PHYSICAL REVIEW B VOLUME 62, NUMBER 22 1 DECEMBER 2000-I1

Optical sum rule violation, superfluid weight, and condensation energy in the cuprates
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The model of hole superconductivity predicts that the superfluid weight in the zero-freqédéangtion in
the optical conductivity has an anomalous contribution from high frequencies, due to lowering of the system’s
kinetic energy upon entering the superconducting state. The lowering of kinetic energy, mainly in-plane in
origin, accounts for both the condensation energy of the superconductor as well as an increased potential
energy due to larger Coulomb repulsion in the paired state. It leads to an apparent violation of the conductivity
sum rule, which in the clean limit we predict to be substantially larger for in-plane thamalis conductivity.
However, because cuprates are in the dirty limit deaxis transport, the sum rule violation is found to be
greatly enhanced in thedirection. The model predicts the sum rule violation to be largest in the underdoped
regime and to decrease with doping, more rapidly indldérection than in the plane. So far, experiments have
detected sum rule violation ic-axis transport in several cuprates, as well as a decrease and disappearance of
this violation for increasing doping, but no violation in plane. We explore the predictions of the model for a
wide range of parameters, both in the absence and in the presence of disorder, and the relation with current
experimental knowledge.

I. INTRODUCTION servation of such a violation in several cuprdtésng after it
was predicted theoreticalf{iends support to the model upon
In the model of hole superconductivity the hopping am-which the prediction was based. The London penetration
plitude for a hole of spirr hopping between sité@sandj is  depth is determined by the weight of the zero-frequescy
given by? function in the optical conductivity“superfluid weight”),
. which is predicted to be larger than the area missing from the
ti=ti; + (AD;(nj —,+nj ;) (1) low frequency optical absorption, as shown schematically in
Fig. 1.
The sum rule violation is a manifestation of the lowering
of kinetic energy that occurs upon pairing, and this lowering

teraﬂﬁ,r;gﬁt? tgf :g‘r’]":tg::ngng; theucg:]ne;is; ifﬁﬁﬁt't\i/eh{nb?ﬁ;norof kinetic energy is what gives the condensation energy of
q y gy, upon p 9. 9 9 the superconductor within our model. In fact, the kinetic en-

models for low carrier concentration the hopping amplitude | ; inlv f in-pl ionth :
is related to the effective mass* through ergy lowering(mainly from in-plane motionthat we obtain

is much larger than the condensation energut is compen-
sated to some extent by increase of Coulomb repulsion be-

with n; _, the occupation number for spin-(o) at sitei.
Equation(1) leads to superconductivity at low hole concen-

t= h? (2) tween carriers, that are on average closer to each other in the
2m* a? paired state compared to the situation in the unpaired state.
. . . , L Andersofi has proposed a mechanism for highsuper-
with a the lattice spacing in the given direction. conductivity based on lowering of kinetic energy of pairs

This physics leads to nontrivial consequences for the ’3|eCt'unneIing between plangmterlayer tunneling theorfiLT)].
trodynamics of hole sgp_erconduct&n"s.‘_l’he London pen-  That theory has in common with the one discussed here that
e.tratlon depth in the limit of low carrier concentration is superconductivity is driven by kinetic energy lowering, but it
given by differs in that it only deals wittc-axis transport. There are

, 12 also other fundamental differences with the theory discussed
N = m*c 3) here. According to ILT, the weight in thé function for
4ne*? c-axis transport should account for the condensation energy
of the superconductor, and it is clainfetthat this is in fact
with m*,e* the mass and charge of the superfluid carrierghe case in La_,Sr,CuQ, throughout the entire doping re-
andng the superfluid density. If the effective mass decreasegime, from underdoped to overdoped. This implies in par-
upon pairing\ will be smaller than expected from the nor- ticular that within ILT theory the entire weight in th&func-
mal state effective massThis leads to a violatichof the  tion reflects lowering ot-axis kinetic energy, irrespective of
low-energy optical sum ruléFerrell-Glover-Tinkham sum whether that weight comes from low or from high frequency
rule®) which relates the London penetration degthhich  optical response. Thus, while the theory maydmmsistent
depends on the effective mass in the paired stat¢he low  with the observect-axis sum rule violatiori, it makes no
frequency “missing area” in the optical conductivitwhich  definite prediction on whether sum rule violation in the
is a function of the effective mass in the normal sta@b-  direction should occur in a given doping regime. Or, perhaps
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(~50%) and no detectable in-plane violatior< 10%).
L However, a natural explanation for this discrepancy arises
Clean limit from the fact that the cuprates quite generally appear to be in
the clean limit for in-plane conduction and in the dirty limit
Intraband Interband for c-axis conduction. We will not go here into a discussion
of why this is the case, but there seems to be ample experi-
8Ah . 12-15
mental evidence for #21®We show that under those con-
ditions thec-axis violation is very greatly enhanced and will
5A1 generally be much larger than the in-plane violation, in
agreement with observations. The effect of disorder on the
sum rule violation is schematically shown in Fig. 1.
Concerning the doping dependence, it is important to dif-
ferentiate between relative and absolute values of kinetic en-
ergy lowering. For absolute values, our model predicts that
Dirty limit the kinetic energy lowering is maximum close to the opti-
mally doped case, and decreases smoothly both for under-
doped and overdoped regimes. Instead, for the degree of sum
Interband rule violation, i.e., kinetic energy lowering relative to total
dAY superfluid weight, the model predicts a monotonic decrease
= as the doping increasésxcept in extremely underdoped re-
8A gimes. Furthermore in the presence of disorder the rate of
decrease with doping can be greatly enhanced. Experimen-
tally, a rapid decrease of sum rule violation with doping has
) been observe¥and we will show that the theory is compat-
ible with the reported observations within reasonable as-
FIG. 1. Sketch of the real part of the conductivity in the super-symptions.
conducting(dashed linesand normal statésolid lineg. The delta Because of the difficulty in precisely estimating the ap-
function at the origin is the superfluid weightthat determines the propriate parameters in our model for given materials, we
London penetration depth. Additional weight is present in the deltaexplore here predictions of the model for a range of interac-
function in the superconducting state that originates at high fre’[ion parameters. This is of intrinsic interest, and furthermore
quency in the normal state. Note that in the dirty limit the contri- it may be relevant to materials as yet unaiscovered Some
bution to the delta function originating at low frequencies is re- . . )
duced, and hence the additional weight from high frequenciegeneral trends ]‘ound are that for given lmaX|ml]'m the
represents a substantially larger fraction of the delta function. Thignqdel predicts Increasing sum rule violation as the nearest
figure is discussed in detail in Sec. IIl. neighbor re_puIS|on increases and as_the bar_ldW|dth decregses.
The latter in turn also leads to an increasing condensation

one should interpret the ILT prediction to mean that the sunfN€rgy. The results that we obtain are compatible with exist-
rule violation should be 100% for any doping regime, which, "9 observations in the cuprates for a range of.parameters in
however, is inconsistent with reported observatiohstead, the model, and future more accurate observations should be
our theory associates with kinetic energy lowering only thePl€ to determine more precisely the parameters in the model
part of thes function that comes from high frequencies, and© represent the physics of a given cuprate.
yields quantitative predictions for it as well as for the total  I" S€c. Il we review the Hamiltonian and general formal-
superfluid weight as a function of doping, which we will |sm,_and dlspuss the calculapon of the conden.sa_'uon energy.
compare here with experiment. Section Il dlscusses the optical sum ru!e predlctlons., in the
Furthermore, for TiBa,CuQ, ILT theory cannot account clean limit, and in the presence of disorder. Section IV

for the condensation energy even using the entire weight i§HOWS results for the clean limit for the full three-
the zero-frequency function, because it is too small by at dimensional anisotropic model for a variety of parameters,
least two orders of magnitud®!! This is because ILT and in Sec. V we compare the predictions of the model with

theory only considers kinetic energy lowering duectaxis experimental results taking into account the effect of disor-

motion. Instead, the theory considered here, despite usin‘aer' We conclude in Sec. VI with a summary and discussion.

