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Spontaneous symmetry breaking in the colored Hubbard model

Tobias Baier,* Eike Bick,† and Christof Wetterich‡

Institut für Theoretische Physik, Universita¨t Heidelberg, Philosophenweg 16, D-69120 Heidelberg, Germany
~Received 23 May 2000!

The Hubbard model is reformulated in terms of different ‘‘colored’’ fermion species for the electrons or
holes at different lattice sites. Antiferromagnetic ordering ord-wave superconductivity can then be described in
terms of translationally invariant expectation values for colored composite scalar fields. A suitable mean field
approximation for the two-dimensional colored Hubbard model shows indeed phases with antiferromagnetic
ordering ord-wave superconductivity at low temperature. At low enough temperature the transition to the
antiferromagnetic phase is of first order. The present formulation also allows an easy extension to more
complicated microscopic interactions.
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I. INTRODUCTION

The Hubbard model1 is one of the most studied mode
for electron systems. In particular, the two-dimensio
model appears to be a good candidate2 for an explanation of
high-Tc superconductivity. Despite its simplicity, several o
stacles render even its approximate solution a difficult th
retical task. As a fermionic system it is not easily access
to numerical simulations. Furthermore, there seems to b
competition between antiferromagnetic order andd-wave su-
perconductivity. The operator ford-wave superconductivity
is constructed from bilinears involving fermions at differe
sites, whereas antiferromagnetism manifests itself by an
ternating sign of a local bilinear at different sites.

Recently, promising investigations using approximatio
to exact renormalization group equations3 have been
started.4–6 The difficulty of these approaches, however, co
sists in the high complexity of the equations if the full m
mentum dependence of correlation functions for several
mions is kept. In particular, the low-temperature phases
only be realistically described if effective interactions i
volving more than four fermions are included. In our opini
a prerequisite for a successful use of these methods in
ordered phases is a simplification of the momentum dep
dence of the interactions. This can be done if the m
prominent physical degrees of freedom are identified.
propose here a version of the Hubbard model where the
evant order parameters correspond to translationally inv
ant vacuum expectation values of scalar fields. We will
that this formulation can describe the low-temperat
phases in a very simple way. We therefore hope that it c
stitutes a good starting point for a detailed renormalizat
group analysis.

We consider the partition function of the Hubba
model7

Z5E DĉDĉ* expH 2S@ĉ,ĉ* #1E
0

b

dt

3(
i

~h i* ĉ i1h i ĉ i* !2S̃j J , ~1!
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S@ĉ,ĉ* #5E
0

b

dtH(
i

F ĉ i* ]tĉ i2mĉ i* ĉ i

2
1

6
U~ ĉ i* tĉ i !~ ĉ i* tĉ i !G1(

i j
ĉ i* Ti j ĉ j J ~2!

as a functional of sourcesh, h* of the fermions as well as
sources of fermion bilinears (S̃j ) that will be specified below
@see Eq.~9!#. The spinorsĉ i5(ĉ i↑ ,ĉ i↓), ĉ i* 5(ĉ i↑* ,ĉ i↓* ) ~as
well as the fermionic sourcesh i ,h i* ! are two-component
Grassmann variables depending on the Euclidean ‘‘timet

with antiperiodicity ĉ i(b)52ĉ i(0), ĉ i* (b)52ĉ i* (0).
Hereb51/T is the inverse temperature. We treatc andc*
as independent Grassmann variables, even though the
tion is reminiscent of a type of complex conjugation whi
also invertst and reorders all Grassmann variables.~In quan-
tum field theory the invariance of the action under this d
crete transformation is related to Osterwalder-Schrader p
tivity.!

The indexi labels the sites of the lattice. We concentra
on a quadratic lattice in two dimensions,i 5(m,n), m, n
PZ, with next neighbor interactions whereTi j 52t for i,j
next neighbors andTi j 50 otherwise. They describe th
probability amplitude of fermion tunneling between differe
lattice sites. After a Fourier transform the Fermi surface
U→0 is given by

22t@cos~aq1!1cos~aq2!#5m,

uqi u<2L, L5p/2a, ~3!

with the lattice spacinga. The local Coulomb interaction o
the fermions involves the Pauli matricest and can be rear-
ranged, e.g., (ĉ i* tĉ i)(ĉ i* tĉ i)523(ĉ i* ĉ i)(ĉ i* ĉ i)5

