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Magnetization and level statistics at the quantum Hall liquid-insulator transition
in the lattice model
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Statistics of level spacing and magnetization are studied for the phase diagram of the integer quantum Hall
effect in a two-dimensional finite lattice model with Anderson disorder.

The way in which the increasing disorder induces the in- In this context we study some new relevant features of the
sulating state when starting from the integer quantum HalHisordered lattice model in magnetic field with vanishing
(IQH) state is a topic of controversy between the continuunboundary conditions, the attention being paid especially to
and lattice models of the two-dimension@D) electronic  magnetization, level spacing distribution, and conductance
gas in strong magnetic field. The continuum approach preon extended states in the so-called metallic region; a com-
dicts the crossover between the adjacent quantum Hall pldarison with the results obtained by Yang and Bhatt will be
teaus, ending up with the insulating state when the degree &fone.

disorder increases or, equivalently, the limit of small mag- 1he discussion is based on the spinless one-electron
netic field is considered. This is due to the so-called “float-H2miltonian in perpendicular magnetic field defined on a 2D
ing up” of the critical energiesE, which occurs with in- square lattice withN sites in one direction anill sites along

creasing disorder.H; is the energy where the localization- the other one, which reads as follows:

delocalization transition takes place in the thermodynamic N M

limit.) In the critical region, i.e., when the Fermi enerBy H=> > [ €nm/n,MY(n,m|+27¢™ n m)
crosses an extended state eneEyy the transverséHall) n=1m=1

conductivity is a§y= v—1/2 (at the transition between the X (n+1,m|+|n,my(n,m+1|+H.c], 1)

plateausr and »—1).! This means that at large disord@r

low field), the cascade of transitions must end witk1 ~ where|n,m) is a set of orthonormal states, localized at the
—v=0 (insulato). The experiments give controversial in- sites f1,m), and¢ is the magnetic flux through the unit cell
formation in what concerns the possibility to observe this lastneasured in quantum flux units. In Eq) the hopping inte-
transition(see Ref. 2 and the references therein, RefTBe  gral at¢=0 is taken with unity serving as the energy unit
sensible conclusion can be found in Refs. 2 and 4 suggestir@d the diagonal energy,, is a random variable distributed
that the theoretical results of the scaling theory, which aréxccording to the probability density:

obtained for zero temperature and infinite systems, cannot be
W, —WR2<e<W/2

checked easily by experiments that are done for finite P(e)= 7
samples and at lovibut nevertheless finiifgemperature. The 0, otherwise.

evaluation of the critical value of the longitudinal conductiv-

ity is also a difficult task. Leeet al, show in the frame of The averaged spectrum of the Hamiltoni@nis depicted

corresponding states lathat o, = 1/2 for anyv; approach- in Fig. 1 for $=1/10 and the disorder amplitude in the range

ing the question in the opposite way, Zimbauer assume¥/€[0,10.. The lines represent the mean eigenval(igs)

oS,=1/2 and finds agreement with the numerical simula-2s @ function of disorder amplitudd.

tions. The numerical calculation performed by Hetaal., for _In order to study the phase diagram we calculate the lon-

the lowest Landau level also produces 9.5. g|tud|ngl and Hall condyctanpes of this system at constant
More recently, the same problem has also been apmagnetlc flux and varying c_Jllsorde_r. The different phases:

proached in lattice models. The results are again controvefiuantum Hall, metallic, and insulating are characterized not

sial, since Yang and Bhatt calculating the Chern numbers foPnly by conductance but also by the specific distribution of

different degrees of disorder, find a tiny floating up of thethe level spacing and by the current density on the plaquette,

extended statswhile Xie et al, by the study of the local- described by the operator:

ization length, conclude that the positions of extended states L L

remain unchanged as disorder increases. The last authors — J;. =itpy (Fom=Form)[nMY{N’'M’|+H.c. (3

propose a phase diagram in the energy-disorder plane that .

allows the direct transitionn—0.” Unlike Refs. 6 and 7, (heretp." is the hopping integral between the sitgg, and

which use periodic boundary conditions, in this paper wer, ).

