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Spontaneous symmetry breaking in the colored Hubbard model
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The Hubbard model is reformulated in terms of different “colored” fermion species for the electrons or
holes at different lattice sites. Antiferromagnetic ordering-avave superconductivity can then be described in
terms of translationally invariant expectation values for colored composite scalar fields. A suitable mean field
approximation for the two-dimensional colored Hubbard model shows indeed phases with antiferromagnetic
ordering ord-wave superconductivity at low temperature. At low enough temperature the transition to the
antiferromagnetic phase is of first order. The present formulation also allows an easy extension to more
complicated microscopic interactions.

I. INTRODUCTION

The Hubbard modélis one of the most studied models
for electron systems. In particular, the two-dimensional
model appears to be a good candiddte an explanation of — E U(f//-* ,.,}.)({/,.* ,-,)7,.)
high-T. superconductivity. Despite its simplicity, several ob- 6 R

stacles render even its approximate solution a difficult theoés a functional of sources, 7* of the fermions as well as

retical task. As a fermionic system it is not easily accessible ) . ~ . o
to numerical simulations. Furthermore, there seems to be $0Y'C€S of fermion bilinears¥() that will be specified below

competition between antiferromagnetic order andave su-  [Se€ EQ(9)]. The spinorsy = (i1, 41)), & = (4, 47)) (as

perconductivity. The operator fat-wave superconductivity Well as the fermionic sources; ,#") are two-component

is constructed from bilinears involving fermions at different Grassmann variables depending on the Euclidean “time”

sites, whereas antiferromagnetism manifests itself by an alwith antiperiodicity (8)=—:(0), & (8)=—{(0).

ternating sign of a local bilinear at different sites. Here 8= 1/T is the inverse temperature. We trefaand *
Recently, promising investigations using approximationsas independent Grassmann variables, even though the nota-

to exact renormalization group equatidndave been tion is reminiscent of a type of complex conjugation which

started~® The difficulty of these approaches, however, con-also invertsr and reorders all Grassmann variablgs.quan-

sists in the high complexity of the equations if the full mo- tum field theory the i.nvariance of the action under this dis-_

mentum dependence of correlation functions for several fercrete transformation is related to Osterwalder-Schrader posi-

mions is kept. In particular, the low-temperature phases caHVity-) _ _ _

only be realistically described if effective interactions in- '€ indexi labels the sites of the lattice. We concentrate

volving more than four fermions are included. In our opinion onwa q_uadraﬂc Ia_ttlce In two dl_menS|orl$,(m,n), m, n

a prerequisite for a successful use of these methods in thg 2 With next neighbor interactions wheg; = —t for i]

ordered phases is a simplification of the momentum deperl?€Xt neighbors andz;;=0 otherwise. They describe the

dence of the interactions. This can be done if the mosProbability amplitude of fermion tunneling between different

prominent physical degrees of freedom are identified. Weattice .site.s. After a Fourier transform the Fermi surface for

propose here a version of the Hubbard model where the rel —0 IS given by

evant order parameters correspond to translationally invari- e n _

ant vacuum expectation values of scalar fields. We will see [codaq;)+codady)]= u,

that this formulation can describe the low-temperature

phases in a very simple way. We therefore hope that it con- |ail=2A, A=ml2a, )

stitutes a good starting point for a detailed renormalizationyit the lattice spacing. The local Coulomb interaction of

A B ~ ~ ~ A
S[‘P.lﬁ*]:JO dT[Ei ['ﬂi*aflﬂi_/ﬂﬁi*lﬂi

+§j) lA//i*Tijljﬁj] 2

grovlilp analysfidc,. " dton funct ¢ the Hubbard the fermions involves the Pauli matricesand can be rear-
e consider the partition function of the Hubbar ~k Nk kNN
rodal” P ranged,  e.g. & T0n) (97 ) = — 3 ) (U7 ) =

—6n;;n;; with n;;()= fpﬁ(l)_fp”(u. (Here the term local re-

fers to our neglect of the interaction of fermions located at

o L B different lattice sites. As usual, the expectation values of

Z= f DD y* exp[ -]+ f dr operators are related to appropriate derivativeg wfith re-

0 spect to the sources. In addition to the discrete lattice sym-
R ~ _ metries, the model has two obvious continuous symmetries:

