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Magnetization plateaus of the Shastry-Sutherland model for SrCu2„BO3…2:
Spin-density wave, supersolid, and bound states

Tsutomu Momoi*
Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138

Keisuke Totsuka
Department of Physics, Kyushu University, Hakozaki, Higashi-ku, Fukuoka-shi 812-8581, Japan

~Received 1 June 2000!

We study the Heisenberg antiferromagnet on the Shastry-Sutherland lattice under magnetic fields to clarify
the magnetic properties of SrCu2(BO3)2. Treating magnetic excitations promoted by the field as Bose particles
and using strong-coupling expansion, we derive an effective Hamiltonian for the effective magnetic particles.
Anisotropic repulsive interactions between effective particles induce ‘‘insulating’’ states with a stripe spin-
density wave~SDW! structure at magnetizationm/msat51/3 and a checkerboard structure at 1/2, and thereby
form magnetization plateaus. Supersolid phases appear around insulating SDW phases by changing the mag-
netic field. The nature of these supersolid phases is discussed in detail. We also demonstrate how the geometry
of the Shastry-Sutherland lattice affects dynamical properties of magnetic excitations significantly and makes
quintuplet (S52) bound states condense for very small magnetization.
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I. INTRODUCTION

Since plateau structures were observed in the magne
tion process of a series of quasi-one-dimensional
compounds,1 magnetization plateaus have been attracting
tensive interests. The appearance of plateaus in magne
tion curves was explained as metal-insulator transitions
magnetic excitations driven by a magnetic field;2 magnetic
excitations crystallize and form spin-density wave~SDW!
orders in the plateau states, and they are itinerant in the
plateau states. Recently it was discussed that this phen
enon is not limited to the one-dimensional systems bu
more general, and occurs in two- and three-dimensional
tems as well.3–5 Before the recent studies, magnetization p
teaus were already known to appear atm/msat51/3 in the
antiferromagnetic compounds on the triangular latti
C6Eu,6 CsCuCl3,7 and RbFe(MoO4)2.8 Theoretically, pla-
teaus were seen atm/msat51/3 in the Heisenberg antiferro
magnet on the triangular lattice,9–11 and also atm/msat

51/2 in the multiple-spin exchange model with four-sp
interactions.12,4 The 1/3 plateau comes from the appearan
of a collinearuudstate9–11and the 1/2 plateau from theuuud
state.12,4 These magnetization plateaus can also be rega
as superfluid-insulator transitions of flipped-spin degree
freedom.4,5 It may be worth mentioning that there is als
another trial to realize the magnetization plateau in tw
dimensional systems as gapped spin liquid states analo
to the fractional quantum hall effect~FQHE! wave
functions.13

Recently a quasi-two-dimensional compou
SrCu2(BO3)2 is attracting extensive interests because
shows magnetization plateaus and peculiar dynamical p
erties. The two-dimensional lattice structure of Cu21 ions in
SrCu2(BO3)2 is the so-called Shastry-Sutherland lattice,14,15

which is shown in Fig. 1. Susceptibility and specific-he
data show that interactions are antiferromagnetic, the s
PRB 620163-1829/2000/62~22!/15067~12!/$15.00
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excitation has a gap above the ground state, and the
anisotropy is weak.15 This material seems16 to be well de-
scribed with theS51/2 Heisenberg antiferromagnet on th
Shastry-Sutherland lattice.17 ~Hereafter we call this mode
simply the Shastry-Sutherland model.! The ground state of
the Shastry-Sutherland model is exactly a direct produc
local dimer singlets on bondsJ for the regionJ8/J,0.68
~Refs. 17 and 16! and there is a finite gap above the grou
state. Susceptibility and specific heat estimated from
model with J8/J50.68 fit well with the experimenta
results.16 ~Recently the value has been modified toJ8/J
50.635 by taking into account the three-dimensional co
pling of Shastry-Sutherland layers.18! In Ref. 15, Kageyama
et al. reported two plateaus atm/msat51/8 and 1/4 in the
magnetization curve of SrCu2(BO3)2. Theoretically, we
studied the magnetization process of the Shastry-Suther
model, treating a dimer triplet as a particle, and thereby p
dicted a novel broad plateau atm/msat51/3 in our previous
paper.5 It was argued that the appearance is due to
superfluid-insulator transition of the excitations. Quite r
cently, the above 1/3 plateau was experimentally observe
magnetization measurements up to a strong field of 5719

As was predicted in Ref. 5, this plateau is the broadest
ever found in this material. This seems to support the c
rectness of our argument based on the particle picture. T
material also shows peculiar dynamical properties,20–23 e.g.,
one-magnon excitation is almost dispersionless, but tw
magnon excitations have strong dispersion.20 The aim of this
paper is to present the details of our analyses and res
reported briefly in Ref. 5, and to proceed further there
giving remarkable consequences of the correlating hopp
of the effective Hamiltonian. This correlated hopping c
also explain the peculiar dynamical behaviors observed
experiments.24

