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Universal features of self-trapping in nonlinear tight-binding lattices
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We use the discrete nonlinear Satimger (DNLS) equation to show that nonlinear tight-binding lattices of
different geometries and dimensionalities display a universal self-trapping behavior. First, we consider the
problem of a single nonlinear impurity embedded in various tight-binding lattices, and calculate the minimum
nonlinearity strength to form a stationary bound state. For all lattices, we find that this critical nonlinearity
parametefscaled by the energy of the bound sjate terms of the nonlinearity exponent, falls inside a narrow
band, which converges ®"? asymptotically. Then, we examine the self-trapping dynamics of an excitation,
initially localized on the impurity, and compute the critical nonlinearity parameter for abrupt dynamical
self-trapping. For a given nonlinearity exponent, this critical parameter, properly scaled, is found to be nearly
the same for all lattices. Same results are obtained when generalizing to completely nonlinear lattices, sug-
gesting an underlying self-trapping universality behavior for all nonlineaen disorderedtight-binding
lattices described by DNLS.

The discrete nonlinear Schiimger (DNLS) equation is a  chain and a linear square lattit&” In this work we extend
paradigmatic equation describing among others, dynamics dhese studies and show that, for an initially localized excita-
polarons in deformable medtalocal modes in molecular tion, the dynamics of self-trapping in various different lat-
system% and power exchange among nonlinear coherentices of different dimensionalities, is universal and depends
couplers in nonlinear opticslts most striking feature is the mainly on the nonlinearity strength at the initial site, the
possibility of “self-trapping”, that is, the clustering of vibra- nonlinearity exponent and the coordination number.
tional energy or electronic probability or electromagnetic en-_ SOme symmetry considerations are useful at this point:
ergy in a small region of space. In a condensed-matter conLh€ transformation &, ,V, xn) —(— €5, =V, — xp) tums Eq.
text, the DNLS equation has the form (1) into an equation for the complex conjugate variaBfe

and as a result, the site probabilit€,|?> remains invariant
_dC, , (provided the initial conditions are also transforme8ince
i WZEnCnﬂLVZ Cint xnlCil “Ch, (1 we will be dealing with homogeneous lattices with a single
impurity or completely nonlinear, we set,=0 hereafter.
whereC, is the probability amplitude for finding the electron Thus for a complete parameter study it is sufficient to take
(or excitation on siten of a d-dimensional latticeg, is the x>0 and consider the two possible signs\of A further
on-site energyV is the transfer matrix elemeny, is the  simplification is possible however, since H@) is also in-
nonlinearity parameter at site and « is the nonlinearity variant under the change V(x,C,)—(—V,x,II;
exponent. The prime in the sum {f) restricts the summa- (—1)"C,), wheren=(n;,n,,...) for all thelattices consid-
tion to nearest-neighbors only. ered in this work, with the exception of the triangular lattice.

Considerable work has been carried out in recent years tbhus, this case excepted, we can consider kgtAndV in
understand the stationary and dynamical properties of Bg. Eg. (1) as positive.
in various cases. In particular, we point out the studies on the Bound statesA tight correlation has been observed be-
stability of the stationary solutions in one and two dimen-tween the existence of bound states for a given nonlinear
sions for the homogeneous cage=0, x,= x),*° the effect lattice and the ability of the lattice to self-trap an initially
of point linear impurities on the stability of the two- completely-localized excitation: the critical nonlinearity
dimensional(2D) DNLS solitons® the effects of nonlinear strength for dynamical self-trapping is always greater than
disorder (e,=0, x, random’ and of linear disordery, the one needed to produce bound sgteWe begin by
=¥, €, random?® on the self-trapping dynamics of initially showing that the minimum nonlinearity needed to produce a
localized and extended excitations in a chain. The results diound state in different lattices, shows universal features. We
these studies suggest that in general, the effect of nonlineaconsider the problem of determining the bound state for an
ity is quite local for initially localized excitations, and that electron in ad-dimensional homogeneous,=0) lattice
disorder leaves the narrow self-trapped excitations unafthat contains a single generalized nonlinear impurity at the
fected, although it does affect the propagation of the unerigin n=0. We use a straightforward generalization of a
trapped portior{“radiation” ). This suggests that the solution Green’s function formalism used previously by one of the
of the single nonlinear impurity problem might contain the authors(M.I.M.) in one-dimensional chaifisind the square
essentials required to understand self-trapping in more getatticel® With a scaled nonlinearityy= y/B and energyz
eral contexts. In that spirit, we have previously examined the=E/B, whereB is the half bandwidth, the energy of the
problem of a single nonlinear impurity embedded in a linearbound statés) z, is obtained from
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FIG. 1. Minimum nonlinearity
v.!z, to form a bound state in
several lattices, containing a
single nonlinear impurity. Thick
lines correspond to 1D, square and
simple cubic lattices. Thin lines
correspond to Bethe lattices with
K=3, 5 and 100 in ascendent or-
der neara=0. Dotted lines repre-
sent the triangular lattice cases:
x/V>0 (upper ling and x/V<0