26ni↑ni↓ with ni↑(↓)5ĉ i↑(↓)* ĉ i↑(↓) . ~Here the term local re-
fers to our neglect of the interaction of fermions located
different lattice sites.! As usual, the expectation values o
operators are related to appropriate derivatives ofZ with re-
spect to the sources. In addition to the discrete lattice s
metries, the model has two obvious continuous symmetr
the SU~2!-spin rotations and the U~1!-phase rotations corre
sponding to charge conservation.
15 471 ©2000 The American Physical Society
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In units where\5c5kB51, the parametersT, m, t andU

have dimension of mass whereasĉ,ĉ* are dimensionless
The partition function is invariant under the rescali
(aPR1)t→t/a,m→am,t→at,U→aU,T→aT. It can
therefore only depend on the dimensionless parameter r
m/U,T/U,t/U and is independent of the dimensionless co
bination aU. ~This holds up to a possible temperatur
dependent factor from the functional measure.! Furthermore,
the invariance ofZ under the discrete transformationĉ(t)
→2ĉ(b2t),ĉ* (t)→ĉ* (b2t),m→2m,t→2t ~with
appropriate transformations of the sources! permits a restric-
tion to m>0. Finally, we may divide the lattice sitesi into
two classes,i PI 1 , if m andn are both even or both odd,i

PI 2 otherwise. The transformationĉ i PI 2
→2ĉ i PI 2

, ĉ i PI 2
*

→2ĉ i PI 2
* while leaving ĉ i PI 1

,ĉ i PI 1
* invariant mapsZ(t)

→Z(2t) ~again with an appropriate mapping for th
sources!. We restrict our discussion to positivet andm. Pre-
dictions for models with negativet or negativem can easily
be obtained from our results by an appropriate mapping.

II. THE COLORED HUBBARD MODEL

In order to represent the fermion bilinears of interest in
simple form, we choose to label the variables at four nei
boring lattice sites by different colors red, yellow, green a
blue,ĉa , a51,...,4.~This also allows us to easily extend th
formalism to lattices with different atoms.! We take x
5(x,y)5(ma,na) with m,n even as the sites of a coars
lattice with lattice distance 2a and define

ĉ1~x!5ĉm,n , ĉ2~x!5ĉm11,n ,

ĉ4~x!5ĉm,n21 , ĉ3~x!5ĉm11,n21 , ~4!

and similar forĉa* ~see Fig. 1!.
The lattice symmetriesTx ~translation in x by a!, Ty

~translation iny by a!, R ~clockwise rotation by 90° around
x50!, I x ~reflection at thex axis!, and Ĩ x ~reflection at the
axis y5 1

2 a! act as

FIG. 1. The colored Hubbard model. The lattice sites of
coarse lattice are symbolized by a diamond. The numbering of
sites of our original lattice is also shown.
ios
-

a
-

d

Tx : ĉ1~x,y!→ĉ2~x,y!, ĉ2~x,y!→ĉ1~x12a,y!

ĉ4~x,y!→ĉ3~x,y!, ĉ3~x,y!→ĉ4~x12a,y!,

Ty : ĉ1~x,y!→ĉ4~x,y12a!, ĉ2~x,y!→ĉ3~x,y12a!

ĉ3~x,y!→ĉ2~x,y!, ĉ4~x,y!→ĉ1~x,y!,

R:ĉ1~x,y!→ĉ2~y,2x!, ĉ2~x,y!→ĉ3~y,2x!

ĉ3~x,y!→ĉ4~y,2x!, ĉ4~x,y!→ĉ1~y,2x!,

I x : ĉ1~x,y!↔ĉ4~x,2y!, ĉ2~x,y!↔ĉ3~x,2y!,

Ĩ x : ĉ1,2~x,y!→ĉ1,2~x,2y!, ĉ3,4~x,y!→ĉ3,4~x,2y12a!.
~5!

The lattice symmetries of the coarse lattice can be compo
from the generatorsTx ,R,I x . We emphasize that our refor
mulation does not introduce new ‘‘color symmetries
Rather the original lattice symmetries now also act in co
space. The local interaction is also invariant under relab
ings at fixedx

r : ĉ1→ĉ2→ĉ3→ĉ4 ,

i : ĉ1↔ĉ4 , ĉ2↔ĉ3 ,

d: ĉ1↔ĉ3 , ĉ2↔ĉ4 .

This, however, is not a symmetry of the next neighbor int
action.

Useful fermion bilinear operators are (c5 i t2)

s̃ab~x!5ĉb* ~x!ĉa~x!,

w̃ab~x!5ĉb* ~x!tĉa~x!,

x̃ab
~1!~x!5ĉb

T~x!cĉa~x!5x̃ba
~1!~x!,

x̃ab
~2!~x!52ĉb* ~x!cĉa*

T~x!5x̃ba
~2!~x!. ~6!

