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The group-theory framework developed by Fukutome for a systematic analysis of the various broken-
symmetry types of Hartree-Fock solution exhibiting spin structures is here extended to the general many-body
context using spinor Green function formalism for describing magnetic systems. Consequences of this theory
are discussed for examining the magnetism of itinerant electrons in nanometric systems of current interest as
well as bulk systems where a vector spin-density form is required, by specializing our work to spin-density-
functional formalism. We also formulate the linear-response theory for such a system and compare and contrast
our results with the recent results obtained for localized electron systems. The various phenomenological
treatments of itinerant magnetic systems are here unified in this group-theoretical description. We apply this
theory to the one-band Hubbard model to illustrate the usefulness of this approach.

[. INTRODUCTION analysis of Hubbard-type models of one- and two-
dimensional systems of great current intefesh recent
Irreducible representations of the symmetry group of ayears, the spin-density-functional metRduas become the
system that classify the eigenstates of its Hamiltonian havenethod of choice, replacing the Hartree-Fock method both
been discussed befoteHowever, many important physical because it includes the important correlation effects not in-
phenomena such as superconductivity and many types @luded in the HF scheme in describing the theory of mag-
magnetic states of condensed matter display lower-symmetnyetic systems and because of the present much improved
characteristics, and are thus broken-symmetry states of treomputing techniques. There has been a suggestion to incor-
Hamiltonian! These phenomena have been theoretically unporate the Fukutome classification in the spin-density-
derstood in terms of approximate solutions that break the fulfunctional formalisnf. The Green function method for de-
symmetry of the Schdinger equation of the many- scribing many-body systems is more general than the above
body system. For example, the celebrated Hartreeschemes and broken-symmetry solutions can be incorporated
Fock-Bogoliuboy self-consistent-field method has beenin this framework as noted already in Ref. 1. A generalized
used in this way. A clear description of this approach may beversion of the density-functional method that includes spin
found in Ref. 1, where an enumeration of the various comas well has been reformulated in the Green function
monly found basic symmetries is also given. Fukutdmred  languag€. The various broken-symmetry states of the HF
his co-workers, based only on symmetry arguments, systenscheme will be more generally expressed here in terms of the
atized the search for possible novel states of the systensymmetry of the Green function under the appropriate sub-
which in the past depended on intuitive suggestions.,  groups, for which we use the nomenclature ‘“broken-
Bardeen, Overhauser, and Landau, for exampleese au- symmetry-adapted Green functions.” The purpose of this pa-
thors developed a complete group-theoretical classificatioper is twofold; one, to incorporate the Fukutome
and characterization of all the possible magnetic symmetrglassification into the Green function framework and, two, to
structures arising from only the underlying symmetry groupfocus attention on magnetic systems in general, by applying
consisting of spin rotatiofS), time-reversalT), and spatial this formalism to the spin-density-functional method with an
symmetry group(P) and its subgroups, within the Hartree- emphasis on the currently interesting findings of magnetic
Fock (HF) approximation. Fukutome found that there arestates in nanometric systefh®y this extension, we also
only eight subgroups of the symmetry groBg T consisting  provide a more complete vector spin-density-functional
of spin rotations and time reversal. The Hamiltonian of the(VSDF) theory of magnetic systems, which goes beyond the
well-known electron gas, which is an important ingredient incurrently used schemes for handling noncollinear magnetic
the density-functional method, is invariant un@®x T. Itis  materials*'® The recent theoretical work on the magnetism
common knowledge that the electron gas exhibits severaif free atomic clusters exhibiting interesting geometric struc-
states of magnetic order when treated in HF and relatetlres accompanying very large magnetic momemisovides
mean-field approximatiors.The eight different structures another class of problem in magnetism requiring further in-
found correspond to those belonging to the eight subgroupsestigation, particularly if the suggestion is true that these
When the spatial symmetry group is combined with theseglusters can be formed on semiconductor interfaéés this
one gets many more varieties of structure. This theory hasase the possibilities of variety of geometric structures of
been more recently extended to include mean-field-typeluster formation, each with its own magnetic features in
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relation to the substrate, would provide some challenge in . .
determining the appropriate broken-symmetry states of mag- Vext:f driA(r)wy(rt)+8(r)-f(rt)]
netism. The group-theoretical enumeration would make this
search systematic and orderly. B A o
In Sec. Il, we first give a brief description of the magnetic - % f dr S,(r)F*(rv), ©®)
system in terms of the spinor Green functiband the asso-

ciated spinor self-energy operatérWe then develop the where we have introduced the four-vector notation
Fukutome classification of magnetic systems associated with

this spinor Green function and the related spinor self-energy (f9=(w,,f, (r,)=(19,

(or mas$ operator, which is more general than the effective

self-consistent potential of the HF theory. In Sec. lll, the

linear-response functions arising out of these Green ga(r)zz Ty ss z//;r,(r)z,bs(r). (7
functions® are examined to establish the stability aspects of ss

the broken-symmetry structures. This approach will be o o
shown to be related to the recent work of Ref. 16. In Sec. v/ the above, greek indices run from 0 to 3. The Hamiltonian
the implications of the above developments for VSDF theory(l) is invariant under all spin rotatiorsand time reversalr.

are spelled out. This is complementary to the work in Ref.

