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Korringa ratio of ferromagnetically correlated impure metals
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Department of Physics and Institute for Basic Science Research, Sung Kyun Kwan University, Suwon 440-746, Korea

~Received 11 April 2000!

The Korringa ratioK, obtained by taking an appropriate combination of the Knight shift and nuclear
spin-lattice relaxation time, is calculated at finite temperatureT in the three-dimensional electron gas model,
including the electron-electron interactionU and nonmagnetic impurity scatterings.K varies in a simple way
with respect toU andT; it decreases asU is increased but increases asT is raised. However,K varies in a
slightly more complicated way with respect to the impurity scatterings; as the scattering rate is increased,K
increases for smallU and lowT, but decreases for largeU or high T. This calls for a more careful analysis
when one attempts to estimate the Stoner factor fromK.
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I. INTRODUCTION

The Korringa ratioK, given byK51/(T1TK2), whereT1

is the nuclear spin-lattice relaxation time,K the Knight shift,
andT the temperature, is a useful concept,1 in that whenK of
a material is larger~smaller! than unity, it is interpreted as
strong indication that the material is antiferromagnetica
~ferromagnetically! correlated. Moriya, some 40 years ag
showed thatK is decreased when there is electron-elect
interactionU in a three-dimensional~3D! free electron gas.2

The underlying physics is thatK2 increases more rapidly
than 1/T1T for a ferromagnetically correlated system asU is
increased. It was later extended to include nonmagnetic
purity scattering effects by Shastry and Abrahams.3 They
showed that disorder enhances the Korringa ratio so tha
impurity effects should be included in addition to th
electron-electron interaction when one analyzes the ra
e.g., when one wants to estimate the Stoner factor of a
terial fromK. These calculations were done at zero tempe
ture. Since experiments are performed at finite temperat
we wish to extend their calculations to finite temperature a
understand howK is changed as the temperatureT, the
electron-electron interactionU, and the impurity scattering
rate 1/t are varied.

K and 1/T1, which determineK, can be expressed i
terms of the spin susceptibilityx(q,v) of the conduction
electrons. Fulde and Luther calculated the impurity effe
on the spin susceptibility of almost ferromagnetic metals
including isotropic nonmagnetic impurity scatterings and D
racd-function electron-electron interactions at zero tempe
ture, in the small-frequency and the small-wave-vec
limit.4 Their result was utilized by Shastry and Abrahams
calculate K of almost ferromagnetic dirty metals. In th
present work, we reformulate the spin susceptibility with t
Matsubara Green’s function to consider finite-temperat
effects on the Korringa ratio at the presence of the electr
electron interaction and impurity scatterings. The calcula
K, T1, andK agree in most cases with those of Shastry a
Abrahams: bothK and 1/T1T increase whenU or 1/t is
increased, andK decreases asU is increased. One interestin
observation, different from their results, is thatK increases
as 1/t is increased only whenboth UandT are small. When
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U is comparable withUcr , or T is with eF , K decreases as
1/t is raised.Ucr is the critical value of the electron-electro
interaction at which the ferromagnetic instability occurs, a
eF is the Fermi energy. Consequently,K vs U curves for
several different 1/t values, at a fixedT, cross each other
These crosses also occur inK vs T at a givenU among
different values of 1/t. It has been believed, since th
Shastry-Abrahams work, that impurity scatterings enhancK
while the electron-electron interaction suppresses it. T
present result, that impurity scatterings can enhance or
press depending onU or T, requires that the above interpre
tation should be modified. This calls for a more care
analysis of experimental data when one wishes to estim
the strength of the ferromagnetic correlation of a materia

The remainder of the present paper is organized as
lows: In Sec. II, we present the Matsubara formalism to
clude the electron-electron interaction and impurity scat
ings in calculatingx(q,v) at finite temperature. This wa
carried out in the Matsubara frequency and then analytic
continued to the real frequency. In Sec. III,K, 1/T1T, andK
are calculated by numerically integrating the obtained eq
tions, asU, 1/t, andT are varied. These results are compar
with the free electron gas model as a reference and w
previously reported calculations. Finally, Sec. IV is for th
summary and concluding remarks.