~We have omitted for simplicity fermion-fermion pairs in th
triplet of the spin group, similar to the fermion-antifermio
pairs w̃. They are antisymmetric in the color indices!
Among the electron-electron~or hole-hole! pairs we concen-
trate on

s̃~a!5x̃11
~a!1x̃22

~a!1x̃33
~a!1x̃44

~a! ,

c̃~a!5x̃11
~a!2x̃22

~a!1x̃33
~a!2x̃44

~a! ,

d̃~a!5x̃12
~a!2x̃23

~a!1x̃34
~a!2x̃41

~a! ,

ẽ~a!5x̃12
~a!1x̃23

~a!1x̃34
~a!1x̃41

~a! ,

ṽx
~a!5x̃23

~a!2x̃41
~a! , ṽy

~a!5x̃12
~a!2x̃34

~a! ,

t̃ 1
~a!5x̃11

~a!2x̃33
~a! , t̃ 2

~a!5x̃22
~a!2x̃44

~a! , ~7!

e
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which transform ass-wave (s̃), dxy-wave (c̃), dx22y2-wave
(d̃) and extendeds-wave (ẽ), in the spin singlet state. Simi
larly, for the electron-hole pairs we select

r̃5s̃111s̃221s̃331s̃44,

p̃5s̃112s̃221s̃332s̃44,

q̃15s̃112s̃33, q̃25s̃222s̃44,

m̃5w̃111w̃221w̃331w̃44,

ã5w̃112w̃221w̃332w̃44,

g̃15w̃112w̃33, g̃25w̃222w̃44. ~8!

They correspond to the charge densityr̃, the charge modu-
lation or charge density wavep̃, the ferromagnetic and anti
ferromagnetic spin densitiesm̃,ã and the diagonal spin den
sity g̃6 . Correspondingly, we specify the source term for t
bilinears as

S̃j52E dt(
x

S (
b

$ j b* ~x!ũb
~1!~x!1 j b~x!ũb

~2!~x!

1 r̃ b j b* ~x! j b~x!%1(
g

H l g~x!w̃g~x!1
1

2
r gl g~x!l g~x!J

2mw̃r~x! D 1
1

8
r rbV2m2/a2 ~9!

with

ũ~a!5~ s̃,c̃,d̃,ẽ,ṽx ,ṽy , t̃ 1 , t̃ 2!~a!,

w̃5~ r̃,p̃,q̃1 ,q̃2 ,m̃,ã,g̃1 ,g̃2!.

The complex sourcesj 5( j s , j c , j d , j e , j vx
, j vy

, j t1
, j t2

) and the

real sourcesl 5(m1 l r8 ,l p ,l q1 ,l q2 ,lm ,la ,lg¿ ,lgÀ) also de-
pend ont and from now on we include the chemical pote
tial m in the source forr̃. Here V2 is the two-dimensiona
volume and we will specify the constantsr̃ b and r g below.

III. PARTIAL BOSONIZATION

In this section we reformulate the colored Hubbard mo
in a language where the fermion bilinears are expresse
terms of bosonic fields. To this purpose we have to rew
the interaction term as a sum of products of fermion bil
ears.

Using the identities

x̃ab
~2!x̃cd

~1!5s̃cas̃db1s̃cbs̃da ,

w̃abw̃cd52s̃abs̃cd22s̃ads̃cb ~10!

we establish the relations

1

2
~ s̃~2!s̃~1!1 c̃~2!c̃~1!!1 t̃ 1

~2! t̃ 1
~1!1 t̃ 2

~2! t̃ 2
~1!54(

a
s̃aa

2 ,

1

2
~ r̃21 p̃2!1q̃1

21q̃2
252(

a
s̃aa

2 ,
l
in
e
-

1

2
~ ã21m̃2!1g̃1

2 1g̃2
2 526(

a
s̃aa

2 ,

1

2
~m̃22ã22 r̃21 p̃2!1d̃~2!d̃~1!1ẽ~2!ẽ~1!12~ ṽx

~2!ṽx
~1!

1 ṽy
~2!ṽy

~1!!50. ~11!

The interaction term in Eq.~2! reads (U/2)(as̃aa
2 and it is

obvious that the decomposition into products of the abo
fermion bilinears is not unique.

It is now straightforward to derive a partially bosonize
version of the Hubbard model by introducing a suitable ide
tity in the functional integral~1!. Inversely, the bosonized
partition function

Z5expH 22
L2

hr
2 bV2m2J E DĉDĉ* DûDû* Dŵ

3expH 2E dt(
x

~Lkin1LY1LB1Lj !J ,

Lkin5(
a

ĉa* ~x!]tĉa~x!2t$ĉ1* ~x,y!@ĉ2~x,y!

1ĉ2~x22a,y!1ĉ4~x,y12a!1ĉ4~x,y!#

1ĉ2* ~x,y!@ĉ1~x12a,y!1ĉ1~x,y!1ĉ3~x,y12a!

1ĉ3~x,y!#1ĉ3* ~x,y!@ĉ4~x12a,y!1ĉ4~x,y!

1ĉ2~x,y!1ĉ2~x,y22a!#1ĉ4* ~x,y!@ĉ3~x,y!