X E (nF i+t ) — Sj] , (1)  the SU2)-spin rotations and the ()-phase rotations corre-

! sponding to charge conservation.
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Te: d(XY)— a(X,Y), Pa(X,y)— dy(x+2a,y)

Pa(X,Y) = Ps(Xy), Pa(X,y)— Pa(x+2a,y),

*
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FIG. 1. The colored Hubbard model. The lattice sites of the (5)

coarse lattice are symbolized by a diamond. The numbering of the . . .
sites of our original lattice is also shown. The lattice symmetries of the coarse lattice can be composed

from the generators,,R,l,. We emphasize that our refor-
In units wherefi =c=Kkg=1, the parameter§, x, tandu  Mulation does not introduce new “color symmetries.”
Rather the original lattice symmetries now also act in color
space. The local interaction is also invariant under relabel-
ings at fixedx

have dimension of mass wheregsy* are dimensionless.
The partition function is invariant under the rescaling
(aeR)T—71la,pu—apt—at,U—-aU,T—aT. It can
therefore only depend on the dimensionless parameter ratios

w/U,T/U,t/U and is independent of the dimensionless com- ===,
bination aU. (This holds up to a possible temperature- A
dependent factor from the functional measuRairthermore, 1= dhas Yoo s,
the invariance ofZ under the discrete transformatia( 7) A A A oa
= W(B= 1) ()= (B—7) u——pt——t  (with A viods, d2oda.

appropriate transformations of the souncgsrmits a restric-  This, however, is not a symmetry of the next neighbor inter-
tion to u=0. Finally, we may divide the lattice sitésnto  action.
two classesi 14, if mandn are both even or both odd, Useful fermion bilinear operators are=ir,)

el otherwise. The transformatiof;.;,—— tic1,, ¥,

Tan(X) = P (X) a(X),

H—fpi*elz while leaving fpie,l,fﬂi*e,l invariant mapsZ(t)
—Z(—1t) (again with an appropriate mapping for the
sources We restrict our discussion to positivend u. Pre-
dictions for models with negativeor negativeu can easily ~1) T - ~(1)
be obtained from our results by an appropriate mapping. Xab (X) = ¢ (X) Cha(X) =Xpa (X),

Ban(X) = P (X) T(X),

~(2 _ 5 SxT _~(2
Il. THE COLORED HUBBARD MODEL XS 0= =i (cis T (X)=X52(X). (6)

In order to represent the fermion bilinears of interest in a(We have omitted for simplicity fermion-fermion pairs in the
simple form, we choose to label the variables at four neighifiplet of the spin group, similar to the fermion-antifermion
boring lattice sites by different colors red, yellow, green andP@irs @. They are antisymmetric in the color indices.
blue, fpa, a=1,...,4.(This also allows us to easily extend the Among the electron-electrofor hole-holg pairs we concen-

formalism to lattices with different atomsWe take x trate on
=(x,y)=(ma,na) with m,n even as the sites of a coarse =) _~(a) L ~(a) | ~(a) | ~(a)
: . . . ) gl = + + + ,
lattice with lattice distance & and define X117 X22 T X33 T Xaa
=(a) 3 (a) _z(a)  ~(a) __~(a)
- - - - V= + ,
P (X)= lr/fm,n v Pa(X) =ty 1ns X117 X22 T X33 ™ Xaa

~ ~ ~ ~ qlo) —~(a) _~(a) (o) _~(a)
$a(X)=mn-1, ¥3(X)=tmi1n-1, (4) d X1z = Xo3 T X3 T Xan

and similar fory? (see Fig. 1 BO=XE + XS + 5 X
The lattice symmetriesT, (translation inx by a), T, _ (@)~
(translation iny by a), R (clockwise rotation by 90° around Ux "= X23 ~Xa1» Uy T X12 7 X34 »
x=0), |, (reflection at thex axis), andT, (reflection at the ~ ~
axisy=za) act as 1 = X11 T X33
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which transform as-wave ), dy,-wave ), d,2_,2-wave

(d) and extended-wave ), in the spin singlet state. Simi-
larly, for the electron-hole pairs we select

p=0111 020t 0331 044,

P=011— 0% 033~ 044,

G1=011~ 033, G2=02~ 0,
M=11+ @oot @33t Qua,
A= Q11— Goot @33~ Pua,
0:=@11— ¢33, 9-= @20 Qus- 8