-2
O

(lower line).
yG(O)‘M(z) minimum nonlinearity needed to give rise to abrupt self-
:%, (2)  trapping. The time evolution is given by E@l) with e,
[—Goo (2)]“ =0 and x,=x8,0. Following an earlier treatment, we

) ) compute the long-time average probability at the impurity
0)_ ' . !
where G{i=(0/G(?|0) is a matrix element of the Green's gite, defined by

function for the crystalline latticdwithout impurity). We
proceed to solveg2) numerically, using the exact, known P — i fT 2 _

. . . . = lim (/T Co(t)|edt, |Cy(0)|=1. 4
expressions fo6{Y) for several lattice$:*? one-dimensional 0 Tﬁw( ) ol oV IColO) @

(1D), square, triangular, simple cubic and Bethe lattices withT . : . .
connectivities 3, 5 and 100. This allows us to compare lat- ypically, P vanishes for nonlinearity parameters below a

tices with different dimensionality, coordination numb&r glrt'gclﬁl a:/%gjlllaié(ticcanqgr;[rr:grp?gi?ie's gseigfrﬁﬁ]ggwomeagng?;r%_
length of shortest loops, etc. In general, for a givemalue :

there will be a minimum value of below (abové which, nation of the excitation’s mean square displacemei(t))

_ 2(~ |2 ; ;
there is(are no (two) bound states). Just at the critical Zqn*|C,|*. For nonlinearity values greater thag, Pq

i i | biai | bound state. Th remains finite and increases with, converging towards
noniinéarity vajue, we obtain exactly one bound state. eEmity at largey. The untrapped portion escapes to infinity,
exception is the 1D lattice where far<2 one has always

one bound state regardless pf also in a ballistic manner, but with a much lower “speed”
Figure 1 shows the critical nonlinearity parameter, V{u(t))/Vt. Thus, the examination ¢, provide us with the

scaled by the energy of the bound state, in terms,athe frgt;)%?rl] gnonlmearlty parametery. for dynamical self-

nonlinearity exponent, for a_\ll the Iattlce_s; examlned._ There For a particular lattice and a given exponentwe nu-

are two curves for the triangular lattice, depending on_ . . () .
merically determiney., scaled byE.;,, the minimum un-

sgn/V), due to the asymmetry of its Green function with i ) b
respect to the energy variable. All curves fall inside anormalized bound-state energy. Figure 2 shod¥"/EQ),

“hand” which narrows asw increases, converging towards a fqr aII_ the lattices examine_d, and for sevetalvalues_ tha}t
constant value. To calculate it, we sol@® exactly in two ~ 9iVe rise to sharp self-trappirifor o<1, the self-trapping is
cases: the one-dimensional latfiand the Bethe lattice in NOt sharp. We see that, for the wide range of geometries and
the limit of infinite connectivity(Hubbard model; practically dimensionalities involved, this criticaldynamical nonlin-

indistinguishable fronk =100). In both cases we obtain: earity is nearly independent of the lattice and increases
monotonically with the nonlinearity exponent. The left panel

in Table | shows the ratio between this ‘dynamical’ critical
=el2-1.65. (3)  parameterny”Y" and the previously computed critical value
needed to form a bound statg(”, for several different

We have traced the validity @®) for the other lattices up to €XPonentse. A quick and ‘dirty’ estimate fory ("’ can be
high « values(10® for the square and cubic lattices;>1for obtained as follows: From the analytical expression for
the rest with no discernible deviation. x %" in 1D and Hubbard model for the stationary impurity
Self-trapping Dynamics/Ne now examine the ability of a problem we can see that asymptotically™"~B/«,
given lattice to dynamically self-trap an excitation, originally whereB is the half bandwidth. Table | central panel, shows
placed completely on the impurity site, by computing thethat the quick estimation of{®*" asB\/«, is not bad at all,
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Lﬂ .—0/ ._‘\.\. rity in various lattices. The values
~ - .__.ﬁ. E for the nonlinearity exponents are
o B—@—m =1, 2, 3, 4 and 1000 from bot-
=< 10 7] tom to top. The hollow symbols
N o & — — — o J for the triangular lattice case cor-
- = g o Lo S o respond to the casg/V<O0.
0.5 | 2 > 2 £ = S -
N & o 3 o
- = i m = -
= 3
0.0