17. Section V, is a summary with concluding remarks in B. Spinor Green function and spinor self-energy

relation to the proposed work on magnetism of nanostructure

: . : . The one-particle Green’s function is written as a matrix in
systems, including magnetic atomic clusters.

spin indices:®
II. BROKEN-SYMMETRY-ADAPTED GREEN
FUNCTIONS: THE FUKUTOME CLASSIFICATION

IN MAGNETIC SYSTEMS The equation of motion satisfied by this spinor Green func-
A. Hamiltonian tion is often written in its most general form as

Gee (rt;r't")=—I(T(e(r) YL, (r't"))). ®)

A general spin-polarized system without spin-orbit inter-
action (for simplicity of presentation at this junctyrés de-
scribed by the standard system Hamiltonian

2

. d Vi
o+ am Ve w(1) |G(12)

H=Tot Vi +Vie+ Vee. (1) _J d(3)3(13)G(32) = 8(12). ©)

Here, T, is the kinetic energy operator of the electrons and

Vii, Vie, and Ve, are operators representing the Coulombpere the spin-independent classical Coulomb poteiial
interactions between the o and the electronge). We  arising from the electron densityn(1)=(f(1))=
introducei¢(r), the usual field operator annihilating an elec- —j Ty G(11*) and the nuclei Y;,,) is given by

tron of spins at positionr, and zpl(r), the corresponding

creation operator. Then we have the definitions of electron-
density operator, Vc(l)zf (d2)v(12)n(2) +Vien(1), (10
A(r)=38y(r)= frywd(n), ) where. the instantaneous Coulomb interaction between elec-
° 23: vs(¥s trons isv(12)=(1/r,—r,|)8(t;—t,). Also, Tr stands for

the trace over spin indices onlyw(1)=w,(1)+ = f(1) is
the spinor representation of the external field. We have used
1 here to stand for the space-time poin,t;) and the other
§=2 Tsg ap;r,(r)ws(r), 3 notations are standard usage, as in Ref. 13, for example. The
s.s' last term on the left-hand side of E() is the contribution
where the Pauli spin matrix vector s It is useful to con- due to interparticle interaction in its most general form, and

sider the system as being subjected to an external, spift€ call it the “exchange-correlation spinor self-energy”
dependent field described by contribution, in anticipation of later application to functional

formalism. The general expression for this spinor self-energy

and vector spin-density operator,

. matrix 2 is in general a functional of the spinor Green func-
Vex= 2 j dr Weg (rt) gg(r) s (1). (4 tion G, and is given by
s,s’
In the following we splitw.y into a scalar pariv,=f°, i _
which acts on the electron density given by E8) and a 2(12):|f d(3)f d(4)G(13)A,(32;4W(41), (11)
traceless partvg expressed in terms of the Pauli matrices,
which acts on the spin density E): where
Wq(rt)=7f(rt). 5 567112

An(12;3)= - (12

We thus rewrite Eq(4) in a physically transparent form, OVit(3)
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is the screened charge-response vertex function, Wjth  consideration, we are now in a position to generalize the
=Vc+w,. W is the Coulomb interactiom(12), screened Fukutome symmetry considerations of the HF solutions and
by the dielectric functiore, both of which are spin scalars, subsequent classification of the broken-symmetry solutions

defined by of a magnetic system.
Following Ref. 13, the most general forms of the spinor
Cqam OViel(1) Green function and the spinor self-energy function with no
¢ (12= dwp(2) (13 spin-symmetry considerations are expressed in terms of the

Pauli matrices:

W(12)= f d(3)e "(13)v(32). (14 G(12)=}{gn(12 + 7 gs(12)}, (18)

Finally we write the Dyson equatiof®) in the familiar form

2 (12)={0,(12) + 7 o4(12)}. (19
2
G Y12 = [i i + &—Vc(l) —w(1)[8(12)—-3(12) We first note that the physical electron density and the physi-
gty 2m cal vector spin density are respectively given by

=G, !-3. (15) A _ _
n(1)=(A(1))=—i TrG(11")=—ig,(11") (20

In the usual HF approximatior, is the familiar unscreened

exchange self-energy if we do not include the screening bynd

the dielectric function of the medium:X(12)~3(12)

