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Self-generated magnetic flux in YBaCu;0,_, grain boundaries
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Grain boundaries in YBZu;0O;_, superconducting films are considered as Josephson junctions with a
critical current densityj(x) alternating along the junction. A self-generated magnetic flux is treated both
analytically and numerically for an almost periodic distributionj gfx). We obtained a magnetic flux-pattern
similar to the one which was recently observed experimentally.

[. INTRODUCTION alignment of the anisotropid,2_,2 wave superconductors.
Therefore, the tunneling current densjtyis defined by the

Grain boundaries in highi; cuprates are interesting and total phase differencéA=¢—«a. A model describing this
important for both fundamental physics and applications oflosephson current densifyx) results from an assumption
high-temperature superconductivity’ Conventional models that j(x)esin¢(X)—a(X)], where x is along the grain-
of strongly coupled Josephson junctions are applicable tboundary line® The local values of the phase difference
describe electromagnetic properties of grain boundaries i (x) depend on the relative orientation of neighboring fac-
thin films of highT. superconductor$® A remarkable ex- ets. In the case of an asymmetric 45° grain boundary we
ception of this rule is the[001-tilt boundary in  havea(x)=0 or m, and thereforg (x)esin ¢(x)cosa(x).*°
YBa,Cuy;O;_ films with a misorientation angle close to In other words in the framework of a model relatipgx)
45° 5719 Indeed, these grain boundaries have an anomalous the orientation of the facets we arrive g(Xx)
dependence of the critical curreiiton an applied magnetic =j (x)sing(x) with an alternating critical current density
field H,. Contrary to a usual Fraunhofer-type dependencg (x)=cosa(X). The dependencg(x) is imposed by the se-
I.(H,) with a major central peak & ,=0 and minor sym- quence of facets along a grain-boundary line. If this sequence
metric side-peaks the asymmetric 4801]-tilt grain bound-  is periodic or almost periodic then the functigg(x) is a
aries demonstrate a pattern without a central dominant peajeriodic or almost periodic alternating function. The typical
Instead two symmetric major side peaks appear at certailength scale foj.(x) is of the same order as the length of the
applied magnetic fieldsl ;= +Hg#0.°7* facetsl, i.e., this length scale is of 10-100 nm.

Several mechanisms have been suggested to explain this Variation of orientation of facets along a meandering
phenomen&®!! The anomalous dependentg(H,) with  grain boundary leads to formation of local superconducting
symmetric major side peaks is obviously a result of a specificurrent loops even in the absence of an applied magnetic
heterogeneity of electrical properties of the asymmetric 459ield if the total phase differencaé #0. It was predicted, in
[001]-tilt grain boundaries. Two fundamental experimentalparticular, that these current loops can generate a certain
observations in conjunction explain this heterogeneity in amagnetic flux at a contact of two facets with=0 and «
natural way>'° First, a fine scale faceting of grain bound- = .°
aries was discovered in experiments using the transmission Self-generated randomly distributed magnetic flux was
electron microscopy(TEM) technique’*?>~'° These facets discovered in asymmetric 43001]-tilt grain boundaries in
have a typical length scaleof the order of 10—100 nm and YBa,Cu;O;_, superconducting films in the absence of an
a wide variety of orientations relative to the axis of symme-applied external magnetic fiefd This flux ¢¢(x) changes its
try of the superconductoSecond quite a few of recent ex- sign randomly and has an amplitude of variations less than
periments provide an evidence of a predomindpt >  the flux quantump,. The average value abg(x) along the
wave symmetry of the order parameter in many of the highgrain boundary is nearly zero. Noticeable, that this disor-
T. cuprates. In some experimental studies the symmetry adered nonquantized magnetic flux was observed only for the
the order parameter is more complicated and is shown to beamples exhibiting the anomalous dependence of the critical
a certain  mixture of the d2_,» and s wave currentl(H,) on magnetic field with the two symmetric
componentg:16-22 major side peaks.

