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The Korringa ratiok, obtained by taking an appropriate combination of the Knight shift and nuclear
spin-lattice relaxation time, is calculated at finite temperafure the three-dimensional electron gas model,
including the electron-electron interactibthand nonmagnetic impurity scatteringS.varies in a simple way
with respect toU andT; it decreases ab is increased but increases &ss raised. HoweverlC varies in a
slightly more complicated way with respect to the impurity scatterings; as the scattering rate is inckeéased,
increases for small and low T, but decreases for larde or high T. This calls for a more careful analysis
when one attempts to estimate the Stoner factor fkom

I. INTRODUCTION U is comparable witiJ.,, or T is with ex, K decreases as
1/7 is raised U, is the critical value of the electron-electron
The Korringa ratioC, given byX=1/(T,TK?), whereT, interaction at which the ferromagnetic instability occurs, and
is the nuclear spin-lattice relaxation tim¢e the Knight shift, € is the Fermi energy. Consequentlg, vs U curves for
andT the temperature, is a useful concépi,that whenkC of ~ several different I/ values, at a fixedr, cross each other.
a material is largetsmalle) than unity, it is interpreted as a These crosses also occur o vs T at a givenU among
strong indication that the material is antiferromagneticallydifferent values of . It has been believed, since the
(ferromagnetically correlated. Moriya, some 40 years ago, Shastry-Abrahams work, that impurity scatterings enhadfce
showed thatC is decreased when there is electron-electropVhile the electron-electron interaction suppresses it. The
interactionU in a three-dimensionaBD) free electron gag.  Present result, that impurity scatterings can enhance or sup-
The underlying physics is that? increases more rapidly press depending od or T, requires that the above interpre-

than 1T, T for a ferromagnetically correlated systemlss tation .ShOU|d be.modlﬂed. This ‘calls for a more cargful
increased. It was later extended to include nonmagnetic im@nalyss of experimental data v_vhen one .W'Shes to estimate

i ttering effects bv Shastry and Abrahdmgne the strength pf the ferromagnetic correla'tlon of a material.
purity scattering y y anc ; y The remainder of the present paper is organized as fol-
showed that disorder enhances the Korringa ratio so that tf\g

_ ) p hould be included in addii h ws: In Sec. Il, we present the Matsubara formalism to in-
impurity effects should be included in addition to the q,qe the electron-electron interaction and impurity scatter-

electron-electron interaction_ when one analyzes the ratiqngS in calculatingy(q,®) at finite temperature. This was
e.g., when one wants to estimate the Stoner factor of @ Masyried out in the Matsubara frequency and then analytically
terial from /C. These calculations were done at zero temperaggntinued to the real frequency. In Sec. K, /T, T, andX
ture. Since experiments are performed at finite temperaturgyre calculated by numerically integrating the obtained equa-
we wish to extend their calculations to finite temperature andions, asu, 1/7, andT are varied. These results are compared
understand howt is changed as the temperatufe the  with the free electron gas model as a reference and with
electron-electron interactiol, and the impurity scattering previously reported calculations. Finally, Sec. IV is for the
rate 1f are varied. summary and concluding remarks.

K and 1T, which determinefC, can be expressed in
terms of the spin susceptibility(q,») of the conduction
electrons. Fulde and Luther calculated the impurity effects
on the spin susceptibility of almost ferromagnetic metals by  The Korringa ratio is obtained from the Knight shift and
|nC|Ud|ng ISOtrOpIC nonmagnetlc Impurlty Scatte”ngs and D|'nuc|ear Spin_'attice re|axati0n t|me A= 1/(T1TK2), andK
rac o-function electron-electron interactions at zero temperagnd 17, are given in terms of the spin susceptibility as
ture, in the small-frequency and the small-wave-vector
limit.# Their result was utilized by Shastry and Abrahams to

Il. FORMALISM

calculate L of almost ferromagnetic dirty metals. In the K lim Rex(q,w),
present work, we reformulate the spin susceptibility with the q—>%
w—