=iv(12)Gue(12). This exhibits the explicit dependence of S(1)=(¥1))=—i Tr{#G(11")}=—igg(11"). (21

the self-energy on the Green function and hence the self-

consistency feature of E415). In Ref. 13, the spinor struc- The corresponding physical particle current vector and the
ture of G was used to construct a self-consistent solution tqhysical spin current tensor respectively are given by

the general HF approximation in the Green function lan-

guage, from which the general Overhauser spiral spin-

density-wave solution was deduced. It was then recognized JM=(i1)
as a “broken-symmetry” solution of the HF equation be- 1
cause this solution breaks the spin-rotation and time-reversal =— ﬁTr{(Vl—Vlr)G(ll’)}y:p

symmetries of the interacting electron gas Hamiltonian. We

should also point out that in constructing any approximation 1

scheme for the self-energyit is useful to have certain con- == 5 t(Vi= V) gn(11)}y 1+, (22
servation principles as well as variational character. Bdym

set up such a conserving scheme by introducing a functional A

®[G] whose first variational derivative with respect ® Fs(1)=(J (1)

yields the exactt, and constructed an expression for the
grand potential 1 )

=- ﬁTr{T(Vl_ Vi)G(LL)} g+
Q[G]=Trt{In(—G)}—Trtr2G+d[G] (16)

: . . . 1
that is stationary with respect to variations@ Thus, =_ 2—{(V1— Vi1)gs(11)} g+ (23
m
5(1) .-y . .
Ve+3= ek 17 Here we have expressed these quantities of interest in terms

of the corresponding spin-scalar and spin-vector components
and the grand potential is constructed wilf G] as the of the full spinor Green function, E418). From Eq.(9), we
building block such that it is stationary for variations of the have
spinor G that satisfies the exact matrix Dyson equation, Eq.
(15). Here tr is the same notation as in Ref. 14, namely, J 1
[_+ _-Vl‘(v1_V1')]G<(11')|1'1+
-iB -iB dty  2mi
trABzf dlf d2A(12)B(21"), (16) 1
° ° 5l f(1)1G™(117) - G=(11)[ (1)1}
where B is the inverse temperature. Also, as in Ref. 14, the !

choice of the branch of the logarithm is such that the varia- 1

tion of the first term in Eq(16) is taken to be of the form = i_f d(2){X7(12G~(21")+G~(12X7(21")
S{trin(—G)}=—tr{(6G1)G}. This formulation of the

many-body theory is known in the literature as the —3(12G~(21") -G~ (122=(21")}. (29

d-derivable method and has recently been generalized to in-

clude the density-functional formalism in Ref. 7. With this From this, using Eq418) and(19), we deduce the following
introduction of the one-particle spinor Green function andgeneral continuity equations relating the densities and cur-
the corresponding spinor self-energy of the system undetents given in Eqs(20)—(23):
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an(1) TABLE I. The eight subgroups.
- +V1~j<1>:—fd(2>{an><12)g§<21+>+---
! SXT S
+03(12)-g5(21)+-+}, (25 A@)XT A(B)xXM(&') (&-&'=0) A®)
T M(&") X1

Js(1 -
B v, T - 1))
1 symmetry. Fukutonfepointed out in the context of the HF

scheme that ifU; belongs to a subgroup of the group of
=—j d(2){o5(12g,(21")+-+i05(12) transformationsU, then G/, and the corresponding self-
consistent,},- form broken-symmetry-adapted solutions.

Xgs(21%)+- ). (260 From this it is clear that such a scheme holds for the general

gelf-energy that appears in the equation for the Green func-
tion as in Eq.(15), which we explore in detall in this work.
We will now present this generalized version of the
Fukutomé analysis and describe these broken-symmetry
d)ossibilities.

We first consider only the grouf of all spin rotations
{I,U}, being the unit operator in the rotation group, and the
groupT of time-reversal operatiofi, T} which is of order 2,

The ellipses in the above denote other terms arising from th
indicated manipulations required to express 4) in terms

of the particle and spin densities. Equati@b) is the usual
continuity equation for the particle density while EG6) is
the corresponding one for the vector spin density. The thir
term on the left-hand side of E(R6) is the torque term due
to external field acting on the spin vector while the right-
hand side involves interaction contributions, which are of?’ . i . .
two kinds. The first is due to the spin vector modified by the! IS the unit operator andl =i r,C [C is the complex conju-
particle density, while the second is the cross product of thg&tion operator, under which the Hamiltoniel) is invari-

spin vector with the field due to interactions. The differenceam]' As in Ref. 2, the inclusion of spatial symmetry has to be

between the itinerant and the localized spin cases thus b&€alt with individually depending on the type of spatial sym-

comes clear. In the itinerant case the divergence terms ar{BeW one wants to consider. A general consideration involv-

the others on the right side contribute to give rise to spiniNg Only SandT is sufficient for the present and indeed, as

wave dispersion while in the localized case the divergenc/ill D€ discussed in Sec. 1V, the results obtained here form

term is absentno spin currentand only the cross product of the_ basis for vector sp|n-den3|ty_-funct|onal theory of mag-
spins contributes on the right-hand side. We will return toN€l¢ Systems, where the interacting electron gas system pro-
this in the next section vides the underlying functional for investigating the proper-

ties of many important inhomogeneous systefsse, for
example, Refs. 9 and 10Since S commutes withT, the
group of allSandT is the direct product group=SXT
={IXI,T,U,UT}. There are eight different subgroups®f
Consider the Dyson equation in the absence of externakhich we will now enumerate. We note at once thatl, S,
fields obtained by dropping in Eq. (15). It transforms un-  and T individually are three subgroups &f. The spin rota-