These two fundamental experimental observations indi- It was shown analytically that under certain conditions a
cate the existence of two contributions to the phase differstationary state with a self-generated flux exists for a Joseph-
ence of the order parameter across the grain boundary. Iison junction with a periodically alternating critical current
deed, consider a meandering grain boundary in a film of aensityj(x).2* The same spatial distributions pf(x) result
superconductor with thd,2_,> wave symmetry of the order in an anomalous dependence of the critical currgfti,) on
parameter and assume that there is a certain magnetic fluke applied magnetic fieftt. Numerical calculations show
inside the grain boundary. In this case there is a phase dithat two symmetric major side peaks appear for a periodi-
ferencee caused by the magnetic flux and at the same timeally alternatingj.(x). The randomness of the critical cur-
there is an additional phase differeneecaused by the mis- rent densityj.(x) smears these peaks but leaves their posi-
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tion in place at weak randomness. We therefore conclude A5y + A5 —[1+g(0)][siny+Ecosy]=0.  (6)

that the experimental observation of the well pronounced

major side peaks on the curtg(H,) (Refs. 6—10 means Note, that experimentalfy the self-generated flux was

that the alternating critical current density is a periodic orobserved by a superconducting quantum intereference device

almost periodic function ok. A noticeable randomness of (SQUID) pickup loop with a size of severdl ;>1. It means

j<(x) would smear out the dominant side peaks. that this method is averaging out the fast alternating flux
In this paper we calculate both analytically and numeri-defined by the phas§(x) and measures the spatially smooth

cally the self-generated flu in a Josephson junction with flux defined by (X).

an almost periodically alternating critical current density Next we consider briefly the case ofpariodically alter-

j<(X). The paper is organized as follows. First, we reviewnating critical current densitj,(x) which forms the basis of

briefly the case whenj.(x) is a periodic alternating the following analysis of a general case wijtf{{x) being a

function?* We derive the main equations of the two-scalerandomly alternating function.

perturbation theory and apply these equations to analyze the

nonquantized self-generated flux. This approach forms a ba-  |||. PERIODICALLY ALTERNATING CRITICAL

sis for the following analytical calculations. Next, we treat CURRENT DENSITY

the self-generated flux for the case of an almost periodic

alternating critical density.(x) and start with a qualitative

approach to the problem. We review then the results of our If the critical current density.(x) is a periodic function,

numerical simulations which verify the qualitative consider-theng(x) also is a periodic function. In this case an approxi-

ation and exhibit a magnetic flux-pattern which is similar tomate solution of Eq(6) can be obtained based on a two-

A. Two-scale perturbation theory

the one that was recently observed experimentdlly. scale perturbation theofy.As a first step in order to apply
this approach to Eq6) we separate the fast alternating terms
Il. MAIN EQUATIONS with a typical length scalé and the smooth terms varying

. . . . with a typical length scalé.
It is convenient for the following analyses to write the P g J

function j¢(x) in the form (A3y"—siny—gécosy)+(A3E"—gsing)=0. (7)
Je=({1+9(x)], @ In Eq. (7) we omitted two out of three fast alternating

where(j ) is the average value of the critical current densityterms of Eq.(6) since they are proportional t§(x) and

jo(x) over an interval with a length>| therefore are smaller than the term proportionalgi().

Next, we note that the terms included into the first pair of
) 1L brackets in Eq(7) cancel each other independently on the
(Je)= [L Je(x)dx. (2 terms included into the second pair of brackets in @as
these two type of terms have very different length scéles
The functiong(x) introduced in Eq(1) alternates on a andA;andl<A;.?® The same reasoning is applicable to the
typical length scale of. Note that by definition the average terms included into the second pair of brackets in @.As
value ofg(x) is zero, i.e.(g(x))=0. The maximum value & result we obtain the following two equations #(x) and
of |g(x)| varies from|g(X)|ma=1 t0 |g(X)|mac>1. We as-  #(X) (Ref. 24
sume also that <l << A ;, whereh is the London penetration

depth and AZE"=g(x)siny, ®
2 Cdo @ AJy"=sing—(g(x)&(x))cosy=0. ©)
7 167N (jc) It is worth noting that we obtain thtavo functions(x) and

is an effective Josephson penetration depth. It is worth mené(X) from oneequation(7) as only two type of terms with
tioning that in the case of an alternating current density thiglifferent typical length scalelsand A ; appear in Eq(6). If
effective penetration depth is not a local characteristics of &(X) would have a wide range of typical length scales the
tunnel junction. It is rather an effective quantity defined onabove separation would not be possible.
the same typical length scale &s). Introducing the Fourier transform @f(x) as

