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Self-generated magnetic flux in YBa2Cu3O7Àx grain boundaries

R. G. Mints and Ilya Papiashvili
School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997
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Grain boundaries in YBa2Cu3O72x superconducting films are considered as Josephson junctions with a
critical current densityj c(x) alternating along the junction. A self-generated magnetic flux is treated both
analytically and numerically for an almost periodic distribution ofj c(x). We obtained a magnetic flux-pattern
similar to the one which was recently observed experimentally.
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I. INTRODUCTION

Grain boundaries in high-Tc cuprates are interesting an
important for both fundamental physics and applications
high-temperature superconductivity.1–3 Conventional models
of strongly coupled Josephson junctions are applicable
describe electromagnetic properties of grain boundarie
thin films of high-Tc superconductors.4,5 A remarkable ex-
ception of this rule is the @001#-tilt boundary in
YBa2Cu3O72x films with a misorientation angle close t
45°.6–10 Indeed, these grain boundaries have an anoma
dependence of the critical currentI c on an applied magnetic
field Ha . Contrary to a usual Fraunhofer-type depende
I c(Ha) with a major central peak atHa50 and minor sym-
metric side-peaks the asymmetric 45°@001#-tilt grain bound-
aries demonstrate a pattern without a central dominant p
Instead two symmetric major side peaks appear at cer
applied magnetic fieldsHa56HspÞ0.6–11

Several mechanisms have been suggested to explain
phenomena.8,9,11 The anomalous dependenceI c(Ha) with
symmetric major side peaks is obviously a result of a spec
heterogeneity of electrical properties of the asymmetric 4
@001#-tilt grain boundaries. Two fundamental experimen
observations in conjunction explain this heterogeneity in
natural way.9,10 First, a fine scale faceting of grain bound
aries was discovered in experiments using the transmis
electron microscopy~TEM! technique.3,12–15 These facets
have a typical length scalel of the order of 10–100 nm an
a wide variety of orientations relative to the axis of symm
try of the superconductor.Second, quite a few of recent ex-
periments provide an evidence of a predominantdx22y2

wave symmetry of the order parameter in many of the hi
Tc cuprates. In some experimental studies the symmetr
the order parameter is more complicated and is shown to
a certain mixture of the dx22y2 and s wave
components.2,16–22

These two fundamental experimental observations in
cate the existence of two contributions to the phase dif
ence of the order parameter across the grain boundary
deed, consider a meandering grain boundary in a film o
superconductor with thedx22y2 wave symmetry of the orde
parameter and assume that there is a certain magnetic
inside the grain boundary. In this case there is a phase
ferencew caused by the magnetic flux and at the same t
there is an additional phase differencea caused by the mis
PRB 620163-1829/2000/62~22!/15214~7!/$15.00
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alignment of the anisotropicdx22y2 wave superconductors
Therefore, the tunneling current densityj c is defined by the
total phase differenceD5w2a. A model describing this
Josephson current densityj (x) results from an assumptio
that j (x)}sin@w(x)2a(x)#, where x is along the grain-
boundary line.10 The local values of the phase differenc
a(x) depend on the relative orientation of neighboring fa
ets. In the case of an asymmetric 45° grain boundary
havea(x)50 or p, and thereforej (x)}sinw(x)cosa(x).10

In other words in the framework of a model relatingj (x)
to the orientation of the facets we arrive atj (x)
5 j c(x)sinw(x) with an alternating critical current densit
j c(x)}cosa(x). The dependencej c(x) is imposed by the se
quence of facets along a grain-boundary line. If this seque
is periodic or almost periodic then the functionj c(x) is a
periodic or almost periodic alternating function. The typic
length scale forj c(x) is of the same order as the length of th
facetsl, i.e., this length scale is of 10–100 nm.