They correspond to the charge dengitythe charge modu-
lation or charge density wavg, the ferromagnetic and anti-
ferromagnetic spin densitigg,a and the diagonal spin den-
Sity G- -
bilinears as

S=- f drg (% (500U 0+ g0TE (%)
}+E[7<x y<x>+ y<x>|y(x>}

+r.3JB

+1r BV,u?la? 9
g r 21

— W, (X)

with

U= (3,8,0,8,0,, 0y, 11.1,),

Wz(ﬁ!ﬁ!ﬁliﬁZimI’a‘ing 1@7)'
The complex sourceis=(js.jc.jd.e v o ,jtl,jt ) and the

real sourcesl—(,quIp,Ip Iql,lqz,lm,la, g+lg—) also de-
pend onr and from now on we include the chemlcal poten-
tial u in the source foip. HereV, is the two-dimensional
volume and we will specify the constaﬁtg andr ., below.

Ill. PARTIAL BOSONIZATION

In this section we reformulate the colored Hubbard mode

in a language where the fermion bilinears are expressed in
terms of bosonic fields. To this purpose we have to rewrite

the interaction term as a sum of products of fermion bilin-
ears.
Using the identities

~ ()~ (1)~ o~ ~ o~
XX ey =T caban+ TchTda

@apPcd™ ~ TapOcd— 20ad0ch (10

we establish the relations

1 -
5 (328 +T2Em) L TR0 + t<2r<1>_42

aav

—(p2+ D) +T:+35

22 O'aa,
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Tp=47%h3, r,=4xh?

15473
1 H2_ 4 42
E( +M2)+T + T =—62 T
1 o - ~(2)F 1
S (M2=2 =52+ %) +d 2D +82e b+ 25,25 Y
+3P5 M) =0. (1)

The interaction term in Eq2) reads (/2)2,52, and it is
obvious that the decomposition into products of the above
fermion bilinears is not unique.

It is now straightforward to derive a partially bosonized
version of the Hubbard model by introducing a suitable iden-
tity in the functional integral1). Inversely, the bosonized
partition function

Z=exp{

Xexp{—f dr>, ([,kin+£Y+[,B+£j)],

A2 . A
—2Fﬁvz,ﬁ“ D¢Dy*DODO* DW
P

Correspondingly, we specify the source term for the

Luin= 2 P2 (079200 ={J (6y)[J(x,)

+iha(X=2a,y) + ha(X,y +22) + da(x,Y)]

+ 5 OGY) [ Pa(X+28,y) + Pra(XY) + (X, y +28)
+ iha(X,Y) ]+ 5 (Y[ ha(X+28,y) + iha(X,Y)

+ i (%Y) + (X, y = 28) ]+ 5 () [ ha(X,Y)
+iha(x—2a,y) + da(x,Y) + g (x,y—2a) ]},

5524772% 05 () 0(X) + 2722 W (X)W, (%),
Y

Ly=— % Rl 0% (0T () + 00T (0)]

—27 h W (X),(),
|

4772
= —— L5005 +] (X 05(X)]
B hﬁ

L

—E y<x>w (x)— E[na<x>wa<x>

+ 7a(X) Za; ()] (12)

can easily be transformed into a purely fermionic functional
integral by performing the Gaussian integration over the
complex scalar fieldéi and real scalar field&. We choose

5 such that the partition functions
(1) and(12) coincide except for the quartic interactions. In-
deed, the four fermion interaction resulting from the bosonic
functional integration can be more complex than in the origi-
nal Hubbard model, i.e.,
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1
WyWo— ; Wa, Wy, - (16)

Only for particular values of the real positive Yukawa cou- With these replacementthe term~ nW,(x) in Eq. (9) be-

plingsﬁﬁ, h,, the partition function12) is equal to the par-
tition function (1) of the Hubbard modelthis holds up to an
irrelevant source-independent overall normalization factor
namely for[see Eq(11)]

2 2

~2 T~ 2 a
hi=—3HpU. hi=75H,U,
2Hs=2H =H, =H,=3\,,
2Hy=2H.=H, =H, =6\,
Hq,=Hq,= 6\,

H,=3(As—\3), Hp=3(\p+X\jg),
Ha=2N1+No—3Ng+1,
Hpn=2N1+No+ 35+ 1,

H

=Hy =4\ +20,+2, (14)

94

where the parameteis obey

\i>0, Vi=1---3,
No>N\3,

21+ Nyt 1>3\s.