and can be used as a good lower bound in all cases. It would We now recompute all of the above calculations, this time
seem that in ther regime where abrupt self-trapping takes using completely nonlinear latticés,=0, x,,= x) and same
place (@=1), the only relevant parameters are the nonlin-initial conditions C,=d,0). The right panel in Table |
earity at the impurity site and the coordination number of theshows the critical nonlinearity strength ratio between the
lattice. The rest of the topological features is of secondary.ompletely nonlinear lattice and the linear lattice with a
importance. In all cases, with the exception of the triangulaiingle nonlinear impurity. The critical values are virtually the
lattice, the critical nonlinearity is independent of the sign ofsame in both cases, except when the self-trapping is not
X- ) (dyr) - ) ) ~abrupt and thereforg, is not so precisely defined. This simi-
The increase of;™”" with a is to be expected since in |arity is due to the fact that, once the abrupt self-trapping is
the continuum limit, increasing is equivalent to increasing set, most of the probability is on the initial site, which gives,
the dimensiona”ty of the SyStef‘TJr,?”MthiS in turn increases by conservation of the norm, very small probabmty amp”_
the effective coordination number making it harder to self-ydes for the rest of the lattice sites, making their nonlinear
trap the excitation. Hence, the need for larger nonlinearitiesgontribution negligible: they have become, in fact, linear for
Also, we notice that for all lattices, the values gf¥” are  all self-trapping purposes and, in this way we are back to the
all higher thanX(cb) (see Table), confirming the conjecture single nonlinear impurity results. The same argument would
that the onset of the stationary bound state is a precursor f@lso be valid for a disordered lattice. The greaterd¢halue,
dynamical self-trapping. However, the lack of a superposithe closer the system is to the nonlinear impurity case. This
tion principle, makes it hard to establish formally tf@b- s vividly illustrated by the limiting values in the right panel
served connection between the dynamical and stationaryof Table | for largea, where the critical nonlinear parameter
DNLS problem. is the same for both cases. A similar situation could be found

TABLE I. Left panel: Ratio between the critical nonlinearity parameter for dynamical self-tramﬁ‘?ﬁ@ and the minimum nonlinearity
value to form a bound state{® . Central panel: Ratio betweerf™" and the rough estimat®/a. (For the triangular lattice we us@
=3 for x/V>0; otherwiseB=6.) Right panel: Ratio betwee,ggdy“) for the completely nonlinear lattice and the linear lattice with a single
nonlinear impurity. Each column correspond to a different value for the nonlinearity expaeredt, 2, 3, 4 and 1000. Values in brackets
denote cases where the self-trapping is not abrupt and are therefore, approximate.

X0 P xB Ve xc(NL)/ x.(imp)
Lattice 1 2 3 4 1000 1 2 3 4 1 2 3 4 1000
1D - 1.65 1.40 1.37 1.34 (1.2H 1.17 1.30 1.37 (1.52 (1.3 1.08 1.02 1.00
Square 1.26 1.25 1.26 1.27 1.34 1.30 1.21 1.18 1.160.98 1.05 1.01 1.00 1.00

Simple cubic 116 120 122 124 134 1.24 1.09 1.03 1.001.15 1.02 1.00 100 1.00
Triang.

x/V>0 1.32 1.39 1.41 1.42 1.35 1.12 1.06 1.12 1.18(1.07) 1.04 1.00 1.00 1.00
x/V<0 1.22 1.22 1.24 1.25 1.34 1.34 1.22 1.17 1.14(1.25 1.04 1.01 1.00 1.00
Bethe

K=3 1.41 1.31 1.31 1.32 1.34 1.26 1.19 1.21 1.22(1.26 1.06 1.01 1.00 1.00
K=5 1.33 1.28 1.30 1.3 1.35 1.25 1.17 1.18 1.18(1.16 1.03 1.01 1.00 1.00

K=100 124 125 127 1.28 1.34 1.24 115 1.13 1.120.99 1.00 1.00 1.00 1.00
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in “related” models like Holstein’s quantum molecular- ear or linear disorder is added into the picture, one could
crystal model, where the interaction is also on-site and prospeculate that its effects are likely to be of significance only
portional to the probability amplitude on this site. In this casefor the untrapped portion of the excitation. Results in that
the condition for small polaron formatiotself-trapping  direction have already been observed for one-dimensional
line), effective mass, electron-phonon correlations and otheghains(see work by one of the authors in Ref. 8

polaron properties could display universal features like the |n summary, we have shown that it is possible to charac-
ones found here for DNL: For instance, the electron- terize the self-trapping properties of DNLS lattices of differ-
phonon coupling needed to get a small polaron is practicallynt geometries and dimensionalities, in terms of a single pa-
the same for a very short chaitwo siteg and for longer yameter, namely the minimum bound-state energy for the
chains (32 site_s.ls_ The localized solutions we have found qne-impurity probleror the producB/« for quick estima-
resemble the intrinsic localized modes or “breathers” thatjong. Roughly speaking, it is possible to keep an excitation
are known to exist in systems of coupled anharmoniqocyjized(self-trappediwhen the nonlinearity parametgris
oscillators” and seem to exhibit the same kind of “univer- |arger than this bound-state energy. This characterization is
sal” or dimension-independent featurésThese phenomena satisfactory for the nonlinear impurity problem and for com-

could have a common origin, in light of Aubry’s anti- petely nonlinear systems and could also be valid for the case
integrable limit concept® The fact that we are able to obtain of disordered nonlinear lattices.