Variation of orientation of facets along a meanderi
grain boundary leads to formation of local superconduct
current loops even in the absence of an applied magn
field if the total phase differenceDÞ0. It was predicted, in
particular, that these current loops can generate a ce
magnetic flux at a contact of two facets witha50 anda
5p.9

Self-generated randomly distributed magnetic flux w
discovered in asymmetric 45°@001#-tilt grain boundaries in
YBa2Cu3O72x superconducting films in the absence of
applied external magnetic field.23 This flux fs(x) changes its
sign randomly and has an amplitude of variations less t
the flux quantumf0. The average value offs(x) along the
grain boundary is nearly zero. Noticeable, that this dis
dered nonquantized magnetic flux was observed only for
samples exhibiting the anomalous dependence of the cri
current I c(Ha) on magnetic field with the two symmetri
major side peaks.

It was shown analytically that under certain conditions
stationary state with a self-generated flux exists for a Jose
son junction with a periodically alternating critical curre
densityj c(x).24 The same spatial distributions ofj c(x) result
in an anomalous dependence of the critical currentI c(Ha) on
the applied magnetic field.11 Numerical calculations show
that two symmetric major side peaks appear for a perio
cally alternatingj c(x). The randomness of the critical cu
rent densityj c(x) smears these peaks but leaves their po
15 214 ©2000 The American Physical Society
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tion in place at weak randomness. We therefore concl
that the experimental observation of the well pronounc
major side peaks on the curveI c(Ha) ~Refs. 6–10! means
that the alternating critical current density is a periodic
almost periodic function ofx. A noticeable randomness o
j c(x) would smear out the dominant side peaks.11

In this paper we calculate both analytically and nume
cally the self-generated fluxfs in a Josephson junction with
an almost periodically alternating critical current dens
j c(x). The paper is organized as follows. First, we revie
briefly the case whenj c(x) is a periodic alternating
function.24 We derive the main equations of the two-sca
perturbation theory and apply these equations to analyze
nonquantized self-generated flux. This approach forms a
sis for the following analytical calculations. Next, we tre
the self-generated flux for the case of an almost perio
alternating critical densityj c(x) and start with a qualitative
approach to the problem. We review then the results of
numerical simulations which verify the qualitative conside
ation and exhibit a magnetic flux-pattern which is similar
the one that was recently observed experimentally.23

II. MAIN EQUATIONS

It is convenient for the following analyses to write th
function j c(x) in the form

j c5^ j c&@11g~x!#, ~1!

where^ j c& is the average value of the critical current dens
j c(x) over an interval with a lengthL@ l

^ j c&5
1

LE0

L

j c~x!dx. ~2!

The functiong(x) introduced in Eq.~1! alternates on a
typical length scale ofl. Note that by definition the averag
value ofg(x) is zero, i.e.,̂ g(x)&50. The maximum value
of ug(x)u varies fromug(x)umax*1 to ug(x)umax@1. We as-
sume also thatl! l !LJ , wherel is the London penetration
depth and

LJ
25

cfo

16p2l^ j c&
~3!

is an effective Josephson penetration depth. It is worth m
tioning that in the case of an alternating current density
effective penetration depth is not a local characteristics o
tunnel junction. It is rather an effective quantity defined
the same typical length scale as^ j c&.

The phase differencew(x) satisfies the equation

LJ
2w92@11g~x!#sinw50. ~4!

In the limiting casel !LJ it is convenient to write a solution
of this equation as a sum of a certain smooth functionc(x)
with a length scale of orderLJ and a rapidly oscillating
function j(x) with a length scale of orderl ~Ref. 24!

w~x!5c~x!1j~x!. ~5!

We assume also thatuj(x)u!uc(x)u. After substituting Eq.
~5! into Eq. ~4! and keeping the terms up to the first order
j(x) we obtain
e
d

r

-

he
a-

ic

r
-

n-
is
a

LJ
2c91LJ

2j92@11g~x!#@sinc1j cosc#50. ~6!