We emphasize that the choi¢g4) of the Yukawa cou-

comes (u/4)= ,W,,(x)] it is straightforward to check that the
partition function(12) with the choice of Yukawa couplings
(14) is again exactly equal to the one of the Hubbard model
if all sources excepu are zero. The translations , T, are
now directly implemented on the scalar fields, e.g.,
T W, (X)]=W,,(x). The same holds true for the rotatién

or the reflection , .

In conclusion, we have developed an extended version of
the Hubbard model—the colored Hubbard model—which
coincides with the Hubbard model for special values of the
Yukawa couplingg14) and the sources. Particularly simple
modifications arise forx-independent andrindependent
sources. As an example, the source

Iép:|3p2_2|3ql:_ZV (17)
induces an additional energy for the occupation of the sites
(m, n with bothm andn odd

S,=v J dr > Fhatbmn. (18)
m odd
n odd

For v— o these sites are effectively removed from the lattice

and we therefore deal with the Hubbard model on a nonqua-
dratic lattice structure.

IV. THE EFFECTIVE ACTION FOR THE COLORED
HUBBARD MODEL

In this section we develop the concept of the effective
action which is based on the Legendre transform of the loga-

plings is not unique since it depends on the three parametefghm of the partition function. Analytic computations for the

\;. Arbitrary values of\; (within the allowed rangeall

partition function(12) are most easily done in momentum

describe the same Hubbard model. The independence @pace. It is straightforward to perform a Fourier transform

physical results on the values ®f can be used as a check

for the validity of approximations. Furthermore, a large va-
riety of different four-fermion interactions can be described

by varying the Yukawa couplings away from the “Hubbard
values” (14).

The symmetrieR andl, as well as the translations by?2
are easily implemented on the space of bilinégys W, and
correspondingly for the scalar fields; ,W, . This is not the
case for the translations &y The above formulation of the

bosonization is therefore not optimal yet if—beyond the
symmetries of the coarse-grained lattice—the symmetries

such asT, play an important role(as for the Hubbard

mode). It is easy to remedy this shortcoming by an exten-
sion of the space of bilinears and the corresponding scalar

fields. We introduce an additional color index for the fer-
mion bilinears and the scalars by

W, (X) =Ty Ty M,(X), Way(X)=T,W,(X),

W, (X)=W,(X), Wy (X)=T (%), (15)

and similar fort(®,w,0*,1,j. Products such as.w, are
now understood as scalar products

using
. d*q _
Ia(x =213, [ 5 hexiifoc z)g
+27TnTT}]‘zan(q),
~ d2
w;ma@@ Jﬁexq—i{(xntza)q

+2mnT7}] len(q) Yga’

73

0 (19

I =i, 7°=(

73
Here the Matsubara frequencies are labeled by half integer
n==*1/2,+3/2,... and the momentum integration is in the
range —A<qgy<A, —A<q,<A as appropriate for the
coarse lattice with lattice distance2We choose

a a
"2'2

a a
7= P
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a a a a w2
= - — — = —— — — *— *
z=|5." 5| u= 3. 2) (20) Tluw, ¢, 9] InZ+J dTEX ; [PEB (J5pUag
corresponding to an expansion in the coordinates of(itie . w2 .
n) lattice. This yields for the kinetic term +JapUzp) + sz: LayWay T+ 73 a
Skin:f dTEX: Lyin /A na] (25

d’q . N which obeys
=T f 2 Varl P (1,0) din(),
n or  m?

J—— L
2 -ayr
PO =—27nTy°—2ity%{cogaq,) A, + cogaqy)B,}, MWay A
(21) Performing the derivativeg3) in the fermionic functional
integral, we can directly relate the scalar expectation values

etc. (26)

where we use matrices{=1p;u=0---3;i,j=1---3) to the expectation values of fermionic bilinears
T, 0 0 Ty EB 1
Mo m)’ 5 (m 0/ Uap= g2 (Tap) + 2 Jas.