only the fraction of thes-function weight coming from high

frequencies, has no trouble accounting for the condensation Il. FORMALISM
energy seen experimentally because it considers tatkis

as well as in-plane kinetic energy lowering.

In the anisotropic structure of the oxides the sum rule
violation will naturally not be the same in all directions. We __ ot A N non.
assume as the simplest possible model, that the ratiauod H= i,,-z,a tj(CigCiot HC+ UEi Mg+ <|2,> Visniny
At in Eqg. (1) is the same in all directions. We will show that (4)
under this plausible assumption our model predicts the in-
plane violation to be several times larger than ¢rexis vio- ~ With i, j sites on a three-dimensional cubic lattice, afjd
lation. This is in apparent contradiction with the reporteddefined by Eq(1). ciTU creates a hole of spiam in the oxygen
experimental observatiérof large c-axis sum rule violation p= planar orbital at sitei, and other orbitals (@,
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The model is defined by the single band Hamiltohian
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Cud,z_,2) are ignored® We definet]} in Eq. (1) to bet} or ~ sated to some extent by the other terms in @). In weak

t" for nearest neighbor sites in the plane or in ¢irection, ~ coupling the condensation energy is given by the usual ex-
and similarlyAt,, At., and assume the same anisotropy forPression

t andAt: A2

0
:t_a:% - 6cond_7g(fF) (11
Tt T At

C

with Ay the energy gap angl(er) the density of states at the
The effective hopping as a function of hole density is ~ Fermi energy.

given by, withae=a orc, To determine the various energies that contribute to the
condensation energy, we define, as in previous work, the
t,=t"+At,n, (6) integrals
and the effective mass anisotropy e\ 1-2f[E(e)]
||=fd6 —575) 3OS (12
5y D/2 2E(e)
m
— = t_"": n (7)  with f the Fermi function and the quasiparticle eneE)
My e given by

is independent of doping level with this assumption. We as- . 5
sume isotropic nearest neighbor repulsion for simplicity; any E(e)=V(e—u)*+A(e)7, (139
anisotropy in it should be much smaller than that for the
hopping amplitudes.

The formalism we use is described in Ref. 1. The results
are not very dependent on details of the band structure. To

understand the behavior emerging from the planar motior@nd the parameters,, andc obtained from solution of the

which dominates the energetics, one can use a simple CorI?_CS equations. '_rhe vt;':\rlous contributions to the condensa-
stant density of states model tion energy are given by

(13b

€
A(E)=Am(—D—/2+C

D
1 — _— —_ —
g(e)=5 (8) €t ZJ' deg(e) ef(e—un)—D 2'2"‘#'1}, (14a
with D the bandwidth. This model illustrates well the behav- exr=2KAZ(I1+clo)(1,+cly), (14b
ior emerging from the planar motidhSince we are inter-
ested in the anisotropy of various measured properties, we €= —UAﬁ,](ll'FClO)Z, (140
will mostly use here a three-dimensional tight-binding band
structure, with a strong hopping anisotropy= 25, for defi- ev=—WAZ(I,+cl;)?, (140

nitenesg The consequences of this anisotropy for various
properties have already been discussed in Refs. 1,3. In panith
ticular, we discussed an approximation in which only energy

integrations are required; anisotropy only enters through K=2zAt, (159
various weighted densities of states. The results thus ob-
tained were very accurate. In the rest of this paper, unless W=zV (15b)

stated otherwise, we will use this approximatidn.

. I andz the number of nearest neighbors to a site. Note jhat
The condensation energy per site is given by g Mhe

is the chemical potential required farelectrons inthe nor-
€ e e 9) mal state o _
cond™&n s The contributions(14b), (14¢), and (14d) are useful in
with €, €, the average energy per site at the same temperahat they specify the various energy contributions arising
ture and for the same number of holes in the superconductinggom interaction terms in the Hamiltonian. They can, how-
and normal states, respectively. We define the different corever, be summed, with the help of the gap equatitmgive
tributions a single result
€cond™ €t T €xr T EYTE 10 1-2f[E(e
B . cond_'t At .U \% ( ) fintEEAt+€U+5V:J dEg(E) AZ(E) [ ( )]’
arising from single particle hopping, correlated hopping, on- 2E(e)
site and nearest neighbor repulsion, respectively. All contri- (16)
butions to €cong, in EQ. (10) excepte,, are negative: the in agreement with the usual expression for the internal en-
single particle hopping energy is lowest in the normal statergy contribution.
(€<0), and the Coulomb repulsions due tbandV in-
crease in thg superconducting sta¢g (ey<<0) because car- Ill. OPTICAL SUM RULE
riers in a pair are closer together on average. The condensa-
tion energy is entirely given by the large kinetic energy The real part of the optical conductivity for light polarized
lowering due to correlated hopping ;) which is compen- in direction 8 is given by®
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ST S R T 3 jwd = Te 25
0-15((’)! )_ rQZ “h Em_ En <n| 5|m><m| 5|n> o (1)0'15((1), )_ om ’ ( )
<8l w— Em—En 1 wheren is the electron density and the bare electron mass.
@ f ' 17) For the tight binding model with a nearly empty or a nearly

) , full band it is easily seen that E§24) takes the form Eq.
wheren,m run over all eigenstates of the system with ener-25) with m replaced by the effective mags* given by Eq.
giesk, ,Ey,, Zis the partition function{) the volume, and (9
J5 the component of the paramagnetic current operator in the “\iore generally, the complex frequency-dependent con-
6 direction. To derive the current operator for the tight bi”d'ductivity for light polarized in directiors is given by®

ing model Eq.(4) we define the polarization operator

. A i e’a’
P=e> Rin, (18) osw)=ZiHw) =57 (Ts)
I

o (26

and obtain the current operator from its time derivative with IIs the complex current-current correlation function,
with spectral representation