Note, that experimentally23 the self-generated flux wa
observed by a superconducting quantum intereference de
~SQUID! pickup loop with a size of severalLJ@ l . It means
that this method is averaging out the fast alternating fl
defined by the phasej(x) and measures the spatially smoo
flux defined byc(x).

Next we consider briefly the case of aperiodically alter-
nating critical current densityj c(x) which forms the basis of
the following analysis of a general case withj c(x) being a
randomly alternating function.

III. PERIODICALLY ALTERNATING CRITICAL
CURRENT DENSITY

A. Two-scale perturbation theory

If the critical current densityj c(x) is a periodic function,
theng(x) also is a periodic function. In this case an appro
mate solution of Eq.~6! can be obtained based on a tw
scale perturbation theory.25 As a first step in order to apply
this approach to Eq.~6! we separate the fast alternating term
with a typical length scalel and the smooth terms varyin
with a typical length scaleLJ

~LJ
2c92sinc2gj cosc!1~LJ

2j92g sinc!50. ~7!

In Eq. ~7! we omitted two out of three fast alternatin
terms of Eq.~6! since they are proportional toj(x) and
therefore are smaller than the term proportional tog(x).
Next, we note that the terms included into the first pair
brackets in Eq.~7! cancel each other independently on t
terms included into the second pair of brackets in Eq.~7! as
these two type of terms have very different length scalel
andLJ andl !LJ .25 The same reasoning is applicable to t
terms included into the second pair of brackets in Eq.~7!. As
a result we obtain the following two equations forj(x) and
c(x) ~Ref. 24!

LJ
2j95g~x!sinc, ~8!

LJ
2c92sinc2^g~x!j~x!&cosc50. ~9!

It is worth noting that we obtain thetwo functionsc(x) and
j(x) from one equation~7! as only two type of terms with
different typical length scalesl andLJ appear in Eq.~6!. If
g(x) would have a wide range of typical length scales t
above separation would not be possible.

Introducing the Fourier transform ofg(x) as

g~x!5(
2`

`

gke
ikx, ~10!

we find the solution of Eq.~8! in the form

j~x!52
sinc

LJ
2 (

2`

`
gke

ikx

k2
52jg~x!sinc, ~11!

where the sums in Eqs.~10! and ~11! are over the wave
vectorsk52pn/L, L is the length of the junction, andn is
an integer. It is worth mentioning that the functionjg(x) is
defined only by the alternating components of the criti
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current densityj c(x). Also while deriving Eq.~11! we ig-
nored the spatial dependence of sinc. This can be done sinc
on the length-scalel the variation of the smooth functio
sinc(x) is of orderl /LJ!1. The alternating part of the criti
cal current density has the typical wave numbersk;1/l .
Therefore, using Eq.~11! we estimatej(x) as

j~x!;2sinc
l 2

LJ
2 g~x!. ~12!

It follows from this estimate that the typical values of th
phase differencej(x) are small (̂ uj(x)u&!1) if

^ug~x!u&!
LJ

2

l 2 . ~13!

Next, using Eq.~11! we rewrite Eq.~9! for the smooth
phase shiftc(x) in the form

LJ
2c92sinc1g sinc cosc50, ~14!

where

g5^g~x!jg~x!&52
1

sinc
^g~x!j~x!& ~15!

is a constant. A similar derivation for the current dens
across the tunnel junction results in

j ~x!5^ j c&sinc~12g cosc!. ~16!

The magnetic fieldBs(x) generated by the alternatin
component of the critical current^ j c&g(x) is given by

Bs5
4p

c
^ j c&E g~x!dx52

f0

4pl

djg

dx
~17!

and the averaged field̂Bs(x)&50. The alternating magneti
flux fs produced by the fieldBs is equal to

fs52
f0

2p
jg . ~18!

Combining Eqs.~15! and ~17! we find for g the formula

g5
cl

f0^ j c&
^Bs

2&5
^Bs

2&

^BJ
2&

, ~19!

where we introduce a characteristic magnetic field

BJ5
4p

c
^ j c&LJ . ~20!

