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Broken-symmetry-adapted Green function theory of condensed matter systems:
Towards a vector spin-density-functional theory
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The group-theory framework developed by Fukutome for a systematic analysis of the various broken-
symmetry types of Hartree-Fock solution exhibiting spin structures is here extended to the general many-body
context using spinor Green function formalism for describing magnetic systems. Consequences of this theory
are discussed for examining the magnetism of itinerant electrons in nanometric systems of current interest as
well as bulk systems where a vector spin-density form is required, by specializing our work to spin-density-
functional formalism. We also formulate the linear-response theory for such a system and compare and contrast
our results with the recent results obtained for localized electron systems. The various phenomenological
treatments of itinerant magnetic systems are here unified in this group-theoretical description. We apply this
theory to the one-band Hubbard model to illustrate the usefulness of this approach.
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I. INTRODUCTION

Irreducible representations of the symmetry group o
system that classify the eigenstates of its Hamiltonian h
been discussed before.1 However, many important physica
phenomena such as superconductivity and many type
magnetic states of condensed matter display lower-symm
characteristics, and are thus broken-symmetry states o
Hamiltonian.1 These phenomena have been theoretically
derstood in terms of approximate solutions that break the
symmetry of the Schro¨dinger equation of the many
body system. For example, the celebrated Hartr
Fock~-Bogoliubov! self-consistent-field method has be
used in this way. A clear description of this approach may
found in Ref. 1, where an enumeration of the various co
monly found basic symmetries is also given. Fukutome2 and
his co-workers, based only on symmetry arguments, syst
atized the search for possible novel states of the sys
which in the past depended on intuitive suggestions~viz.,
Bardeen, Overhauser, and Landau, for example!. These au-
thors developed a complete group-theoretical classifica
and characterization of all the possible magnetic symm
structures arising from only the underlying symmetry gro
consisting of spin rotation~S!, time-reversal~T!, and spatial
symmetry group~P! and its subgroups, within the Hartree
Fock ~HF! approximation. Fukutome found that there a
only eight subgroups of the symmetry groupS3T consisting
of spin rotations and time reversal. The Hamiltonian of t
well-known electron gas, which is an important ingredient
the density-functional method, is invariant underS3T. It is
common knowledge that the electron gas exhibits sev
states of magnetic order when treated in HF and rela
mean-field approximations.3 The eight different structure
found correspond to those belonging to the eight subgro
When the spatial symmetry group is combined with the
one gets many more varieties of structure. This theory
been more recently extended to include mean-field-t
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analysis of Hubbard-type models of one- and tw
dimensional systems of great current interest.4 In recent
years, the spin-density-functional method5 has become the
method of choice, replacing the Hartree-Fock method b
because it includes the important correlation effects not
cluded in the HF scheme in describing the theory of m
netic systems and because of the present much impro
computing techniques. There has been a suggestion to in
porate the Fukutome classification in the spin-dens
functional formalism.6 The Green function method for de
scribing many-body systems is more general than the ab
schemes and broken-symmetry solutions can be incorpor
in this framework as noted already in Ref. 1. A generaliz
version of the density-functional method that includes s
as well has been reformulated in the Green funct
language.7 The various broken-symmetry states of the H
scheme will be more generally expressed here in terms of
symmetry of the Green function under the appropriate s
groups, for which we use the nomenclature ‘‘broke
symmetry-adapted Green functions.’’ The purpose of this
per is twofold; one, to incorporate the Fukutom
classification into the Green function framework and, two,
focus attention on magnetic systems in general, by apply
this formalism to the spin-density-functional method with
emphasis on the currently interesting findings of magne
states in nanometric systems.8 By this extension, we also
provide a more complete vector spin-density-function
~VSDF! theory of magnetic systems, which goes beyond
currently used schemes for handling noncollinear magn
materials.9,10 The recent theoretical work on the magnetis
of free atomic clusters exhibiting interesting geometric str
tures accompanying very large magnetic moments11 provides
another class of problem in magnetism requiring further
vestigation, particularly if the suggestion is true that the
clusters can be formed on semiconductor interfaces.12 In this
case the possibilities of variety of geometric structures
cluster formation, each with its own magnetic features
15 461
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relation to the substrate, would provide some challenge
determining the appropriate broken-symmetry states of m
netism. The group-theoretical enumeration would make
search systematic and orderly.

In Sec. II, we first give a brief description of the magne
system in terms of the spinor Green function13 and the asso-
ciated spinor self-energy operator.14 We then develop the
Fukutome classification of magnetic systems associated
this spinor Green function and the related spinor self-ene
~or mass! operator, which is more general than the effect
self-consistent potential of the HF theory. In Sec. III, t
linear-response functions arising out of these Gre
functions15 are examined to establish the stability aspects
the broken-symmetry structures. This approach will
shown to be related to the recent work of Ref. 16. In Sec.
the implications of the above developments for VSDF the
are spelled out. This is complementary to the work in R
17. Section V, is a summary with concluding remarks
relation to the proposed work on magnetism of nanostruc
systems, including magnetic atomic clusters.

