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Magnetization and level statistics at the quantum Hall liquid-insulator transition
in the lattice model
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Statistics of level spacing and magnetization are studied for the phase diagram of the integer quantum Hall
effect in a two-dimensional finite lattice model with Anderson disorder.
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The way in which the increasing disorder induces the
sulating state when starting from the integer quantum H
~IQH! state is a topic of controversy between the continu
and lattice models of the two-dimensional~2D! electronic
gas in strong magnetic field. The continuum approach p
dicts the crossover between the adjacent quantum Hall
teaus, ending up with the insulating state when the degre
disorder increases or, equivalently, the limit of small ma
netic field is considered. This is due to the so-called ‘‘flo
ing up’’ of the critical energiesEc which occurs with in-
creasing disorder. (Ec is the energy where the localization
delocalization transition takes place in the thermodyna
limit.! In the critical region, i.e., when the Fermi energyEf

crosses an extended state energyEc , the transverse~Hall!
conductivity is sxy

c 5n21/2 ~at the transition between th
plateausn andn21).1 This means that at large disorder~or
low field!, the cascade of transitions must end withn51
→n50 ~insulator!. The experiments give controversial in
formation in what concerns the possibility to observe this l
transition~see Ref. 2 and the references therein, Ref. 3!. The
sensible conclusion can be found in Refs. 2 and 4 sugges
that the theoretical results of the scaling theory, which
obtained for zero temperature and infinite systems, canno
checked easily by experiments that are done for fin
samples and at low~but nevertheless finite! temperature. The
evaluation of the critical value of the longitudinal conducti
ity is also a difficult task. Leeet al., show in the frame of
corresponding states lawthat sxx

c 51/2 for anyn; approach-
ing the question in the opposite way, Zirnbauer assum
sxx

c 51/2 and finds agreement with the numerical simu
tions. The numerical calculation performed by Huoet al., for
the lowest Landau level also produces 0.5.5

More recently, the same problem has also been
proached in lattice models. The results are again contro
sial, since Yang and Bhatt calculating the Chern numbers
different degrees of disorder, find a tiny floating up of t
extended states,6 while Xie et al., by the study of the local-
ization length, conclude that the positions of extended st
remain unchanged as disorder increases. The last au
propose a phase diagram in the energy-disorder plane
allows the direct transitionn→0.7 Unlike Refs. 6 and 7,
which use periodic boundary conditions, in this paper
study confined systems by the use of vanishing conditio
so that the Hall current is carried along edge states.
phase diagram obtained here reminds us of one from Re
however metallic regions~wheresÞ0) are implanted in be-
tween QH and insulating phases give rise to a crossove
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In this context we study some new relevant features of
disordered lattice model in magnetic field with vanishi
boundary conditions, the attention being paid especially
magnetization, level spacing distribution, and conducta
on extended states in the so-called metallic region; a c
parison with the results obtained by Yang and Bhatt will
done.

The discussion is based on the spinless one-elec
Hamiltonian in perpendicular magnetic field defined on a
square lattice withN sites in one direction andM sites along
the other one, which reads as follows:

H5 (
n51

N

(
m51

M

@enmun,m&^n,mu1 i2pfmun,m&

3^n11,mu1un,m&^n,m11u1H.c.#, ~1!

where un,m& is a set of orthonormal states, localized at t
sites (n,m), andf is the magnetic flux through the unit ce
measured in quantum flux units. In Eq.~1! the hopping inte-
gral at f50 is taken with unity serving as the energy un
and the diagonal energyenm is a random variable distribute
according to the probability density:

P~e!5H 1/W, 2W/2,e,W/2

0, otherwise.
~2!

The averaged spectrum of the Hamiltonian~1! is depicted
in Fig. 1 forf51/10 and the disorder amplitude in the ran
WP@0,10#. The lines represent the mean eigenvalues^En&
as a function of disorder amplitudeW.

In order to study the phase diagram we calculate the l
gitudinal and Hall conductances of this system at cons
magnetic flux and varying disorder. The different phas
quantum Hall, metallic, and insulating are characterized
only by conductance but also by the specific distribution
the level spacing and by the current density on the plaque
described by the operator:

Jnm
n8m85 i t nm

n8m8~r nm2r n8m8!unm&^n8m8u1H.c. ~3!