_dP i
J:a:g[H,P] (19 1 e BEn_ g~ BEnm
r . . . Hfg(w):ﬁE E —E +ﬁw+i5<n|‘]5|m><m|‘]6|n>
yielding for the component in thé direction nm=m *=n 27
35:@ > tﬁ[CLagCia—CiJraCHaa]- (200  and the London Kernel, that gives the penetration dapth
ho 1o ' ' is given by
Note that the hopping amplitudes in E§0) have the opera-
tor dependence given by E(l), but because density opera- K _1 47e 29
tors commute with each other the form Eg80) is the same g k% c2 025

as in the ordinary tight binding model with constant hopping
amplitude. Similarly the commutator of the current and po-with o, the imaginary part of the conductivity. Hence,
larization operators yields
ie? K= Ame’a; T =K s+ K (29)
=— _ = +
[Jﬁ’Pé]:_7a§<_T§>, (22) P c2h29< 16) =K1+ Kos
wherea is the lattice spacing in thé direction andT sis the  with II, 5 the real part of the current-current correlation func-
part of the kinetic energy arising from hopping processes iriion. K;5 and K, 5 are the paramagnetic and diamagnetic
the § direction: London kernels.
In the superconducting state at temperaflithe real part
p of the conductivity is
To= =2t ol Civsot Hel. (22 Y
oS =Dy(T)é(w)+ o> w,T). 30
Using Eq.(19) we can write 1=Do(Md@) + o35, T) (30
The superfluid weighb 4(T) gives rise, through a Kramers-

(n[ 35 m)(m[J5|n) Kronig relation, to a 1b contribution to the imaginary part
En—E, of the conductivity and hence to the London kernel
i
= ﬁ[<n|‘]5|m>(m| Ps|n)—(n[Psm){m|Jgn)]. (23 K5=8—25. (31)
c

Substituting in Eq(17), integrating over frequency and sum-
ming over intermediate states yields the “partial” conduc- Integrating Eq(30) and using Eq(24) yields
tivity sum rule for our model

e’ase’

2420

2522 D T)+fwmas (0.T)=
thﬂ (—-Ts (24) AT Jo 10

which formally looks the same as in the usual tight binding
model® The high frequency cutofé,, in Eq. (24) indicates 9 2 5

that transitions to higher energy states not described by our f‘“man (0,T,)= e a ;€ (T (39
Hamiltonian Eq.(4) are excluded. If we were to extend the N ) orn.Ty

integral to infinity instead, the usual conductivity sum rule

follows: and Eqgs(32) and(33) yield

<_T6>S,T- (32

J mdw(rlﬁ(w,T) =
0

On the other hand, in the normal state at temperatyre
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©om . . kinetic energy, Eq(37¢), which is zero abovéel; and be-
Ds(T)= fo* do[oys(@,T1)— 014w, T)] comes nonzergnegative below T, as the superconducting
state develops.
e’as The superfluid weight and missing areas are related to the
T 2r0 [(=Tos7=(~Tan,] London kernekK ;5 by

2

c
=0A+ 6A,. (39 D= 6A + 5Aﬁ=§ Ks, (39)

The first term in Eqg.(34) is the “low frequency missing

area” dA, that arises from the opening of the superconduct- Ks=Kis+Ksps. (39

ing energy gap, as discussed by Ferrell, Glover, and . ) o

Tinkham. It is not related tochangesin kinetic energy in 1he diamagnetic part of the London kerri¢} is given by

going into the superconducting state, but reflects simply the -

kinetic energy of the carriers in the normal state. In conven- K :4779 aﬁ[(—T‘>+(—T“>] (40)

tional superconductors, only this term is expected to contrib- 207 32020) o o/

ute to the superfluid weight. The second term in 84) was o o

predicted to exist in higiT, materials in Ref. 4, and experi- The low frequency missing area is given by the London

mental evidence for its existence was found in Ref. 6. ThParamagnetic kernel and the single particle part of the kinetic

qualitative behavior ofr;(w) and the different contributions €Nergy

to the superfluid weight are shown schematically in Fig. 1.
Integrating Egs(30) and (33) to infinity instead should

yield the same answer according to the “global” sum rule

Eq. (25), so that we have also

CZ

5A| :§

2,2
4Ameaj

Koot — 2
Y 2020

(~=Ty (41)

and the high frequency missing area by the remaining part of

* n s the London diamagnetic kernel
Ds(T)= 0+dw[016(w,Tl)—Ulﬁ(cu,T)]Z OA|+ SA,

2
(35) me?as
and A= 2420 (=50 “2
% From Egs.(27) and (29), the spectral representation of the
5Ah=f do[o]s(@,T1) =055, T)] paramagnetic London kernel is
8w e FEn
mwe?a5 Kqs= > n|Jdsm)|2. (43
T Thar) (36 1= 207 A BBy (A
. : : . . Finally, we define the sum rule violation parameter in direc-
so that the change in optical absorption at high frequencies is
) L . -tion 6
given by the change in kinetic energy. The states involved in
the optical transitions that contribute to E®6) are not in SA?
the Hilbert space where the Hamiltonian Ed) is defined. Vaz—h (44)
However, a more general Hamiltonian can be fdritiat oA+ SAL

both contains these states and yields @gas a low energy . . _ S
effective Hamiltonian when these states are projected out. which quantifies the relative amount of sum rule violation.
Expressions for the kinetic energies are given in Refs. 3,4;

we reproduce them here for completeness: A. Clean limit
ot At In the absence of disorder the paramagnetic London ker-
(To)=(To+(T5), (379 nel is easily evaluated and yields
ty_ ot _STH 32me’tsa5 1 of
(TYy=—2(t"+ nAt[;)Ek cosks| 1 3 [1-2f(E)]], Ky 21 < szkﬁ(_). “5)
(37b) ﬁZCZQ N % &Ek

It is easily seehthat atT=T,, K;5 exactly cancels the
single-particle kinetic energy in Eq41), hence §A,;=0.
Similarly 6A,=0 sinceA,=0. Hence the superfluid weight
goes to zero al . as expected. In the limit of zero tempera-
X[1-2f(Ey)]. (370 ture, K, 5 goes to zero and the low frequency missing area

Equation(36) shows that if there is a change in the carrier’sEgé(iilgéicggﬁgrgg the expectation value of the single par-

kinetic energy in going from the normal state at temperature
T, to the superconducting state at temperaflirthere will 2.2

S e Tecajy
be an apparent violation of the conductivity sum rule. Such a SA| = (=T, (46)
change arises in our model from the pair contribution to the 2120

4At,

Ac Ay
TAY = — cosk s+ cosk’)=—— ——[1—2f(E
(T3 >, (cosk; )28, og, 1121

k,k’
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Hence the sum rule violation parameter is simply B. Effect of disorder
In the presence of disorder the weight in théunction is
<T§t> decreased and hence the penetration depth increases. Quali-
5:<Tt>+<-|-m> (47) tatively this can be seen from the Drude form of the optical
o ° conductivity
and can be calculated from E@7). ne?
. . . . T 1
As we will see in the next section, the in-plane sum rule Ty(w)=—— (50)
violation is generally larger than theaxis one in the clean m* 1+ w?7?