The ground state of the Shastry-Sutherland model at z
magnetic field was studied for a varying ratioJ8/J by the
mean-field approximation,25 exact diagonalization method,16
15 067 ©2000 The American Physical Society
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and series expansion.26 It was found26 that the ground state i
the exact dimer state forJ8/J,0.69, a gapped plaquette sin
glet state for 0.69,J8/J,0.86, and Ne´el-ordered state for
0.86,J8/J. The parameters of SrCu2(BO3)2 estimated16,18

asJ8/J50.68~or 0.635! suggest that the spin state of the re
material belongs to the dimer phase, but it is very close to
phase boundary with the plaquette singlet phase. Consist
between theoretical and experimental results on the ma
tization plateau atm/msat51/3 ~Refs. 5 and 19! and dynami-
cal behavior in inelastic neutron scattering20,24 also supports
that the real material is in the dimer phase.

In this paper we study theS51/2 Heisenberg antiferro
magnet on the Shastry-Sutherland lattice and discuss
magnetic properties under a magnetic field. We analyze
model using strong-coupling expansion. In Sec. II we der
an effective Hamiltonian for the dimer-triplet excitation
Virtual triplet excitations yield various effective repulsiv
interactions, which are responsible for the plateaus. Altho
the usual single-particle hopping is completely missing fr
the resulting Hamiltonian, correlated hopping processes
contained instead.

In Sec. III we investigate the magnetization process
plying the classical approximation to the effectiv
~pseudospin! Hamiltonian and show that plateaus appear
m/msat51/3 and 1/2. Both of the plateau states are M
~SDW! insulators of magnetic excitations. Spatially anis
tropic interactions perturbatively generated stabilize sev
SDW structures. Near the plateau states, there are super
phases, in which SDW long-range order~LRO! and super-
fluid coexist.28–32Field ~B! versus the coupling (J8/J) phase
diagram is also presented.

Although the interdimer couplingJ8/J is not small, the
special geometry of the Shastry-Sutherland lattice stron
suppresses bare one-particle hopping and hence the c
lated hopping becomes important. This fact leads to rem
able consequences on the motion of magnetic excitation
Sec. IV we investigate correlated hopping more closely a
demonstrate how it favors the formation of a bound pair
dimer triplets whichrepel each other at the level of the ba
Hamiltonian. This bound state has a relatively large disp
sion and may be an elementary particle at very low mag

FIG. 1. Shastry-Sutherland lattice. Solid~dotted! lines denote
bonds with strong exchangeJ ~weak oneJ8).
l
e
cy
e-

he
is
e

h

re

-

t
t
-
al
lid

ly
rre-
k-
In
d
f

r-
e-

tization, instead of the single dimer triplet. The nonplate
state would be superfluid of these bound states at leas
very small magnetization. Above a certain threshold value
magnetization, individual dimer triplets become element
particles and the nonplateau state is characterized by su
fluidity of single dimer triplets.

In Sec. V we also discuss spin excitation just below t
saturation field. It is found that the lowest-energy states e
on a close curve instead of a point in the momentum spa

Critical phenomena of the plateau transition are discus
in Sec. VI and are argued to be in the same universality c
as the superfluid transition of the interacting boson system
the dilute limit.

II. EFFECTIVE HAMILTONIAN

In this section we derive an effective Hamiltonian for th
magnetic excitations under a strong enough magnetic fi
We begin with theJ850 limit. In this limit the lowest triplet
excitation over the~dimer! singlet ground state is apparent
obtained by promoting one of the dimer singlets to a tripl
Although the dimer product remains to be the exact grou
state even for nonzeroJ8, the above completely localize
triplet does not; perturbationJ8 ‘‘broadens’’ the triplet by
exciting nearby singlets. Unlike the ground state which
perfectly free from quantum fluctuation, excited stat
strongly suffer from it. This is one of the most importa
features of the model. As a result,~physical! triplets can
interact with each other with the help ofvirtual triplets cre-
ated by perturbation and the effective Hamiltonian for t
physical triplet degrees of freedom should containeffective
interactions.

The most systematic way to take into account such virt
processes would be the strong-coupling expansion.2,3 We
start from the limitJ850 and treat the interaction with cou
pling J8 by perturbation. In the absence of the external fie
the spin states of a single isolated dimer~J! bond consists of
a singlet and triplet separated by a gapJ. When the field is
increased until the lowest triplet withSz51 intersects the
singlet, we may keep only two states–the singlet and
lowest triplet—as the physical degrees of freedom as fa
the low-energy sector is considered.

We carry out the degenerate perturbation for such lo
energy degrees of freedom. Considering the triplet (S51)
state withSz51 as a particle~a hard-core boson! and the
dimer singlet (S50) as a vacancy, we derive an effectiv
Hamiltonian for the magnetic particles.~The rest of the spin
states, i.e., triplets withSz50 and21, are included into the
intermediate virtual states of the perturbation.! The perturba-
tional expansion is performed up to the third order inJ8/J
for degenerate states with a constant number of dimer tri
excitations with Sz51. The final form of the effective
Hamiltonian is as follows:
H5H01H11H21H3 , ~1!