II. FORMALISM

The Korringa ratio is obtained from the Knight shift an
nuclear spin-lattice relaxation time asK51/(T1TK2), andK
and 1/T1 are given in terms of the spin susceptibility as

K} lim
q→0
v→0

Rex~q,v!,

1

T1T
} lim

v→0
(

q

1

v
Im x~q,v!. ~1!

Calculating the Korringa ratio, therefore, amounts to cal
lation of x(q,v) including the electron-electron interactio
15 120 ©2000 The American Physical Society
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and the impurity scatterings at finite temperature. This
most conveniently be done in terms of the Matsub
Green’s function in the imaginary frequency to obta
x(q,iv). It is then analytically continued to yieldx(q,v) in
the real frequency by substitutingiv→v1 id, whered is a
positive infinitesimal. We therefore reformulate the Fuld
Luther result with the Matsubara method for spin susce
bility and constructK and (T1T)21. The spin susceptibility
including the vertex corrections from the Coulomb intera
tion and electron-impurity scatterings can be expressed
terms of the Feynman diagram as in Fig. 1~a!. Here, the solid
lines denote the renormalized electron Green’s funct
G(k,ip), andG denotes the vertex function, whereip and
iv are, respectively, the fermion and boson Matsubara
quencies, andk andq are the corresponding wave vectors.G
includes both the impurity and the Coulomb interaction
shown in Fig. 1~b!, but G does not include the renormaliza
tion from the electron-electron interaction as in the previo
works.4,3 The neglect ofU in calculatingG may be justified
because Schrieffer and Berk showed that this model re
duces the long-wavelength static susceptibility which wo
be obtained from a more complete calculation including
renormalizations due toU.5

FIG. 1. ~a! is the Feynman diagram of the spin susceptibili
and~b! is for the renormalized vertexG including the impurity and
Coulomb interactions. The solid line indicates the electron Gree
function, the dashed line the electron-electron interaction, and
dashed line with a cross stands for the impurity scatterings.ip and
iv are, respectively, the fermion and boson Matsubara frequen
andk,q are corresponding wave vectors.
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G, represented in Fig. 1~b!, can be written as

G~q,ip,iv!512
U

b (
ip8

(
k8

G~k8,ip8!G~k81q,ip81 iv!

3G~q,ip8,iv!1
1

2pNt (
k8

G~k8,ip !

3G~k81q,ip1 iv!G~q,ip,iv!. ~2!

Here,b51/kBT, N the single-spin density of states~DOS! at
the Fermi level, andG(k,ip)51/@ ip1( i /2t)sgn(p)2jk#,
where sgn(p) is 1 if p is positive or zero and is21 other-
wise, andjk is energy measured from the Fermi surface,
jk5\2k2/2m2eF . Here x can be written as in Ref. 4 in
Matsubara form as

x~q,iv!52mB
2 2

b (
ip

(
k

G~k,ip !G~k1q,ip1 iv!

3G~q,ip,iv!

52mB
2N

x imp~q,iv!

12NUx imp~q,iv!
, ~3!

where

x imp~q,iv!52
2p

b (
ip

J~q,ip,iv!

12
1

t
J~q,ip,iv!

~4!

and

’s
e

s,
J~q,ip,iv!5
1

2pN (
k

G~k,ip !G~k1q,ip1 iv!

5
im2

4p2Nq
lnF sgn~ p̃!Ai p̃1m1sgn~ p̃1ṽ !Ai ~ p̃1ṽ !1m1Aeq

sgn~ p̃!Ai p̃1m1sgn~ p̃1ṽ !Ai ~ p̃1ṽ !1m2Aeq
G . ~5!
one
the
s.
Here, we putkB5\51, mB the Bohr magneton,m the elec-
tron mass,eq5q2/2m, i p̃5 ip1( i /2t)sgn(p), andm is the
chemical potential. In order to obtainx in the real frequency,
analytic continuation ofiv→v1 id is performed after fre-
quency summation. The frequency summation can be d
in the complex plane using a contour integral, where
summation is replaced by integrals over branch cut line6

Then,x imp can be written as
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x imp~q,v!52 i E
2`

`

d«H @nF~«1v!2nF~«!#

3FS «2
i

2t
,«1v1

i

2t D1nF~«!