{AA}={B;,Bj}=28;, {A,B;}=26;B,, L U2+ — 3%
ap 47T2 aB A2 ag
[Ai A]1=[B;,Bj]=2i €A, [Ai,Bj]1=2i€;kBy,

1

h
_ Ny e
BoA=ABo=B;, BoB,=B,Bo=A,. (22 Way =72 (Way) + 1 7lay- (27)

Jn particular, if all sources exceplap(x)zAZM/hp vanish,
the scalaw,, has contributions linear in the electron density
n=(p)/4a? and the chemical potential

Spontaneous symmetry breaking with “extended orde
parameters” like the antiferromagnetic spin densit(a;
—a,+33—3,) or d-wave superconductivity with order pa-

rameter~ (d, +d,+ds+d,) can be directly investigated in h, M
our formalism by looking for the minima of the effective Wap=mn+ ho (28)
scalar potential. The notion of the effective potential is a P

very powerful concept since it describes simultaneously situ- e will mainly be interested in homogenous expectation
ations with vanishing and nonvanishing sources, i.e., in adyajyes and therefore in the effective scalar potential which

dition to the Hubbard model for arbitragy it also comprises  ¢an be obtained fror for x- and ~-independent scalar fields
many extended models. The effective potential correspondgnq vanishing fermion fields by

to the effective action for homogeneous colored scalar fields.

We define the scalar expectation values in the presence of Uo=TI/V,. (29
sources(the variation with respect tb,, is performed at
fixed M)( P % 1S P The ground state of the Hubbard model corresponds to the

minimum of U, with respect to all fields excepp
2, =33aW,, given by Eq.(28), wherey obeys

Uag(X) = — —5——-InZ=(0,5(X)),
5 VY ap
uz(x) = InZ=(035(x)), We are interested in possible expectation values of scalars

—
7" dap(X) different from p. Such a spontaneous symmetry breaking

arises if for some range @fthe minimum ofU, (at fixed p)

2 L. .
InZ=(W,,(x)), 23) occurs for a nonvanishing scalar field.

Wo (X)= — ——
ar(X) 2 AL ay(X)
V. MEAN FIELD APPROXIMATION

with
In this paper we compute the effective potentigl in the
A2 A2 “mean field” approximation. This means that only the fer-
Jap=="lag, Lay="lay- (24 mionic part of the functional integrdll2) is performed in a
B h, homogenous “background’i=u, W=w. This integral is
Gaussian, and we can write the mean field expressiob for

With the usual Legendre transform one obtaiwe concen-
trate in the following ony,=(,)=0, ¥ =(§*)=0) the
effective actionl’ Ug=U.+AU,

as
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, A2 2A2 ) where the second term reflects the influence of the back-
Ug=A EB ; ugﬁua[ﬁ- 72 ; Wa,Wa,+ hZ K5 ground through the Yukawa couplings. We explore here the
Y p

dependence of the effective potential on the charge depsity

1 d%q d-wave pair condensatioth and antiferromagnetic order pa-

AU=— ETE f Wm detP(n,q). (31) rametera. We therefore take
n T

Here P(n,q) is a 16x16 matrix (including spinor indices

for the inverse fermion propagation in the presence of scalar
background fields. It is defined by the part of the action
guadratic in the fermion fields

Wlp:WZp:W3p:W4p:pi

Ugg=Upg=Uzq=Uyg=d,

1 d’q ~ ~
5572 | e V(- OPATn@, (32

Wia= —Woa=W3a= —Wya=2a, (39
T//n(q)z( A Yan(@) ) (33)  and find[the choice ofy° in Eq. (19 is not crucial for this
Ya,—n(—Q) calculation—any orthogonat® will do]
and we find from Eq(21)
0 —P3(-m| . (0 —yOT) ( 0 Ay ed
P= +P(p,d,a,...), 34 P=—ih —ih,a
(Po(n) 0 (p ) (34) P ’}/O a )/OA3®T 0
|
d*[cogaay)A;—cogady)B;] 0 -
—hg 0 or|®c=—PT. (36)
0 dy’[cogag,)A;—cogady)B;]y
|
With G=diag(,—i7°') andP=GPG' one obtains 2A2%u?
9. —1y") andE Ug=2A2a+4A%5+202p2+ o2
1 p
IndetP=IndetP= 7 In det( PB,P'B,)
1 d?q
=1In deh{(ZWnT)Z‘F[Zt COS{aqX)Al AU=— ET; J —2(277) trg In(1+{[2t cos{aqX)Al
2
+2tcogaq,)B;+h,pl*+hiaat 2h hpal;0 7 +2t cogady)By+h,p+h,aAg® 7]
+hid* d[cosag)A, —cofag,)B.]%.  (37) +h3o[cogady)A; — cogagy)By]2H/(2mnT)?),
It is easy to see thahkU depends only on the invariants (39)
=d*d, e=aaandp. Up to an additive(T-dependentcon-
stant one finds and, evaluating the Matsubara sum and the trace, finally
ZAZMZ