limit. From Eq. (47), this will be the case if with 7 the scattering time. Upon entering the superconduct-

ing state the optical absorption at frequencies of ovder
(TEY (TYH <2A is suppressed due to the opening of the gap; as the
W><Tt> (48) disorder increases, the weight in that frequency range de-
¢ ¢ creases by a factor of ordex/(%/7), and the penetration

edepth at low temperatures is given approximatel§‘by

holds, that is, if the anisotropy in the anomalous part of th

kinetic energy is larger than that in the single particle part. 1 112 1 1 \2
This is indeed the case and can be understood both from a i ) = Ps. (51)
strong and a weak coupling argument, as discussed in the A2\ \Gean 14 hlTs | \Gean

following. A

From Eq.(37) it would appear that the anisotropy in both
(TY) and(T%") is given by %, Eq. (5), since they have as
prefactort; and At s, respectively. However, this argument
is misleading. In strong coupling, the anomalous kinetic en
ergy is proportional t

The detailed calculation within BCS theory is given in Ref.
22 for the jellium model and in Ref. 23 for arbitrary impurity
scattering rate. The diamagnetic London kernel, given by the
‘expectation value of the single particle kinetic energy, is as-
sumed to be unaffected by disorder. Similarly we expect the
expectation value of the pair contribution to the kinetic en-
(At,)? (49 ergy(T5Y), to be unaffected by disorder as long as it is weak

U enough not to cause pairbreaking. Under those conditions

disorder will only affect the paramagnetic London kernel,

corresponding to second order processes where a hole hopgd hence only the low frequency missing area. Siigin
onto a site already occupied by another hole, with an energfzq. (44) is reduced by disordeias is the normal state con-
costU. In contrast,<Tt5> is dominated by first order pro- ductivity) and 5A; is unaffected, the sum rule violation will
cesses, hence is proportional ttp. As a consequence, the increase. As shown schematically in Figbji in the dirty
anisotropy in(T%) will be closer toy and that i T3") closer limit _the superfluid weight can be sub_sta_ntlally Iarger_ tha_n
to 2. that mft_arred from the low frequency missing area, whlc_h_|s

From a weak coupling point of view we can also under-Proportional toﬂthe product of the normal state conductivity
stand the different anisotropy E¢48) from the expressions and the gapd.” In the presence of sum rule violation Eq.
for the kinetic energies E¢(37). The contributions to the (51) becomes

3)-

sum overk, k’ in Eg. (37¢) are dominated by values &f k’ 1 1 \2
in the vicinity of the Fermi surface. Except for extremely o 4ycleanq 52
small doping, the Fermi surface for the anisotropic band )\g )\g'ea“ [Pst+ V5™ 11=p,)] (52

structure has a “cigar” form extending over all valueskof
but only a small range ok,, k, close to the origin. For
(T2Y, the factors of cok,, cosk, lead to cancellations be-
cause they extend over both positive and negative value, e.g., SA? N |2

for k, and (—k,), while for (T3") the factors cok,, cosk, V(;:—h :Vglea( _5) , (53)

have always the same sign. Hence the anisotrop§Ti) SAPX p s+ SA] nGean

willin ge_neral be substantially larger thg;n_except forvery yhere the missing areas are understood to be those in the
low doping where the Fermi surfacte is just small pockets;oan jimit. The disorder parametpy; can be written as
around the points (0,8,/— ). For(Tj) instead, Eq(37b),

the contributions to the sum ov&rdo not come only from A¢gean 2

points around the Fermi surface but from all points inside the Ps= ( N f> —/gean S

Fermi surface. There is also a cancellation here between s 1-Vs

positive and negative values of dgsand hence the anisot- g that it can be obtained from our calculated penetration
ropy in(T}) is also larger tham. However, the cancellation  depth and sum rule violation in the clean limit together with
is less complete here because there is more phase space e observed value of the penetration depth.

side the Fermi surface fdt, than there is for f—k;), for There is substantial experimental evidence that the effect
k,< /2. Hence the anisotropy iT's) is smaller than that in  of disorder is substantially stronger foraxis transport than
<T§‘), as given by Eq(48), leading to larger in-plane than for in-plane transport in the cuprates in the underdoped re-
c-axis sum rule violation. gime, i.e.,7./7,<<1, and that transport in the planes can be

and the sum rule violation in the presence of disorder is
given by

(54)
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understood within the clean limit—1* As the doping is in- 100 - - -
creased, transport in thleedirection is found to become more
coherent, i.e.;7. increases. The penetration depth in the

direction will hence be increased compared to its clean limit

value, especially in the underdoped regime, and conse-
quently from Eq.(53) the sum rule violation in the direc-

tion will also be increased. This effect is much larger than 75
the anisotropy in the violation in the clean limit discussed in

the previous section. Hence in the presence of disorder the
sum rule violation in thec direction will dominate. As the
doping increases we will find that the sum rule violation in
the c direction decreases rapidly, both because the system is&<
approaching the clean limit and because the intrinsic viola- ¢
tion in the clean limit also decreases with doping.

50

IV. RESULTS IN THE CLEAN LIMIT

Much of the behavior of our model is determined by the 25
in-plane physics, that dominates the energetics. Furthermore
the properties of the model are not very sensitive to the de-
tailed density of states, and hence it is possible to learn about
many of the properties by considering simply a two-
dimensional model with constant density of states, as done
for example in Refs. 4 and 7. Here, to compare the behavior 0 ' : :
of in-plane and c-axis properties we will consider the full 0 0.05 0.1 0.15
anisotropic three-dimensional model at the outset. The in- n
plane properties of that model are very similar to those of the

SImelertvlgo._dlmensmnal.|r|n0de|' ite Hubbard Ious bandwidths. In all cases we uddé-5 eV, V=0, and =25
. or definiteness we wi 'assume'an on—slte u 'ar '€PUlesr the band anisotropy. The paramefdr was determined to give
sion U=5 eV, and an anisotropy in hopping and in corre-rmac g k. For bandwidth®=1.5, 1, 0.5, 0.1 eV the values of

lated hoppingy=25[Eq. (5)]. We will show results for a set At ysed, in ev, are\t=0.318, 0.286, 0.240, 0.173 respectively.
of bandwidths spanning the weak to strong coupling regime

D=15, 1, 0.5, 0.1 eV, and nearest neighbor repulsibon The behavior of the sum rule violation parameter in ¢he
=0 andV=0.65 eV. We expect the actual value\win the direction is similar to the in-plane one but smaller in magni-
cuprates to be somewhere in between those two values. Thede, as shown in Fig. 5, in accordance with the discussion in
magnitude of the hopping interactidxt is chosen to yield a the previous section. The decrease at low densities is some-
maximum T, of 90 K. This is appropriate for the TI2201, what less pronounced than for the in-plane case. In Fig. 6 we
Hg1201, and YBCO123 structures. A maximuirg of 37.5  plot the sum rule violation anisotropy,/V.. As the band-

K has also been studied, as appropriate for LaSrCuf®e  width increases the sum-rule violation anisotropy increases,
results are similar to those with 90 K, and hence will not beand thec-axis sum rule violation can be up to a factor of 4