study confined systems by the use of vanishing conditions, It is an opportune time to remind previously that for a

so that the Hall current is carried along edge states. Theleansystem €,,=0) with cyclic boundary condition§.e.,

phase diagram obtained here reminds us of one from Ref. Tor a torug and commensurate values of the magnetic flux

however metallic regionévheres+#0) are implanted in be- through the unit cell, the spectrum consists of degenerate

tween QH and insulating phases give rise to a crossover. bands separated by gafite well-known Hofstadter butter-
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FIG. 1. Phase diagram in the energy-disorder plane. The insu-.% ol
lating regime is depicted fos,,<0.2 and the metallic regime for & ;|
0y>0.2 (in unitse?/h). In the QH regimeo,, = integerand o, is s, i
negligible. The dotted line in the metallic region corresponds to the al
critical points wherer,,= o, . (M=N=10,¢=1/10.) al ]
-5 v
fly). However, when vanishing boundary conditions are im- s T ey 2 °

posed(i.e., for plaquett®or cylindef geometry the gaps get

filled with “edge states”, localized close to the edges of the FIG. 3. Magnetizatioriin arbitrary unit3 vs energy atV=0 in

sample. The other states, the “bulk” ones, remain grouped® andW=1in (b). (N=M=20 and¢=1/10)

in bands on the energy scale, while they geometrically are ) ) ) )

concentrated in the middle of the plaquette. The two types o€ bands and narrowing of the gaps, is obvious in the sec-

states differ also by their chirality, i.e., by the sign of the ond figure. More notable is the magnetization of the ground

derivativedE, /d¢. The effect on the orbital magnetization StateMg, which can be compared successfully with experi-

of each state is immediate: the expectation values of the oghental results. Assuming that the spectrum is filled up to the

eratorM = [[r X j(r)]dS calculated on the eigenstates of the Fe€rmi energyk;, due to the alternating sign ®fl, in dif-

Hamiltonian (1) have different signs depending on whetherferent regions of the spectrum, the quantity

the state is bulk or edge type. Figure 2 shows that the mag-

netization of the edge eigenstate No. 11 is positg>0, M .= M @)

but the bulk eigenstate No. 12 hiss; ,<<0; the local currents 9 €=k

corresponding to the two states are also shown in insets. In

the same figure one anticipates that the increasing disordés a function of the number of occupied states, shows a saw-

produces a monotonic decrease of the magnetization. tooth aspectsee Fig. 4 which is the same as in the experi-
The orbital magnetization of all states in the spectrum ignents by Wiegerst al,'® including the fact that the jumps

shown in Figs. 8) and 3b) for the clean and disordered of Mg occur at the center of the gaps. In our model, the

system, respectivelfthe electron-hole symmetry of the Hof- number of teeth depends on the number of gaps that can be

stadter spectrum is evident also in the aspect of the magnéesolved. These de Haas-van Alphen oscillations disappear

tization). The disorder effect consisting of the broadening of
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FIG. 2. The decay of the magnetization with increasing disorder '
for the edge state Nos. 10 and 11 and for the bulk state Nos. 12 and FIG. 4. The ground-state magnetizatidty vs the number of

16. The density of current &=0 is shown in insetg = 1/10. electrons at different degrees of disordéd=M =20, ¢=1/10)
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FIG. 5. Level spacing distributiofP(t) for three typical situa-
tions. In (@) Ee[—2.9,-2.7] and W=1; the dotted line is the
Gaussian function whose variance equals the calculated variance
the histogramés(t)=0.33. (b) P(t) for Ee[-2.4-1.3] and W
=3; the dotted line the Wigner-Dyson distribution wigh=2. (c)
Ee[—2.9~-1] and W=6; the dotted line is the Wigner-Dyson
distribution with@=1. The corresponding typical current densities
are shown in insets.N=M =10,$»=1/10, number of configura-

tions =1000)

in the metallic regime(see the curves folW=4 and W
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FIG. 6. The variance of level spaciny(t,) (n=1,...,50) vs
amplitude of disordeWW. (N=M=10.) The insets show the evolu-
tion of oy, andoyy at a given number of electromg vs W (for the

same plaquette coupled to semi-infinite leads

broader, the disorder spreads the states over the whole pla-
quette, giving rise to extended disordered states, and finally
produces a quasicontinuum of localized states; even the edge
states disappear gradually into the quasicontinuum. The na-
ture of the states can be checked by calculating the distribu-
tion P of level spacings for various degrees of disorder, in
different domains of the spectrum. Lgf be the level spac-
ing between two consecutive eigenvaligsandE,,,; and
definet,=s,/(s,), where(s,) is the mean level spacing.