Uo=2A%a+4A%5+2A%p%+ -
P

d?q 1
2 2. n2,12.4 12 2
_ZTJ (277)25“5]62{_1’1} In COS"{E \/[hpp+€i Vat(c,+ €;Cy)“+hza]*+hgs(c,— €c,)

with ¢,=cos@q,), c,=cos@q,).

VI. SPONTANEOUS SYMMETRY BREAKING

For large temperature the fluctuation contributibbl is suppressed- T~ 1. The minimum ofU, therefore occurs for ap
at =0, §=0. As T is lowered, the fluctuations tend to destabilize the “symmetric minimum.” In particular, the fluctuation
contribution to the mass term faris negative for not too large? and the one fod is negative for allp



PRB 62 SPONTANEOUS SYMMETRY BREAKING IN THE . .. 15477

am2=2-" AU Mo _ a2
a= g T T la=0=0 9a % oa
=—2h2T), f—zdzq tr{P 2 =2al 2A2—1h 1> f—zdzq
al&d | (2m)? 4t e 2 24 ) (2w
—2h%p2AsP 2AP 2, _
o AsP, AP, Xtrg{(hppa1/2A3®73+ha)|3;2(a,5)})=0, (41)
AMZ=— AU Mo_ 4%
ST s 955
dzq 1 d2q
—_Rn2 _ 2_ T2
th; J(Zﬂ,)Ztrél{[CoanX)Al —d(4A Zth; I(ZW)Ztrg{[C()iaqx)
—cogaqy)B;1?P, %} (39) .
’ ! —cogagy)B,l?P, %(a,8)}| =0 (42)
with with

2 2 2 2
P?(a,8)=P:{+2h h,pVaAz;® 73+ hia+hid cogaqy)
P2=(2mnT)?+[2t cosag,)A, + 2t cogag,)B, + h,p]2 b po TpTalNTTRE S e "

2
(40) —cogadqy)Bo]”. (43)

One always has the symmetric solutias0, §=0 which

and ty the trace in color space only. These contributionscorresponds to a local minimum |m§> 0, M§>O and to a
should be compared withM(?)?=(M{?)2=4A2. The ze- maximum or saddlepoint otherwise. Consider next solutions
roes ofPﬁ for T=0 correspond to the Fermi surfa(® with ~ with a=0, 5#0 which require

;hiﬁe? ch(ZTJicsl pg)stg?tiajé?fézl)hpp. I[Neglectin]g V&:ontriblljl- dq

tions from gs. an Imply wes=u.] We reca _ a4 _ 45-2

that the momenta are restricted to the raegge corresponding to hd&T% f(zw)ztu([cos(aqx) costag,)Bol P,

the coarse latticfoy, ,|< 7/(2a) = A. On the other hand, we - -

now have possible zeroes for different linear color combina- X {P,+hgél cogaa,) —cogad,)Bo]7 ")

tions. Noting that the eigenvalues Af andB; are +1, they —

precisely correspond to the original Fermi surface—the =4A*+AMG= Mﬁ. (44)
original zeros in the four rangds, ,|<A, A<|qy,[<2A,
lax <A, A<|q,/<2A and A<|q,|<2A, |qy|<A appear
now for different color combinations in the randey,|
<A. Due to these zeros one finds J;im,AMﬁ—»—oo for
not too largep and similar forAsz1 in the appropriate range
of p. This clearly indicates spontaneous symmetry breakinén
with d-wave superconductivity or/and antiferromagnetic or-
der parameter. Note that in contrast to its derivatives th
potential is not singular fof — 0. Since for largex and 6U,
grows ~(a, 8), the minimum occurs necessarily for finite

Solutions withs>0 exist only forM3<0 and & vanishes as

the mass ternMS approaches zero from below. One con-
cludes that the transition from the symmetric phése 0,
5=0) to a possible superconducting phase without antiferro-
agnetismia=0, 6>0) is of second order.