II. BROKEN-SYMMETRY-ADAPTED GREEN
FUNCTIONS: THE FUKUTOME CLASSIFICATION

IN MAGNETIC SYSTEMS

A. Hamiltonian

A general spin-polarized system without spin-orbit inte
action ~for simplicity of presentation at this juncture! is de-
scribed by the standard system Hamiltonian

H5Te1Vii 1Vie1Vee. ~1!

Here,Te is the kinetic energy operator of the electrons a
Vii , Vie , and Vee are operators representing the Coulom
interactions between the ions~i! and the electrons~e!. We
introducecs(r ), the usual field operator annihilating an ele
tron of spin s at position r , and cs

†(r ), the corresponding
creation operator. Then we have the definitions of electr
density operator,

n̂~r !5 ŝ0~r !5(
s

cs
†~r !cs~r !, ~2!

and vector spin-density operator,

ŝ5(
s,s8

tss8cs8
†

~r !cs~r !, ~3!

where the Pauli spin matrix vector ist. It is useful to con-
sider the system as being subjected to an external, s
dependent field described by

Vext5(
s,s8

E dr wss8~r t !cs
†~r !cs8~r !. ~4!

In the following we split wss8 into a scalar partwn[ f 0,
which acts on the electron density given by Eq.~2! and a
traceless partwS expressed in terms of the Pauli matrice
which acts on the spin density Eq.~3!:

WS~r t !5t•f~r t !. ~5!

We thus rewrite Eq.~4! in a physically transparent form,
in
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Vext5E dr @ n̂~r !wn~r t !1 ŝ~r !•f~r t !#

5(
a

E dr ŝa~r ! f a~r t !, ~6!

where we have introduced the four-vector notation

~ f a![~wn ,f!, ~ta![~1,t!,

ŝa~r ![(
s,s8

ta,ss8cs8
†

~r !cs~r !. ~7!

In the above, greek indices run from 0 to 3. The Hamilton
~1! is invariant under all spin rotationsSand time reversalT.

B. Spinor Green function and spinor self-energy

The one-particle Green’s function is written as a matrix
spin indices,13

Gss8~r t;r 8t8!52 i ^T„cs~r t !cs8
†

~r 8t8!…&. ~8!

The equation of motion satisfied by this spinor Green fu
tion is often written in its most general form as

F i
]

]t1
1

“1
2

2m
2VC~1!2w~1!GG~12!

2E d~3!S~13!G~32!5d~12!. ~9!

Here the spin-independent classical Coulomb potentialVC
arising from the electron densityn(1)5^n̂(1)&5
2 i Tr G(111) and the nuclei (Vion) is given by

VC~1!5E ~d2!v~12!n~2!1Vion~1!, ~10!

where the instantaneous Coulomb interaction between e
trons is v(12)5(1/ur12r2u)d(t12t2). Also, Tr stands for
the trace over spin indices only.w(1)5wn(1)1t•f(1) is
the spinor representation of the external field. We have u
1 here to stand for the space-time point (r1 ,t1) and the other
notations are standard usage, as in Ref. 13, for example.
last term on the left-hand side of Eq.~9! is the contribution
due to interparticle interaction in its most general form, a
we call it the ‘‘exchange-correlation spinor self-energy
contribution, in anticipation of later application to function
formalism. The general expression for this spinor self-ene
matrix S is in general a functional of the spinor Green fun
tion G, and is given by

S~12!5 i E d~3!E d~4!G~13!Ln~32;4!W~41!, ~11!

where

Ln~12;3!52
dG21~12!

dVtot~3!
~12!
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is the screened charge-response vertex function, withVtot
5VC1wn . W is the Coulomb interactionv(12), screened
by the dielectric functione, both of which are spin scalars
defined by

e21~12!5
dVtot~1!

dwn~2!
, ~13!

W~12!5E d~3!e21~13!v~32!. ~14!

Finally we write the Dyson equation~9! in the familiar form

G21~12!5F i
]

]t1
1

“1
2

2m
2VC~1!2w~1!Gd~12!2S~12!

[G0
212S. ~15!

In the usual HF approximation,S is the familiar unscreened
exchange self-energy if we do not include the screening
the dielectric function of the medium:S(12)'SHF(12)
5 iv(12)GHF(12). This exhibits the explicit dependence
the self-energy on the Green function and hence the s
consistency feature of Eq.~15!. In Ref. 13, the spinor struc
ture of G was used to construct a self-consistent solution
the general HF approximation in the Green function la
guage, from which the general Overhauser spiral sp
density-wave solution was deduced. It was then recogn
as a ‘‘broken-symmetry’’ solution of the HF equation b
cause this solution breaks the spin-rotation and time-reve
symmetries of the interacting electron gas Hamiltonian.
should also point out that in constructing any approximat
scheme for the self-energyS it is useful to have certain con
servation principles as well as variational character. Bay14

set up such a conserving scheme by introducing a functio
F@G# whose first variational derivative with respect toG
yields the exactS and constructed an expression for t
grand potential

V@G#5Tr tr$ ln~2G!%2Tr tr SG1F@G# ~16!

that is stationary with respect to variations inG. Thus,

VC1S5
dF

dG
, ~17!