Matsubara Green’s function to consider finite-temperature
effects on the Korringa ratio at the presence of the electron-
electron interaction and impurity scatterings. The calculated 1 1
K, T1, andK agree in most cases with those of Shastry and —xlimY, —Imx(q,). (1)
Abrahams: bothK and 1mT,T increase wherlJ or 1/7 is Tl o'q @

increased, anél decreases dd is increased. One interesting

observation, different from their results, is thdtincreases Calculating the Korringa ratio, therefore, amounts to calcu-
as 1k is increased only whehboth UandT are small. When lation of x(q,) including the electron-electron interaction
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(a) e, iptio I, represented in Fig.(h), can be written as

k,ip

o U : N
" e T@ipd@)=1——= 3 > G(K'ip )G(K' +a,ip’ +iw)
k+q , ip+io k'+q ,ip¥io k'+q , ip+io B ip’ k'

qﬂ/& w~<
+
FIG. 1. (a) is the Feynman diagram of the spin susceptibility,
and (b) is for the renormalized verteR including the impurity and XG(k'+q,ipt+io)l'(q,ip,iw). (2
Coulomb interactions. The solid line indicates the electron Green’s
function, the dashed line the electron-electron interaction, and the ) ) )
dashed line with a cross stands for the impurity scatteriigand ~ Here,5=1/kgT, N the single-spin density of statéS09) at
iw are, respectively, the fermion and boson Matsubara frequencie$ie Fermi level, andG(k,ip)=11ip+(i/27)sgn(p)— &].
andk,q are corresponding wave vectors. where sgnp) is 1 if p is positive or zero and is-1 other-

wise, andé, is energy measured from the Fermi surface, or
£=h%k?12m— e . Here x can be written as in Ref. 4 in

and the impurity scatterings at finite temperature. This cafMatsubara form as

most conveniently be done in terms of the Matsubara

Green’s function in the imaginary frequency to obtain

x(q,iw). Itis then analytically continued to yield(q, ) in

the real frequency by substituting — w+i4d, whereéd is a -

positive infinitesimal. We therefore reformulate the Fulde- x(@le)= MBﬁ 2 2 Glkip)Glk+aiptio)
Luther result with the Matsubara method for spin suscepti-

bility and constructk and (T;T) 1. The spin susceptibility L

including the vertex corrections from the Coulomb interac- xI(a,ip,iw)

tion and electron-impurity scatterings can be expressed in

terms of the Feynman diagram as in Figa)1 Here, the solid Ximpl( i @)

lines denote the renormalized electron Green’s function =2,u2,3N1_NU —,

G(k,ip), andI" denotes the vertex function, wheine and Ximp( 01 )
iw are, respectively, the fermion and boson Matsubara fre-
quencies, anét andq are the corresponding wave vectdrs. Where
includes both the impurity and the Coulomb interaction as
shown in Fig. 1b), but G does not include the renormaliza-

tion from the electron-electron interaction as in the previous .
works®2 The neglect ol in calculatingG may be justified (Qiw)=— = J(@.ip.iw) @
because Schrieffer and Berk showed that this model repro- Aimp /3’ n o

duces the long-wavelength static susceptibility which would 1- ;J(q,|p,| )

be obtained from a more complete calculation including the

renormalizations due tb.° and

T(q,ip’,i LS Gk
(g,ip ,Iw)+2 N7 < (k',ip)

K, ip’ Kip

()

. 1 ) o
J(q,lp,lw)=m; G(K,ip)G(k+q,ip+iw)

im?2 N sgnp) Vip+u+sgrp+ ) Vi(p+ o)+ u+ Ve,

:4772Nq sgnp)Vip+ u+sgrp+ o) Vi(p+ @)+ u— Veq)

®)

Here, we pukg=#A=1, ug the Bohr magnetorm the elec- quency summation. The frequency summation can be done
tron mass.e,=q°/2m, ip=ip+(i/27)sgn(p), andu is the  in the complex plane using a contour integral, where the
chemical potential. In order to obtajnin the real frequency, Summation is replaced by integrals over branch cut ffnes.
analytic continuation ofw— w+i4 is performed after fre- Then, xin, can be written as



15122
Ximla)=—1 | ds|[np<s+w>—nF<s>]
F i i
X S—Z_,s+w+2—7_ +ne(e)
i i
XF e+2—T,s+w+E_ —Ne(e+w)
F | | 6
X S—Z_,s-i-w—z_ s ()

where we introduce for convenience an expression

i i
J(Siz_,&"ﬁ‘wiz)

i i
J(eiz—,s-i—wi—)

T 27
im?
47°Nq
i i
+\ etut—* \etotur—+e
| 2T 2T
XIn

i i
+ \/8+,U,i2—i \/8+w+,u_2——\/6—q
T T

(8)

Here,ng(e€) =111+ exp(Be)] is the Fermi distribution func-
tion.

Now we can expresi and (T,T) ! with this suscepti-
bility, through taking its real and imaginary partg. ;) !
can be written as

1 ,uéNfocd ,
1 0 [1—NUximpi(,0—0)]?’