FIG. 2. Critical temperatur&, vs hole concentration for vari-

shown. smaller than the in-plane violation for the parameters consid-
Figure 2 shows results for the critical temperature versusred here.
doping for nearest neighbor repulsidh=0 and maximum Next we consider the effect of nearest neighbor repulsion

T, of 90 K, for the set of bandwidths considered. It can beV. The critical temperature versus doping, shown in Fig. 7,
seen that the results are very similar for all cases consideredhows somewhat larger dependence on bandwidth than the
except that as the bandwidth decreases the width of the pealkaseV=0 but is otherwise similar. The condensation energy,
increases slightly. On the other hand, the condensation erfrig. 8, is somewhat decreased compared to the Was@
ergy, shown in Fig. 3, is strongly dependent on the band¢Fig. 3) (for parameters chosen to yield the safi{&"), par-
width and increases as the bandwidth decreases, as would tieularly as the bandwidth becomes small. On the other hand,
expected from Eq(11). The condensation energy is accu- the in-plane sum rule violation, Fig. 9, increases compared to
rately given by Eq(11) for high doping, which corresponds the casev=0 (Fig. 4) for all the different bandwidths. The
to weak coupling, and becomes larger for small doping ancnisotropy in the sum rule violation, Fig. 10, shows similar
small bandwidth, which corresponds to the strong couplingnagnitude and doping dependence as the Waseé (Fig. 6).
regime?* These results indicate that the in-plane sum rule violation
The in-plane sum rule violation E¢44) is shown in Fig.  will be easiest to detect in the underdoped regime, and in
4. In the purely two-dimensional model it is a monotonically cuprates where the condensation energy is large, due to a
decreasing function of dopirg,whereas in the three- large density of stategsmall bandwidth, and where the
dimensional structure it decreases at very low densities imearest neighbor Coulomb repulsion is appreciable.
weak coupling, as the density of states goes to zero. The sum In addition to the sum rule violation, which involves the
rule violation decreases rapidly as the bandwidth increasesatio of kinetic energies, it is useful to consider the behavior
and is larger for the cases corresponding to higher of the kinetic energies themselves. Figure 11 shows the be-
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FIG. 3. Condensation energyonq per planar oxygen vs hole FIG. 4. The in-plane sum rule violatioW, Eqg. (44) vs hole

cpncentration for the same parameters as in Fig- 2. The condensggncentration, for the same cases as in the two previous figures.
tion energy decreases with increasing bandwidth, and peaks giycept for a small doping level near zero, the violation parameter
roughly the same doping level at whidh peaks. decreases to zero as hole doping increases. The magnitude of the

_ ) o ) ) violation increases as the bandwidth decreases, and is larger when
havior of the in-plane kinetic energies versus doping for on@he maximumT, is larger(not shown.

case: single-particle contributiof@), pair contribution(b),
and total(c). The pair contribution is proportional to the accordance with the discussion in the previous section, both
anomalous part of thé-function response coming from high are larger than the anisotropy in the hoppingand they
frequencies, Eq(36), while the single particle contribution increase with doping. Figure 14 shows the resulting anisot-
gives the regular part of thé function coming from low ropy in the total kinetic energy, which in the clean limit is
frequencies, Eq(46), in the clean limit In the presence of inversely proportional to the square of the anisotropy in the
disorder the latter contribution will be reduced, while the penetration depths. For all except the smallest bandwidth, the
former one is expected to remain the same. Finally, the totadoping dependence obtained is opposite to what is observed
kinetic energy will be proportional to the total weight in the experimentally, e.g., in LaSrCuO, where the anisotropy in
S function and hence the inverse squared penetration depthenetration depths is found to decrease as the doping in-
in the clean limit only. creases. We attribute this discrepancy to a variation of the
It can be seen from Fig. 11 that the pair contribution toeffect of disorder with doping® as will be discussed in the
the kinetic energy is maximum approximately at the samenext section.
doping whereT, is maximum (optimally doped for the Within a simple two-fluid picture with parabolic bands
larger bandwidths, and at even higher doping for small bandene would expect the anisotropy in the kinetic energies or
width. This is in contrast to the sum rule violation parameterthe clean limit squared penetration depths to be given by the
that decreases monotonically from the underdoped througéffective mass anisotropy
the overdoped regime. That is, we predict that the anomalous
kinetic energy contribution should persist well into the over- (T A2 my ot
doped regime. Experimentally this effect may be difficult to (To) = Pcleanzﬁ = t. (55
detect because the normal contribution increases rapidly with a a
doping and will strongly dominate the superfluid weight in which for the case considered here is 25. From Fig. 14 it can
the overdoped regime. This effect will be even more pro-be seen that this value is in fact only approached in the weak
nounced if, as we expect, the effect of disorder becomes lesupling regimelarge bandwidthand for small doping. As
pronounced as the doping increases. This will be further disthe doping increases the anisotropy increases rapidly, and for
cussed in the following section. the case of strong couplingmall bandwidth the anisotropy
The behavior of the kinetic energies in thelirection is  also increases in the underdoped regime. In fact in the strong
similar, as seen in Fig. 12. In Fig. 13 we show the anisotropycoupling limit the anisotropy in the kinetic energies will ap-
in the normal and anomalous parts of the kinetic energy. Iproach the square of the band structure anisotropy. The an-
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FIG. 5. The out-of-plane sum rule violatiofy vs hole concen- FIG. 6. The sum rule violation anisotrop¥, /V. which results

tration for the same cases as in the three previous figures. Thieom the previous two figures, as a function of hole doping. The

violation is smaller than the in-plane violation, but otherwise veryanistropy tends to increase as the bandwidth increases, reaching a

similar. value of 4 for the cases considered here. The anisotropy is slightly
larger for the case of loweFg™ (not shown.

isotropy in penetration depths will furthermore be increased

even further due to the effect of disorder, as will be discussewidth increasesi.e., density of states decreasés any dop-
in the next section. ing. In Fig. 16 we show the bandwidth dependence for the

Finally, it is interesting to consider the various different optimally doped case anf'*=90 K. As seen in Fig. 16, the
contributions to the condensation energy. Figure 15 showsffect of nearest neighbor repulsion is to decrease somewhat
results for a two-dimensional case, for parameters approprthe condensation energy. Both the in-plane and interplane
ate to mimic the in-plane behavior of the three-dimensionabum-rule violation decrease as the bandwidth increases, and
model for parameters corresponding to the case of Figshe effect of nearest neighbor repulsion is to increase the
12-14 for bandwidth 1 eV. For other bandwidths all contri- degree of sum-rule violation, as shown in Fig. 17. The vio-
butions to the condensation energy scale by similar factordation is always larger in-plane than out of plane, and the
All contributions to the condensation energy are negativeanisotropy in the violation increases as the bandwidth in-
except the one corresponding to the correlated hopping terncreases except in the very overdoped regime.
which is about 50 times larger than the condensation energy.