3FS «1
i

2t
,«1v1

i

2t D2nF~«1v!

3FS «2
i

2t
,«1v2

i

2t D J , ~6!

where we introduce for convenience an expression

FS «6
i

2t
,«1v6

i

2t D5

JS «6
i

2t
,«1v6

i

2t D
12

1

t
JS «6

i

2t
,«1v6

i

2t D
~7!

and

JS «6
i

2t
,«1v6

i

2t
D

5
im2

4p2Nq

3 lnS 6A«1m6
i

2t
6A«1v1m6

i

2t
1Aeq

6A«1m6
i

2t
6A«1v1m6

i

2t
2Aeq

D .

~8!

Here,nF(e)51/@11exp(be)# is the Fermi distribution func-
tion.

Now we can expressK and (T1T)21 with this suscepti-
bility, through taking its real and imaginary parts. (T1T)21

can be written as

1

T1T
}

mB
2N

p2 E
0

`

dq q2
]x imp2/]v~q,v→0!

@12NUx imp1~q,v→0!#2
, ~9!

where x2 and x imp2 denote the imaginary parts ofx and
x imp , respectively.x imp1 andx imp2 in Eq. ~9! can be written
as

x imp1~ t !5E
2`

`

dxS 1

11eBxD ImH J~x1 ih,x1 ih!

12hJ~x1 ih,x1 ih!J ,

~10!

]x imp2~ t !

]v
5

1

2eF
E

2`

`

dx
2BeBx

~11eBx!2

3ReF H J~x1 ih,x1 ih!

12hJ~x1 ih,x1 ih!J
2H J~x2 ih,x1 ih!

12hJ~x2 ih,x1 ih!J G , ~11!
where B5beF , h5(2teF)21, M5m/eF , t5q/kF , x
5«/eF , and

J~x6 ih,x1 ih!5
i

2t
lnS 6Ax1M6 ih1Ax1M1 ih1t

6Ax1M6 ih1Ax1M1 ih2t
D .

~12!

In the same way,K is written as

K} lim
v→0
q→0

x1~q,v!52mB
2N ReF x imp1~0,0!

12NUx imp1~0,0!G , ~13!

wherex imp1(0,0) is given from Eq.~10! by

x imp1~0,0!5E
2`

`

dx
1

11eBx
ReF 1

2Ax1M1 ih2 ih
G .

~14!

hJ in the denominator in Eqs.~10! and ~11! and ih outside
the square root in Eq.~14! are from the impurity vertex cor-
rection. These vertex parts from Eqs.~10! and~14! cause the
crosses between the curves ofK with T andU.

III. RESULTS

Let us first consider the free electron gas model fo
reference before we present the calculations for ferrom
netically correlated dirty metals. For a 3D free electron g
model, it is simple to calculate the static susceptibil
x(q,v→0) as a function ofT.7 Fromx, K and (T1T)21 are
given as

K}Am

eF
F12

p2

24 S T

m D 2

2•••G ,
1

T1T
}2pmB

2N2
T

eF
ln~11em/T!, ~15!

where the chemical potentialm is given by

m'5 eFF12
p2

12 S T

eF
D 2G , for T!eF ,

T lnF 4

3Ap
S eF

T D 3/2G , for T@eF .

~16!