T.T 72
where y, and xinp, denote the imaginary parts of and
Ximp» respectively ximp1 and ximp2 in Eq. (9) can be written
as

07Ximp2/5w(Q:w_>0)

9

©

J(X+in,x+in)
Ximpl(t): f_ dx

1+eBX) Im[ 1= nd(x+inx+in)

(10

—BeBx

‘9Ximp2(t) 1 (=
—_— — X—
(1+eB%)2

Jw _2_6[: —o

o
J(X—in,x+in)
T l1- nI(X—in,x+in)

J(X+inx+in)
1-9d(X+inX+in)
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where B=Ber, 7=(27€r) L, M=puler, t=qlkg, X
=¢eleg, and

i (i\/x+Mti77+\/x+M+i17+t

+tigx+in) =
T Im) = opn = VX+M=in+x+M+inp—t
(12

In the same wayK is written as

% Ximp1(010)
1-N UXimpl(OaO)

Ko lim x1(q,0)=2ugNR
w—0

qﬁO

} , (13

where ximp1(0,0) is given from Eq(10) by

1

o 1
- 0,0):f dx R
Ximpi(00)= | X7 oo {Zm—in

(14)

7J in the denominator in Eqg10) and(11) andi » outside

the square root in Eq14) are from the impurity vertex cor-
rection. These vertex parts from Eq$0) and(14) cause the
crosses between the curves/éfwith T and U.

Ill. RESULTS

Let us first consider the free electron gas model for a
reference before we present the calculations for ferromag-
netically correlated dirty metals. For a 3D free electron gas
model, it is simple to calculate the static susceptibility
x(9,w—0) as a function off.” From y, K and (T,T) ! are

given as
2 T 2
KOC\/E 1—77— — =,
€r 24 M

%ocZW,uéNzelFln(lJre"’T), (15)
where the chemical potential is given by
€ 1—77—2(1)2 for T<eg,
12\ e |
. Tin i(i)w for T>e€ o
aya\ T | "
We therefore have
K 1—7T—2 1)2 for T<ep
K_o% 12\ eg) ’ ’ 17)
T, for T>eg,
and
7T2 T 2
M% 1_E(e_p> , for T<eg, 18
(T

1T,

whereKy=2u3N and (T;T), '=2mu3N? denote, respec-
tively, their zero-temperature values dt=1/7=0. From
these elementary considerations, we see that

for T>eg,
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FIG. 2. (a) is the normalized Knight shifkK/K, vs the reduced FIG. 3. (a) is the Korringa ratioC vs T/ eg, and(b) is L vs NU
temperatureT/eq, and(b) is (T,T) " Y(T,T)o ! vs T/er . HereK, at theT=0 limit. £=1intheT=U= =0 limit. e,=0.25 eV, and
and (T,T), ! are, respectively, the zero-temperature valugé ahd ~ NU= 0, 0.4, 0.8 from bottom to top faig). The crosses among the
(T,T) tattheT=U= =0 limit. NU=0, 0.4, 0.8 from bottom to  curves for different; occur at lowefT asNU is increased, imply-
top ander=0.25 eV. HereK/K, and (T;T) Y/(T,T),* decrease ing thatink vsNU crosses occur at low&U whenT is increased.
more rapidly withT whenNU or 7 is large. (b) can be compared with Ref. 3, where there are no crosses among
different » values.

(19 stant changes from the thermal expansion. The lattice
constant expansion affects the DOS and, consequekitly,
32 for T>ep. and 1T,T.

In Fig. 3(@), we showk as a function ofT for a set ofy
andNU. One can see thdd) the T=0 value is suppressed
by NU, but, by », it is increased for small and decreased
for largeU (K=1 for T=U=%=0), (b) The low-T coeffi-
cient is nearly independent &fU and », and(c) the highT
coefficient proportional toT®? is reduced asy becomes
larger. The above changes cause khgs T curves to cross
each other as can be seen in Fig. 3. These crosses do not
appear if we neglect the impurity vertex correctionxigy ,
that is, if we neglect the */term in the denominator of
Kimp1» and their origin is this impurity vertex correction, as
will be discussed in more detail below. Now, let us consider

) - the T=0 limit case, which can be directly compared with
functions of NU and 7: (a) The T=0 peak is given by : .
a/(1—aNU), and (b) the low-T Lorentzian width by Shastry and Abrahams. In Figi8, we showkC as a function

— of NU for =104, 0.05, and 0.1 aT=0. The threeC vs
21-aNU/\b, where NU curves cross each other B&J is increased, as in Fig.