and the grand potential is constructed withF@G# as the
building block such that it is stationary for variations of th
spinorG that satisfies the exact matrix Dyson equation, E
~15!. Here tr is the same notation as in Ref. 14, namely,

tr AB5E
0

2 ib

d1E
0

2 ib

d2A~12!B~211!, ~168!

whereb is the inverse temperature. Also, as in Ref. 14,
choice of the branch of the logarithm is such that the va
tion of the first term in Eq.~16! is taken to be of the form
d$tr ln(2G)%52tr$(dG21)G%. This formulation of the
many-body theory is known in the literature as t
F-derivable method and has recently been generalized to
clude the density-functional formalism in Ref. 7. With th
introduction of the one-particle spinor Green function a
the corresponding spinor self-energy of the system un
y
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consideration, we are now in a position to generalize
Fukutome symmetry considerations of the HF solutions a
subsequent classification of the broken-symmetry soluti
of a magnetic system.

Following Ref. 13, the most general forms of the spin
Green function and the spinor self-energy function with
spin-symmetry considerations are expressed in terms of
Pauli matrices:

G~12!5 1
2 $gn~12!1t•gS~12!%, ~18!

S~12!5$sn~12!1t•sS~12!%. ~19!

We first note that the physical electron density and the ph
cal vector spin density are respectively given by

n~1!5^n̂~1!&52 i Tr G~111!52 ign~111! ~20!

and

s~1!5^ŝ~1!&52 i Tr$tG~111!%52 igS~111!. ~21!

The corresponding physical particle current vector and
physical spin current tensor respectively are given by

j ~1!5^ ĵ ~1!&

52
1

2m
Tr$~“12“18!G~118!%18511

52
1

2m
$~“12“18!gn~118!%18511, ~22!

jJS~1!5^ Ĵ~1!&

52
1

2m
Tr$t~“12“18!G~118!%18511

52
1

2m
$~“12“18!gS~118!%18511. ~23!

Here we have expressed these quantities of interest in te
of the corresponding spin-scalar and spin-vector compon
of the full spinor Green function, Eq.~18!. From Eq.~9!, we
have

H ]

]t1
1

1

2mi
“1•~“12“18!J G,~118!u18511

2
1

2i
$@t•f~1!#G,~111!2G,~111!@t•f~1!#%

5
1

i E d~2!$S.~12!G,~211!1G,~12!S.~211!

2S,~12!G.~211!2G.~12!S,~211!%. ~24!

From this, using Eqs.~18! and~19!, we deduce the following
general continuity equations relating the densities and c
rents given in Eqs.~20!–~23!:
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]n~1!

]t1
1“1• j ~1!52E d~2!$sn

.~12!gn
,~211!1¯

1sS
.~12!•gS

,~211!1¯%, ~25!

]s~1!

]t1
1“1• jJS~1!2@ f~1!3s~1!#

52E d~2!$sS
.~12!gn

,~211!1¯1 i sS
.~12!

3gS
,~211!1¯%. ~26!

The ellipses in the above denote other terms arising from
indicated manipulations required to express Eq.~24! in terms
of the particle and spin densities. Equation~25! is the usual
continuity equation for the particle density while Eq.~26! is
the corresponding one for the vector spin density. The th
term on the left-hand side of Eq.~26! is the torque term due
to external field acting on the spin vector while the righ
hand side involves interaction contributions, which are
two kinds. The first is due to the spin vector modified by t
particle density, while the second is the cross product of
spin vector with the field due to interactions. The differen
between the itinerant and the localized spin cases thus
comes clear. In the itinerant case the divergence terms
the others on the right side contribute to give rise to sp
wave dispersion while in the localized case the diverge
term is absent~no spin current! and only the cross product o
spins contributes on the right-hand side. We will return
this in the next section.

C. Fukutome’s classification of the broken-symmetry-adapted
Green functions and the corresponding self-energies

Consider the Dyson equation in the absence of exte
fields obtained by droppingw in Eq. ~15!. It transforms un-
der any unitary transformationU to the form

G8215G08
212S8, ~27!

where

G08
215UF i

]

]t1
1

“1
2

2m
2VC~1!Gd~12!U†,

G85UGU†,

and

S85USU†5S@G8#.

The HamiltonianH given by Eq.~1! leads to the self-energ
as well as the first term on the right-hand side of Eq.~27!.
Now G08

215G0
21 because it is the noninteracting part; t

self-energy, on the other hand, reflects the contributions
to interactions, and is a therefore a functional ofG, and has
the form given in Eq.~11!. Two cases arise as with the H
theory:1 ~a! G85G, i.e., G commutes withU and thus is
invariant under the transformationU and S85S. In this
case,U represents the self-consistent symmetry of the co
spondingS scheme~compare the HF scheme1!. ~b! G is
not invariant underU but leads toG8 and S8 obeying the
same form of the equation asG. ThenU represents abroken
e
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symmetry. Fukutome2 pointed out in the context of the HF
scheme that ifU1 belongs to a subgroup of the group
transformationsU, then GHF8 and the corresponding self
consistent SHF8 form broken-symmetry-adapted solution
From this it is clear that such a scheme holds for the gen
self-energy that appears in the equation for the Green fu
tion as in Eq.~15!, which we explore in detail in this work
We will now present this generalized version of th
Fukutome2 analysis and describe these broken-symme
possibilities.