The phase difference(x) satisfies the equation

AZp"—[1+g(x)]sing=0. (@ 900 =2 gee" (10

In the limiting casd <A it is convenient to write a solution & find the solution of Eq(8) in the form
of this equation as a sum of a certain smooth functigr)

with a length scale of ordeA; and a rapidly oscillating sinyg
function £(x) with a length scale of orddr (Ref. 24 E(X)=—

() =00 +£(x). ®) where the sums in Eqg10) and (11) are over the wave
We assume also thag(x)|<|¢(x)|. After substituting Eq. vectorsk=2mn/L, L is the length of the junction, andis
(5) into Eq.(4) and keeping the terms up to the first order inan integer. It is worth mentioning that the functigg(x) is
£(x) we obtain defined only by the alternating components of the critical

ikx

o gee _
A_E_Ex kk—2= —&y(X)siny, (13)
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current densityj.(x). Also while deriving Eq.(11) we ig-
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Using Egs.(8), (11), and the definition ofy, we obtain the

nored the spatial dependence of ifThis can be done since energy&, in terms of the smooth phase shif{x)

on the length-scalé the variation of the smooth function
siny(X) is of orderl/A ;<<1. The alternating part of the criti-

cal current density has the typical wave numbkrsl/.
Therefore, using Eq11) we estimatet(x) as
|2

§(X)~—sin¢A—§g(x)- (12

It follows from this estimate that the typical values of the

phase differencé(x) are small (|£(x)|)<1) if

A3
(geoly<. (13
Next, using Eq.(11) we rewrite Eq.(9) for the smooth
phase shifty(x) in the form

A2y —sing+ y siny cosy=0, (14)

where

y=(9(x) §4(x))=— (19

S,m,j<g<x>§<x>>

<]C>f dx{A2y'?—2 cosy— ysirtyl. (23

Note, that solutionsy/(x) of Eq. (14) correspond to the
minima and to the maxima of the energy functio(23).

B. Nonquantized self-generated flux

Let us apply Egs(8), (9), and(15) to a consideration of
the stationary states of a Josephson junction with a certain
length£> A ; in an absence of applied magnetic field. In this
case the average flux inside the junction is zero and thus an
alternating self-generated flug(x) appears simultaneously
with a certain phase/=const as it follows from Eqs(11)
and (18).

In the stationary state witiy=const the values ofy are
determined by Eq(14) which takes the form

siny(1—ycosy)=0. (24

Note, that this equation means also that the current density
j(x) across the tunnel junction is equal to zero.
In the case wherey<1, Eq. (24) has two solutions,

is a constant. A similar derivation for the current densitynamely,s=0 and= 7 and thus, as follows from Eq11),

across the tunnel junction results in

j(X)=(jc)siny(1—ycosy). (16)

The magnetic fieldBg(x) generated by the alternating

component of the critical currerj.)g(x) is given by

d)O dég

4
Bs:TqT(J'c)f g(x)dx=— 71—+ 17

and the averaged fiel®B4(x))=0. The alternating magnetic

flux ¢ produced by the fiel®8 is equal to

hs=— gg . (18

27
Combining Eqgs(15) and(17) we find for y the formula
ML)

b0 <J o) (8%

where we introduce a characteristic magnetic field

19

4
BJ:T<IC>AJ- (20

It follows from Eq. (19) that y is a positive constant which
can be estimated as

Y~ A2<92> (21

The energy of a Josephson junctiériakes the forrff £
=&+ E&,, where&, is independent ofp(x) and

-C 1 !
ez dX[zAigo 2~[1+g(x)Jcose|.  (22)

there is no self-generated flux. It is also worth mentioning
that the energy of a Josephson junctibhas a minimum for
=0 and maximum fory= 7.