H05~J2B!(
i

ni , ~2!
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H15
J8

2 (
NN

ninj , ~3!

H252
J82

J
(

i
ni1

J82

2J
(
NN

ninj1
J82

4J
(
i PA

$2ni 1e1~12ni !ni 2e11~bi 1e2
† bi 2e21H.c.!ni1~bi

†bi 1e22bi
†bi 2e21H.c.!

3~ni 2e12ni 1e1!%1
J82

4J
(
i PB

$e1↔e2%, ~4!

H352
J83

2J2
(

i
ni2

J83

8J2
(
NN

ninj1
J83

4J2
(
NNN

ninj1
J83

16J2
(
i PA

@4ni 1e2nini 2e2212ni 1e1~ni21!ni 2e116~bi 1e2
† bi 2e21H.c.!ni

15~bi
†bi 1e22bi

†bi 2e21H.c.!~ni 2e12ni 1e1!2~bi 1e2
† bi1H.c.!~ni 1e21e1ni 2e12ni 1e22e1ni 1e1!2~bi 2e2

† bi1H.c.!

3~ni 2e22e1ni 1e12ni 2e21e1ni 2e1!22~bi 1e21e1
† bi1H.c.!ni 1e2ni 2e122~bi 2e22e1

† bi1H.c.!ni 2e2ni 1e122~bi 2e21e1
† bi

1H.c.!ni 2e2ni 2e122~bi 1e22e1
† bi1H.c.!ni 1e2ni 1e11~bi 1e2

† bi1H.c.!~ni 1e21e1ni 1e12ni 1e22e1ni 2e1!1~bi 2e2
† bi1H.c.!

3~ni 2e22e1ni 2e12ni 2e21e1ni 1e1!12~bi 1e21e1
† bi1H.c.!ni 1e2ni 1e112~bi 2e22e1

† bi1H.c.!ni 2e2ni 2e112~bi 2e21e1
† bi

1H.c.!ni 2e2ni 1e112~bi 1e22e1
† bi1H.c.!ni 1e2ni 2e112~bi 1e22e1

† bi 2e22bi 1e21e1
† bi 2e21H.c.!ni 1e2ni

12~bi 2e22e1
† bi 1e22bi 2e21e1

† bi 1e21H.c.!ni 2e2ni2~bi 1e2
† bi 2e21H.c.!ni~ni 1e21e11ni 1e22e11ni 2e22e11ni 2e21e1!

2$~bi
†bi 2e21H.c.!ni 1e22~bi

†bi 1e21H.c.!ni 2e2%~ni 2e12ni 1e1!12~bi 1e2
† bi 2e21H.c.!ni~ni 2e11ni 1e1!23~bi

†bi 2e1

1H.c.!ni 1e1~ni 2e22e12ni 1e22e1!23~bi
†bi 1e11H.c.!ni 2e1~ni 1e21e12ni 2e21e1!#1

J83

16J2
(
i PB

@e1↔e2#, ~5!
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where indicesi and j run over an effective square lattice o
dimer bonds~both horizontal and vertical!, and theA (B)
sublattice contains horizontal~vertical! ones. The operatorbi

†

(bi) creates~annihilates! magnetic particle with spinSz51
at bond i, and ni5bi

†bi . The unit vectorse1 and e2 are
shown in Fig. 1. The interactions summed up onB sublat-
tices are obtained by replacinge1 ande2 in those onA sub-
lattices. The abbreviations NN and NNN denote pairs
nearest-neighbor and next-nearest-neighbor sites.

The Hamiltonian derived above does not have the b
one-particle hopping terms likebi

†bj1bj
†bi , which means a

single dimer triplet excitation is dispersionless at this ord
This is in a striking contrast with other spin gap system
e.g., the two-leg ladder. The energy gap of one dimer trip
excitation is evaluated as DE1(B)5J2B2J82/J
2J83/(2J2).

On the other hand, the effective Hamiltonian conta
many correlated-hopping processes, where an effective
ping of a particle is mediated by another one. Roug
speaking, these are closely related to two-particle Gr
functions of the triplet bosons. This correlated hopping
important for the dynamics of the Shastry-Sutherland mo
and it leads to many interesting conclusions; bound st
without attraction, supersolid states with stripe structure,
Most terms of higher orders concern the correlated hopp