We therefore have

K

K0
'H 12

p2

12 S T

eF
D 2

, for T!eF ,

1/T, for T@eF ,

~17!

and

~T1T!21

~T1T!0
21

'H 12
p2

12 S T

eF
D 2

, for T!eF ,

1/AT, for T@eF ,

~18!

where K052mB
2N and (T1T)0

2152pmB
2N2 denote, respec-

tively, their zero-temperature values atU51/t50. From
these elementary considerations, we see that
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K}H 11
p2

12 S T

eF
D 2

, for T!eF ,

T3/2, for T@eF .

~19!

Introducing impurity scatterings and electron-electron
teractions does not alter in an essential way theK, 1/T1T,
andK vs T behavior of Eqs.~17!, ~18!, and~19!, but changes
their T dependence by altering the three coefficients:~a! the
value atT50, ~b! the low-T coefficient proportional toT2

~Lorentzian width!, and~c! the high-T coefficient, as shown
in Figs. 2 and 3. HereK/K0 as a function ofT for a set of
h51/(2teF) and NU, whereNUcr51 is the critical value
at which the ferromagnetic instability occurs atT5 and h
50, are shown in Fig. 2~a!. Both NU and h enhanceK in
agreement with Shastry and Abrahams. The low-tempera
coefficients ofK/K0 vs T can be calculated analytically a
functions of NU and h: ~a! The T50 peak is given by
a/(12aNU), and ~b! the low-T Lorentzian width by
2A12aNU/Ab, where

a511
p

4
h2

3

8
h2

and

b5
p2

12 F12S 11
p

4 Dh1
1

4 S 31p1
p2

4 Dh2G .
The numerical calculations agree perfectly well with the a
lytically obtained asymptotic behavior. In Fig. 2~b!,
(T1T)21/(T1T)0

21 as a function ofT are shown for a set ofh
andNU. Their general behavior is almost the same with t
of K/K0. In Refs. 8 and 9, (T1T)21 measured as a functio
of T is almost constant aboveTc in the fullerene supercon
ductors. It is difficult, however, to compare the present
sults with experimental observations because the lattice

FIG. 2. ~a! is the normalized Knight shiftK/K0 vs the reduced
temperature,T/eF , and~b! is (T1T)21/(T1T)0

21 vs T/eF . HereK0

and (T1T)0
21 are, respectively, the zero-temperature values ofK and

(T1T)21 at theT5U5h50 limit. NU50, 0.4, 0.8 from bottom to
top andeF50.25 eV. HereK/K0 and (T1T)21/(T1T)0

21 decrease
more rapidly withT whenNU or h is large.
-
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stant changes from the thermal expansion. The lat
constant expansion affects the DOS and, consequentlyK
and 1/T1T.

In Fig. 3~a!, we showK as a function ofT for a set ofh
andNU. One can see that~a! the T50 value is suppresse
by NU, but, byh, it is increased for smallU and decreased
for largeU (K51 for T5U5h50), ~b! The low-T coeffi-
cient is nearly independent ofNU andh, and~c! the high-T
coefficient proportional toT3/2 is reduced ash becomes
larger. The above changes cause theK vs T curves to cross
each other as can be seen in Fig. 3. These crosses do
appear if we neglect the impurity vertex correction inx imp1,
that is, if we neglect the 1/t term in the denominator o
x imp1, and their origin is this impurity vertex correction, a
will be discussed in more detail below. Now, let us consid
the T50 limit case, which can be directly compared wi
Shastry and Abrahams. In Fig. 3~b!, we showK as a function
of NU for h51024, 0.05, and 0.1 atT50. The threeK vs
NU curves cross each other asNU is increased, as in Fig
3~a! discussed above. These crosses did not occur in Sha
and Abrahams, who neglected the impurity vertex correct
in x imp1. At T50, and for smallq and v, the impurity-
enhanced susceptibilityx imp can be expanded by integratin
Eq. ~6! as

x imp~q,v!'x imp
(0) ~q,v!