We have analyzed the phase diagram for different
Yukawa couplings numerically. Due to the free parameters
%i in Eq. (14) the Yukawa couplings are largely undeter-
mined. They only have to obey the inequalitie$>0, hj

2 2 2 2 2
a#0 or 60 if M2=4A2+AM? or M3=4A2+AM3 be-  ~ 0 Na>0, Na>m U/ TN,/3-2hy/3. For example,\,
come negative. =N3=1/2,\,=1 leads tohg=h7=h3;=m"U/2. Because of

The spontaneous symmetry breaking cuts off the singular@ur meanfield approxir_nation, thg partition function becomes
ity near the Fermi surface or reduces its strength. An antiferdependent on the particular choice of the parametersve
romagnetic expectation value typically produces a gap foinvestigate the cases,=h,=hs=\10U (Fig. 2, h,=h,
the fermionic fluctuations. Fag>0, §=0, p=0 this can be =h;=2y10U (Fig. 3), h,= 10U, h,=h;=210U (Fig. 4),
seen from a search for possible zeroes of teEq. (37) for ~ andhs=10U, h,=h,=2y10U (Fig. 5. We chooset/U
T=0. On the other hand, fak=0, 5>0 the condition dgt =1 and investigate the phase diagram in ie/U-T/U
=0 requires cos(q,)=*cos@q,)==*h,p/(4t). In the super- plane. Expressed in the variablgs), T/U, pl\JU, our re-
conducting phase the singularity therefore only occurs fosults do not depend od and the lattice distance, as dis-
special points in momentum space instead of a whole Ferndussed in the beginning. As we increase all three Yukawa
surface. As a consequence, the momentum integrations faouplings simultaneously, the antiferromagnetic phase domi-
the bosonic mass ternjsimilar to Eq.(39)] remain finite  nates over the superconducting phésempare Figs. 2 and
even forT—0. 3). An interesting result of the mean field analysis is the

For vanishing sourceg,, j4 the minimum ofU, obeys appearance of a phase transition of first order into the anti-
the “field equations” ferromagnetic phase for small/U and for high values of
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FIG. 2. TheT-p phase diagram foh,=h,=hs;=+10U with FIG. 4. The T-p phase diagram forh,=+10U, h,=h;

symmetric (SYM), antiferromagnetic(AF), and superconducting =2+/10U with symmetric(SYM) and superconductingsC) phase.
phase(SQO). In the region marked by the bold line the phase transi-The phase transition is of second order.
tion into the antiferromagnetic phase is of first order; all other phase

transitions are of second order. VII. DISCUSSION AND CONCLUSIONS

. ) In conclusion, the mean field approximation for the col-
p/\JU. The phase transition between the symmetric and thg e Hubbard model can give a qualitatively reasonable pic-

supercon_dgcting phase remaips of second order. Both resulige of the phases in highz superconductors. On the other
were anticipated when examining the above formulas and;ang, the shortcomings of this approximation are also appar-
lytically. If we increasehy/\U compared tch,/\U the SU-  ent from the figures. All phase diagrams in Figs. 2, 3, 4, and
perconductivity phase dominates for IoWU, whereas in 5 correspond to different mean field approximations for the
the opposite case it is the antiferromagnetic phase. This isame model. It is impossible to resolve this ambiguity within
illustrated in Figs. 4 and 5. the mean field approximation without additional input on the
We note that for negativeour results apply if the anti-  selection of the Yukawa couplings. The reason is the neglect
ferromagnetic condensateis replaced by the ferromagnetic of fluctuations of the bosonic fields. Only if these are in-
condensaten. Furthermore, small disturbances can easily begjuded, the different equivalent choices of the Yukawa cou-
taken into account by source terms. For example, an interaglings should lead to the same physical results. The differ-
tion between spin and angular momentum will explicitly ences between the figures reveal the importance of the
break the continuous SB) invariance and typically amount neglected bosonic fluctuations, at least for some choices of