1ĉ3~x22a,y!1ĉ1~x,y!1ĉ1~x,y22a!#%,

LB54p2(
b

ûb* ~x!ûb~x!12p2(
g

ŵg~x!ŵg~x!,

LY52(
b

h̃b@ ûb* ~x!ũb
~1!~x!1ûb~x!ũb

~2!~x!#

2(
g

hgŵg~x!w̃g~x!,

Lj52(
b

4p2

h̃b

@ j b* ~x!ûb~x!1 j b~x!ûb* ~x!#

2(
g

4p2

hg

l g~x!ŵg~x!2(
a

@ha* ~x!ĉa~x!

1ha~x!ĉa* ~x!# ~12!

can easily be transformed into a purely fermionic function
integral by performing the Gaussian integration over
complex scalar fieldsû and real scalar fieldsŵ. We choose
r̃ b54p2/h̃b

2, r g54p2/hg
2 such that the partition function

~1! and ~12! coincide except for the quartic interactions. I
deed, the four fermion interaction resulting from the boso
functional integration can be more complex than in the ori
nal Hubbard model, i.e.,
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Lint52(
b

h̃b
2

4p2 ũb
~2!ũb

~1!2(
g

hg
2

8p2 w̃gw̃g . ~13!

Only for particular values of the real positive Yukawa co
plings h̃b , hg the partition function~12! is equal to the par-
tition function ~1! of the Hubbard model~this holds up to an
irrelevant source-independent overall normalization fact!,
namely for@see Eq.~11!#

h̃b
25

p2

3
H̃bU, hg

25
p2

3
HgU,

2H̃s52H̃c5H̃t1
5H̃t2

53l1 ,

2H̃d52H̃e5H̃vx
5H̃vy

56l3 ,

Hq1
5Hq2

56l2 ,

Hr53~l22l3!, Hp53~l21l3!,

Ha52l11l223l311,

Hm52l11l213l311,

Hg1
5Hg2

54l112l212, ~14!

where the parametersl i obey

l i.0, ; i 51¯3,

l2.l3 ,

2l11l211.3l3 .

We emphasize that the choice~14! of the Yukawa cou-
plings is not unique since it depends on the three parame
l i . Arbitrary values ofl i ~within the allowed range! all
describe the same Hubbard model. The independenc
physical results on the values ofl i can be used as a chec
for the validity of approximations. Furthermore, a large v
riety of different four-fermion interactions can be describ
by varying the Yukawa couplings away from the ‘‘Hubba
values’’ ~14!.

The symmetriesR andI x as well as the translations by 2a
are easily implemented on the space of bilinearsũb , w̃g and
correspondingly for the scalar fieldsûb ,ŵg . This is not the
case for the translations bya. The above formulation of the
bosonization is therefore not optimal yet if—beyond t
symmetries of the coarse-grained lattice—the symmet
such asTx play an important role~as for the Hubbard
model!. It is easy to remedy this shortcoming by an exte
sion of the space of bilinears and the corresponding sc
fields. We introduce an additional color index for the fe
mion bilinears and the scalars by

w̃1g~x!5TyTx
21w̃g~x!, w̃2g~x!5Tyw̃g~x!,

w̃3g~x!5w̃g~x!, w̃4g~x!5Tx
21w̃g~x!, ~15!

and similar for ũ(a),ŵ,û* ,l , j . Products such aswgwg are
now understood as scalar products
rs

of

-

s

-
lar

wgwg→
1

4 (
a

wagwag . ~16!

With these replacements@the term;mw̃r(x) in Eq. ~9! be-
comes (m/4)(aw̃ar(x)# it is straightforward to check that th
partition function~12! with the choice of Yukawa couplings
~14! is again exactly equal to the one of the Hubbard mo
if all sources exceptm are zero. The translationsTx ,Ty are
now directly implemented on the scalar fields, e.
Tx@ŵ1g(x)#5ŵ2g(x). The same holds true for the rotationR
or the reflectionI x .

In conclusion, we have developed an extended versio
the Hubbard model—the colored Hubbard model—wh
coincides with the Hubbard model for special values of
Yukawa couplings~14! and the sources. Particularly simp
modifications arise forx-independent andt-independent
sources. As an example, the source

l 3r8 5 l 3p522l 3q1
52

1

4
n ~17!

induces an additional energy for the occupation of the s
~m, n! with both m andn odd

Sn5nE dt (
m odd
n odd

ĉmn* ĉmn . ~18!

For n→` these sites are effectively removed from the latt
and we therefore deal with the Hubbard model on a nonq
dratic lattice structure.

