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Fragility of photonic band gaps in inverse-opal photonic crystals
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~Received 14 February 2000!

Inverse-opal techniques provide a promising routine of fabricating photonic crystals with a full band gap in
the visible and infrared regimes. Numerical simulations of band structures of such systems by means of a
supercell technique demonstrate that this band gap is extremely fragile to the nonuniformity in crystals. In the
presence of disorder such as variations in the radii of air spheres and their positions, the band gap reduces
significantly, and closes at a fluctuation magnitude as small as under 2% of the lattice constant. This imposes
a severe requirement on the uniformity of the crystal lattice. The fragility can be attributed to the creation of
this band gap at high-frequency bands~eight to nine bands! in inverse-opal crystals.
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In recent years the fabrication of photonic crystals h
attracted extensive interest,1–3 as such artificial periodic
structures may bring about some peculiar physical phen
ena such as inhibition of spontaneous emission and loca
tion of electromagnetic waves.2–4 In addition, they posses
possible applications in wide scientific and technical ar
such as filters, optical switches, cavities, waveguide, de
of low-threshold lasers, and high-efficient light emittin
diodes.1–3

A three-dimensional~3D! photonic crystal with a full
band gap in the visible and infrared regimes provides
most stirring potential in application. Recently, the fabric
tion of 3D photonic crystals of micrometer size have be
demonstrated5,6 using a layer-by-layer growth scheme7 that
employs state-of-the-art microlithography techniques, ho
ever it still remains a difficult and challenging task. Anoth
routine that is in rapid progress is the self-arrangemen
colloid, related artificial opals, and inverse-op
techniques.8–13 Among them, the inverse-opal technique b
comes an attractive candidate in the fabrication of opt
photonic crystals. These crystals are composed of clo
packed air spheres arranged in a face-centered-cubic~fcc!
lattice embedded in a dielectric background. When the
fractive index contrast is large enough, a full band gap op
at high-frequency bands.14 Very recently, great progress ha
been made in this technique by several groups.11–13

As the crystals are of micrometer and submicrome
sizes, various kinds of nonuniformity inevitably occur in th
fabrication process. A typical inverse-opal crystal is prepa
as follows.11 First, one should have a template assemb
from a self-organizing system, for instance monodispe
silica or polystyrene colloidal crystal. Then sintering is us
to create necks between spheres. This intersphere inter
nection allows the precipitation of a desired background
electric into the voids of the template by means of chem
reaction. Finally, the inverse-opal crystal is obtained by
moving the original template material by calcination.
practice, nonuniformities occur at every step of the fabri
tion. For instance, the radius of spheres might vary even
monodisperse systems,12 or the spheres might not array
exact lattice sites when they form colloidal crystal and wh
the template is sintered. In addition to these geometrical
PRB 620163-1829/2000/62~3!/1516~4!/$15.00
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orders, physical disorders such as incompleteness of pre
tation and calcination can take place in the later steps
fabrication.

In this work, we will show via numerical calculations tha
the above geometrical nonuniformities, i.e., variations in
radii of spheres~size randomness! and their random displace
ments from lattice sites~site randomness!, will greatly re-
duce the band gap of inverse-opal crystals. At a disor
magnitude as small as under two percent of the lattice c
stant, the band gap is closed even in the presence of a
high refractive index contrast. The high fragility of the ban
gap should impose a severe restriction on experimenta
forts to control crystal uniformity.

The disorder in photonic crystals can be described by c
tain random parameters. In the case of site randomness
ery sphere has the same radiusr 0, while the x, y, and z
components of the position of thei th sphere in the disor-
dered crystal differ from those of the periodic case bygx ,
gy , andgz , respectively, wheregx , gy , andgz are random
variables uniformly distributed over the interval o
@2dt ,dt#. dt denotes the strength of site randomness.
the case of size randomness with strengthdr , the spheres are
arrayed in the original lattice sites, while the radius of thei th
sphere is given byr i5r 01g r , whereg r is a random vari-
able uniformly distributed over the interval@2dr ,dr #. In
reality, both kinds of disorder coexist withdtÞ0 and dr
Þ0.

The electromagnetic problem in 3D perfect photonic cr
tals is solved with the use of the plane-wave expans
method.15,16The convergence for the ten lowest bands can
made better than 0.5% by adopting 343 plane waves. F
disordered crystal, a supercell technique17–19 is employed
with a cubic supercell composed of eight conventional
unit cells with 32 spheres and an expansion of 2197 pl
waves, where the convergence is better than 1.0%. We h
compared the results with those from a supercell with fo
conventional unit cells and found the same behavior.