C. Fukutome’s classification of the broken-symmetry-adapted
Green functions and the corresponding self-energies

der any unitary transformatiod to the form tion A(8), about a fixed axis denoted by the unit vedoiis
Vo1 1 <y a subgroup ofS A(&)={U(&,0)}, where {U(&,0)} is
G'"1=Gy -y, (27 given by
where

U(&,0)=exd —i0/2(+&)]
2
1

Gy t=uli L ALy (1)|8(12)U" 4 0
0 gty 2m ¢ ’ =cos;—i(7: é)sinz. (28)
G'=UGU", The fifth subgroupvi (&") is of order 2, consisting of the unit
and operator and the combined operationTofwvith a spin rota-
tion through an angler around an axisé': M(&")
'=UsUT=3[G']. ={I,TU(&,m)}. There are two more subgroups that arise

The HamiltonianH given by Eq.(1) leads to the self-energy from the product of the elemens(e) andM(&'):

as well as the first term on the right-hand side of EZy). A(B)XM(&")={U(&,6),U&,0) U@, mT} (29
Now G§ =G, ! because it is the noninteracting part; the R '

self-energy, on the other hand, reflects the contributions du€his gives rise to two groups, one when the unit vectors are
to interactions, and is a therefore a functionalGfand has orthogonalg-&’ =0, and second whe&= *=&’, which is the
the form given in Eq(11). Two cases arise as with the HF group A(&) X T. Collecting them all together, we have the
theory! (a) G'=G, i.e., G commutes withU and thus is eight subgroups listed in Table I.

invariant under the transformatiod and 2’ =2.. In this In Table Il, we have used the invariance of the continuity
case U represents the self-consistent symmetry of the correequations, Eqg25) and(26), under time-reversal operation,
sponding?, scheme(compare the HF schethe (b) Gis  which in turn leads to the respective transformation proper-
not invariant undetJ but leads toG’ and ' obeying the ties of particle, particle-current, spin, and spin-current densi-
same form of the equation & ThenU represents aroken ties:
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TABLE II. Broken-symmetry-adapted Green function solutions of the Dyson equation.
Invariance involving time
GroupM(&")
Invariance GroupT consisting ofT
involving of time and 7 rotations
spin reversal abouté’ axis |
Paramagnetic system
GroupS G1=(1/2)(g,) Charge-current-wave system
of all spin with j=0 G,=(1/2)(g9,)
rotations =0, with j#0
Nonmagnetic insulator =0,
Nonmagnetic metal or
semiconductor
GroupA(é)  Axial spin-current-wave system Axial spin-density-wave system Axial spin-wave system
of spin G3=(1/2)[gn+ (7 &)gs] G4=(1/2)[gn+ (7 &)gs Gs=(1/2)[gn+ (7-&)gs]
rotations with j=0 and J s#0 with j=0 and Js=0 with j#0 and J s#0
ab.OUté. S.=0o +(;_3)0\| S,=ont (8o} Ss=0n+ (7 8o}
axis (axial) S oo S Insulating axial antiferromagnet Itinerant-electron axial ferromagnet

Insulatingé axis antiferromagnet

| General spin-current-wave system
Ge=(1/2)(gn+ 7 0s)
such that =0, s=0, but
i's#0, divjs=0
Se=(on+ 7 09)
Insulating spin-current-

(&'-e=0)

General spin-density-wave system

G7=(1/2){gn+ (7 &')gs
+[7—&(r&')] g5}

S;={on+ (7 &) okt [7—&(7&)] 0%}

Itinerant-electron

helical SDW state

(e.g., Overhausgr

General spin-wave system
(with no constraint on spin-
density vector
Gg=(1/2)(gn+ 7 9s)
Sg=(ont 7 09

Most general itinerant-
electron SDW state

density state
(antiferromagnet

n—n, j—-j, s—-s js—js. (30) H=§k‘, e(K)ag,a,a,+U X al,qagay, 4 a0, -
k.k".,q

This representation is equivalent to but more physical than (32)

the one given by Fukutonfewho expresses his results in The spinor matrix Green function for the system is

terms of the real and imaginary parts of the density matrix. It G(ij:t)=G,(it:j0)

may be worth pointing out that several types of itinerant 7 go

spin-density-wave states occurring in rare-earth systems :_i<T(aig(t)alTU,(o))>

(33
were discussed before in a phenomenological ay.

in localized representation. An important consequence of this
is that the physical quantities, the total particle number at site

D. Classification of broken-symmetry states of the one-band |, > (al (t)a (1)) and spin-density vector
Hubbard model S o Toor{ail,(t)a,(t)), may be expressed as traces over the