We first consider only the groupS of all spin rotations
$I ,U%, being the unit operator in the rotation group, and t
groupT of time-reversal operation$I ,T% which is of order 2,
I is the unit operator andT5 i t2C @C is the complex conju-
gation operator, under which the Hamiltonian~1! is invari-
ant#. As in Ref. 2, the inclusion of spatial symmetry has to
dealt with individually depending on the type of spatial sym
metry one wants to consider. A general consideration invo
ing only S andT is sufficient for the present and indeed,
will be discussed in Sec. IV, the results obtained here fo
the basis for vector spin-density-functional theory of ma
netic systems, where the interacting electron gas system
vides the underlying functional for investigating the prope
ties of many important inhomogeneous systems~see, for
example, Refs. 9 and 10!. Since S commutes withT, the
group of all S and T is the direct product groupD[S3T
5$I3I ,T,U,UT%. There are eight different subgroups ofD,
which we will now enumerate. We note at once thatI3I , S,
andT individually are three subgroups ofD. The spin rota-
tion A(ê), about a fixed axis denoted by the unit vectorê, is
a subgroup ofS: A(ê)5$U(ê,u)%, where $U(ê,u)% is
given by

U~ ê,u!5exp@2 iu/2~t•ê!#

5cos
u

2
2 i ~t•ê!sin

u

2
. ~28!

The fifth subgroupM (ê8) is of order 2, consisting of the uni
operator and the combined operation ofT with a spin rota-
tion through an anglep around an axisê8: M (ê8)
5$I ,TU(ê8,p)%. There are two more subgroups that ari
from the product of the elementsA(ê) andM (ê8):

A~ ê!3M ~ ê8!5$U~ ê,u!,U~ ê,u!U~ ê8,p!T%. ~29!

This gives rise to two groups, one when the unit vectors
orthogonal,ê•ê850, and second whenê56ê8, which is the
group A(ê)3T. Collecting them all together, we have th
eight subgroups listed in Table I.

In Table II, we have used the invariance of the continu
equations, Eqs.~25! and~26!, under time-reversal operation
which in turn leads to the respective transformation prop
ties of particle, particle-current, spin, and spin-current den
ties:

TABLE I. The eight subgroups.

S3T S
A(ê)3T A(ê)3M (ê8) (ê•ê850) A(ê)
T M(ê8) I3I
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TABLE II. Broken-symmetry-adapted Green function solutions of the Dyson equation.

Invariance involving time

Invariance
involving
spin

GroupT
of time
reversal

GroupM (ê8)
consisting ofT
andp rotations
aboutê8 axis I

Paramagnetic system
GroupS
of all spin
rotations

G15(1/2)(gn)
with j50
S15sn

Nonmagnetic insulator

Charge-current-wave system
G25(1/2)(gn)
with jÞ0
S25sn

Nonmagnetic metal or
semiconductor

GroupA(ê)
of spin
rotations
aboutê
axis ~axial!

Axial spin-current-wave system
G35(1/2)@gn1(t•ê)gS

i
#

with j50 and JSÞ0

S35sn1(t¢•eŴ )sS
i

Insulatingê axis antiferromagnet

Axial spin-density-wave system
G45(1/2)@gn1(t•ê)gS

i
#

with j50 and JS50
S45sn1(t•ê)sS

i

Insulating axial antiferromagnet
(ê8•ê50)

Axial spin-wave system
G55(1/2)@gn1(t•ê)gS

i
#

with jÞ0 and JSÞ0
S55sn1(t•ê)sS

i

Itinerant-electron axial ferromagne

I General spin-current-wave system
G65(1/2)(gn1t•gS)
such thatj50, s50, but

jJSÞ0, div jJS50
S65(sn1t•sS)
Insulating spin-current-
density state
~antiferromagnet!

General spin-density-wave system
G75(1/2)$gn1(t•ê8)gS

i

1@t2ê(t•ê8)#•gS
'%

S75$sn1(t•ê8)sS
i
1@t2ê(t•ê8)#•sS

'%
Itinerant-electron
helical SDW state
~e.g., Overhauser!

General spin-wave system
~with no constraint on spin-
density vector!
G85(1/2)(gn1t•gS)
S85(sn1t•sS)
Most general itinerant-
electron SDW state
ha
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n→n, j→2 j , s→2s, jS→ jS . ~30!

This representation is equivalent to but more physical t
the one given by Fukutome,2 who expresses his results
terms of the real and imaginary parts of the density matrix
may be worth pointing out that several types of itinera
spin-density-wave states occurring in rare-earth syst
were discussed before in a phenomenological way.18

D. Classification of broken-symmetry states of the one-band
Hubbard model

One of the popular models to study the various magn
states is described by the one- or two-band Hubbard Ha
tonian. Most recently, Singh19 has examined the various po
sible states of a one-band Hubbard model in a decoup
scheme that goes beyond the Hartree-Fock approxima
Arita et al.20 have examined the relationship between
three-dimensional lattice structure and magnetism of the
tem using Baym’s14 formalism, alluded to by us earlier. I
this section, we use our group-theoretical analysis to enum
ate the various possible states of this system. The one-b
Hubbard model in localized representation is given by

H5(
i j

t i j ais
† aj s1U(

i
ai↑

† ai↑ai↓
† ai↓ , ~31!

which is equivalently written in the ‘‘band’’ representatio
as
n

It
t
s

ic
il-

g
n.

e
s-

r-
nd

H5(
k

e~k!aksaks
† aks1U (

k,k8,q
ak1q↑

† ak↑ak82q↓
† ak8↓ .