We first investigate the band structure of a typic
inverse-opal crystal. The result for a filling fraction of a
spheres asf 50.78 and a refractive index of the backgroun
dielectric asn53.6 is displayed in Fig. 1. It is clear that
full band gap opens between the eight and ninth photo
bands, with gap edges lying atX andW points, respectively.
1516 ©2000 The American Physical Society
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The gap lies at a frequency of 0.78620.827(2pc/a) with a
normalized width ofDv/vg55.1%. Herea is the fcc lattice
constant,c is the light speed in the vacuum, andDv andvg
are the gap width and midgap frequency, respectively
should be noted that the inverse-opal crystal made of tita
(TiO2) ~Ref. 12 and 13! does not possess a full band gap
eight to nine bands, as the refractive index of titanian52.8
is not high enough.

As the band gap lies at high-frequency bands, it is
pected that this gap will be sensitive to disorder. In fa
recent work on two-dimensional~2D! disordered photonic
crystal17 demonstrated that the higher band gap is far m
sensitive to the site and size randomness than the gro
band gap. Although this is apparent from a simple phys
argument, our interest here is to investigate how fragile
gap in inverse-opal crystal could be in the presence of di
der. The quantitative answer to this question would serve
an important guide in the fabrication of such materials. T
results for the density of states~DOS! in disordered inverse
opal crystals withn53.6 andf 50.78 are displayed in Fig. 2
for the case of~b! size randomness withdr50.05r 0, ~c! site
randomness withdt50.05r 0, and~d! coexisting size and site
randomness withdr5dt50.05r 0. Note 0.05r 050.018a, as
r 050.36a for a filling fraction of f 50.78. For these three
cases, we obtain the DOS by solving Maxwell’s equations
4000 points inside the first Brillouin zone of a fcc unit ce
For clarity of comparison, we also plot the DOS of a perfe
crystal in Fig. 2~a!. The calculation points number abo
10 000, and the DOS is normalized with respect to those
disordered crystals. The oscillation in the long-wavelen
end of the four curves is due to the limited number of cal
lation points.

The band gap centered at about 0.805(2pc/a) is com-
pletely closed whendr50.05r 0 and dr5dt50.05r 0. There
remain significant dips in the DOS curves, a signature
pseudogaps. In the case of site randomness withdt50.05r 0,
there still remains a greatly reduced band gap at 0.
20.816(2pc/a) with a width of 1.0%. In contrast, the dis
order affects the pseudogap centered at 0.53(2pc/a) only
slightly. Another apparent characteristic is the flattening
high-frequency sharp peaks in the DOS of the perfect cry
by disorder. It seems that these peaks are created by l
range resonant scattering of lattices, and become wider in
case of random scattering.

FIG. 1. Calculated band structures of an inverse-opal cry
along some important high-symmetry lines in the Brillouin zon
The crystal has a filling fraction of air spheres asf 50.78 and a
refractive index of background dielectric asn53.6.
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We next investigate the dependence of gap size on di
der in inverse-opal crystals. The results for three kinds
randomness are displayed in Fig. 3~a! for crystal with n
53.6 andf 50.78. The random strength is in units of sphe
radius r 0. In the case of coexisting randomness, we setdr

al
.

FIG. 2. Calculated density of states~DOS! in the inverse-opal
crystal withn53.6 andf 50.78 in the case of~a! no disorders,~b!
size randomness with strength ofdr50.05r 0, ~c! site randomness
with dt50.05r 0, and ~d! coexisting size and site randomness w
dr5dt50.05r 0.

FIG. 3. Plots of dependence of band-gap size on the rand
strength of three kinds of geometrical disorder in an inverse-o
crystal with ~a! n53.6 andf 50.78; ~b! n54.0 andf 50.78.
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5dt . Naturally the coexisting randomness should reduce
band gap more than just either of the two randomnes
does. Indeed, this is verified by numerical calculations:
gap width decays fastest in the case of coexisting rand
ness. The band gap is closed for the site randomnessdt
50.06r 0, for the size randomness atdr50.05r 0, and for the
coexisting randomness atdr5dt50.04r 0. In addition, the
gap size is reduced faster in the case of size randomness
site randomness. This means that the photonic band ga
more sensitive to the variations in the radii of spheres t
the variations in their displacements. Similar behavior w
found in 2D cases.17 It can be argued qualitatively that vary
ing the size of the sphere means changing the filling fract
while the fraction does not change when displacing sphe
from lattice sites. Thus, the size randomness reduces the
size more significantly.

We now consider a practical material with a higher refra
tive index in optical frequency, germanium (n54.0). We
have investigated the band gap of such an inverse-opal c
tal with f 50.78 in the case of various disorders with diffe
ent random strengths. The results are plotted in Fig. 3~b!,
which looks quite similar to Fig. 3~a!. A full band gap opens
at 0.71020.769(2pc/a) with a normalized width of 8.0%
This band gap almost decays linearly with respect to rand
strength, and is reduced to zero at site randomnessdt
50.07r 0. For the case of size randomness, the band ga
closed atdr50.06r 0, and it is closed atdr5dt50.05r 0 for
the case of coexisting randomness.