In the case wherey=1 there are four solutions of Eq.
(24), namely,p=—14,, 0, 4, m, where

¥, =arccoglly). (25

The energy& ¢(x)] has a minimum forgy==4¢, and a
maximum for¢=0,7r. The self-generated flux

. (/J)Of ¢O§g gg \/72_1

arises in the two stationary states wigh= =, each of
these states corresponds to a minimum enetgyrhe as-
sumption(¢(x))<1 restricts the value ofy. However, it
follows from Egs.(13) and (21) that (£(x))<1 and y>1
hold simultaneously only if

A, A3
T<(lgh=1z. (27)
Inequalities(27) describe the applicability domain of the
above analytical approach. In particular, E2j7) restricts the
amount of the local critical current density variation. Indeed,
the value of (|g(x)|) can be estimated ag|g(x)|)
~i7®(jo), wherej ™ is the maximum value of the alternat-
ing critical current density j(">(j.)). It follows then from
Eq. (27) that the developed analytical approach is valid pro-
vided

Coo

je>(je) N2 (28

and
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Coo

¢ <(jc) N0 (29

e., the variation of the critical current density should be

large Eq.(28); still it should not exceed the limit29).
Using Egs.(12) and(26) we estimatd ¢4(x)| as

PP
—A_§|9(X)|<¢o-

[ ps(X)|~ o (30)

The above results hold only for a periodic critical current

densityj.(x) and the predicted self-generated fliyx) has

a typical amplitude of variations which is much less than the

one observed experimentafly.
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(34

= 2 g€’

we find the Fourier series for the functi@(x) in the form

G(x)=— Zm %eikx,

where the sums in Eq$34) and (35) are over the wave
vectorsk=27n/L andn is an integer. The smooth part of
the functionG(x) can be obtained by extracting the fast-
Fourier harmonics, i.e., by extracting from the suyB86)
Serms with wave vector$k|>k ~2mlL,. As a result we
find for G4(x) and (x) the series

(35

IV. NONPERIODIC ALTERNATING CRITICAL Ka g
CURRENT DENSITY Ga(X)=— >, Egeikx’ (36)
_ka
The above analytical approach to the problem of a self-
generated flux in a nonuniform Josephson junction is based Slnl// 2 2 ikx 3
on an assumption that the critical current dengifx) is an B k2e (37)

alternating periodic function. This model allows for analyti-

cal calculation and provides a reasonable preliminary insight The small and fast alternating paitx) of the phase dif-
into the properties of an idealized Josephson junction with aferenceg(x) is thus defined by Eq:33). This equation is a
alternatingj.(x). At the same time this simple model fails straightforward generalization of the two-scale perturbation
for a quantitative description of any real system with a certheory approach to a real case of an almost perigic.
tain randomness of the spatial distribution of Josephson criti- Next, we use Eq(33) to derive an equation for the
cal current density(x). In this section we generalize the smooth part/(x) of the phasep(x). First, combining Egs.
above approach assuming that the alternating critical curren3), (7), and(32) we arrive at the relation
densityj(x) is almost periodic, i.e., we assume that there is
a typical length of interchange of sign ¢f(x) which is Aflp” [1+GL(x)]sing—g(x)&(x)sing=0.
distributed randomly near some mean value

In the case of an almost penodjg(x) we cannot app|y Secondwe average Eq38) over an interval with a certain
the two-scale perturbation theory in the same way as we ditengthL assuming that<L <L, . This averaging results in
it in the previous section. Indeed, an arbitrary solution of Eq.an equation describing the phagex)
(8) takes the form

(39

ASY —[1+GL(x)]sing+ y(x)siny cosy=0, (39)

E(x)= %/IG( X), (31  where y(x) is defined by Eq(15). It is worth mentioning
that Eq.(39) differs from the analogues E¢9) by an addi-
tional termG7(x) in the coefficient before sigr and by the
fact that the parametey= y(x) is a function of the coordi-
natex along the junction.