IV. THE EFFECTIVE ACTION FOR THE COLORED
HUBBARD MODEL

In this section we develop the concept of the effect
action which is based on the Legendre transform of the lo
rithm of the partition function. Analytic computations for th
partition function~12! are most easily done in momentu
space. It is straightforward to perform a Fourier transfo
using

ĉa~x,t!5A2aT(
n
E d2q

~2p!2 exp@ i $~x1za!q

12pnTt%#ĉan~q!,

ĉa* ~x,t!5 iA2aT(
n
E d2q

~2p!2 exp@2 i $~x1za!q

12pnTt%# cC bn~q!gba
0 ,

ĉ* 5 icC g0, g05S t3 0

0 t3
D . ~19!

Here the Matsubara frequencies are labeled by half inte
n561/2,63/2,... and the momentum integration is in th
range 2L,qx,L, 2L,qy,L as appropriate for the
coarse lattice with lattice distance 2a. We choose

z15S 2
a

2
,
a

2D , z25S a

2
,
a

2D ,
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z35S a

2
,2

a

2D , z45S 2
a

2
,2

a

2D ~20!

corresponding to an expansion in the coordinates of the~m,
n! lattice. This yields for the kinetic term

Skin5E dt(
x

Lkin

5T(
n
E d2q

~2p!2 cC an~q!Pab
~0!~n,q!ĉbn~q!,

P~0!522pnTg022i tg0$cos~aqx!A11cos~aqy!B1%,
~21!

where we use matrices (t0512 ;m50¯3;i , j 51¯3)

Am5S tm 0

0 tm
D , Bm5S 0 tm

tm 0 D ,

$Ai ,Aj%5$Bi ,Bj%52d i j , $Ai ,Bj%52d i j B0 ,

@Ai ,Aj #5@Bi ,Bj #52i e i jkAk , @Ai ,Bj #52i e i jkBk ,

B0Ai5AiB05Bi , B0Bm5BmB05Am . ~22!

Spontaneous symmetry breaking with ‘‘extended or
parameters’’ like the antiferromagnetic spin density;(ã1
2ã21ã32ã4) or d-wave superconductivity with order pa
rameter;(d̃11d̃21d̃31d̃4) can be directly investigated in
our formalism by looking for the minima of the effectiv
scalar potential. The notion of the effective potential is
very powerful concept since it describes simultaneously s
ations with vanishing and nonvanishing sources, i.e., in
dition to the Hubbard model for arbitrarym it also comprises
many extended models. The effective potential correspo
to the effective action for homogeneous colored scalar fie
We define the scalar expectation values in the presenc
sources~the variation with respect tol ar is performed at
fixed m!

uab~x!5
L2

p2

]

]Jab* ~x!
ln Z5^ûab~x!&,

uab* ~x!5
L2

p2

]

]Jab~x!
ln Z5^ûab* ~x!&,

wag~x!5
L2

p2

]

]Lag~x!
ln Z5^ŵag~x!&, ~23!

with

Jab5
L2

h̃b

j ab , Lag5
L2

hg

l ag . ~24!

With the usual Legendre transform one obtains~we concen-
trate in the following onca5^ĉa&50, ca* 5^ĉa* &50! the
effective actionG
r

-
-

ds
s.
of

G@u,w,c,c* #52 ln Z1E dt(
x

(
a

H p2

L2 (
b

~Jab* uab

1Jabuab* !1
p2

L2 (
g

Lagwag1ha* ca

2ca* haJ ~25!

which obeys

]G

]wag
5

p2

L2 Lag, etc. ~26!

Performing the derivatives~23! in the fermionic functional
integral, we can directly relate the scalar expectation val
to the expectation values of fermionic bilinears

uab5
h̃b

4p2 ^ũab
~1!&1

1

L2 Jab ,

uab* 5
h̃b

4p2 ^ũab
~2!&1

1

L2 Jab* ,

wag5
hg

4p2 ^w̃ag&1
1

L2 Lag . ~27!

In particular, if all sources exceptLar(x)5L2m/hr vanish,
the scalarwar has contributions linear in the electron dens
n5^r̃&/4a2 and the chemical potential

war5
hr

4L2 n1
m

hr
. ~28!

We will mainly be interested in homogenous expectat
values and therefore in the effective scalar potential wh
can be obtained fromG for x- andt-independent scalar field
and vanishing fermion fields by

U05TG/V2 . ~29!

The ground state of the Hubbard model corresponds to
minimum of U0 with respect to all fields exceptr
5 1

4 (awar given by Eq.~28!, wherem obeys

m5
hr

4L2

]U0

]r
. ~30!

We are interested in possible expectation values of sca
different from r. Such a spontaneous symmetry breaki
arises if for some range ofr the minimum ofU0 ~at fixedr!
occurs for a nonvanishing scalar field.

V. MEAN FIELD APPROXIMATION

In this paper we compute the effective potentialU0 in the
‘‘mean field’’ approximation. This means that only the fe
mionic part of the functional integral~12! is performed in a
homogenous ‘‘background’’û5u, ŵ5w. This integral is
Gaussian, and we can write the mean field expression forU0
as

U05Ucl1DU,
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Ucl5L2(
b

(
a

uab* uab1
L2

2 (
g

(
a

wagwag1
2L2

hr
2 m2,

DU52
1

2
T(

n
E d2q

~2p!2 ln detP~n,q!. ~31!