It follows from Eq. ~19! that g is a positive constant which
can be estimated as

g;
l 2

LJ
2 ^g2&. ~21!

The energy of a Josephson junctionE takes the form26 E
5E01Ew , whereE0 is independent ofw(x) and

Ew5
^ j c&
2e E dxH 1

2
LJ

2w822@11g~x!#coswJ . ~22!
Using Eqs.~8!, ~11!, and the definition ofg, we obtain the
energyEw in terms of the smooth phase shiftc(x)

Ew5
\^ j c&

4e E dx$LJ
2c8222 cosc2g sin2c%. ~23!

Note, that solutionsc(x) of Eq. ~14! correspond to the
minima and to the maxima of the energy functional~23!.

B. Nonquantized self-generated flux

Let us apply Eqs.~8!, ~9!, and~15! to a consideration of
the stationary states of a Josephson junction with a cer
lengthL@LJ in an absence of applied magnetic field. In th
case the average flux inside the junction is zero and thu
alternating self-generated fluxfs(x) appears simultaneousl
with a certain phasec5const as it follows from Eqs.~11!
and ~18!.

In the stationary state withc5const the values ofc are
determined by Eq.~14! which takes the form

sinc~12g cosc!50. ~24!

Note, that this equation means also that the current den
j (x) across the tunnel junction is equal to zero.

In the case whereg,1, Eq. ~24! has two solutions,
namely,c50 andc5p and thus, as follows from Eq.~11!,
there is no self-generated flux. It is also worth mentioni
that the energy of a Josephson junctionE has a minimum for
c50 and maximum forc5p.

In the case whereg>1 there are four solutions of Eq
~24!, namely,c52cg , 0, cg , p, where

cg5arccos~1/g!. ~25!

The energyE@c(x)# has a minimum forc56cg and a
maximum forc50,p. The self-generated flux

fs52
f0j

2p
52

f0jg

2p
sincg57f0

jg

2p

Ag221

g
~26!

arises in the two stationary states withc56cg , each of
these states corresponds to a minimum energyE. The as-
sumption ^j(x)&!1 restricts the value ofg. However, it
follows from Eqs.~13! and ~21! that ^j(x)&!1 and g.1
hold simultaneously only if

LJ

l
,^ug~x!u&!

LJ
2

l 2 . ~27!

Inequalities~27! describe the applicability domain of th
above analytical approach. In particular, Eq.~27! restricts the
amount of the local critical current density variation. Indee
the value of ^ug(x)u& can be estimated aŝ ug(x)u&
; j c

max/^jc&, wherej c
max is the maximum value of the alterna

ing critical current density (j c
max@^jc&). It follows then from

Eq. ~27! that the developed analytical approach is valid p
vided

j c
max.^ j c&A cf0

l l 2^ j c&
, ~28!

and
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j c
max!^ j c&

cf0

l l 2^ j c&
, ~29!

i.e., the variation of the critical current density should
large Eq.~28!; still it should not exceed the limit~29!.

Using Eqs.~12! and ~26! we estimateufs(x)u as

ufs~x!u;f0

Ag221

g

l 2

LJ
2 ug~x!u!f0 . ~30!

The above results hold only for a periodic critical curre
densityj c(x) and the predicted self-generated fluxfs(x) has
a typical amplitude of variations which is much less than
one observed experimentally.23

IV. NONPERIODIC ALTERNATING CRITICAL
CURRENT DENSITY

The above analytical approach to the problem of a s
generated flux in a nonuniform Josephson junction is ba
on an assumption that the critical current densityj c(x) is an
alternating periodic function. This model allows for analy
cal calculation and provides a reasonable preliminary ins
into the properties of an idealized Josephson junction with
alternatingj c(x). At the same time this simple model fai
for a quantitative description of any real system with a c
tain randomness of the spatial distribution of Josephson c
cal current densityj c(x). In this section we generalize th
above approach assuming that the alternating critical cur
density j c(x) is almost periodic, i.e., we assume that there
a typical length of interchange of sign ofj c(x) which is
distributed randomly near some mean valuel.