~32!

The spinor matrix Green function for the system is

G~ i j ;t !5Gss8~ i t ; j 0!

52 i ^T„ais~ t !aj s8
†

~0!…& ~33!

in localized representation. An important consequence of
is that the physical quantities, the total particle number at
i, (s^ais

† (t)ais(t)& and spin-density vecto
(ss8tss8^ais

† (t)ais(t)&, may be expressed as traces over
product of unit and Pauli matrices as in Eqs.~7!, ~20!, and
~21!:

ni↑1ni↓5n52 i tr GI ~ i i ,t502!,

si5 i tr tGI ~ i i ;t502!. ~34!

In HF theory, the self-energy is found to be of the form

SI 52 iUGI ~ i i ,t502!, ~35!

from which we can deduce the eight different forms dicta
by the group-theory considerations. Localized representa
is used to obtain the self-energies for systems with no cur
while the ‘‘band’’ representation is employed when the cu
rent is nonzero as indicated in Table I. A mixed represen
tion is applied when one kind of current is zero and the ot
is not, as is the case in two of the eight cases in Table I

For a system invariant under translation and spin rotati
we get

SI ss852 iUGI ss~ i i ,t502!dss8 , s̄52s, ~36!
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which for ni↑5ni↓ is the self-energy of a paramagnet
system. A similar expression is obtained in band represe
tion for the nonmagnetic metal or semiconductor w
ns̄5(k^aks̄

† (t)aks̄(t)&. If the spin rotations are restricted t
axial ones, the off-diagonal terms inSI appear in both repre
sentations. In the localized case, this leads to an insula
axial antiferromagnet and to an itinerant-electron ferrom
net for ‘‘band’’ representation. The self-energies in eith
case have a similar structure and can be written as

SI 5US n↓
l ,b 2s2

l ,b

2s1
l ,b n↑

l ,b D , ~37!

where l, b stand for localized and band representations
spectively,ns

l 5nis , ns
b5ns , s1

l 5^ai↑
† ai↓&, s2

l 5^ai↓
† ai↑&,

s1
b 5(q^ak¿q_

† (t)ak¿q`(t)&, and s2
b 5(q^akÀq↓

† (t)
3akÀq↑(t)&. One can equally express the interaction ter
in mixed representation in such a way that one gets the
calized results for the diagonal terms in spin indices of
self-energy such thatj50 and delocalized ones for the of
diagonal terms in spin indices such thatj sÞ0 to get the
insulatingê axis antiferromagnet.

For systems with broken translational symmetry, a pla
wave of the form exp(ik•r ) with up spin and
exp@i(k1Q)•r # with down spin are assigned to derive th
self-energy.3 Here the vectorQ is a measure of the spira
nature of the spin density and points in an arbirary direct
for the most general itinerant-electron SDW state, and
self-energy is given by

SI 5US n↓
Q 2s2

Q

2s1
Q n↑

D ~38!

where n↓
Q5(k^ak¿Q↓

† (t)ak¿Q↓(t)&, n↑5(k^ak↑
† (t)ak↑(t)&,

s1
Q5(q^ak¿q↑

† (t)ak¿Q¿q↓(t)&, and s2
Q

5(q^ak¿QÀq↓
† (t)akÀq↑(t)&. The itinerant-electron helica

SDW state is a special case of the general SDW state
spin vectors having projections along specific axesê andê8,
and the general spin-current-wave system can be obtaine
mixed representation as discussed above.

We have thus demonstrated here the use of the gen
group-theoretical method in a special model system. In
next section, we address the important question of the lin
response of these systems in an equally comprehensive
ner.

III. LINEAR RESPONSE FUNCTIONS:
SYMMETRY CONSIDERATIONS

The well-known theory of linear-response functions
itinerant magnetic systems may be expressed in terms o
functional derivatives of the inverse Green function, E
~15!, with respect to the external fieldsf a of Eqs.~6! and~7!.
From these one examines the possible collective excitat
in the system~see, for example, Refs. 13 and 15!. Addition-
ally these response functions allow us to test the stability
the state~for example, in Refs. 13 and 15! that is obtained as
the solution of Eq.~9! or equivalently Eq.~15!. Alternately,
the stability question may be reformulated as the criterion
minimum free energy, as was originally done in Ref. 14 a
a-
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in a more physical way recently in Ref. 16 where a localiz
site representation was used. Such a version is not applic
to itinerant-electron systems, where one has contribu
from the mobile electrons as is evident from the work
Refs. 13 and 15. One way to realize this is to note that in
~26! there is a contribution from the divergence of the sp
current which is absent when there are no itinerant electro
To bring out this feature, instead of repeating the work
Refs. 13 and 15, we give here a brief outline of linea
response theory. The various types of response functionxab
can be expressed as appropriate variational derivati
which in turn are expressed in terms of the correspond
appropriate variational derivatives of the self-energy:

xab~12!52 i $^T„ŝa~1!ŝb~2!…&2sa~1!sb~2!%

5
dsa~1!

d f b~2!
52 i Tr trta

dG~111!

d f b~2!