Here P(n,q) is a 16316 matrix ~including spinor indices!
for the inverse fermion propagation in the presence of sc
background fields. It is defined by the part of the acti
quadratic in the fermion fields

S25
1

2
T(

n
E d2q

~2p!2 c̃2n
T ~2q!P~n,q!c̃n~q!, ~32!

c̃n~q!5S ĉa,n~q!

cC a,2n~2q!
D , ~33!

and we find from Eq.~21!

P5S 0 2P0
T~2n!

P0~n! 0
D 1 P̃~r,d,a,...!, ~34!
ar

where the second term reflects the influence of the ba
ground through the Yukawa couplings. We explore here
dependence of the effective potential on the charge densir,
d-wave pair condensationd and antiferromagnetic order pa
rametera. We therefore take

w1r5w2r5w3r5w4r5r,

u1d5u2d5u3d5u4d5d,

w1a52w2a5w3a52w4a5a, ~35!

and find@the choice ofg0 in Eq. ~19! is not crucial for this
calculation—any orthogonalg0 will do#

P̃52 ihrrS 0 2g0T

g0 0
D 2 ihaaS 0 2A3g0T

^ tT

g0A3^ t 0
D

2hdS d* @cos~aqx!A12cos~aqy!B1# 0

0 dg0@cos~aqx!A12cos~aqy!B1#g0TD ^ c52 P̃T. ~36!
With G5diag(1,2 ig0T
) andPI 5GPGT one obtains

ln detP5 ln detPI 5
1

2
ln det~PI B0PI TB0!

5 ln det8$~2pnT!21@2t cos~aqx!A1

12t cos~aqy!B11hrr#21ha
2aa12hrharaA3^ t

1hd
2d* d@cos~aqx!A12cos~aqy!B1#2%. ~37!

It is easy to see thatDU depends only on the invariantsd
5d* d, a5aa andr. Up to an additive~T-dependent! con-
stant one finds
Ucl52L2a14L2d12L2r21
2L2m2

hr
2 ,

DU52
1

2
T(

n
E d2q

~2p!2 tr8 ln„11$@2t cos~aqx!A1

12t cos~aqy!B11hrr1haAaA3^ t3#2

1hd
2d@cos~aqx!A12cos~aqy!B1#2%/~2pnT!2

…,

~38!

and, evaluating the Matsubara sum and the trace, finally
tion
U052L2a14L2d12L2r21
2L2m2

hr
2

22TE d2q

~2p!2 (
e i ,e j P$21,1%

ln coshH 1

2T
A@hrr1e iA4t2~cx1e j cy!21ha

2a#21hd
2d~cx2e j cy!2J

with cx5cos(aqx), cy5cos(aqy).

VI. SPONTANEOUS SYMMETRY BREAKING

For large temperature the fluctuation contributionDU is suppressed;T21. The minimum ofU0 therefore occurs for allr
at a50, d50. As T is lowered, the fluctuations tend to destabilize the ‘‘symmetric minimum.’’ In particular, the fluctua
contribution to the mass term fora is negative for not too larger2 and the one ford is negative for allr
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DMa
252

]

]a
DU ua5d50

522ha
2T(

n
E d2q

~2p!2 tr4$Pr
22

22hr
2r2A3Pr

22A3Pr
22%,

DMd
25

]

]d
DU ua5d50

52hd
2T(

n
E d2q

~2p!2 tr4$@cos~aqx!A1

2cos~aqy!B1#2Pr
22% ~39!

with

Pr
25~2pnT!21@2t cos~aqx!A112t cos~aqy!B11hrr#2

~40!

and tr4 the trace in color space only. These contributio
should be compared with (Ma

(0))25(Md
(0))254L2. The ze-

roes ofPr
2 for T50 correspond to the Fermi surface~3! with

shifted chemical potentialmeff5hrr. @Neglecting contribu-
tions fromDU Eqs.~30! and~31! imply meff5m.# We recall
that the momenta are restricted to the range correspondin
the coarse latticeuqx,yu<p/(2a)5L. On the other hand, we
now have possible zeroes for different linear color combi
tions. Noting that the eigenvalues ofA1 andB1 are61, they
precisely correspond to the original Fermi surface—
original zeros in the four rangesuqx,yu<L, L<uqx,yu<2L,
uqxu<L, L<uqyu<2L and L<uqxu<2L, uqyu<L appear
now for different color combinations in the rangeuqx,yu
<L. Due to these zeros one finds limT→0 DMd