Many two-body repulsive interactions are also derive
whose range and geometry are shown in Fig. 4 of Ref. 5.
nearest-neighbor repulsionVNN and the next-nearest
f
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,
e

neighbor one VNNN are derived asVNN5J8/21J82/2J
2J83/8J2 and VNNN5J83/4J2. ~There were a typographica
error and a mistake in the coefficients of the third-ord
terms ofVNN andVNNN in Ref. 5. There was also the sam
mistake in Ref. 27.! The third-neighbor repulsionV3rd be-
tween vertical~horizontal! bonds with the distance 2e1 (2e2)
is V3rd5J82/2J13J83/4J2. ThusV3rd is anisotropic and acts
only in one direction. The effective Hamiltonian~1! correctly
reflects the space-group symmetry of the original Shas
Sutherland model. If it is considered as a model of intera
ing hard-core bosons on asquarelattice consisting of dimer
bonds, it still contains matrix elements which are not inva
ant under naive 90° rotation about one site. We show in S
III that they lead to anisotropic SDW states with a stri
structure. Longer-range repulsions between particles can
pear from higher-order perturbations. Actually, Miyaha
and Ueda27 independently took into account such long-ran
interactions in a phenomenological manner, also add
weakone-bodyhopping by hand. Our finding is that there
much strongercorrelatedhopping processes and that triple
are not necessarily localized.

III. MAGNETIZATION PROCESS

In order to discuss the ground-state properties of the
fective Hamiltonian~1!, we first consider only repulsive in
teractions. From naive consideration of the range and ge
etry of the repulsive interactions~see Fig. 4 in Ref. 5!, we
can imagine various insulating density-wave states of dim
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triplets. Let us treat the repulsive interactions obtained
different orders ofJ8/J, separately.

~a! The strongest interaction comes from the first-ord
term and it is repulsive for adjacent triplets. This repuls
interaction chooses a SDW state with a two-~dimer! sublat-
tice checkerboard structure atm/msat51/2, where the unit
cell has four sites in the original Shastry-Sutherland latti
@See Fig. 5~b! in Ref. 5.#

~b! The next strong repulsive interactions originate fro
second-order terms and they are contained inVNN andV3rd.
Because of anisotropic interactionV3rd, a stripe SDW state
with a six- ~dimer! sublattice structure is stabilized a
m/msat51/3 as shown in Fig. 4.

~c! The third-order perturbation generates the weakest
teractions, which favor a SDW state with a ten-~dimer! sub-
lattice checkerboard structure atm/msat51/5.

These SDW states do not necessarily appear if we c
sider all interactions and correlated hopping terms toget
Whether the SDW insulator is realized or not is determin
by competition between repulsive interactions and correla
hopping.

To consider both effects of correlated hoppings and in
actions together, we study the effective Hamiltonian in
classical limit. To this end, we map the hard-core boson s
tem to theS51/2 quantum~pseudo! spin system and then
approximate the Pauli matrices by the components of a c
sical unit vector. Within the mean-field approximation, w
first search for the ground state taking into account two
four ~dimer! sublattices with a checkerboard structure a
also three~dimer! sublattices with a stripe structure, becau
insulating states with these configurations are expected f
the above consideration. To take account of larger subla
structures, we next study the ground state of a finite sys
with a Monte Carlo method, where we gradually decre
temperatures to zero. We consider a finite cluster of
dimers and impose a periodic boundary condition t
matches with all SDW configurations expected from the
pulsive interactions, i.e., a two-~dimer! sublattic and a five-
~dimer! sublattice checkerboard structure and three-~dimer!
sublattice stripe one.

The evaluated magnetization processes are shown fo
casesJ/J850.45, 0.6, and 0.68 in Figs. 2~a!, 2~b!, and 2~c!,
respectively. Plateau structures appear at magnetiza
m/msat51/3 and 1/2, but no plateau appears atm/msat51/5
and 1/4. Nearm/msat51/4, the slope of the curve become
less steep, but not flat. This means that them/msat51/4 state
is energetically stable, though it does not have spin gap
the plateau phases atm/msat51/3 and 1/2, there are SDW
orders and no off-diagonal long-range order~ODLRO!, that
is, collinear spin states are realized. In the nonplateau pha
spins have ODLRO. The spin configuration of each phas
explained in Secs. III A–III C. A remark is in order her
about our classical approximation. We obtained several
teaus by analyzing the classical pseudospin Hamilton
From this, one may conclude that these plateaus are
classical origin. However, the spins approximated by vec
are not the original ones but are pseudospins obtained
quantum objects—spin singlet and triplet—and hence th
plateaus are not classical.

As has been mentioned above, the spin configurations
tained in our approximate method concern the pseudo
t
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defined by the triplet (Sz511) and the singlet on a dime
bond. In order to translate the classical pseudospin confi
ration into the originalS51/2 one, it is convenient to con
sider the so-called spin-coherent state which realizes alm
‘‘classical’’ states using quantum states. It is well known th

FIG. 2. Magnetization processes of the Shastry-Sutherl
model withJ8/J50.45~a!, J8/J50.6 ~b!, andJ8/J50.68~c!. Solid
line is obtained from the effective Hamiltonian in the classical lim
and the dotted one from the exact diagonalization~ED! of the origi-
nal Shastry-Sutherland model with the sizeN524. The solid line
for J8/J50.68~c!, taken from Fig. 5 of Ref. 5, is also shown for th
comparison with ED.
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an S51/2 coherent state specified by a classical unit vec

VW 5~cosF sinQ,sinF sinQ,cosQ! ~6!

is given by~aside from a phase factor coming from the gau
degrees of freedom!

uF,Q&5ei (1/2)FsinS Q

2 D usinglet&1e2 i (1/2)FcosS Q

2 D utriplet&.

~7!