them through the use of an impurity formalism, suggests that

a suitable generalization of the Green’s function concept ap- This work was supported in part by FONDECYT grants
plied to nonlinear systems is indeed relevant. When nonlin1990960(M.I.M.), 2980033(C.A.B.) and 4990004C.A.B.).

*Email: mmolina@abello.dic.uchile.cl Rev. B58, 3075(1998; M. I. Molina, Phys. Rev. B8, 12 547
IDavidov's Soliton Revisited: Self-trapping of Vibrational Energy ~ (1998.
in Proteins edited by P. L. Christiansen and A. C. Sc(®le- 9G. P. Tsironis, M. I. Molina, and D. Hennig, Phys. Rev.5E,

num, New York, 1991 2365 (1994; M. I. Molina, in Topics in Theoretical Physigcs
2Disorder and Nonlinearityedited by A. R. Bishop, D. K. Camp- edited by V. C. Aguilera-Navarro, D. Galetti, B. M. Pimentel,
bell, and S. Pnevmatiko&Springer-Verlag, New York, 1989 and L. Tomio(IFT, Sao Paulo, 1995

Disorder with Nonlinearity edited by F. Abdullaev, A. R. 10M. 1. Molina, Phys. Rev. B60, 2276(1999.
Bishop, and S. Pnevmatiko$Springer-Verlag, New York, !!'E. N. Economou,Green's Functions in Quantum Physics

1992. (Springer-Verlag, Berlin, 1979
3S. M. Jensen, IEEE J. Quantum Electr@8, 1580(1982; R. W.  '2G. S. Joyce, J. Phys. A, L65 (1972; T. Horiguchi, J. Math.
Boyd, Nonlinear Optics(Academic, New York, 1992 P. Yeh, Phys.13, 1411(1972.

Optical Waves in Layered Medi@Viley, New York, 1988; W. 133, Juul Rasmussen and K. Rypdal, Phys. 38r.481(1986.
D. Deering and M. I. Molina, IEEE J. Quantum Electr@s, This can also be seen frorr;\/C~B\/E~2d \/Z for most

336 (1997, and references therein. d-dimensional lattices.
4E. W. Laedke, K. H. Spatchek, and S. K. Turitsyn, Phys. Rev.'®A. H. Romero, D. W. Brown, and K. Lindenberg, Phys. Rev. B
Lett. 73, 1055(1994). 59, 13 728(1999; 60, 14 080(1999; M. Capone, S. Ciuchi, and

5V. K. Mezentsev, S. L. Musher, I. V. Ryzhenkova, and S. K.  C. Grimaldi, Europhys. Let#2, 523(1998: cond-mat/9812195.
Turitsyn, JETP Lett.60, 829 (1994; E. W. Laedke, K. H. 16C. A. Bustamante and M. I. Molina, preprint cond-mat/9809312,
Spatchek, V. K. Mezentsev, S. L. Musher, I. V. Ryzhenkova, Phys. Rev. B(submitted.

and S. K. Turitsyn, JETP Let62, 677 (1995. 17A. J. Sievers and S. Takeno, Phys. Rev. Létt. 970(1988; S.
5p. L. Christiansen, Yu. B. Gaididei, K/.CRasmussen, V. K. Takeno, K. Kisoda, and A. J. Sievers, Prog. Theor. Phys. Suppl.
Mezentsev, and J. Juul Rasmussen, Phys. R&d4, BO0(1996. 94, 242 (1988.

M. 1. Molina and G. P. Tsironis, Phys. Rev. Left3, 464 (1994). 18p Maniadis and G. Tsironisunpublishegt Flach and Willis,
8p. L. Christiansen, Yu. B. Gaididei, M. Johansson, and/K. O Phys. Rep295 181 (1998.
Rasmussen, Phys. Rev 3B, 14 407(1997); Yu. B. Gaididei, D. ~ *°R. S. Mackay and S. Aubry, Nonlinearity, 1623 (1994; S.
Hendriksen, P. L. Christiansen, and K. ®asmussen, Phys. Aubry, Physica D103 201 (1997.