2→2` for
not too larger and similar forDMa

2 in the appropriate range
of r. This clearly indicates spontaneous symmetry break
with d-wave superconductivity or/and antiferromagnetic
der parameter. Note that in contrast to its derivatives
potential is not singular forT→0. Since for largea anddU0
grows ;~a, d!, the minimum occurs necessarily for finit
aÞ0 or dÞ0 if Ma

254L21DMa
2 or Md

254L21DMd
2 be-

come negative.
The spontaneous symmetry breaking cuts off the singu

ity near the Fermi surface or reduces its strength. An anti
romagnetic expectation value typically produces a gap
the fermionic fluctuations. Fora.0, d50, r50 this can be
seen from a search for possible zeroes of det8 in Eq. ~37! for
T50. On the other hand, fora50, d.0 the condition det8
50 requires cos(aqx)56cos(aqy)56hrr/(4t). In the super-
conducting phase the singularity therefore only occurs
special points in momentum space instead of a whole Fe
surface. As a consequence, the momentum integrations
the bosonic mass terms@similar to Eq. ~39!# remain finite
even forT→0.

For vanishing sourcesj a , j d the minimum ofU0 obeys
the ‘‘field equations’’
s

to

-

e

g
-
e

r-
r-
r

r
i

for

]U0

]a
52a

]U0

]a

52aS 2L22
1

2
haT(

n
E d2q

~2p!2

3tr8$~hrra21/2A3^ t31ha!P̄r
22~a,d!% D 50, ~41!

]U0

]d*
5d

]U0

]d

5dS 4L22
1

2
hd

2T(
n
E d2q

~2p!2 tr8$@cos~aqx!

2cos~aqy!B0#2P̄r
22~a,d!% D 50 ~42!

with

P̄r
2~a,d!5Pr

212hrharAaA3^ t31ha
2a1hd

2d@cos~aqx!

2cos~aqy!B0#2. ~43!

One always has the symmetric solutiona50, d50 which
corresponds to a local minimum ifM̄a

2.0, M̄d
2.0 and to a

maximum or saddlepoint otherwise. Consider next solutio
with a50, dÞ0 which require

2hd
4dT(

n
E d2q

~2p!2 tr4„@cos~aqx!2cos~aqy!B0#4Pr
-2

3$Pr
21hd

2d@cos~aqx!2cos~aqy!B0#2%21
…

54L21DMd
25M̄d

2. ~44!

Solutions withd.0 exist only forM̄d
2,0 andd vanishes as

the mass termM̄d
2 approaches zero from below. One co

cludes that the transition from the symmetric phase~a50,
d50! to a possible superconducting phase without antifer
magnetism~a50, d.0! is of second order.

We have analyzed the phase diagram for differ
Yukawa couplings numerically. Due to the free paramet
l i in Eq. ~14! the Yukawa couplings are largely undete
mined. They only have to obey the inequalitieshr

2.0, hd
2

.0, ha
2.0, ha

2.p2U/31hr
2/322hd

2/3. For example,l1

5l351/2, l251 leads tohd
25hr

25ha
25p2U/2. Because of

our meanfield approximation, the partition function becom
dependent on the particular choice of the parametersl i . We
investigate the caseshr5ha5hd5A10U ~Fig. 2!, hr5ha

5hd52A10U ~Fig. 3!, ha5A10U, hr5hd52A10U ~Fig. 4!,
and hd5A10U, hr5ha52A10U ~Fig. 5!. We chooset/U
51 and investigate the phase diagram in ther/AU-T/U
plane. Expressed in the variablest/U, T/U, r/AU, our re-
sults do not depend onU and the lattice distancea, as dis-
cussed in the beginning. As we increase all three Yuka
couplings simultaneously, the antiferromagnetic phase do
nates over the superconducting phase~compare Figs. 2 and
3!. An interesting result of the mean field analysis is t
appearance of a phase transition of first order into the a
ferromagnetic phase for smallT/U and for high values of
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r/AU. The phase transition between the symmetric and
superconducting phase remains of second order. Both re
were anticipated when examining the above formulas a
lytically. If we increasehd /AU compared toha /AU the su-
perconductivity phase dominates for lowT/U, whereas in
the opposite case it is the antiferromagnetic phase. Th
illustrated in Figs. 4 and 5.

We note that for negativet our results apply if the anti-
ferromagnetic condensatea is replaced by the ferromagnet
condensatem. Furthermore, small disturbances can easily
taken into account by source terms. For example, an inte
tion between spin and angular momentum will explici
break the continuous SU~2! invariance and typically amoun
to a source termla or lm .

FIG. 2. TheT-r phase diagram forhr5ha5hd5A10U with
symmetric ~SYM!, antiferromagnetic~AF!, and superconducting
phase~SC!. In the region marked by the bold line the phase tran
tion into the antiferromagnetic phase is of first order; all other ph
transitions are of second order.