Plugging in the expressions ofusinglet& andutriplet& in terms
of the originalS51/2, we obtain

uF,Q&5ei (1/2)FsinS Q

2 D 1

A2
~ u↑↓&2u↓↑&)

1e2 i (1/2)FcosS Q

2 D u↑↑&. ~8!

Taking expectation values

^F,QuS1
1uF,Q&52

1

2A2
eiFsinQ,

^F,QuS2
1uF,Q&51

1

2A2
eiFsinQ,

^F,QuS1
zuF,Q&5^F,QuS2

zuF,Q&5
1

4
~11cosQ!, ~9!

we can see that in the presence of the superfluid LROQ
Þ0,p) the off-diagonal elements of the originalS51/2 spins
on a dimer bond align in an antiparallel manner.

In order to check the accuracy of the strong-coupling
pansion and the classical approximation, we also studie
finite system of the original Shastry-Sutherland model us
the exact diagonalization method. We diagonalized a 24-
system with a periodic boundary condition~Fig. 3! that
matches with the 12-sublattice structure at magnetiza
abovem/msat51/3 ~see Sec. III B!. The results are shown in
Fig. 2. Total behavior shows good agreement with the res
from the strong-coupling expansion. In the following, w
discuss the nature of each phase and phase diagram.

A. SDW on plateau states

On the plateau states, dimer triplet excitations crystal
forming SDW long-range orders, and there are spin ga
The plateau states atm/msat51/3 and 1/2 have SDW with

FIG. 3. Finite-size (N524) cluster that is used for the exa
diagonalization study.
r
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stripe and checkerboard structures, respectively, which
shown in Figs. 6~a! and 6~b! in Ref. 5. These configuration
are consistent with the insulating states naively expec
from the range and geometry of repulsive interactions. T
particles are perfectly closed packed atm/msat51/2 and 1/3,
avoiding the repulsive interactions from first- and secon
order perturbations, respectively.~See Fig. 4 for the case o
m/msat51/3.!

B. Supersolid states on nonplateau states

By applying a stronger magnetic field than the critic
value, the plateau states continuously change to supers
states in which superfluid components appear and coe
with the SDW of the plateau states. Since the appearanc
the superfluid component is accompanied by the Goldst
bosons, the plateau gap collapses.

Above the magnetizationm/msat51/3, particles with den-
sity 1/3 still form SDW with the stripe structure, which i
equal to the one atm/msat51/3, and the rest of the particle
become superfluid in ‘‘canals’’ between stripes.@See Fig.
5~a!.# Particles can hop across a line of SDW with the help
correlated hopping terms~see Fig. 6! and this hopping makes
correlations between superfluids in canals. These extra
ticles can Bose condense and the phases of the supe
particles align ferromagnetically inside an individual can
and antiferromagnetically between canals.

The supersolid state abovem/msat51/2 maintains the
same SDW as them/msat51/2 case and have superflu
components as well. Phases of superfluid components fo
stripe structure and the phase of one stripe aligns antipa
lelly to those of the next ones.@See Fig. 5~b!.#

In both supersolid phases, a single dimer triplet can m
by itself assistedby SDW LRO and it behaves as an eleme
tary particle of the superfluid. The SDW forms a global n
work of crystallized particles and it helps a dimer triplet
hop along the network owing to the correlated hopping. W
roughly evaluate the hopping of an extra particle by treat
the stripe SDW as a classical background. In Fig. 6 we sh
the matrix element of single-dimer-triplet hopping along
stripe. Note that triplet excitations are not confined in a o

FIG. 4. Stripe SDW structure atm/msat51/3, which is stabilized
by the anisotropic repulsionV3rd. Black bonds denote dimer triple
excitations and white ones dimer singlets. Arrows show the ra
of repulsive interactions.
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15 072 PRB 62TSUTOMU MOMOI AND KEISUKE TOTSUKA
FIG. 5. Spin configurations in supersolid phases slightly ab
m/msat51/3 ~a! and 1/2~b!. Black bonds denote dimer triplet exc
tations and white ones with arrows denote linear combination
dimer triplets and singlets, which can be written as Eq.~8!. The
SDW components are equal to those atm/msat51/3 and 1/2, respec
tively. Superfluid components of magnetic excitations exist
white bonds, and arrows on white bonds denote phasesF of par-
ticles ~pseudospins!. The original spin configuration is recovered b
Eq. ~8!.