One of the popular models to study the various magneti 2r(1)Suct of unit and Pauli matrices as in E¢8), (20), and

states is described by the one- or two-band Hubbard Hamil*
tonian. Most recently, Singfhas examined the various pos-
sible states of a one-band Hubbard model in a decoupling _ A
scheme that goes beyond the Hartree-Fock approximation. §=iwaG(iit=0"). (34
Arita et al?° have examined the relationship between theln HF theory, the self-energy is found to be of the form
three-dimensional lattice structure and magnetism of the sys- . . -
tem using Baym'¥ formalism, alluded to t?y us earlier. Iny 2 =—iUG(ii,t=07), (35)
this section, we use our group-theoretical analysis to enumeftom which we can deduce the eight different forms dictated
ate the various possible states of this system. The one-bariy the group-theory considerations. Localized representation
Hubbard model in localized representation is given by is used to obtain the self-energies for systems with no current
while the “band” representation is employed when the cur-
rent is nonzero as indicated in Table I. A mixed representa-
tion is applied when one kind of current is zero and the other
is not, as is the case in two of the eight cases in Table I.
For a system invariant under translation and spin rotation,
we get

nip+nj=n=—itrG(ii,t=0"),

Hzg tijal,a),+ UZ alaial &, (32)

which is equivalently written in the “band” representation

as oo =—1UG(ii,t=07)8,4, (36)

o=—o0,
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which for nj;=n;, is the self-energy of a paramagnetic in a more physical way recently in Ref. 16 where a localized
system. A similar expression is obtained in band representssite representation was used. Such a version is not applicable
tion for the nonmagnetic metal or semiconductor withto itinerant-electron systems, where one has contribution
n;:Ek<alE(t)akE(t)>- If the spin rotations are restricted to from the mobile electrons as |s_eV|de_n'§ from the Wo_rk of
axial ones, the off-diagonal terms ¥ appear in both repre- Refs. 13 and 15. One way to realize this is to note that in Eq.
sentations. In the localized case, this leads to an insulating?® there is a contribution from the divergence of the spin
axial antiferromagnet and to an itinerant-electron ferromagturrent which is absent when there are no itinerant electrons.

net for “band” representation. The self-energies in either TO Pring out this feature, instead of repeating the work in

case have a similar structure and can be written as Refs. 13 and 15, we give here a brief outline of linear-
response theory. The various types of response fungtign
n'l'b —ghb can be expressed as appropriate variational derivatives,
Z:U( b b ) (370  which in turn are expressed in terms of the corresponding

—S4 ny appropriate variational derivatives of the self-energy:

wherel, b stand for localized and band representations re- Xap(12)=—1{({T(3,(1)84(2))) —S4(1)4(2)}

spectively,n,=n;,, nb=n,, s\, =(al\a, ), s_=(a/a;), N

% =3 (@l pqr() Ak (1)), and  s”=Sal_ (1) _954(1) T 8G(117)

Xayg_q(t)). One can equally express the interaction terms 5tP(2) * 5tP(2)

in mixed representation in such a way that one gets the lo-

calized results for the diagonal terms in spin indices of the =—j Trtrf r GA LG

self-energy such thgt=0 and delocalized ones for the off- TR

diagonal terms in spin indices such that*0 to get the 5G-1(12 55(12

insulatingé axis antiferromagnet. Ap(12;3)=— W(C%)) = 8(12)5(13) 75+ L

For systems with broken translational symmetry, a plane Sth(3)

wave of the form expk-r) with up spin and Recalling the definitions given in Eq&), (20), and(21), we
exfli(k+Q)-r] with down spin are assigned to derive the have 16 response functions, involving the particle density
self-energy’ Here the vectorQ is a measure of the spiral and the three components of the spin vector density. In the
nature of the spin density and points in an arbirary directionocalized-electron scheme, the cross terms involving the den-
for the most general itinerant-electron SDW state, and th&jty and spin vector will not appear. This is another impor-

self-energy is given by tant difference between the localized- and itinerant-electron
0 0 systems. From such a linear-response theory, one often de-

n -Ss: he low- llective excitations in the system

s—U ) (39) duces the low-energy co . _ y ,

= —-sQ n, such as spin waves in ferromagnetic, antiferromagnetic, and

SDW systems. Such a discussion may be found, for example,
where n?=3(a} o, (Daw+o (1)), N =@l (Hay (1)), in Ref. 15,
5‘2 = Eq(anT(t)aHQJrql(t)), and s@ The objective in Ref. 16 was to derive expressions for the
= Eq<al+Q—q1(t)ak—qT(t)>' The itinerant-electron helical energy of the known Io_calized effective spin models of mag-
SDW state is a special case of the general SDW state witRetic systems. From this one can also deduce the low-energy

Spin vectors having projections a|0ng Specific m’;mdé’, collective excitations in the system. In the itinerant-electron
and the general spin-current-wave system can be obtained fystem, it should be pointed out that there are important con-
mixed representation as discussed above. tributions not found in the localized spin systems, as is evi-