Quite generally the kinetic energy lowering in our model due V. COMPARISON WITH EXPERIMENT

to the pair hopping contribution is much larger than the con- ] ) _
densation energy and is partially compensated by an increase !t is generally accepted that in-plane transport in the cu-
in Coulomb repulsion in the paired state, because carriers jRrates is described by the clean limit, and here we adopt this
the pair are on average closer to each other than in the noRoint of view. To determine the parameters appropriate to
mal state. Note from Fig. 13 that the kinetic energy Ioweringthe dlfferent. materials we use results _for the condensatlon
from c-axis motion is a small fraction of the kinetic energy €nergy obtained by Lorafn from analysis of specific heat
lowering from in-plane motion, in contrast to the prediction data. Loram reports a maximum condensation endigy

of the interlayer tunneling theofy. =3.6J/g at. f_or YBCO,U,=2.8J/g at. for YI_3CO with 20%

In summary, we have seen in this section that for a giver°@ substituting for Y,Uy=2J/gat. for Bi2212, andU,
value of maximumT, the model can yield a fairly wide =1.3)/gat. for LaSrCuQ. If we assume that the condensa-
range of values of condensation energy and sum rule violdion energy is dominated by the physics of the planar oxy-
tion depending on parameters in the Hamiltonian. Still, thedJ€ns, we have per planar oxygen a condensation engrgy
systematics with doping is always the same, as is the fadiven by
that the in-plane sum rule violation is always larger than the 3 N
c-axis one. The magnitude of the condensation energy for fc(MeV):Uo(— X5.18X —, (563
given maximumT_ decreases monotonically as the band- at, N>
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FIG. 7. Critical temperatur&, vs hole concentration for vari- FIG. 8. Condensation energy vs hole concentration, as in Fig. 3,

ous bandwidths, as in Fig. 2, but now far=0.65 eV. As before, ~Put with the same parameters as in Figi.2., with V=0.65 eV.
U=5 eV andz=25 for the band anisotropy. The detailed depen- The condensation energy is decreased compared W-tcase in
dence on bandwidth is more pronounced than With0. Again the Fig. 3

parameterAt was determined to giv&y =90 K. For bandwidths

D=15, 1, 0.5, 0.1 eV the values aft used, in eV, areAt ram’s values are accurate it would imply within our model a

=0.533, 0.518, 0.500, 0.483, respectively. bandwidth ofD~0.25 eV for LaSrCuO, which would give
rise to a substantial sum rule violation even in the clean
N;=number of atoms in formula unit,  (56b) limit, as seen in the previous section.

N,=number of planar Cu® in formula unit (560 A Effect of disorder

yielding e.=121 peV for YBCO (N;=13, N,=2), € We choose the case of YBCO for a detailed comparison
=78 peV for Bi2212 N;=15, N;=2), €,=94 ueV for  jth experiment, since experimental results for the sum rule
YosCa BaCusOsy, and e, =47 ueV for LaSrCuO N;  vyiolation for several values of dopifigre available only for
=7,N,=1). Assuming a value for the nearest neighbor re-his material. From band structure calculatihse extract
pulsion we can then extract the required value of the bandgyy the band structure anisotropy/t.=10. Figure 19 shows
width by inspection of Fig. 16. the calculated values for the sum rule violation in thand

It can be seen that the maximum condensation energy fof directions in the clean limit for this case. We will consider
the various materials witfiy *~90 K coincide within a fac-  jn what follows the case of zero nearest neighbor repulsion.
tor of 2. Differences may be due to contributions to the conNote that the in-plane sum rule violation for that case for
densation energy from other atoms in the structure in addioptimal doping is approximately 10%, consistent with the
tion to the CuQ units. We will assume that a proper value fact that no in-plane violation has been experimentally de-
for the bandwidth in our model to describeTd®~90 K tected so far within the experimental error of approximately
material isD=0.5 eV, which yields a maximum condensa- 10%.
tion energy in the range of values given above, for reason- For thec direction we also show the experimental values
able values of the nearest neighbor repulsion. Figure l8neasured by Basov et &We chose to assign to the samples
shows the condensation energy versus doping for values af Basov's experiments the value of doping that would give
the nearest neighbor repulsiaf=0 andV=0.65 eV. The rise to the same critical temperature in our model as seen
maximum condensation energy is.=104 ueV and ¢,  experimentally. The results in Fig. @ show that experi-
=90 weV, respectively. For LaSrCuO, the condensation enments exhibit a much faster decrease in the sum rule viola-
ergy reported by Loram is somewhat larger than expected ifion with doping than our clean-limit calculation predicts.
the same bandwidth is assumed as for the 90 K materials, However, as mentioned earlier there exists substantial ex-
since Eq.(11) (assuming equal gap ratiowould predict a perimental evidence pointing to the fact that transport in the
condensation energy 6 times smaller for LaSrCuO. If Lo- c¢ direction is described by the dirty rather than the clean
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FIG. 9. The in-plane sum rule violatioi, vs hole concentra- FIG. 10. The sum rule violation anisotrof /V, for V=0.65

tion, for V=0.65 eV. The magnitude of the violation is significantly eV. The results are similar to thé=0 case(Fig. 6).
increased in comparison to the=0 case(Fig. 4).

lattice constant=11.68 A, which yields from Eq(57a an
periments indicate that the-axis scattering rate decreasesm'plane penetration deptky, 4300 A This is substantl%lly
rapidly as the doping increases. This has been modelelarger than the obseryed penetration dept5"~_1400’8"
theoreticallj® taking into account diagonal and off-diagonal @nd Suggests that carriers from other atoms in the structure
disorder, and assuming that Coulomb effects cause both tHfiSC contribute to the superfluid weight. We will simply treat
in-plane and interplane hopping amplitudes to increase witl§l IN Ed. (578 as a parameter to be determined to fit the
doping. This latter assumption is in fact the basis of ourobserved penetration depth in the optimally doped case. For
model, i.e., Eq(1). These experiments and calculations sug-Ed. (57b) we will use the YBCO lattice constants=3.84 A

gest that the-axis transport evolves from the dirty towards andd=11.68 A.

the clean limit as the doping increases. As we show in what Figure 20 shows calculated values of the penetration
follows, this is in fact consistent with the predictions of our depth and experimental observatiéi§.Again we infer the
model, and leads to a faster rate of decay of the c-axis surappropriate values of n for the experimental data by compari-
rule violation with doping than in the clean limit, consistent son of experimental and calculatd@d/T?™. The in-plane

limit. 2=° Furthermore, transpdttas well as opticaP ex-

with observations. calculated penetration depth for small doping becomes some-
The penetration depths at zero temperature are related {ghat larger than the experimental one. The discrepancy may
the kinetic energies by arise from contribution to the superfluid weight from carriers

in other bands with weaker carrier concentration dependence

No(A)= 463G d(A )]H2 (579  With doping than the oxygen band described by our mddel.