FIG. 6. Hopping processes of a single dimer excitation~shaded
one! near a line of triplet excitations~black bonds!. t15(J8)2n/4J
13(J8)3n/8J2, t252(J8)2n/4J25(J8)3n/16J2, t352(J8)3n2/
8J2, and t45(J8)3n2/8J2. Here we assume the particle density
each black bond to ben. Matrices of hopping processes across t
line (t1 ,t4) are all positive and other ones are negative.
dimensional space~‘‘canal’’ ! between two rows of particles
A dimer triplet can hop both parallel and perpendicular to
stripe. The superfluid component of the system may beh
as an anisotropic two-dimensional Bose gas. The hopp
matrices inside of a stripe are negative, whereas those ac
a line of triplet excitations are positive. This makes t
phases of the superfluid component ferromagnetic inside
stripe and antiferromagnetic between stripes. A similar
isotropic superfluid was reported for the Bose-Hubba
model with frustrating interactions.33

C. Phase diagram

We show the phase diagram forJ8/J vs B/J at zero tem-
perature in Fig. 7, where the phase boundaries are not
accurate. The plateau atm/msat51/2 appears only in the re
gion 0,J8/J,0.51, and one atm/msat51/3 in 0,J8/J
,0.95. For largeJ8/J, insulating phases disappear and b
come superfluid phases. This is because correlated hopp
are dominant in the higher-order terms and they become
ficient for largeJ8/J. The phase diagram may be not qua
tatively accurate for largeJ8/J, since our arguments ar
based on a strong-coupling expansion. Furthermore, the
a possibility that the elementary particles change to plaqu
triplets26 for large J8/J, which is not taken into account in
our approximation.

Spin configurations at various values of magnetization
summarized as follows

~i! For 0,m/msat,1/3, spin configuration has large sub
lattice structures. The system is highly frustrated and
sometimes reached to different ground states with differ
magnetizations in the Monte Calro method. We expect t
weak interactions or quantum fluctuations can drastica
change the ground-state properties. One reason for this

e

of

n

FIG. 7. Phase diagram atT50 with the parameterJ8/J and the
magnetic fieldB/J. The lower- and upper bold lines correspond
the first critical field and the saturation field, respectively. For
latter, an analytic expression is available~see Sec. V!. Inserted fig-
ures denote density-wave order and phases of particles. Black b
denote localized particles~dimer triplets! and white ones vacancie
~dimer singlets!. Arrows on dimer bonds denote phases of particl
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biguity may be that a single dimer triplet is not an eleme
tary particle at very low magnetization, but a bound pair
triplets is.~See Sec. IV.!

~ii ! At m/msat51/3, there is only SDW LRO with stripe
structure~Fig. 4!.

~iii ! For 1/3,m/msat,mc1 with 0.5,J8/J,0.8, and for
1/3,m/msat,1/2 with J8/J,0.5, the ground state shows s
persolid states with stripe structure@Fig. 5~a!#.

~iv! At m/msat51/2 for J8/J,0.5, there is only SDW
LRO with the checkerboard structure@Fig. 6~b! in Ref. 5.#
The results of the exact diagonalization@Figs. 2~a! and ~b!#
indicate that this phase seems to be more stable than in
approximation because of quantum fluctuations. The ph
boundary atJ8/J50.51 might move to a larger value due
quantum effects. One possible reason for this discrepanc
that our classical approximation favors wavelike states~e.g.,
superfluid! against the localized state.

~v! For 1/2,m/msat,mc2, if J8/J,0.51, spins become
supersolid with stripe structure@Fig. 5~b!#.

~vi! For mc1,m/msat,1 with 0.51,J8/J, and for mc2
,m/msat,1 with J8/J,0.5, large sublattice structures, e.g
a helical structure, appear. We will discuss the nearly s
rated region in Sec. V. A new quantum phase may appea
this region.

IV. BOUND STATE OF TWO DIMER TRIPLETS NEAR
MÄ0

In this section we consider a striking effect of correlat
hopping on the dynamics of the Shastry-Sutherland mode
is most clearly seen in the low-magnetization region wh
the number of magnetically excited triplets is small.

First we suppose that there are only two excited triple
When they are far apart from each other, an individual trip
can hardly hop16 and it gains little energy by moving on
lattice.~This almost localizedproperty was actually observe
in inelastic neutron-scattering experiments20.! On the other
hand, when the two are adjacent to each other, the situa
is completely different. From the effective Hamiltonian, w
can easily see thatcorrelated-hopping processes make cohe
ent motion of two triplets possible, where a pair of tripl
dimer excitations form a bound state withSz52. ~In the
same way we can easily derive various bound states wiS
50, 1, 2 at zero magnetic field.24 Here we only discuss the
state withSz52, which becomes dominant under the ma
netic field.! Using the effective Hamiltonian, we can exact
show bound states. Because of the correlating hoppings,
triplet excitation exists necessarily in nearest-neighbor
next-nearest-neighbor sites of the other. A little calculat
shows that the hopping processes are decomposed int
center-of-mass motion and the relative motion, and that
latter is closed within the four states shown in Fig. 8. Hen
we can write the pair excited states as

(
i PA

exp~ iP•r i !$c1~P!u i ,1&1c2~P!u i ,2&1c3~P!u i ,3&

1c4~P!u i ,4&%, ~10!