In the case of an almost periodicj c(x) we cannot apply
the two-scale perturbation theory in the same way as we
it in the previous section. Indeed, an arbitrary solution of E
~8! takes the form

j~x!5
sinc

LJ
2 G~x!, ~31!

where

G~x!5E
a

x

dx8E
a8

x8
dx9g~x9!, ~32!

and the integration constantsa and a8 are defined by the
boundary conditions. The random functionG(x) increases
with an increase of the integration interval. In general,
value of uG(x)u can become arbitrarily large if the length o
the tunnel junctionL becomes large enough. This is in co
tradiction with our main assumption that the phasej(x) is a
small and fast varying component of the total phase diff
encew(x). To solve this contradiction we writej(x) as

j~x!5
sinc

LJ
2 @G~x!2Ga~x!#. ~33!

The functionGa(x) is a smoothing average ofG(x) over an
interval with a certain lengthLa , wherel ,La!L.

The procedure of filtering out the smooth part ofG(x) is
especially evident if we use Fourier series forg(x) and
G(x). Introducing the Fourier transform forg(x) as
t

e

f-
d

ht
n

-
ti-

nt
s

id
.

e

-

g~x!5(
2`

`

gke
ikx ~34!

we find the Fourier series for the functionG(x) in the form

G~x!52(
2`

`
gk

k2 eikx, ~35!

where the sums in Eqs.~34! and ~35! are over the wave
vectorsk52pn/L and n is an integer. The smooth part o
the functionG(x) can be obtained by extracting the fas
Fourier harmonics, i.e., by extracting from the sum~35!
terms with wave vectorsuku.ka;2p/La . As a result we
find for Ga(x) andj(x) the series

Ga~x!52(
2ka

ka gk

k2 eikx, ~36!

j~x!5
sinc

LJ
2 S (

2`

2ka

1(
ka

` D Fgk

k2 eikxG . ~37!

The small and fast alternating partj(x) of the phase dif-
ferencew(x) is thus defined by Eq.~33!. This equation is a
straightforward generalization of the two-scale perturbat
theory approach to a real case of an almost periodicg(x).

Next, we use Eq.~33! to derive an equation for the
smooth partc(x) of the phasew(x). First, combining Eqs.
~33!, ~7!, and~32! we arrive at the relation

LJ
2c92@11Ga9~x!#sinc2g~x!j~x!sinc50. ~38!

Second, we average Eq.~38! over an interval with a certain
lengthL assuming thatl !L!La . This averaging results in
an equation describing the phasec(x)

LJ
2c92@11Ga9~x!#sinc1g~x!sinc cosc50, ~39!

whereg(x) is defined by Eq.~15!. It is worth mentioning
that Eq.~39! differs from the analogues Eq.~9! by an addi-
tional termGa9(x) in the coefficient before sinc and by the
fact that the parameterg5g(x) is a function of the coordi-
natex along the junction.

The coefficient 11Ga9(x) is defined by magnetic field
Bc(x) which would be generated by a current with the de
sity j c(x). Indeed, using Eqs.~1!, ~32!, and Maxwell’s equa-
tion dBc /dx54p j c /c we obtain forG(x)

G~x!5
c

4p^ j c&
E dx8@Bc~x8!2Ba~x8!#

5
2pLJ

2

f0
@fc~x!2fa~x!#, ~40!

where the magnetic fieldBa(x) would be generated by a
constant current densitŷj c&, i.e., dBa /dx54p^ j c&/c, and
fc(x) and fa(x) are the fluxes of the fieldsBc(x) and
Ba(x). It follows now from Eq.~40! that

11Ga9~x!5
2pLJ

2

f0
^fc~x!&9. ~41!
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As shown above the value of the parameterg is determin-
ing the existence or absence of the self-generated flux. U
Eq. ~8! and the definition ofg(x) given by Eq. ~15! we
obtain forg(x) an expression

g~x!52
LJ

2

sin2c
^j9j&5

LJ
2

sin2c
^j82 &.0 ~42!

demonstrating that the conditiong(x).0 holds also in the
case of an almost periodic critical current density.