The coefficient - GJ(x) is defined by magnetic field
B.(x) which would be generated by a current with the den-
sity j<(x). Indeed, using Eggl), (32), and Maxwell's equa-

tion dB./dx=4j./c we obtain forG(x)

where

X ’
G(x)=f dx’J'X, dx"g(x"), (32

a a
and the integration constantgsand a’ are defined by the
boundary conditions. The random functi@(x) increases
with an increase of the integration interval. In general, the
value of|G(x)| can become arbitrarily large if the length of
the tunnel junctionC becomes large enough. This is in con-
tradiction with our main assumption that the phgég) is a
small and fast varying component of the total phase differ-
encee(X). To solve this contradiction we writé(x) as

(of
G(X):Wf dX'[Bo(x')— Bo(x")]

A3
= L)~ ba(X)], (40)

bo
where the magnetic fiel@,(x) would be generated by a
constant current densitdj), i.e.,dB,/dx=4m(j.)/c, and
d:(X) and ¢,(x) are the fluxes of the field8.(x) and
Ba(x). It follows now from Eq.(40) that

siny
S(X)=A—§[G(X)—Ga(X)]- (33
The functionG,(x) is a smoothing average &(x) over an
interval with a certain lengtif,, wherel<L,<L.

The procedure of filtering out the smooth part@fx) is
especially evident if we use Fourier series fpfx) and

G(x). Introducing the Fourier transform fg(x) as

. o 277/\5 ,
+Ga(X)= & )" (41)
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As shown above the value of the paramejtgs determin-
ing the existence or absence of the self-generated flux. Using
Eqg. (8) and the definition ofy(x) given by Eg.(15) we
obtain fory(x) an expression 0

2 2

(X)=— Y (§'8)= . (£%)>0 (42) i
Y Sirty Sirty

demonstrating that the conditiop(x)>0 holds also in the FIG. 1. Scheme of the smooth phase spatial distributiex) as
case of an almost periodic critical current density. an alternation of two types of solutions corresponding to different
values of the parametey, .

A. Self-generated flux in a stationary state
Let us now consider stationary solutions for the smooth?r(X) changes fromy(x)>1 t0 ¥ (x)<1 the energy, stil

party(x) of the phase difference(x) qualitatively. Assume ~Nas @ maximum ity=r, but a state withy=0 becomes a
first that there are sufficiently large intervals with lengths Stat€ with a minimum energy. o o
L;> A, where the functions(x) is constant or varies with a The above results provide a qualitative description of ex-

typical space scale of ordet>A,. In this case Eq(39) perimentally observable flux distribution along a Josephson
reduces to ' junction with an almost periodic alternating critical current

density. This flux distribution spatially averaged by the mea-
. surement tools is defined by the functigiix) (see Fig. 1
[1+GL(x)— y(x)cosy]sing=0. (43)  Inside the intervals withy,(x)>1 the phasaj(x) tends to
) L ) ) one of the solutionst ¢,(x). The profile of the function
This equation is similar to Eq24) which we derived for ¥(x) correlates with the profile of.(x), though does not
the case of a periodic critical current densjtyx) and has gincide with it exactly because the solutigfx) = y.(x)
different solutions depending on the value of the parametek, a5 optained under assumptigfi=0, which does not hold
exactly for the intervalsy,(x)>1. The smooth part of the
Y(X) phase difference inside the intervals wigf(x)<1 is /=0
Yr(X)= 1567 (0" (44 which is consistent with the assumptigfi=0.
a The value ofy, increases quite fast with an increase of
the parametey (see Fig. 2 In particular, fory=2 the value
of ¢, is already about 0.75 of its maximum vala¢2. This
means that for most of the experimentally observable peaks
of the self-generated flux the valuespiill be close tom/2
which corresponds to a magnetic flgg/4. In some places
of the junction the phas¢ changes from-, to #,. The
flux localized in this area of the junction will be close to

bol2.

In the regions withy,(x)<1, Eg.(43) has two solutions
=0 and =7 and therefore as it follows from Eq31)
there is no self-generated flux in these regions.

The energy of a Josephson junctiép given by Eq.(22)
can be written in terms of the smooth part of the phase dif
ferencey(x). In the case of an almost periodic critical cur-
rent densityj.(x) this equation reads

h
Eo=

ijec> f dX{A5y'% 2 cosy{ 1+ Gj(x)]— y(x)siry} V. NUMERICAL SIMULATIONS

(45) A. The finite difference scheme

and if y,(x)<1, then the energy, has a minimum for/ To study the self-generation of magnetic flux in a tunnel

=0 and a maximum fogy= 7. junction with an alternating critical current density numeri-
In the regions where the functiop(x)>1, Eq.(43) has

four solutionsy= —¢,(x), 0, ¢,(x), , with v,

1 1+ Gg(x)
b (X)= arcco%— (46)

Ye(X) y(x) |

The energy¢, has a minimum for/= * ¢,(x) and a maxi- 1
mum for ¢y=0,7. The self-generated flux is thus nonzero in
the regions withy,>1. This flux has a fast and a smoothly
varying parts defined bg(x) and ,(x).