where the two-dimensional momentaP5(px ,py) are defined
with respect to the chemical unit cell of the Shast
Sutherland lattice and unit vectors are defined in Fig. 9.~In
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this sense, the readers should not be confused ourP with that
used in Refs. 34 and 20.! The energy spectrav j (P)( j
51,2,3,4) of them are computed by diagonalizing the f
lowing hopping matrix:

S 2V01VNNN JNN JNNeiPy 0

JNN 2V01VNN J3rd 2JNNe2 iPx

JNNe2 iPy J3rd 2V01VNN 2JNN

0 2JNNeiPx 2JNN 2V01VNNN

D ,

~11!

where

V05J2B2
J82

J
2

J83

2J2
,

JNN5
J82

4J
1

5J83

16J2
,

VNN5
J8

2
1

J82

2J
2

J83

8J2
,

VNNN5
J83

4J2
,

FIG. 8. Four basesu i ,1& ~1!, u i ,2& ~2!, u i ,3& ~3!, andu i ,4& ~4! of
a bound state of two dimer triplets.

FIG. 9. Chemical unit cell of the Shastry-Sutherland lattice.
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J3rd5
J82

4J
1

3J83

8J2
. ~12!

In addition, there is another type of correlated motion o
tained from the above one by reversing the space about ty
axis. Roughly speaking, this corresponds to the intercha
of dimers A and B, and its spectra are given byv j
(2px ,py). These branches together with a dispersionl
band of a pair isolated triplets give the entire spectra of
two-triplet sector.

Since these bound states can move because of the c
lated hopping process, energy spectra of these states ar
persive. We show only the lowest branch in Fig. 10. T
lowest energy is given atP5(p,p) as

DE2~B!52 V01
1

2
$2J3rd1VNN1VNNN

2A~J3rd2VNN1VNNN!2116JNN
2 %. ~13!

On the other hand, two independent dimer triplet excitatio
~scattering state! have the dispersionless energy 2DE1(B)
52V0 ~small dispersion appears at sixth order a
higher16,34!. Expanding the right-hand side of Eq.~13! in
J8/J, we can readily verify that there is a gain in kinet
energy of2J(J8/J)3/4 from the two-particle threshold. Ac
tually, the lowest energy of the bound state is smaller th
that of two independent dimer triplets state for anyJ8/J as
shown in Fig. 11. For example, forJ8/J50.68 andB50, the
dispersion of a bound state takes the minimal value 0.442J at
P5(p,p), whereas two independent dimer triplets have
energy 0.761J in total. As is easily seen, two triplets com
bined to form theS52 bound states actually feel repulsiv
interactions between each other~i.e., VNN ,VNNN.0). Since
strong repulsionVNN acts for a pair on adjacent bonds, o
may naively expect that such bound motions are not e
getically favorable. However, we can take an optimal line

FIG. 10. Energy spectrum of the effective Hamiltonian up
third order atJ8/J50.63. A two-triplet bound state consists of fou
branches and we show only the lowest one~see the upper band!,
which is apparently lower than the two-particle threshold. The sp
trum of a single dimer triplet excitation (V0) is also shown~lower
band!. ~Note that it is dispersionless at this order.!
-
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combination of the four relative configurationsu i ,a& with
a51, 2, 3, 4, so that the bound state may avoid the effec
VNN ~note that onlyu i ,2& and u i ,3& feel the repulsionVNN)
while gaining the kinetic energy by the coherent motion. F
large VNN we can easily verify that the effect ofVNN is
canceled inDE2. The energy gain due to the motion is larg
than the cost from repulsion, and hence relatively sta
bound states are formed.

Next, we apply a magnetic field in thez direction. Be-
causeSz52 bound states have lower energy than two u
bound triplets, the bottom of the bound states first touc
the ground state when the field is increased and one-tri
excitation still has a finite energy gap at the critical magne
field. By increasing the magnetic field more than the critic
field, a macroscopic number of bound states condense
stead of the single dimer triplets. Thus the non-plateau s
at very low magnetization may be a superfluid of bou
states and is different from the almost localized dimer trip
state discussed by Miyahara and Ueda.16 The critical mag-
netic field of the magnetization process, where the magn
zation starts to increase from zero, corresponds to half of
energy gapDE2(0). If we regard the slow increase of mag
netization belowH1522.5 T ~Ref. 15! as the consequenc
of bound-state condensation, we can estimate the
DE2(0) as 51.0 K from the magnetization process.15,19 On
the other hand, the one-triplet energy gapDE1(0) is esti-
mated as 34.7 K from susceptibility,15 inelastic neutron
scattering,20 and ESR.21 If we set the parameters asJ
581.4 K andJ8553.5 K, estimates of the energy gap
DE1(0) andDE2(0), coincide with the experimental results