Therefore, for such an inverse-opal structure, as two ki
of randomness generally coexist, the demand for hi
quality geometrical uniformity is very severe: Nonuniform
ties as small as under 2% of the lattice constant will dest
the band gap completely.

One may expect that a further increase in the refrac
index contrast will relax the severe requirement of geome
cal uniformity, as the band gap of perfect crystals wide
accordingly. At the same time, the midgap frequency fa
which means that the relative disorder strength decre
compared with the midgap wavelength. Therefore, the in
ence of disorder on the band gap should become sma
However, such a naive conjecture is negated by realistic
merical calculations. Here we fix the random strength asdr
50.05r 0 for size randomness,dt50.05r 0 for site random-
ness, anddr5dt50.05r 0 for coexisting randomness. The
we increase the refractive index of the background dielec
and investigate the variation of the band gap. The results
displayed in Fig. 4, where the dependence of band-gap
on the refractive index for a perfect crystal is also plotted
comparison. The filling fraction of air spheres isf 50.78 in
all cases.

The band-gap size for the perfect crystal grows fro
5.1% atn53.6 to 13.1% atn55.6, an increase of over tw
and a half times. In the presence of either size randomne
site randomness, the gap size still increases remarkably w
the refractive index is increased, although it is greatly
duced when compared with that of the perfect crystal. Ho
ever, for a practical situation where size and site randomn
coexist, the band gap is closed completely, irrespective
very high refractive index contrast in the crystal. This s
prising characteristic can be understood qualitatively as
lows. The growing of the refractive index will result in ban
e
es
e
-

an
is

n
s

n,
es
ap

-

s-

m

is

s
-

y

e
i-
s
,
es
-

er.
u-

c,
re
ze
r

or
en
-
-
ss
a

-
l-

gap widening and downshifting of the midgap frequenc
However, at the same time, the scattering strength du
both kinds of randomness also increases. In addition, i
seen from Fig. 4 that the band-gap growth in the perf
crystal as well as in the disordered crystal with either size
site randomness all show a saturation behavior. It is t
expected that the size reduction in the presence of coexis
randomness should overwhelm the size increase cause
refractive index growth. Therefore, the band gap kee
closed at all refractive index contrasts.

Some words should be said concerning another routin
fabricating a photonic crystal at the optical frequency, i.
microlithography, such as electron-beam lithography a
x-ray lithography. In the scheme of layer-by-layer growth,5–7

the crystal opens a large full band gap between the sec
and third photonic bands, a ground band gap. Although
nificant nonuniformities will occur in the growth proces
with current techniques for submicrometer-sized structu
the band gap is fairly robust to such nonuniformities acco
ing to recent numerical simulations.18,19 There are two key
points: One is the opening of a band gap at ground photo
bands, the other is the large size of the band gap. There
from the viewpoint of the tolerance of band gaps to ge
metrical nonuniformities, the microfabrication routine mig
be superior to the inverse-opal technique.

The above results are obtained from a finite-sized syst
When system size is increased, more localized states
appear deeper inside the band gap and, therefore, reduc
gap width. For an infinite system, a real band gap could
much smaller. We estimate the real gap in an infinite sys
by using the well-known Saxon-Hunter theorem for ele
tronic systems.20 For simplicity, we consider the case of siz
randomness. The real gap can be estimated by measurin
overlap of two band gaps in two extreme cases: one fo
pure lattice of radiusr 01dr and the other for a pure lattice o
radius r 02dr . When n53.6 and f 50.78, we find that the
real gap closes atdr'0.004a, about five times smaller than
the value of 0.02a predicted by our numerical calculation
using 32 spheres. In reality, the system size could be m
larger but finite. Therefore, the upper limit of disord
strength will lie somewhere between 0.02a and 0.004a. This
implies an even much more stringent condition, if not impo

FIG. 4. Dependence of band-gap size on the refractive in
contrast in a perfect inverse-opal crystal and disordered crys
with three kinds of geometrical randomness. The filling fraction
air spheres isf 50.78 in all cases.
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sible, in the sample frabrication.
In summary, we have investigated the band gap

inverse-opal photonic crystals in the presence of geomet
nonuniformities by numerical simulations with the use of t
plane-wave expansion method combined with a super
technique. It is found that this band gap is extremely frag
to the nonuniformity in crystals. In the presence of both s
and site randomness, the band gap reduces significantly
closes at a fluctuation magnitude as small as under 2% o
o

i-

re
n
al

ll
e
e
nd
he

lattice constant. This imposes a severe demand on the h
quality lattice uniformity. Such fragility can be attributed t
the creation of the band gap at high frequency bands~eight to
nine bands! in inverse-opal crystals. It is expected that t
presence of other physical irregularities can further rest
the opening of a full band gap.
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