~heretnm
n8m8 is the hopping integral between the sitesr nm and

r n8m8).
It is an opportune time to remind previously that for

cleansystem (enm50) with cyclic boundary conditions~i.e.,
for a torus! and commensurate values of the magnetic fl
through the unit cell, the spectrum consists of degene
bands separated by gaps~the well-known Hofstadter butter
15 367 ©2000 The American Physical Society
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15 368 PRB 62BRIEF REPORTS
fly!. However, when vanishing boundary conditions are i
posed~i.e., for plaquette8 or cylinder9 geometry! the gaps get
filled with ‘‘edge states’’, localized close to the edges of t
sample. The other states, the ‘‘bulk’’ ones, remain group
in bands on the energy scale, while they geometrically
concentrated in the middle of the plaquette. The two type
states differ also by their chirality, i.e., by the sign of t
derivativedEn /df. The effect on the orbital magnetizatio
of each state is immediate: the expectation values of the
eratorM5*@r 3 j (r )#dS calculated on the eigenstates of t
Hamiltonian~1! have different signs depending on wheth
the state is bulk or edge type. Figure 2 shows that the m
netization of the edge eigenstate No. 11 is positiveM11.0,
but the bulk eigenstate No. 12 hasM12,0; the local currents
corresponding to the two states are also shown in insets
the same figure one anticipates that the increasing diso
produces a monotonic decrease of the magnetization.

The orbital magnetization of all states in the spectrum
shown in Figs. 3~a! and 3~b! for the clean and disordere
system, respectively~the electron-hole symmetry of the Ho
stadter spectrum is evident also in the aspect of the ma
tization!. The disorder effect consisting of the broadening

FIG. 1. Phase diagram in the energy-disorder plane. The in
lating regime is depicted forsxx,0.2 and the metallic regime fo
sxx.0.2 ~in unitse2/h). In the QH regimesxy5 integerandsxx is
negligible. The dotted line in the metallic region corresponds to
critical points wheresxx5sxy . (M5N510,f51/10.)

FIG. 2. The decay of the magnetization with increasing disor
for the edge state Nos. 10 and 11 and for the bulk state Nos. 12
16. The density of current atW50 is shown in insetsf51/10.
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the bands and narrowing of the gaps, is obvious in the s
ond figure. More notable is the magnetization of the grou
stateMg , which can be compared successfully with expe
mental results. Assuming that the spectrum is filled up to
Fermi energyEf , due to the alternating sign ofMn in dif-
ferent regions of the spectrum, the quantity

Mg5 (
(En,Ef )

Mn , ~4!

as a function of the number of occupied states, shows a s
tooth aspect~see Fig. 4! which is the same as in the exper
ments by Wiegerset al.,10 including the fact that the jumps
of Mg occur at the center of the gaps. In our model, t
number of teeth depends on the number of gaps that ca
resolved. These de Haas-van Alphen oscillations disapp

FIG. 4. The ground-state magnetizationMg vs the number of
electrons at different degrees of disorder. (N5M520, f51/10.!

u-

e

r
nd

FIG. 3. Magnetization~in arbitrary units! vs energy atW50 in
~a! andW51 in ~b!. (N5M520 andf51/10.!



b
-
is
2

a

pla-
ally
dge
na-

ibu-
in

on

and

ed
ng
d up
st
the
ive
y a
l
the
ig. 6,

d
e
rsal
s
is
en-

al
g

dis-
he

-

ce

n
es

-

PRB 62 15 369BRIEF REPORTS
in the metallic regime~see the curves forW54 and W
56); this result can be corroborated with the recent data
Kravchenkoet al. who found experimentally that the cyclo
tron minima of the Shubnikov–de Haas oscillations also d
appear gradually near the metal-insulator transition in a
electron system in silicon.11

When the Anderson potential@Eq. ~2!# is switched on and
W is increased continuously, the bands become broader

FIG. 5. Level spacing distributionP(t) for three typical situa-
tions. In ~a! EP@22.9,22.7# and W51; the dotted line is the
Gaussian function whose variance equals the calculated varian
the histogramd(t)50.33. ~b! P(t) for EP@22.4,21.3# and W
53; the dotted line the Wigner-Dyson distribution withb52. ~c!
EP@22.9,21# and W56; the dotted line is the Wigner-Dyso
distribution withb51. The corresponding typical current densiti
are shown in insets. (N5M510,f51/10, number of configura-
tions 51000.!
y
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broader, the disorder spreads the states over the whole
quette, giving rise to extended disordered states, and fin
produces a quasicontinuum of localized states; even the e
states disappear gradually into the quasicontinuum. The
ture of the states can be checked by calculating the distr
tion P of level spacings for various degrees of disorder,
different domains of the spectrum. Letsn be the level spac-
ing between two consecutive eigenvaluesEn and En11 and
definetn5sn /^sn&, where^sn& is the mean level spacing.