[Ta(mev)]¥2' The calculated penetration depth in thedirection in-
creases much more slowly than the experimental one as the
A E<a(}:\)2)1/2 1 doping decreases. We attribute this to an enhanced effect of
A =463 : 57b  disorder in thec-axis transport in the underdoped regime.
A i& | Tamewpz o e o

This is in fact consistent with interpretation of optical experi-

The in-plane kinetic energy obtained from our model for thements in LaSrCuQ(Ref. 13 indicating a stronger c-axis
parameters under consideration and optimal doping,s Scattering rate in the underdoped regime, as well as with
=6.6 meV(per oxygen sitg It is not completely clear what transport experiments in YBC&.By comparison of calcu-

the parameted in Eq. (578 should be. If we assume that lated and observed penetration depth anisotropies, shown in
only the oxygens in the CuO planes contribute to the penFig. 21, we extract the doping dependence ofdfais scat-
etration depth, we should take fdrone-half of thec-axis  tering rate in Eq(51):
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FIG. 11. The in-plane kinetic energper planar oxygenvs doping for the case witliy >=90 K andV=0.65 eV. We showa) the
single-particle contribution(b) the pair contribution, an¢c) the total. The single-particle contribution increases with increasing bandwidth
and dominates the pair contribution, which decreases with increasing bandwidth. Note that the pair contribution peaks close to the maximum
T., while the single particle contribution increases monotonically with doping.

B ) . v . .
1 7()\: I\ a)fheory, clean fimit calculation. Thec-axis scattering rate thus obtained has a

=Pc= > . (58) strong doping dependence.

(Me/Na) experiment We can hence calculate the doping dependence of the
This assumes that the penetration depth in the plane is de-axis sum rule violation in the presence of disorder, as de-
scribed approximately by the clean limit result given by ourtermined by Eq(53):

1+ fl e
7A
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FIG. 12. The out-of-plane kinetic energy vs doping for the same case as in Fig. 11. The results are similar to the in-plane kinetic energy

rule violation parameter is approximately 10%lt can be

2
A
- ) =\/gear2 (590  seen that the theoretical results now show a much stronger

vV _Vclear(
c c )\clean .. . . . ;
c variation with doping than in the absence of disorder, and are

and plot the results in Fig. 22, together with experimentalcloser to the experimental obsegvations. A similar analysis
observation§. The reported experimental error in the sumWwas recently given for LaSrCuQ’
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The amount of kinetic energy in the zero-frequeriunc-
tion is given by

2k fi’c?y 1

2,270 5 2.2\2
Te‘as 4mecas N5

Q5= (60)

with v the volume per Cu@planar unit. The kinetic energy
lowering is obtained from the experimentally measured pen-
etration depth and sum rule violation as

At, At
<T 7>/« T >
—
o
S
S

AQs=QsVs5. 61
500 Qs=QsVs (61)
In particular, for thec direction
AQ.=Q.Ve, (623
0 . . . o _h*cta® 1 (625
0 0.05 0.1 0.15 ¢ 4meld N2

n
For YBCO, with two CuQ@ planes per unit cell, we talketas

FIG. 13. The anisotropy of the single parti¢® and pair con-  half the unit cell dimension in the direction, and Eq(62b)
tribution (b) to the kinetic energy for the same case as in Fig. 11. gives the kinetic energy per Cy@lanar unit.
Basov and co-workers reported values Y4 for YBCO
B. Kinetic energy lowering for several dopings, for TI2201 for an optimally doped and
one overdoped sample, and for slightly underdoped LaSr-
If instead of considering the relative amount of sum ruleCuO, together with the corresponding c-axis penetration
violation we consider the absolute amount of kinetic energydepths’ Furthermore, Basov reports an error of approxi-
lowering, we need not worry about the effect of disorder.mately 10% for the reported value of {IV.).** We can
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one of the cases of Figs. 11-14, with bandwid+1 eV. For FIG. 16. Condensation energy vs bandwidth for two valueg of

simplicity we used a two-dimensional case, with a constant densityor the optimally doped casgvith T{'®*=90 K). A nonzero nearest

of states, andt redetermined to giv8]>=90 K. The parameters neighbor repulsion tends to decrease the condensation energy for a

in the two-dimensional model used to yield the same density ofixed value of TZ'™.

states at the Fermi level and condensation energy as the three-

dimensional model for these cases &e-1.6 eV,At=0.51 eV.  observed and calculated values of kinetic energy lowering.

For optimally dopedA ,=20.1 meV and:=—0.26. For other dop-  For LaSrCuO, we use a nonzero nearest neighbor repulsion

ings, A, follows approximately the behavior of. andc varies  in order to fit the rather large value of kinetic energy lower-

linearly with n, from —0.22 in underdoped te-0.43 in overdoped  ing observed. It can be seen that our calculation gives rea-

regimes. sonable agreement with experimental measurements in the
. ) underdoped regime. In the optimally doped and overdoped

then obtain the experimentally observed absolute value Ofegimes our calculation predicts a significant kinetic energy

kinetic energy lowering from Eq(62), and the associated |owering, but unfortunately experimental errors are at

error from present too large to confirm or rule out our predictions.
5(AQC)~O'1QC (63)

assuming the relative error in the measured penetration depth L ) .
is much smaller than in the sum rule violation. Table | sum- '€ sum rule violation considered here has also been dis-

marizes Basov's results and the resulting values for kineti€USSe€d by other workers. Kithconsidered the role of impu-
energy lowering from Eqs(62) and (63). rity scattering inc-axis transport for al,2_,2 gap and con-

In our model, the kinetic energy lowering is given by the cluded that the su.pe.rfluid wei_ght could be .b(.)th larger or
expectation value of the correlated hopping tem@t>. smaller than the missing area in the conductivity depending

Since there are two O atoms per Guanit, we have on parameters. loffe and Millté argued that the explanation
' of Basov’s observations lies in the interplay of phase coher-

AQcheon™ 2<T§t> (64) ence, quantum and thermal fluctuations, and scattering pro-
cesses. Neither of these treatments predicts an in-plane sum
since our calculated kinetic energy lowering is per O atom.rule violation, in contrast to our model. Kim and Carbdtte
We estimate hopping anisotropies from band structurdound that if there is coherent interlayer coupling there
calculations to be approximatety/t.=10 for YBCC?® 25  should be na-axis sum rule violation; their model however
for LaSrCu@®, and 50 for TI220F? In the latter it should be did not include a correlated hopping term. Furthermore they
noted this is estimated to be the average anisotropy for afound that for incoherent interlayer coupling there should be
bands, while for the Cu-O band alone it is estimated to besum rule violation, however, of opposite sign to that ob-
about 600. According to our estimates from the previousserved. Within their mode{without a At term) they found
subsection we assume bandwidihs 0.5 eV for YBCO and that in-plane sum rule violatiotof either sign depending on
TI2201, andD =0.25 eV for LaSrCuO. In Fig. 23 we plot the parametenscan occur only if the electronic density of states

VI. SUMMARY AND CONCLUSIONS
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FIG. 18. The condensation energy vs doping for a specific case
D=0.5 eV, U=5 eV, TI'®¥=90 K, for two values ofV. At
=0.241 eV forv=0, At=0.501 eV forV=0.65 eV. TheT curves
are also shown to facilitate a comparison of peak positions.

percent to close to 100% depending on the parameters in the
Hamiltonian. For given maximunT., the most important
parameter determining the magnitude of sum rule violation is
the bandwidth, or density of states: larger density of states
gives rise to larger sum rule violation, as well as to larger
condensation energy. Comparison of calculated and mea-
sured condensation energy for a given system allows for a
determination of the parameters in the Hamiltonian appropri-
ate for that system.