D0q2

D0q22 iv
, ~20!

where the diffusion constant is given byD05tvF
2/3, and

x imp
(0) (0,0)5x imp(0,0)5x imp1(0,0)511(p/4)h1 1

8 h2, up to
the order ofh2. Theph/4 in x imp

(0) comes from the impurity
vertex correction in thev5q50 limit and h2/8, from the
self-energy correction due to impurity scatterings in t
renormalized Green’s functions. Shastry and Abrahams

FIG. 3. ~a! is the Korringa ratioK vs T/eF , and~b! is K vs NU
at theT50 limit. K51 in theT5U5h50 limit. eF50.25 eV, and
NU5 0, 0.4, 0.8 from bottom to top for~a!. The crosses among th
curves for differenth occur at lowerT asNU is increased, imply-
ing that inK vs NU crosses occur at lowerNU whenT is increased.
~b! can be compared with Ref. 3, where there are no crosses am
different h values.
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glected the impurity vertex corrections in calculatin
x imp(q,v50), and found thatx imp

(0) (0,0)'11h2/8, in agree-
ment with the present result. These two terms enha
x imp1(0,0) compared with the free electron value of 1. B
causex imp1(q,0) is multiplied by NU in the denominator
when calculatingK or 1/(T1T) as in Eq. ~9! or ~13!, the
effects ofU are stronger for largerh. Consequently,K de-
creases faster for largerh asNU is increased. This, togethe
with the fact thatK is larger for largerh at U50, causes the
crosses among the curves ofK vs NU as shown in Fig. 3~b!.
Since theph/4 term inx imp1(0,0) is the dominant contribu
tion from the impurity scatterings compared withh2/8, these
crosses do not occur without the impurity vertex correcti
It should be interesting if this prediction can be confirmed
experiments.

IV. SUMMARY AND CONCLUDING REMARKS

In this paper, we studied the Korringa ratioK
51/(T1TK2), Knight shift K, and nuclear spin-lattice relax
ation timeT1 of ferromagnetically correlated impure meta
at finite temperature. They were calculated from the s
susceptibility including the self-energy correction due to i
purity scatterings and the vertex correction due to
d-function electron-electron interaction and impurity scatt
ings. The spin susceptibility was formulated with Matsuba
Green’s function to consider finite-temperature effects a
analytically continued to the real frequency. TheK and
(T1T)21 decrease withT, but K increases asT is raised
becauseK2 decreases more rapidly than (T1T)21 with T.
Also, K and (T1T)21 increase asU or h is increased, andK
decreases asU is increased.

The conventional interpretation of the Korringa ratio,
mentioned in Introduction, is that whenK of a material is
larger ~smaller! than unity, it implies that the material i
antiferromagnetically ~ferromagnetically! correlated. The
ce
-

.
y

n
-
e
-
a
d

Shastry-Abrahams contribution is thatK is increased by non-
magnetic impurity scatterings, so thatK of the ferromagneti-
cally correlated dirty metals, whereK is suppressed by the
ferromagnetic correlation but increased by the impurity sc
terings, can be close to 1, just like the free electron case. T
means that one should be careful in extracting the strengt
the ferromagnetic correlation from the Korringa ratio.

Our observation in the present work is that the Korrin
ratio is increased by nonmagnetic impurity scatterings wh
both U and T are small, butK is decreased by impurity
scatterings whenU is comparable withUcr or T is compa-
rable witheF . This implies thatK is enhanced by impurity
scatterings only for weakly ferromagnetic dirty metals at lo
T, but suppressed whenU or T is large. This causes th
crosses among theK vs NU curves for the different impurity
scattering rates 1/t in the present calculations. The cross
also occur inK vs T at a givenU among different values o
1/t. Those crosses are caused by the impurity vertex cor
tion in x imp1(0,0), which was neglected in previous calcul
tions. The present exact numerical calculations within
finite-temperature extension of the Fulde-Luther formulatio
shown in Fig. 3, confirm that the above behavior is due
impurity vertex corrections. This observation requires th
the interpretation according to Shastry and Abrahams sho
be modified, and one should do a more careful analysis
estimating the strength of the ferromagnetic correlation
impure materials from the Korringa ratio.
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