52 i Tr trE taGLbG,

Lb~12;3!52
dG21~12!

d f b~3!
5d~12!d~13!tb1

dS~12!

d f b~3!
.

Recalling the definitions given in Eqs.~7!, ~20!, and~21!, we
have 16 response functions, involving the particle dens
and the three components of the spin vector density. In
localized-electron scheme, the cross terms involving the d
sity and spin vector will not appear. This is another impo
tant difference between the localized- and itinerant-elect
systems. From such a linear-response theory, one often
duces the low-energy collective excitations in the syste
such as spin waves in ferromagnetic, antiferromagnetic,
SDW systems. Such a discussion may be found, for exam
in Ref. 15.

The objective in Ref. 16 was to derive expressions for
energy of the known localized effective spin models of ma
netic systems. From this one can also deduce the low-en
collective excitations in the system. In the itinerant-electr
system, it should be pointed out that there are important c
tributions not found in the localized spin systems, as is e
dent from Ref. 15, for example. We adopt the alternate f
mulation in this section to obtain a generalization of t
‘‘local force theorem’’ in Ref. 16 that is applicable to bot
the localized and itinerant systems.

Unlike in the general linear-response theory describ
above, we now consider the effect of an infinitesimal rotat
of the spin about a general direction denoted by a unit ve
ê, du5ê du, obtained from Eq.~28!: dU5(12 idu•t/2),
on the free energy, Eq.~16!, in the same fashion as in Re
16, holdingG fixed:

dV52Tr tr G~dS!,

dS5 i
du

2
•~tS2St!

5 i
du

2
•@t~t•ss!2~t•ss!t#

52t•~du3ss!,

and so
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dV5du•tr~ss3gs![du•V. ~39!

Here we used the representations given in Eqs.~18! and~19!
and some well-known identities to arrive at the express
for the torqueV due to the rotation. This expression diffe
from the one given in Ref. 16 because of a factor of one-h
in our definition of the spinor Green function in contrast
theirs. As in Ref. 16, the Dyson equation gives us the s
rules on the components of the spinor Green function, a
using Eq.~15!:

GG21515G~G0
212S!

5 1
2 ~gn1t•gS!~G0

212sn2t•sS!,

G21G515~G0
212S!G

5~G0
212sn2t•sS! 1

2 ~gn1t•gS!. ~40!

From this we get the relations

~G0
212sn!gn2sS•gS52, ~41a!

~G0
212sn!gS2sSgn2 i sS3gS50, ~41b!

gn~G0
212sn!2gS•sS52, ~42a!

gS~G0
212sn!2gnsS2 igS3sS50. ~42b!

From these we derive the following sum rules correspond
to those given in Ref. 16 but in a coordinate representa
valid for both itinerant- and localized-electron systems. M
tiplying ~41a! by gn on the left and~42a! on the right we
obtain

2gn5gn~G0
212sn!gn2gn~sS•gS!

5gn~G0
212sn!gn2~gS•sS!gn . ~43!

Multiplying ~41a! by gS on the left and using~42b! we obtain

2gS5gnsSgn2gS~sS•gS!1 i ~gS3sS!gn

5gnsSgn2~gS•sS!gS1 ign~sS3gS!. ~44!

The second expression is obtained by multiplying~42a! by
gS on the right and using~41b!. From Eqs.~39! and~44!, we
obtain the general expression for the torque vector,

V5tr~sS3gS!

52 1
2 tr$sS3@2gnsSgn1~gS•sS!gS

2 ign~sS3gS!#%. ~45!

By integrating back the expression given by Eq.~39!, effec-
tively the spin-only part of the free energy may be rewritt
as

VSP>tr Tr~GS!>tr~gS•sS!

52 1
2 tr$~gS•sS!~gS•sS!2~sSgn!•~sSgn!

2 i @~sS3gnsS!•gS#%. ~46!

Here Eq.~44! was used in further simplification. The secon
approximation symbol is because we have dropped the s
independent contribution trgnsn arising in the first expres
n

lf

m
er

g
n
-

in-

sion. Note, however, that from Eq.~43! gn ,sn depend on the
spin vector. Had we kept this contribution, we would ha
additional contributions due to particle-density-densi
particle-density, and spin-density vectors mentioned in
linear-response theory at the beginning of this section.
completeness, we give this here:

Vns>tr gnsn> 1
2 tr$sngn~G0

212sn!gn2sngn~sS•gS!%.

Here Eq.~43! was used in further simplification. It should b
noted that the notation tr used here is as defined before in
~168!. In the site local representation used in Ref. 16, E
~46! transforms to that given there.

Using Table II, we have eight types of Green function a
their corresponding self-energies associated with the allo
broken-symmetry solutions. Using these in the general
pressions for the spin-spin interaction energies obtai
above, one can deduce the structure of the correspon
spin-spin contribution to the free energy of the system.