For infinite systems the level distribution at the transiti
is a meaningful problem that was first approached~for 3D
and zero-magnetic field! by Shklovskiiet al.12 For finite sys-
tems the crossover of the level statistics between weak
strong localization was discussed by Zharekeshevet al.13

Here we discuss the crossover from IQH to the localiz
regime for finite 2D systems. The distribution of the spaci
between edge levels in the QH regime was not discusse
until now and it is only known that they are more robu
against disorder. Our numerical calculation indicates that
distribution function of the distance between two consecut
edge levels is a symmetric curve that can be fitted b
Gaussian@see Fig. 5~a!#. In the insulating phase, the leve
spacing is described by the Poisson distribution and
crossover between these extreme cases is illustrated in F
which shows the variancedtn for all level spacings of the
Hamiltonian~1!. One may learn that:~a! at W,4, for most
of the states,dtn'0.42, which is the typical value for the
unitary Wigner-Dyson~WD! surmise. Indeed, the calculate
distribution @Fig. 5~b!# is of this type, proving the presenc
of extended states in the system with broken time-reve
symmetry.~b! For largerW, the variance increases toward
dtn51.0 specific to the Poisson distribution. However, th
value cannot be reached practically because of finite dim
sion of the plaquette.~c! In-between, atW'6, the variance
equals 0.52, which is the typical value for the orthogon
WD distribution. This is an indication that with increasin
disorder, the domain of smallt, where the unitary distribu-
tion behaves liket2, shrinks very much so thatP(t) may
resemble the orthogonal one. The numerical calculated
tribution of level spacing can indeed be well-fitted by t
orthogonal WD function@see Fig. 5~c! where the linear be-
havior at smallt is obvious#. ~d! The lowest states, originat

of

FIG. 6. The variance of level spacingd(tn) (n51, . . .,50) vs
amplitude of disorderW. (N5M510.) The insets show the evolu
tion of sxx andsxy at a given number of electronsNe vs W ~for the
same plaquette coupled to semi-infinite leads!.
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ing from the first band (n51, . . . ,6) getlocalized faster than
the others, while the states from the first gapn
57, . . .,10) are very robust against the localization proce

At last we discuss some transport properties with spe
attention to the metallic regime; for this purpose t
Landauer-Bu¨ttiker formalism and the techniques from Ref.
are used after attaching four leads to the plaquette. The

*Permanent address: National Institute of Materials Physics, P
Box MG7, Bucharest-Magurele, Romania.
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ductance in the three different regimes~IQH, metal, and in-
sulator! can be correlated with the spectrum characteristics
the isolated finite system discussed above.

In order to evaluate the role of the boundary conditio
we make a comparison with the paper by Yang and Bh
using the same dimensions of the lattice and the same m
netic flux. As in Ref. 6 we calculate the total density-o
statesr, however instead of the conducting density-of-sta
rc , we calculate separately the transmittancesT12 andT13.
Even in the presence of disorder, the bent transmittanceT12
is mainly due to the conductance along the edge and is
sponsible for the Hall effect, while the straight transmittan
T13 is due to the delocalized states in the bulk. A corresp
dence can be established between the three peaks ofT13 in
Fig. 7 and the three subbands, which under periodic bou
ary conditions have the Chern numbers (22,5,22).6 The
other peaks inr represent edge levels located in the g
whereT12 is a maximum butT13 is a minimum. The evolu-
tion with disorder of the peaks ofT13 is the same as de
scribed in Ref. 6 for the conducting density-of-statesrc . On
the other hand, the transmittanceT12 has a steady position in
the gap but gets smaller with increasing disorder. Themono-
tonic decrease ofT12, from any given integern to zero is the
cause for the direct transitionn→0, which is found for the
Hall conductance in numerical calculations based on lat
models for confined 2D electron systems in strong magn
field.14

In conclusion, the metallic regime is characterized by
Wigner-Dyson distribution of the level spacing withb52
~unitary ensemble!. As the system evolves versus insulat
the distribution resembles the orthogonal WD surmise, in
cating the ‘‘loss of influence’’ of the magnetic field. Simu
taneously, the orbital magnetization decays to zero. The
phase is characterized by a Gaussian distribution of spa
between edge levels.

Due to the different chirality of the edge and bulk state
the magnetization of the ground state shows a toothsaw
havior as function of the filling factor, which is attenuated
disorder.

This work was partially performed under SFB 341
DFG. M.N. thanks the Romanian Academy for their supp
under Grant No. 69/1999.

O.

t

X.C. Xie, D.Z. Liu, B. Sundaram, and Q. Niu, Phys. Rev. B54,
4966 ~1966!.

8A. Aldea, P. Gartner, A. Manolescu, and M. Nit¸ã, Phys. Rev. B
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