The randomness of the functi@{x) causes variation of
v:(X) along the junction. As a result of this variation inter-
vals with y,(x)>1 are interlaced with intervals withy, (x)
<1. As it was mentioned above, in the caseypf>1 the
energy of the Josephson junctiél has a minimum for)
=*4,(x) and a maximum fogy=0,7. When the value of FIG. 2. Dependence of the smooth phggeon the parametey.

= arcco%
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L) - P ing
v om == (1= anen '+ (2= anep— (1= gn)Sinep.

4N '1 *
W 0 B. Stationary solutions
-1

Initially a certain random functiog(x) is generated for
an interval with a length. with a given values of and 8l [a
typical length scale of the functiog(x) and its dispersioh
g and g [amplitude of the functiorg(x) and its dispersioh
This allows us to calculate the function(x) for the whole
interval. An initial stategy(x) is prepared as a random or
some specific function. Finally, the dynamical rul&2) are
0 applied to the initial state iteratively until a stationary state is

established.

FIG. 3. Spatial distributions of the parametgy(x) and the In Fig. 3 we show one of the stationary solutions obtained
corresponding smooth phaggx). by a numerical simulation and the functign(x) calculated
for this solution. It is clearly seen from Fig. 3 thaf(x)
Urises at the places wheng(x) exceeds 1. Heights of the

cally we introduced time dependence into the main equatio

) peaks are less thaty2, and thus the corresponding magnetic
. . 2 ) flux amplitudes are less thapy/4.
etae— AP +[1+9g(x)]sine=0, (47 In general a different initial state of the same sample, i.e.,

. . for the same functiory,(Xx), generates a different stationary

wherea 1 is a decay constant. This approach allows Us Qa0 -~ our numerical simulations show that these different

study both dynamlcs and statics of the system. states differ only by the sign of some peaksggk), but the
The termag introduces dissipation. As a result of this shapes and locations stay unchanged.

dissipation the relaxation of the system ends up in one of the \we have compared our results with the experimental

stable stationary states described by a certain solution of thgata® The typical amplitude of the flux variations measured

static equatiort4). Moreover, for a given distribution of the py 3 SQUID pickup loop with a size of severdl; is

critical current density ;(x) we obtained different static so- ahout 0.25 ofg, with rare narrow picks with an amplitude

lutions when we start the numeric simulation from different 3oyt 0.5, which is in good agreement with our calcula-

initial states. We compare and classify these solutions basaghns.

on the features of the functiopn(x). Indeed, this function

essentially describes the pinning properties of the junction.

Therefore, a variety of initial conditions can converge to a V1. SUMMARY

similar flux-pinning pattern. '

schT eoms e%v\?vgiffgtglénsﬁgcﬂg%% L:georrecf;rgée;r:geéﬁggﬁed We treated a Josephson junction with an alternating criti-

the stability and convergency of the obtained solutions. As gal curr_ent densﬂyc(x) as almodel for (_:ons_|der|ng electro-
result we arrived at the following scheme: magnetic properties of grain boundaries in ¥Ba;O;_,

superconducting films. The study is mainly focused on a spe-
cific case of an almost periodically alternating function
Omi1t ¢%,1_~n je(X). We demopstrated_ .both analytically and numerically
o T fm (48)  that under certain conditions a self-generated flux pattern
arises for this type of spatial distribution of the critical
current density j.(x). The obtained flux pattern with
o ont two types of interlacing flux domains is similar to the one
o——, (499 which was recently observed experimentally in
YBa,Cu;O;_, superconducting films in the absence of an
external magnetic field. The typical amplitude for the mag-
netic flux peaks is of ordetyy/4 and ¢y/2 and the typical
o— , (50) distance between the peaks depends on the spatial distribu-
2 tion of j(x).
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