We have thus demonstrated here the use of the generéent from Ref. 15, for example. We adopt the alternate for-
group-theoretical method in a special model system. In théulation in this section to obtain a generalization of the
next section, we address the important question of the lineaffocal force theorem” in Ref. 16 that is applicable to both

response of these systems in an equally comprehensive mahe localized and itinerant systems. .
ner. Unlike in the general linear-response theory described

above, we now consider the effect of an infinitesimal rotation
of the spin about a general direction denoted by a unit vector
e, 60=¢ 50, obtained from Eq(28): sU=(1-i60-72),

on the free energy, Eq16), in the same fashion as in Ref.
16, holdingG fixed:

Ill. LINEAR RESPONSE FUNCTIONS:
SYMMETRY CONSIDERATIONS

The well-known theory of linear-response functions in
itinerant magnetic systems may be expressed in terms of the S0 =—-TrirG(62),
functional derivatives of the inverse Green function, Eq.
(15), with respect to the external field$ of Egs.(6) and(7).
From these one examines the possible collective excitations
in the systenisee, for example, Refs. 13 and)1Bddition-
ally these response functions allow us to test the stability of —i @_[7(7. o) — (7 09) 7]
the statgfor example, in Refs. 13 and 1fhat is obtained as 2 s s
the solution of Eq(9) or equivalently Eq(15). Alternately,
the stability question may be reformulated as the criterion of
minimum free energy, as was originally done in Ref. 14 andand so

50
s=i (-39

=—7 (60X 0y),
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50 =60-tr( o X gs)=56-V. (39 sion. Note, however, that from E@3) g,,,0,, depend on the

, ) . spin vector. Had we kept this contribution, we would have
Here we used the representations given in E¥8.and(19  5qgitional contributions due to particle-density-density,

and some well-known identities_ to arr?ve at the _eXpr?SSiorbarticle-density, and spin-density vectors mentioned in the
for the torque\/_ due_ to the rotation. This expression differs inear-response theory at the beginning of this section. For
from the one given in Ref. 16 because of a factor of one-hal ompleteness, we give this here:

in our definition of the spinor Green function in contrast to
theirs. As in Ref. 16, the Dyson equation gives us the sum L 1
rules on the components of the spinor Green function, after $ns=tr 9n0n=3t{ondn(Go "~ n)Gn— Tndn( o5 G)}-
using Eq.(15):
Here Eq.(43) was used in further simplification. It should be

GG '=1=G(G,'-3) noted that the notation tr used here is as defined before in Eq.
_ (16'). In the site local representation used in Ref. 16, Eq.
_1 + G 1 _ .
=2(gnt7099)(Gy "~ op— 7 09), (46) transforms to that given there.

Using Table I, we have eight types of Green function and
their corresponding self-energies associated with the allowed
_ broken-symmetry solutions. Using these in the general ex-
= L —— 1 . . . S . . .
=(Go = 0q= 7 09)3(gnt 7 Gs). (40 pressions for the spin-spin interaction energies obtained
From this we get the relations above, one can deduce the structure of the corresponding
spin-spin contribution to the free energy of the system.

G !'6=1=(G,'-3)G

(Go'—0n)0n— 05 0s=2, (413

GIl- _ — <X ge=0, 410 IV. IMPLICATIONS FOR VECTOR
(Go "= 0n)gs— 050y~ 105X 0s (41 SPIN-DENSITY-FUNCTIONAL THEORY
-1 — . . .
In(Go "~ o) —0gs 0s=2, (429 The development of the vector spin-density-functional
. ) theory, especially the locdLSD) approximation, has in re-
9s(Gp "~ ) ~gnos—igsX 0s=0. (42b cent years produced a much better theoretical understanding

From these we derive the following sum rules correspondin@f itinerant magnetism(See, for example, Refs. 5, 9, and

to those given in Ref. 16 but in a coordinate representatiort0) In particular, in Ref. 15, a spinor Green function version
valid for both itinerant- and localized-electron systems. Mul-0f the LSD theory was developed where the self-energy in
tiplying (413 by g, on the left and(42a on the right we Egs.(9) or (15) is taken to be of the form, local in space and

obtain time,

201 =0n(Go "~ 70)9n ~ Un('s-Gs) 312 ={Vidns1i]+ 7 Wodn,sril}a(12), (47)
=gn(Gg - —(gs- : 43
In(Go "~ 0n)Un—(gs 05)0n (43 whereV,, is the spin-scalar part of the self-energy, which is

Multiplying (418 by gs on the left and using42b) we obtain  in general a local functional of particle densityand spin-
density vectors, whereasW,. is its spin-vector counterpart,

205=9n0sGn~ 0s( s gs) +1(gsX 0'5)0p for describing itinerant magnetic systems. The approximate
= g,0Gn— (G 08 gs+ 19 FsX o). (44) forr_ns f_or these functionals arise as th_e respective functional
derivatives of the exchange-correlation ener@yJn,s,]
The second expression is obtained by multiplyidga by =g, [s,] [using the notation of Eq7)] of a spin-polarized
gs on the right and using41b). From Eqs(39) and(44), we  homogeneous electron gésee references in Ref. 5, for ex-
obtain the general expression for the torque vector, ample. In fact, V,.= SE,./ 8N, W= SE,./ s, or, more ge-