- 3 3(a) discussed above. These crosses did not occur in Shastry
a=1+—n—=7° and Abrahams, who neglected the impurity vertex correction
4 8 iN Ximp1- At T=0, and for smallg and w, the impurity-
and enhanced susceptibility;,, can be expanded by integrating
Eqg. (6) as

77_2 2
Kot 1+E(6_|:) s for T<EF,

Introducing impurity scatterings and electron-electron in-
teractions does not alter in an essential way Khel/T,T,
and/C vs T behavior of Eqs(17), (18), and(19), but changes
their T dependence by altering the three coefficiefdasthe
value atT=0, (b) the low-T coefficient proportional tar?
(Lorentzian width, and(c) the highT coefficient, as shown
in Figs. 2 and 3. Her&/K, as a function ofT for a set of
n=1/(27eg) andNU, whereNU_, =1 is the critical value
at which the ferromagnetic instability occurs Bt and 7
=0, are shown in Fig. @). Both NU and » enhanceK in
agreement with Shastry and Abrahams. The low-temperatu
coefficients ofK/Ky vs T can be calculated analytically as

2

T
3+ 7+ —

1+ 2
4 4

4

772}-
The numerical calculations agree perfectly well with the ana-
lytically obtained asymptotic behavior. In Fig. (i,

(TlT)il/(TlT)al as a function off are shown for a set of where the diffusion constant is given lf_y0=ru§/3, and
andNU. Their general behavior is almost the same with thaty{(0.0)= Ximp(0,0)= Ximp1(0,0)= 1+ (7/4) n+ § 7%, up to
of K/Ko. In Refs. 8 and 9,T,T) " measured as a function the order ofy*. The m7/4 in x{o), comes from the impurity
of T is almost constant aboVE, in the fullerene supercon- vertex correction in thev=q=0 limit and 7?/8, from the

ductors. It is difficult, however, to compare the present reself-energy correction due to impurity scatterings in the
sults with experimental observations because the lattice comenormalized Green’s functions. Shastry and Abrahams ne-

b= w2 1 1
12t a

~ (0) D0q2 20
Ximp(q1w)~Ximp(q1w)Doqz—_iwv (20)
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glected the impurity vertex corrections in calculating Shastry-Abrahams contribution is thatis increased by non-
Ximp(@,@=0), and found thag{9(0,0)~ 1+ 7?8, in agree-  magnetic impurity scatterings, so thitof the ferromagneti-
ment with the present result. These two terms enhanceally correlated dirty metals, whet€ is suppressed by the
Ximp1(0,0) compared with the free electron value of 1. Be-ferromagnetic correlation but increased by the impurity scat-
cause ximp1(d,0) is multiplied by NU in the denominator terings, can be close to 1, just like the free electron case. This
when calculatingKk or 1/(T,T) as in Eqg.(9) or (13), the  means that one should be careful in extracting the strength of
effects ofU are stronger for largen. ConsequentlylC de-  the ferromagnetic correlation from the Korringa ratio.
creases faster for largerasNU is increased. This, together ~ Our observation in the present work is that the Korringa
with the fact thatC is larger for largem; atU =0, causes the ratio is increased by nonmagnetic impurity scatterings when
crosses among the curves/éfvs NU as shown in Fig. ). both U and T are small, butC is decreased by impurity
Since them »/4 term in xm1(0,0) is the dominant contribu- scatterings whetJ is comparable witlJ, or T is compa-

tion from the impurity scatterings compared wif/8, these  rable with g . This implies thatk is enhanced by impurity
crosses do not occur without the impurity vertex correctionscatterings only for weakly ferromagnetic dirty metals at low
It should be interesting if this prediction can be confirmed byT, but suppressed whed or T is large. This causes the

experiments. crosses among th€ vs NU curves for the different impurity
scattering rates 1/in the present calculations. The crosses
IV. SUMMARY AND CONCLUDING REMARKS also occur iK€ vs T at a givenU among different values of

) ] ) ) 1/7. Those crosses are caused by the impurity vertex correc-

In th|52 paper, we studied the Korringa ratid o, i Ximp1(0,0), Which was neglected in previous calcula-
=1/(T,TK"), Knight shiftK, and nuclear spin-lattice relax- ions, The present exact numerical calculations within the
ation timeT, of ferromagnetically correlated impure metals finjte-temperature extension of the Fulde-Luther formulation,
at finite temperature. They were calculated from the spirspown in Fig. 3, confirm that the above behavior is due to
susceptibility including the self-energy correction due to im-impyrity vertex corrections. This observation requires that
purity scatterings and the vertex correction due to thepe interpretation according to Shastry and Abrahams should
o-function electron-electron interaction and impurity scatter-pg modified, and one should do a more careful analysis in

ings. The spin susceptibility was formulated with Matsubargestimating the strength of the ferromagnetic correlation of
Green’s function to consider finite-temperature effects andypyre materials from the Korringa ratio.

analytically continued to the real frequency. The and
(T,T)"! decrease withT, but K increases aJ is raised
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