to a source tern, or I, . the Yukawa couplings(lt is conceivable that an “optimal
2 T T T T 2 T
1.5 B 15 E
SYM
1 1 1 1
0.5 B 0.5 R
0 0 1
0 0.1 0.2 0.3 04 0.5 0 0.1 0.2 0.3 04 0.5
FIG. 3. TheT-p phase diagram foh,=h,=h,=2y10U with FIG. 5. The T-p phase diagram forh,=+y10U, h,=h,

symmetric (SYM), antiferromagnetic(AF), and superconducting =210U with symmetric (SYM) and antiferromagnetid AF)
phase(SO). In the region marked by the bold line the phase transi-phase. In the region marked by the bold line the phase transition
tion into the antiferromagnetic phase is of first order; all other phasénto the antiferromagnetic phase is of first order, otherwise of sec-
transitions are of second order. ond order.
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choice” of the Yukawa couplings minimizes the impact of  For a possible “antiferromagnetic phase” the nonabelian
the bosonic fluctuationk. interactions between the Goldstone bosons of the effective
The inclusion of the bosonic fluctuations is a complextwo-dimensional model have a tendency to push the mini-
problem which can be attacked by means of nonperturbativehum of U, towardsa=0 and to make'U,/da positive? If
renormalization group equatiofisStudies for similar QCD-  only the non-Abelian Goldstone bosons are present in the
motivated models of fermions with Yukawa coupling to sca-effective long distance model their fluctuations would de-
lars have already been carried out successfune of the  gyroy the nontrivial minimum of the potential. One may
dominant effects will be the scale dependence of the Yukawg,arefore speculate about a new type of low-temperature

couplin'gs. Itis cpnceivgble that th!s running is dominatgd byphase, which is characterized by the presence of massless
partial infrared f|_xed points for ratios of Yukawa cou_pllngs. oldstone bosons as well as massless fermions. Alterna-
Fo_r large couplings, as relevant heTe' such partial f'xeéisvely no true antiferromagnetic phase with Goldstone

points would be approached fast. In this case the “memory bosons may occur. For all practical purposes the physics

of the initial choice of Yukawa couplings could be erasednevertheless will look qualitatively similar to the phase tran-
rapidly and unambiguous physical predictions become pos- q y P

sible sition in the mean field approximation: the effects from
A éecond important ingredient is the appearance of GolgSoldstone fluctuations are only logarithmic in ratios of mass

stone bosons fofa)#0 or (d)+ 0, corresponding to flat di- scales and would be cut off by a small @Jbreaking dis-
rections in the effective potentié31). For a superconducting tgrban(_:e Inducing a mass tefm for them. S!mple scale con-
condensated) the U(1) symmetry would be spontaneously siderations s_uggest that the first order transitions to the e_mt|-
broken and the question arises if this is self consistent. For fromagnetic phase are probably not affected substantially
large correlation lengtlg, i.e., £T>1, one expects that the PY the Goldstone fluctuations, except for the end points. Par-
dominant fluctuations near a second order phase transitidifularly interesting is the triple point in Fig. 2 where the
are well described by an effective dimensional reduction tdhree phases meet. By continuity of the second order lines
two dimensional classical statistics. The Mermin-Wagnerone expects five massless scalar excitations at this point.
theorem then suggests that the Goldstone boson fluctuations We emphasize that quite generally the possible second
prevent a continuous symmetry from being spontaneousigrder phase transitions between the symmetric and some
broken. In the case of a(l) symmetry the natural solution other phase belong to new interesting universality classes.
to this puzzle is a second order phase transition of théong range fermion fluctuations without a gap are present in
Kosterlitz-Touless type: only a renormalized expectationthe symmetric phase and therefore also at the phase transi-
value differs from zero, whereas the wave function renormaltion. They influence the critical exponents and other univer-
ization will lead to a vanishing expectation value for the sal properties. We hope that our formulation of the colored
unrenormalized scalar field. This reconciles the Mermin- Hubbard model will be a good starting point for a quantita-
Wagner theorem with the existence of Goldstone bosons ariye renormalization group study of all these interesting
superconductivity in presence of electromagnetic fields.  questions.
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