For infinite systems the level distribution at the transition
is a meaningful problem that was first approaclifeat 3D
and zero-magnetic fieldy Shklovskiiet al*? For finite sys-
tems the crossover of the level statistics between weak and
strong localization was discussed by Zharekesheal!®
Here we discuss the crossover from IQH to the localized
regime for finite 2D systems. The distribution of the spacing
between edge levels in the QH regime was not discussed up
until now and it is only known that they are more robust
against disorder. Our numerical calculation indicates that the
distribution function of the distance between two consecutive
edge levels is a symmetric curve that can be fitted by a
Gaussiansee Fig. 5a)]. In the insulating phase, the level
spacing is described by the Poisson distribution and the
crossover between these extreme cases is illustrated in Fig. 6,

which shows the variancét, for all level spacings of the
Hamiltonian(1). One may learn thaiia) at W<4, for most

ef the statespt,~0.42, which is the typical value for the
unitary Wigner-Dysor{WD) surmise. Indeed, the calculated
distribution[Fig. 5(b)] is of this type, proving the presence
of extended states in the system with broken time-reversal
symmetry.(b) For largerW, the variance increases towards
ot,= 1.0 specific to the Poisson distribution. However, this

value cannot be reached practically because of finite dimen-
sion of the plaquette(c) In-between, aWW~6, the variance

equals 0.52, which is the typical value for the orthogonal

=6); this result can be corroborated with the recent data byvD distribution. This is an indication that with increasing
Kravchenkoet al. who found experimentally that the cyclo- disorder, the domain of smat] where the unitary distribu-
tron minima of the Shubnikov—de Haas oscillations also distion behaves liket?, shrinks very much so thaP(t) may
appear gradually near the metal-insulator transition in a 2Desemble the orthogonal one. The numerical calculated dis-

electron system in silicoh:

tribution of level spacing can indeed be well-fitted by the
When the Anderson potentifiEq. (2)] is switched on and  orthogonal WD functior{see Fig. &) where the linear be-
W is increased continuously, the bands become broader arthvior at smalt is obvioud. (d) The lowest states, originat-
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0.5 - - - - - - - ductance in the three different regim@®H, metal, and in-
0.451 @ | sulatoy can be correlated with the spectrum characteristics of
04l the isolated finite system discussed above.
o In order to evaluate the role of the boundary conditions,
£035; we make a comparison with the paper by Yang and Bhatt,
B 03] using the same dimensions of the lattice and the same mag-
;0.25_ netic flux. As in Ref. 6 we calculate the total density-of-
2 02 statesp, however instead of the conducting density-of-states
° 4T pc, We calculate separately the transmittantesand T45.
_—30.15 . Even in the presence of disorder, the bent transmittdnge
01l is mainly due to the conductance along the edge and is re-
0.051 sponsible for the Hall effect, while the straight transmittance
‘ T3 is due to the delocalized states in the bulk. A correspon-
0; . - 1. - 0. dence can be established between the three peaks;ah
energy Fig. 7 and the three subbands, which under periodic bound-
1 , , , . . , . ary conditions have the Chern numbers3,5-2)° The
o9l 2 () | other peaks inp represent edge levels located in the gap
' I whereT, is a maximum bufl 153 is a minimum. The evolu-
L] S =3 14 M N tion with disorder of the peaks of 5 is the same as de-
0.71 =T .‘ scribed in Ref. 6 for the conducting density-of-stgigs On
g osl ‘4‘ L, the other hand, the transmittante, has a steady position in
£ 05l " | the gap but gets smaller with increasing disorder. iogo-
E tonic decrease of 1,, from any given integer to zero is the
g 04} _ ‘ cause for the direct transition— 0, which is found for the
" o3l Hall conductance in numerical calculations based on lattice
ozl i models for confined 2D electron systems in strong magnetic
T 13 field.2
01r y H H In conclusion, the metallic regime is characterized by a
0—7 4 L o - i L Wigner-Dyson distribution of the level spacing wi= 2

' energy ' (unitary ensemble As the system evolves versus insulator
the distribution resembles the orthogonal WD surmise, indi-
FIG. 7. The total density-of-states for a finite plaquétie The  cating the “loss of influence” of the magnetic field. Simul-
transmittancesT;, and T,3 as function of energy for a plaquette taneously, the orbital magnetization decays to zero. The QH
with attached leadé). (N=M=7 and¢=3/7) phase is characterized by a Gaussian distribution of spacing
between edge levels.
Due to the different chirality of the edge and bulk states,

Lﬂg frgmé?: flr\,s\,thﬁgncme: 1éfa{téé6) fgrjsll:catllk:zeedﬁfre;?ter;han( the magnetization of the ground state shows a toothsaw be-
’ . rst-gam havior as function of the filling factor, which is attenuated by
=7,...,10) are very robust against the localization process isorder.

At last we discuss some transport properties with special
attention to the metallic regime; for this purpose the This work was partially performed under SFB 341 of
Landauer-Bttiker formalism and the techniques from Ref. 8 DFG. M.N. thanks the Romanian Academy for their support
are used after attaching four leads to the plaquette. The commnder Grant No. 69/1999.
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