_ nerically, Vﬁg)=5Exc/53a, so thatX, gp= Tan(‘é). The re-
V=t(osxgs) sulting equation is the LSD equation,

= —3t{os X[~ gnosOn+ (Js: 0)Ts
2

—ign(o-Sng)]}. (45) iI"‘;_vc(l)_Wn(l)_T'f(l)
By integrating back the expression given by [E8p), effec- ! m
tively the spin-only part of the free energy may be rewritten X G(12) —{V,dn,s; 1]+ 7 W, n,s1]}G(12)
as
=5(12). (48)

Qee=tr Tr(GY)=tr(gs: o)
o This is solved self-consistently by numerical methods.
=—32tM(gs' 0)(gs @) — (0's9n) - (0°Qn) The continuity equations for the particle and spin density
—i[(sX gy0) - gs]}. (46)  derived from this LSD equatiof#8) now take the forms

Here Eq.(44) was used in further simplification. The second an(l
approximation symbol is because we have dropped the spin- n(1) +V,-j(1)=0,
independent contributiongfo,, arising in the first expres- aty
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TABLE lll. Broken-symmetry-adapted Green function solutions of the LDS equation.

Invariance involving time

Invariance GroupT GroupM(&") |
involving of time consisting ofT and =
spin reversal rotation abou®’ axis

Paramagnetic system

GroupS G1=(1/2)(g,) Charge-current-wave system
of all spin with j=0.3 1= 8(12)V,, G,=(1/2)(g9,)
rotations Nonmagnetic insulator with j#0 X,=8(12)V,

Nonmagnetic metal or
semiconductor

GroupA(&é) Axial spin-current-wave system Axial spin-density-wave system Axial spin-wave system

of spin Ga=(1/2)[gn+ (7 &)9s G4=(1/2)[gy+ (&) ge] Gs=(1/2)[gn+ (&) g4

rotations aboué  with j=0 and j s#0 with j=0 and j s=0 with j#0 and j s#0

axis (axial) 5= 8(12)[ Vyet (7 &)Wy ] 34= 8(12)[ Vyet (T &)Wy, 5= 8(12)[ Vyet (7 8) ] Wi
Insulatingé axis antiferromagnet Insulating axial antiferromagnet Itinerant-electron axial ferromagnet

(&'-e=0)
| General spin-current-wave system  General spin-density-wave system General spin-wave system

Ge=(1/2)(gn+ 7 0s) G,=(1/2){gy+ (7 &")g% (with no constraint on
such thaf=0, s=0, but +[7—&(72")] g} spin-density vector
7s#0, div =0 37= 8(12){Vye+ (78" ) Wi Gg=(1/2)(gn+ Q9
26= 8(12)(Vyct 7 Wyo) +r—8(m2")]- Wi 2g=0(12) (Vyet+ 7 Wyo)
Insulating spin-current-density state Itinerant-electron Most general itinerant-
(antiferromagnet helical SDW state electron SDW state

(e.g., Overhausgr

ds(1) -
T1+V1'js(1)zwxc><s(1). (49

le_ﬁD: - %tr{(gs' ch)(gS' ch) - (ganc) . (ganc)

- ign(vvxc>< gS) : ch}- (54)
The second equation for the spin-density vector has a contri-
bution from the torque due to the spin polarization of theéthe corresponding particle-density and spin-density contri-
spin system, besides having a contribution from the divery tions to the free energy are given by
gence of the moving spins producing a spin-current density.
Proceeding as in Eq$41) and (42), we have the equa-

tions QrEP=trg,Vy,
(Gal_ ch)gn_ (ch) ‘Os= 21 (50@ = %tr{chgn(Ggl— ch)gn_vxcgn(wxc' gs)}-

-1 H _
(Go "= Vi) G5~ (Wie)gn = 1(Wye) Xgs=0, (50D In Eq. (54), as in Eq.(46), the first term represents a multi-

spin interaction energy involving four spins or more, the

In(Go T Vyo) =G5+ (Wyo) =2, (518 middle term is like the spin-spin interaction involving two
spins or more, whereas the last term is a Dzialoshinskii-

0s(Go = Vi) —gn(Wy ) —igsX (W,)=0. (51b)  Moriya-type interaction, involving three or more spins. In
Ref. 15, a spatially slowly varying approximation was con-

From these we obtain the expressions sidered in an approximate way and only the middle term

resembling an effective Heisenberg spin-spin interaction en-

207=09n(Gg "~ Vyxd)Un— n(Wyc- Gs) (528 ergy was derived along with the cross terms containing par-

ticle density and spin density. The higher-order spin terms

:gn(Go_l_ch)gn_(gS'ch)gnu (52b and the Dzialoshinskii-Moriya terms did not appear in that
derivation because self-consistent relations as in E@.