FIG. 3. TheT-r phase diagram forhr5ha5hd52A10U with
symmetric ~SYM!, antiferromagnetic~AF!, and superconducting
phase~SC!. In the region marked by the bold line the phase tran
tion into the antiferromagnetic phase is of first order; all other ph
transitions are of second order.
e
lts

a-

is

e
c-

VII. DISCUSSION AND CONCLUSIONS

In conclusion, the mean field approximation for the co
ored Hubbard model can give a qualitatively reasonable
ture of the phases in high-Tc superconductors. On the othe
hand, the shortcomings of this approximation are also ap
ent from the figures. All phase diagrams in Figs. 2, 3, 4, a
5 correspond to different mean field approximations for
same model. It is impossible to resolve this ambiguity with
the mean field approximation without additional input on t
selection of the Yukawa couplings. The reason is the neg
of fluctuations of the bosonic fields. Only if these are i
cluded, the different equivalent choices of the Yukawa co
plings should lead to the same physical results. The dif
ences between the figures reveal the importance of
neglected bosonic fluctuations, at least for some choice
the Yukawa couplings.~It is conceivable that an ‘‘optima

-
e

-
e

FIG. 4. The T-r phase diagram forha5A10U, hr5hd

52A10U with symmetric~SYM! and superconducting~SC! phase.
The phase transition is of second order.

FIG. 5. The T-r phase diagram forhd5A10U, hr5ha

52A10U with symmetric ~SYM! and antiferromagnetic~AF!
phase. In the region marked by the bold line the phase trans
into the antiferromagnetic phase is of first order, otherwise of s
ond order.
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choice’’ of the Yukawa couplings minimizes the impact
the bosonic fluctuations.!

The inclusion of the bosonic fluctuations is a compl
problem which can be attacked by means of nonperturba
renormalization group equations.8 Studies for similar QCD-
motivated models of fermions with Yukawa coupling to sc
lars have already been carried out successfully.9 One of the
dominant effects will be the scale dependence of the Yuka
couplings. It is conceivable that this running is dominated
partial infrared fixed points for ratios of Yukawa coupling
For large couplings, as relevant here, such partial fi
points would be approached fast. In this case the ‘‘memo
of the initial choice of Yukawa couplings could be eras
rapidly and unambiguous physical predictions become p
sible.

A second important ingredient is the appearance of Go
stone bosons for̂â&Þ0 or ^d̂&Þ0, corresponding to flat di-
rections in the effective potential~31!. For a superconducting
condensatêd̂& the U~1! symmetry would be spontaneous
broken and the question arises if this is self consistent. F
large correlation lengthj, i.e., jT@1, one expects that th
dominant fluctuations near a second order phase trans
are well described by an effective dimensional reduction
two dimensional classical statistics. The Mermin-Wagn
theorem then suggests that the Goldstone boson fluctua
prevent a continuous symmetry from being spontaneou
broken. In the case of a U~1! symmetry the natural solution
to this puzzle is a second order phase transition of
Kosterlitz-Touless type: only a renormalized expectat
value differs from zero, whereas the wave function renorm
ization will lead to a vanishing expectation value for t
unrenormalized scalar field.10 This reconciles the Mermin
Wagner theorem with the existence of Goldstone bosons
superconductivity in presence of electromagnetic fields.
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For a possible ‘‘antiferromagnetic phase’’ the nonabel
interactions between the Goldstone bosons of the effec
two-dimensional model have a tendency to push the m
mum ofU0 towardsa50 and to make]U0 /]a positive.8 If
only the non-Abelian Goldstone bosons are present in
effective long distance model their fluctuations would d
stroy the nontrivial minimum of the potential. One ma
therefore speculate about a new type of low-tempera
phase, which is characterized by the presence of mass
Goldstone bosons as well as massless fermions. Alte
tively no true antiferromagnetic phase with Goldsto
bosons may occur. For all practical purposes the phy
nevertheless will look qualitatively similar to the phase tra
sition in the mean field approximation: the effects fro
Goldstone fluctuations are only logarithmic in ratios of ma
scales and would be cut off by a small SU~2!-breaking dis-
turbance inducing a mass term for them. Simple scale c
siderations suggest that the first order transitions to the a
ferromagnetic phase are probably not affected substant
by the Goldstone fluctuations, except for the end points. P
ticularly interesting is the triple point in Fig. 2 where th
three phases meet. By continuity of the second order li
one expects five massless scalar excitations at this poin

We emphasize that quite generally the possible sec
order phase transitions between the symmetric and s
other phase belong to new interesting universality clas
Long range fermion fluctuations without a gap are presen
the symmetric phase and therefore also at the phase tr
tion. They influence the critical exponents and other univ
sal properties. We hope that our formulation of the color
Hubbard model will be a good starting point for a quanti
tive renormalization group study of all these interesti
questions.
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