussed the lower edge of the spec-have shown in Sec. Il C that they can be quantitatively iden-
trum that is obtained directly from the asymptotics in imagi-tified with string excitations. However, they are visible only
nary time of the Green'’s function. This quantity is accessiblén a rather narrow region along the ling= /2, m/2<k,
to different techniques, that are however, with the exceptions 37/4, such that in small lattices with up to 26 sites, these
of GFMC, either restricted to small lattice sizes or approxi-features can be very much affected by boundary effects. Fol-
mate. The comparison shows that very accurate results atewing BPL, the quasiparticle can be viewed as a light holon
given by series expansions over a large range of parametersttached to a spinon by a confining potential, the one that
supporting thus the interpretation of the relevant physicagives rise to the spectrum of string excitations.
processes for the coherent motion of the hole in the frame of A comparison with experimenits ®fails due to the small

a perturbative expansion around the Ising limit. This picturegap petween the lowest peak kt (7/2,7/2) and the flat
is further enforced by our study of the quasiparticle weightband around IZ=(7T 0). It was suggested by several

(Sec. lIIB) and the spectral functiokSec. II1Q. In Sec. ) 11,151819 hay this shift might be obtained introducing

B it was shown, that indeed the lower edge of the Spec'hopping terms to second and third nearest neighbors. Fur-

trum describes the coherent propagation of a hole with ﬁnit“?hermore it was found in exact diagonalizatibhthat such

quasiparticle weight. This is the case for all the paramete . . . .
ranges studied, and due to the good agreement with SCB&Xtra terms lead to a noticeable reduction of the quasiparticle

. ~_'Weight. Since exact diagonalizations with second and third
especially for small values af, one can conclude that this g g

. . nearest neighbors in lattices with 18 and 26 sites suffer con-
coherent propagation takes place for essentiath0. Fur- g

thermore, by considering structures next to the lowest pea iderably under finite-size effects, a discussion of the influ-
. ' . o nce of longer range hopping on the quasiparticle weight
in the spectral functioiSec. Il O, it is seen that the lowest 9 9 bpIng d P 9

T - must be carried out in much larger lattices. Such studies are
excitations around the wave vecthr(7/2,7/2) are very presently under way.

well described by the levels of strings usually discussed for
the t-J, model, giving further support to the perturbative
picture, where the hole creates strings during its motion
through the lattice, that are healed by exchange processes,
leading thus to coherence. In fact, the strings for the first two This work was supported by Sonderforschungsbereich
levels, that agree quantitatively with our simulations, corre-382. The numerical calculations were performed at HLRS
spond to a length of two and five lattice sites. Strings ofStuttgart. The authors thank the above institutions for their
length two are the dominant contributions in series expansupport. We are grateful to P. Horsch, E. Manousakis, D.
sions for the dispersion of the quasiparticle. Moreover, ouiPoilblanc, P. Previek, and S. Sorella for helpful and in-
findings showing the existence of string resonances abovstructive discussions, and to CECAM, where part of these
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