The transition to the superconducting state is driven by
lowering of kinetic energy for all dopings in this model.
Quite generally, the lowering of kinetic energy is one to two
orders of magnitude larger than the superconducting conden-
sation energy. Because the condensation energy peaks ap-
proximately at the same doping &s, the model predicts a
substantial kinetic energy lowering in the overdoped regime.
For the anisotropic structures of the cuprates, the contribu-
tion to the condensation energy from in-plane kinetic energy
lowering is two to three orders of magnitude larger than that
of interplane motion.

Furthermore the model predicts that in the clean limit the

as a function of bandwidth, for the same two cases as in Fig. 16N-plane sum rule violation should be a few times larger than

The sum rule violation tends to increase with increasding

the interplane one. The fact that the opposite has been report-
edly observed so firlargec-axis violation, no in-plane vio-

has fine structure on the scale of the superconducting gap.lation) leads us to conclude that there is a significant effect of
In summary, we have studied here the predictions of thelisorder in c-axis transport, that suppresses the low fre-
model of hole superconductivity for the condensation energyjuency spectral weight and hence allows for easier detection
and for quantities related to the optical sum rule, for a wideof the anomalous high frequency spectral weight. This as-
range of parameters. The model predicts a violation of thesumption is in fact consistent with a variety of other experi-
Ferrell-Glover-Tinkham sum rule that can range from a fewmental observation€1° that have led several workers to
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FIG. 20. The(a) in-plane andb) c-axis penetration depth, as a
FIG. 19. The(a) in-plane andb) out-of-plane sum rule violation  function of hole doping, using the case from the previous two fig-
as a function of doping for the two cases in Fig. 18.() we  yres with V=0. As the doping decreases the experimental data
include for comparison the experimental data from YBCO from (Ref. 29 in (b) increases much more quickly than the theoretical
Basovet al. (Ref. 6. clean limit result.

conclude that-axis transport is described by the dirty limit disorder inc-axis transport increases substantially in the un-
and planar transport by the clean limit. Using this assumpéderdoped regime. This conclusion is also in fact consistent
tion our model can explain the large difference between obwith other independent experimental observatitifs. This
servedc-axis and in-plane sum rule violations. fact leads to a much more rapid doping dependence of the

Furthermore, comparison of our calculated and measuresum rule violation than that obtained in the clean limit,
c-axis penetration depths led us to conclude that the effect afhich resembles the experimental observatfons.
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FIG. 21. The ratio of the penetration depths vs hole doping, FIG. 22. Thec-axis sum rule violation vs doping, together with
along with the experimental resuliRef. 29, used to determine the the experimental resultfRef. 6. The agreement with experiment is
impurity parametep, [Eq. (56)]. satisfactory, once the stronger c-axis impurity scattering and its

doping dependence is accounted for.

Experimental papers have suggested that the sum rule vio-
lation effect disappears in optimally doped or overdoped relute value of kinetic energy lowering. This is presumably due
gime, and concluded from this that there is no anomalouso the fact that large error bars prevent meaningful extraction
kinetic energy lowering in those regim®¥Ve argue that this  of the latter quantity. However, it should then be recognized
conclusion is flawed. Because the “normal” contribution to that an apparent vanishing of the fractional sum rule viola-
the superfluid weight increases rapidly as the doping intion within error bars does not imply a vanishing of the
creases, it can easily mask the anomalous part of the supeanomalous kinetic energy lowering.
fluid weight, which has, according to our calculation, a much There is another fundamental reason to reject this experi-
slower doping dependence and decreases slowly in the ovemental conclusion. If there is indeed the unusual phenom-
doped regime. In experimental pagkitsis always the frac- enon of kinetic energy lowering, contrary to ordinary BCS
tional sum rule violation that is plotted, rather than the absotheory, it is logical to conclude that whatever mechanism is

TABLE |. Experimental results foc-axis transport, from Ref. 6.

Material T (K) T AT ¢ (A) 1-V, Q. (nev) AQ. (ueV)
YBa;,CusOs -+ 5

6=6.5 50 0.53 77 350 0.2 9.08 7.26-0.18
6=6.6 60 0.64 63400 0.37 13.5 8.51-0.50
6=6.7 65 0.70 51500 0.87 20.5 2:66-1.8
6=6.8 80 0.86 35000 0.77 44.3 16:2-34
6=6.85 85 0.91 30940 1 56.7 +0-5.7
6=6.9 90 0.96 15400 1 229 40-23
6=6.95 93.5 1 10300 1 512 40'-51
TI2201

opt. doped 81 1 119000 0.5 1.99 3.0-0.20
overdoped 32 0.40 110000 0.9 2.33 0+23-0.21
LaSrCuQ 32 0.85 50000 0.4 18.6 1142-0.7
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FIG. 23. The anomalous contribution to the out-of-plane kinetic energyafafBCO, (b) TI2201, andc) LSCO, plotted along with data
from Basov(Ref. 6. Note that the error bars become very large as the doping incrggisularly in(a), where two of them exceed the
page siz¢ Representative values of the band structure anisotropy are shown in each case. The results are qualitatively consistent with the

data, within the errorAt=0.240 eV for(b), 0.477 eV for(c).
causing the kinetic energy lowering drives the transition tooverdoped regimes. If there is no kinetic energy lowering in

superconductivity, and that the lowering of kinetic energy isthe optimally doped or overdoped regimes, as proposed by
responsible for the condensation energy of the supercorBasov, it would imply that a different mechanism explains

ductor. At present both our calculations and experinfénts superconductivity in those regimes. Moreover, the kinetic
indicate that the condensation energy in the cuprates asenergy lowering mechanism would apply for optimally
but not to optimally doped

function of doping peaks in the optimally doped or evendoped T}Ba,CuG;, 5



15 150 J. E. HIRSCH AND F. MARSIGLIO PRB 62

YBa,Cu;0, according to Basov’s point of view. Clearly, eXistence of the-axis sum rule violation, and suggest that
while such a scenario would not be impossible, it does nokinetic energy lowering also occurs in in-plane transpbft,
appear to be very plausible. in agreement with the predictions of the model. Future more

In this paper we have not discussed the temperature dé@ccurate experiments should be able to provide more strin-
pendence of these effects. So far, no experimental resul@ent tests of the theory. Furthermore, the model of hole su-
have been reported for the temperature dependence of miggerconductivity is the only one proposed so far that provides
ing areas and sum rule violation. We have discussed els@n explanation for the origin of the high frequency spectral
where for selected cases the temperature dependence of tweight that appears in the zero-frequendfunction? It
real part of the conductivit}° London penetration depth, remains a challenge for other theories to provide explana-
and high and low frequency missing aréasthin our model.  tions for these unusual experimental observations.

Once experimental results for these quantities become avail-
able it will be possible to provide detailed comparison with ACKNOWLEDGMENTS
the theory.
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