20s=gn(Wyo) 9n+ 1 (gsX W) g — gs( W+ Gs) and(53) were not invoked. The above remark arises from the

(539 observation that the vector part of the self-energy functional
W, is an odd functional of the spin vector beginning with a
_ ; (. linear functional of the spin vector.

On(Wie)Gn +10n( Wi Gs) ~ (G5 W) Gs- (53b) In Table IlI, the eight types of Green function and the
corresponding self-energies are given associated with the

Finally the expression for the spin-only contribution to thevarious broken-symmetry types for the case of LSD theory.
free energy in the LSD case is obtained in a manner similaFrom the above general expressions for the free energy, one
to that given in Sec. Ill, Eq(46): may then deduce the structure of the spin-dependent energies
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that follow for each of these cases. The phenomenologicadystems, particularly when the clusters are deposited on
descriptior’® is here supported by the considerations ofsemiconductor substrat&swill be systematized by the pro-

group theory. cedure given here. In these systems, as seen from the work in
Applying the linear-response theory outlined in Sec. Ill to Ref. 11, magnetic properties are correlated with the geomet-
the LSD scheme, one obtains a tensor ric structures of the clusters; the group-theoretical analysis
presented here is expected to make the search for this feature
52 0% Js, ) systematic. In this context, the work presented here incorpo-
58~ U5y 58 (chain rulg rated into that in Ref. 17 may be expected to lead to efficient
procedures for computation of magnetic properties in nano-
8°Ey 9SS, metric systems and in atomic clusters. We applied this theory
= Toll 5s%5s? SfP' to the one-band Hubbard model to illustrate the usefulness of

. . this approach.
as was shown in Ref. 15. The broken-symmetry consider- \ye have here pointed out the significance of incorporat-

ations leading to Table Ill may be applied to this tensor 10y, the vector nature of spin density in LSD theory, particu-
deduce the corresponding eight structures. As shown in Refa|y iy the modification needed in the traditional use of the

15 and more recently in Ref. 10, the use of homogeneouf,mogeneous electron gas results. In this context, the recent

electron gas results in LSD theory requires a subtle and img ok in Ref. 10 should be mentioned as an important step in
portant modification in incorporating the vector nature of they proper treatment of the vector spin. In Ref. 10, the trans-

spin density when studying the spin-wave properties of itinyerse part of the vector spin was incorporated in a perturba-
erant magnets. Another way of expressing this point is thafie way and was shown to lead to a better understanding of
the traditional electron gas theory leads to an Ising-like treatg,o magnetism of iron than previouslythe localized treat-

ment of the spins, which is converted into a Heisenberg-likgnent of spin interactions deduced in Ref. 16 is here gener-
treatment(see, for example, Ref.) Dy a spin rotation. This  4jizeq 1o itinerant-electron magnetic systems and the differ-
does not lead to correct answers, as was shown in Ref. 1@pces arising from this are spelled out. It may also be pointed

and this is due to the subtle nature of the treatment of the + that the phenomenology of the various types of SDW
spin vector in the theory. In Ref. 10, a perturbation theorygiycryre given in Ref. 18 may be deduced from Table Iil.
approach was presented to include this feature, thus making |, tnis paper, we have not included the gauge group

a significant difference. needed to incorporate superconducting phases nor have we
included the lattice translation group. The addition of the
V. SUMMARY AND CONCLUDING REMARKS translation group into the considerations given here brings in

In summary, the structures of the Green functions andhe irreducible representation characterized by ghesctor

their associated self-energies arising from group-theoreticaﬂsso?ate_?hw'th the Brlllounj zolne andft?e l'ttt.le glgrc:u%of the
considerations of the spin rotation and time-reversal invarid VECtOr. The gauge group is also useiul particularly because

ance are given in Table Il for general magnetic many-the highT - superconductors involving- ands-wave pairing

electron systems and in Table Il for the vector spin-densitypc.)?esrsl mteres]tc!nig Jgrtix Strll:l]CIUI;)eS. IncIusmg .Of these
functional formalism of itinerant-electron systems. This isVithin the mean-fieldHF) theory has been reported in some

expected to systematize the procedure of analysis of ma pecial cased? The generalization of all these features in the

netic structures that may appear in magnetic nanometric sy sreen function framework will be addressed in a future ar-

tems and in magnetic atomic clusters, just as the earlier simf '€
lar work of Fukutome systematized the Hartree-Fock
solutions of magnetic states of molecular systems. We also
consider consequences of this by setting up the linear- A.K.R. is supported in part by the Office of Naval Re-
response theory and an alternative version of it in the form ofearch. M.M. acknowledges the financial support of the
an “effective spin Hamiltonian,” to exhibit the differences ASEE Summer Faculty Program which enabled him to con-
between localized-electron systems and those where the eleinue collaboration at the Naval Research Laboratory. We
trons are itinerant. We hope that the search for various typethank Professor Kleinman for a copy of work before publi-
of magnetic structures in nanomefriand atomic clustét  cation.
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