IV. IMPLICATIONS FOR VECTOR
SPIN-DENSITY-FUNCTIONAL THEORY

The development of the vector spin-density-function
theory, especially the local~LSD! approximation, has in re-
cent years produced a much better theoretical understan
of itinerant magnetism.~See, for example, Refs. 5, 9, an
10.! In particular, in Ref. 15, a spinor Green function versi
of the LSD theory was developed where the self-energy
Eqs.~9! or ~15! is taken to be of the form, local in space an
time,

SLSD~12!>$Vxc@n,s;r1#1t•Wxc@n,s;r1#%d~12!, ~47!

whereVxc is the spin-scalar part of the self-energy, which
in general a local functional of particle densityn and spin-
density vectors, whereasWxc is its spin-vector counterpart
for describing itinerant magnetic systems. The approxim
forms for these functionals arise as the respective functio
derivatives of the exchange-correlation energy,Exc@n,s,#
[Exc@sa# @using the notation of Eq.~7!# of a spin-polarized
homogeneous electron gas~see references in Ref. 5, for ex
ample!. In fact,Vxc5dExc /dn, Wxc5dExc /ds, or, more ge-
nerically, Vxc

~a!5dExc /dsa , so thatSLSD5taVxc
~a! . The re-

sulting equation is the LSD equation,

F i
]

]t1
1

“1
2

2m
2VC~1!2wn~1!2t•f~1!G

3G~12!2$Vxc@n,s;1#1t•Wxc@n,s;1#%G~12!

5d~12!. ~48!

This is solved self-consistently by numerical methods.
The continuity equations for the particle and spin dens

derived from this LSD equation~48! now take the forms

]n~1!

]t1
1“1• j ~1!50,
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TABLE III. Broken-symmetry-adapted Green function solutions of the LDS equation.

Invariance involving time
Invariance
involving
spin

GroupT
of time
reversal

GroupM (ê8)
consisting ofT andp
rotation aboutê8 axis

I

Paramagnetic system
GroupS
of all spin
rotations

G15(1/2)(gn)
with j50.S15d(12)Vxc

Nonmagnetic insulator

Charge-current-wave system
G25(1/2)(gn)
with jÞ0 S25d(12)Vxc

Nonmagnetic metal or
semiconductor

GroupA(ê)
of spin
rotations aboutê
axis ~axial!

Axial spin-current-wave system
G35(1/2)@gn1(t•ê)gS

i
#

with j50 and jJSÞ0
S35d(12)@Vxc1(t•ê)Wxc

i
#

Insulatingê axis antiferromagnet

Axial spin-density-wave system
G45(1/2)@gn1(t•ê)gS

i
#

with j50 and jJS50
S45d(12)@Vxc1(t•ê)Wxc

i
#

Insulating axial antiferromagnet
(ê8•ê50)

Axial spin-wave system
G55(1/2)@gn1(t•ê)gS

i
#

with jÞ0 and jJSÞ0
S55d(12)@Vxc1(t•ê)#Wxc

i

Itinerant-electron axial ferromagne

I General spin-current-wave system
G65(1/2)(gn1t•gs)
such thatj50, s50, but

JSÞ0, div jJS50
S65d(12)(Vxc1t•Wxc)
Insulating spin-current-density state
~antiferromagnet!

General spin-density-wave system
G75(1/2)$gn1(t•ê8)gS

i

1@t2ê(t•ê8)#•gS
'%

S75d(12)$Vxc1(t•ê8)Wxc
i

1@t2ê(t•ê8)#•Wxc
' %

Itinerant-electron
helical SDW state
~e.g., Overhauser!

General spin-wave system
~with no constraint on
spin-density vector!
G85(1/2)(gn1t•gS)
S85d(12)(Vxc1t•Wxc)
Most general itinerant-
electron SDW state
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]s~1!

]t1
1“1• jJS~1!5Wxc3s~1!. ~49!

The second equation for the spin-density vector has a co
bution from the torque due to the spin polarization of t
spin system, besides having a contribution from the div
gence of the moving spins producing a spin-current dens

Proceeding as in Eqs.~41! and ~42!, we have the equa
tions

~G0
212Vxc!gn2~Wxc!•gS52, ~50a!

~G0
212Vxc!gS2~Wxc!gn2 i ~Wxc!3gS50, ~50b!

gn~G0
212Vxc!2gS•~Wxc!52, ~51a!

gS~G0
212Vxc!2gn~Wxc!2 igS3~Wxc!50. ~51b!

From these we obtain the expressions

2gn5gn~G0
212Vxc!gn2gn~Wxc•gS! ~52a!

5gn~G0
212Vxc!gn2~gS•Wxc!gn , ~52b!

2gS5gn~Wxc!gn1 i ~gS3Wxc!gn2gS~Wxc•gS!
~53a!

5gn~Wxc!gn1 ign~Wxc3gS!2~gS•Wxc!gS .
~53b!