A. Self-generated flux in a stationary state

Let us now consider stationary solutions for the smo
partc(x) of the phase differencew(x) qualitatively. Assume
first that there are sufficiently large intervals with lengt
Li@LJ , where the functionc(x) is constant or varies with a
typical space scale of orderLi@LJ . In this case Eq.~39!
reduces to

@11Ga9~x!2g~x!cosc#sinc50. ~43!

This equation is similar to Eq.~24! which we derived for
the case of a periodic critical current densityj c(x) and has
different solutions depending on the value of the parame

g r~x!5
g~x!

11Ga9~x!
. ~44!

In the regions withg r(x),1, Eq. ~43! has two solutions
c50 and c5p and therefore as it follows from Eq.~31!
there is no self-generated flux in these regions.

The energy of a Josephson junctionEw given by Eq.~22!
can be written in terms of the smooth part of the phase
ferencec(x). In the case of an almost periodic critical cu
rent densityj c(x) this equation reads

Ew5
\^ j c&

4e E dx$LJ
2c8222 cosc@11Ga9~x!#2g~x!sin2c%

~45!

and if g r(x),1, then the energyEw has a minimum forc
50 and a maximum forc5p.

In the regions where the functiong r(x).1, Eq.~43! has
four solutionsc52cg(x), 0, cg(x), p, with

cg~x!5arccosF 1

g r~x!G5arccosF11Ga9~x!

g~x!
G . ~46!

The energyEw has a minimum forc56cg(x) and a maxi-
mum for c50,p. The self-generated flux is thus nonzero
the regions withg r.1. This flux has a fast and a smooth
varying parts defined byj(x) andcg(x).

The randomness of the functiong(x) causes variation o
g r(x) along the junction. As a result of this variation inte
vals with g r(x).1 are interlaced with intervals withg r(x)
<1. As it was mentioned above, in the case ofg r.1 the
energy of the Josephson junctionEw has a minimum forc
56cg(x) and a maximum forc50,p. When the value of
ng

h

r

f-

g r(x) changes fromg r(x).1 to g r(x)<1 the energyEw still
has a maximum ifc5p, but a state withc50 becomes a
state with a minimum energy.

The above results provide a qualitative description of
perimentally observable flux distribution along a Joseph
junction with an almost periodic alternating critical curre
density. This flux distribution spatially averaged by the me
surement tools is defined by the functionc(x) ~see Fig. 1!.
Inside the intervals withg r(x).1 the phasec(x) tends to
one of the solutions6cg(x). The profile of the function
c(x) correlates with the profile ofcg(x), though does not
coincide with it exactly because the solutionc(x)5cg(x)
was obtained under assumptionc950, which does not hold
exactly for the intervalsg r(x).1. The smooth part of the
phase difference inside the intervals withg r(x)<1 is c50
which is consistent with the assumptionc950.

The value ofcg increases quite fast with an increase
the parameterg ~see Fig. 2!. In particular, forg52 the value
of cg is already about 0.75 of its maximum valuep/2. This
means that for most of the experimentally observable pe
of the self-generated flux the values ofc will be close top/2
which corresponds to a magnetic fluxf0/4. In some places
of the junction the phasec changes from2cg to cg . The
flux localized in this area of the junction will be close
f0/2.

V. NUMERICAL SIMULATIONS

A. The finite difference scheme

To study the self-generation of magnetic flux in a tunn
junction with an alternating critical current density nume

FIG. 1. Scheme of the smooth phase spatial distributionc(x) as
an alternation of two types of solutions corresponding to differ
values of the parameterg r .

FIG. 2. Dependence of the smooth phasecg on the parameterg.
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cally we introduced time dependence into the main equa
~4!

ẅ1aẇ2LJ
2c91@11g~x!#sinw50, ~47!

wherea;1 is a decay constant. This approach allows us
study both dynamics and statics of the system.

The termaẇ introduces dissipation. As a result of th
dissipation the relaxation of the system ends up in one of
stable stationary states described by a certain solution o
static equation~4!. Moreover, for a given distribution of the
critical current densityj c(x) we obtained different static so
lutions when we start the numeric simulation from differe
initial states. We compare and classify these solutions ba
on the features of the functionj c(x). Indeed, this function
essentially describes the pinning properties of the junct
Therefore, a variety of initial conditions can converge to
similar flux-pinning pattern.

To solve Eq.~47! numerically we use the finite differenc
scheme.27 We adapted this method to our case and chec
the stability and convergency of the obtained solutions. A
result we arrived at the following scheme:

w→
wm11

n 1wm21
n

2
[w̃m

n , ~48!

ẇ→
w̃m

n 2wm
n21

t
, ~49!

ẅ→
wm

n111wm
n2122w̃m

n

t2
, ~50!

w9→
wm11

n 1wm21
n 22wm

n

h2
, ~51!

where f m
n 5 f (xm ,tn), t andh are steps alongt andx corre-

spondingly. Next, we choose units providingLJ51 and set
h5t. As a result we arrive at the following finite differenc
scheme:

FIG. 3. Spatial distributions of the parameterg r(x) and the
corresponding smooth phasec(x).
n

o

e
he

t
ed

n.

d
a

wm
n1152~12at!wm

n211~22at!w̃m
n 2t2~12gm!sinw̃m

n .
~52!

B. Stationary solutions

Initially a certain random functiong(x) is generated for
an interval with a lengthL with a given values ofl andd l @a
typical length scale of the functiong(x) and its dispersion#,
g anddg @amplitude of the functiong(x) and its dispersion#.
This allows us to calculate the functiong r(x) for the whole
interval. An initial statew0(x) is prepared as a random o
some specific function. Finally, the dynamical rules~52! are
applied to the initial state iteratively until a stationary state
established.

In Fig. 3 we show one of the stationary solutions obtain
by a numerical simulation and the functiong r(x) calculated
for this solution. It is clearly seen from Fig. 3 thatw(x)
arises at the places whereg r(x) exceeds 1. Heights of the
peaks are less thanp/2, and thus the corresponding magne
flux amplitudes are less thanf0/4.

In general a different initial state of the same sample, i
for the same functiong r(x), generates a different stationar
state. Our numerical simulations show that these differ
states differ only by the sign of some peaks ofw(x), but the
shapes and locations stay unchanged.

We have compared our results with the experimen
data.23 The typical amplitude of the flux variations measur
by a SQUID pickup loop with a size of severalLJ is
about 0.25 off0 with rare narrow picks with an amplitud
about 0.5f0 which is in good agreement with our calcula
tions.

VI. SUMMARY

We treated a Josephson junction with an alternating c
cal current densityj c(x) as a model for considering electro
magnetic properties of grain boundaries in YBa2Cu3O72x
superconducting films. The study is mainly focused on a s
cific case of an almost periodically alternating functio
j c(x). We demonstrated both analytically and numerica
that under certain conditions a self-generated flux patt
arises for this type of spatial distribution of the critic
current density j c(x). The obtained flux pattern with
two types of interlacing flux domains is similar to the on
which was recently observed experimentally
YBa2Cu3O72x superconducting films in the absence of
external magnetic field. The typical amplitude for the ma
netic flux peaks is of orderf0/4 andf0/2 and the typical
distance between the peaks depends on the spatial dist
tion of j c(x).
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