Finally the expression for the spin-only contribution to t
free energy in the LSD case is obtained in a manner sim
to that given in Sec. III, Eq.~46!:
ri-

r-
y.

r

Vsp
LSD52 1

2 tr$~gS•Wxc!~gS•Wxc!2~gnWxc!•~gnWxc!

2 ign~Wxc3gS!•Wxc%. ~54!

The corresponding particle-density and spin-density con
butions to the free energy are given by

Vns
LSD>tr gnVxc

5 1
2 tr$Vxcgn~G0

212Vxc!gn2Vxcgn~Wxc•gS!%.

In Eq. ~54!, as in Eq.~46!, the first term represents a mult
spin interaction energy involving four spins or more, t
middle term is like the spin-spin interaction involving tw
spins or more, whereas the last term is a Dzialoshins
Moriya-type interaction, involving three or more spins.
Ref. 15, a spatially slowly varying approximation was co
sidered in an approximate way and only the middle te
resembling an effective Heisenberg spin-spin interaction
ergy was derived along with the cross terms containing p
ticle density and spin density. The higher-order spin ter
and the Dzialoshinskii-Moriya terms did not appear in th
derivation because self-consistent relations as in Eqs.~52!
and~53! were not invoked. The above remark arises from
observation that the vector part of the self-energy functio
Wxc is an odd functional of the spin vector beginning with
linear functional of the spin vector.

In Table III, the eight types of Green function and th
corresponding self-energies are given associated with
various broken-symmetry types for the case of LSD theo
From the above general expressions for the free energy,
may then deduce the structure of the spin-dependent ene
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that follow for each of these cases. The phenomenolog
description20 is here supported by the considerations
group theory.

Applying the linear-response theory outlined in Sec. III
the LSD scheme, one obtains a tensor

dS

d f b 5tr
dS

dsg

dsg

d f b ~chain rule!

5tatr
d2Exc

dsadsg

dsg

d f b ,

as was shown in Ref. 15. The broken-symmetry consid
ations leading to Table III may be applied to this tensor
deduce the corresponding eight structures. As shown in
15 and more recently in Ref. 10, the use of homogene
electron gas results in LSD theory requires a subtle and
portant modification in incorporating the vector nature of t
spin density when studying the spin-wave properties of i
erant magnets. Another way of expressing this point is t
the traditional electron gas theory leads to an Ising-like tre
ment of the spins, which is converted into a Heisenberg-
treatment~see, for example, Ref. 9! by a spin rotation. This
does not lead to correct answers, as was shown in Ref
and this is due to the subtle nature of the treatment of
spin vector in the theory. In Ref. 10, a perturbation theo
approach was presented to include this feature, thus ma
a significant difference.

V. SUMMARY AND CONCLUDING REMARKS

In summary, the structures of the Green functions a
their associated self-energies arising from group-theore
considerations of the spin rotation and time-reversal inv
ance are given in Table II for general magnetic man
electron systems and in Table III for the vector spin-dens
functional formalism of itinerant-electron systems. This
expected to systematize the procedure of analysis of m
netic structures that may appear in magnetic nanometric
tems and in magnetic atomic clusters, just as the earlier s
lar work of Fukutome systematized the Hartree-Fo
solutions of magnetic states of molecular systems. We
consider consequences of this by setting up the line
response theory and an alternative version of it in the form
an ‘‘effective spin Hamiltonian,’’ to exhibit the difference
between localized-electron systems and those where the
trons are itinerant. We hope that the search for various ty
of magnetic structures in nanometric8 and atomic cluster11
-
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systems, particularly when the clusters are deposited
semiconductor substrates,12 will be systematized by the pro
cedure given here. In these systems, as seen from the wo
Ref. 11, magnetic properties are correlated with the geom
ric structures of the clusters; the group-theoretical analy
presented here is expected to make the search for this fe
systematic. In this context, the work presented here incor
rated into that in Ref. 17 may be expected to lead to effici
procedures for computation of magnetic properties in na
metric systems and in atomic clusters. We applied this the
to the one-band Hubbard model to illustrate the usefulnes
this approach.

We have here pointed out the significance of incorpor
ing the vector nature of spin density in LSD theory, partic
larly in the modification needed in the traditional use of t
homogeneous electron gas results. In this context, the re
work in Ref. 10 should be mentioned as an important step
a proper treatment of the vector spin. In Ref. 10, the tra
verse part of the vector spin was incorporated in a pertur
tive way and was shown to lead to a better understandin
the magnetism of iron than previously.9 The localized treat-
ment of spin interactions deduced in Ref. 16 is here gen
alized to itinerant-electron magnetic systems and the dif
ences arising from this are spelled out. It may also be poin
out that the phenomenology of the various types of SD
structure given in Ref. 18 may be deduced from Table II

In this paper, we have not included the gauge gro
needed to incorporate superconducting phases nor hav
included the lattice translation group. The addition of t
translation group into the considerations given here bring
the irreducible representation characterized by theq vector
associated with the Brillouin zone and the little group of t
q vector. The gauge group is also useful particularly beca
the high-TC superconductors involvingd- ands-wave pairing
possess interesting vortex structures. Inclusion of th
within the mean-field~HF! theory has been reported in som
special cases.2,4 The generalization of all these features in t
Green function framework will be addressed in a future
ticle.
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