We expect that these bound states are destroyed at h
magnetization. Indeed, one-triplet excitations can mo
around abovem/msat51/3, as discussed in Sec. III B, an
they can gain more kinetic energy than bound states. Th
must be a transition of elementary particles from bou
states for very low magnetization to one-triplet states

c- FIG. 11. Energy of two dimer triplets for variousJ8/J. The
dashed line denotes the energy of two noninteracting dimer trip
(2V0) and the solid line denotes the energy of the bound state
two dimer triplets with the momentum (p,p).
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high magnetization. We can see this transition, if we neg
interactions between particles and apply mean-field appr
mation to the correlated hopping term. As particle density
increased, the one-particle hopping process effectively
pears as (bi

†bj1H.c.)^n& from the correlated hopping term
and then triplet particles gain kinetic energy. In this rou
estimation, a pair of unbound triplets have lower energy th
the bound state abovem/msat50.253 forJ8/J50.63. We can
expect that bound states disintegrate above a finite valu
magnetization and one-triplet particles turn to element
particles. This estimate of critical magnetization can
highly modified by strong correlation and readers should
consider the above value seriously.

Finally we mention about crystallization of bound state
One may expect bound states to crystallize at low magn
t
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zation, but it will not occur. If bound states tend to crysta
lize, bound states loose kinetic energy and then they will
unbound by repulsive interaction between triplets.

V. NEAR SATURATION

There is another region where quantum effects mani
themselves. In this section we briefly discuss the region
below the saturation field. In this region the one-particle e
citation can be obtained from the original Shastry-Sutherla
model without any approximation.

The single-particle excitation over the fully polarize
ground state is given by a single flipped spin. The dispers
of this excitation is readily computed by diagonalizing t
following hopping matrix:
S 2
1

2
~J14J8!

J8

2
~11e2 ipx!

J

2
e2 ipxe2 ipy

J8

2
~11e2 ipy!

J8

2
~11eipx! 2

1

2
~J14J8!

J8

2
~11e2 ipy!

J

2

J

2
eipxeipy

J8

2
~11eipy! 2

1

2
~J14J8!

J8

2
~11eipx!

J8

2
~11eipy!

J

2

J8

2
~11e2 ipx! 2

1

2
~J14J8!

D . ~14!
-
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In the above equation, momenta (px ,py) are defined with
respect to the chemical unit cell. Reflecting the fact tha
single unit cell contains four spins, the spectrum consists
four bands. Note that the four eigenvalues are invariant
der the point group D2d,

~px ,py!°~py ,px! and ~px ,py!°~2px ,py!. ~15!

In the dimer limitJ8/J!1, the lower two correspond to en
ergy of a singlet particle on dimer bonds, where the num
two comes from the two mutually orthogonal dimer bond
and the higher two to a triplet (Sz50) one; our approxima-
tion in Sec. II corresponds to neglecting the latter as hig
lying.

Although the expression of the dispersion is rather co
plicated, we can locate the position of the band minima
the momentum space, which is relevant in determining
structure in the vicinity of saturation. For 0<J8/J,1, the
lowest band takes a minimal value2J(11J8/J)2 on a
closed curve

cospx1cospy52S J8

J D 2

. ~16!

This implies that magnetization saturates at

Hc5JS 11
J8

J D 2

. ~17!

Because of a dispersionless mode on the closed curve
density of states~DOS! near saturation magnetization is lik
a
of
n-

r
,

r

-
n
e

the

one dimensional~1D! and different from the usual two
dimensional~2D! one. Hence the singularity of the magne
zation curve near the saturation magnetization would be
like, i.e., umc2mu;AuHc2Hu. This behavior can be seen i
the results of the exact diagonalization in Fig. 2.

The location of the dispersion minimumpmin together
with the corresponding eigenvector determines the s
structure at the semiclassical level. Usually spin states
below the critical field are correctly given by the classic
model.35,36 Detailed analyses of the wave functions reve
that the fourfold-degenerate classical helical order, wh
was pointed out by Shastry and Sutherland,17 corresponds to
the four apexes (6pmax,0),(0,6pmax) (pmax52 cos21(J8/J))
of the closed curve. The fate of the classical helical LR
when the quantum effects are fully taken into account
unclear at present. The four ground states with helical L
are connected by a gapless line, which means stiffnes
helical order is vanishing. We hence expect that quant
fluctuations destroy the classical LRO.

On the other hand, forJ8/J>1 the saturation fieldHc
54J8 becomesJ independent and the band minimu
shrinks to a single pointp5(0,0); the spin structure realize
in the vicinity of saturation is the classical staggered o
where spins connected byJ8 bonds align antiferromagneti
cally in thexy plane. Correspondingly, the transition to sat
ration is the same as that of 2D superfluid.39

VI. CRITICAL PHENOMENA

According to an analogy for many-particle theories, a p
teau state corresponds to a SDW insulating state and ga
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ones to supersolid states. As the plateau states atm/msat
50, 1/3 and 1/2 collapse by increasing the magnetic fie
superfluid components appear, whereas the SDW struc
still remains in each phase. Contrary to one dimension,
perfluid LRO is accompanied by the gapless Goldstone m
in our two-dimensional case. Hence, collapse of the plat
occurs at the same point with the onset of superfluidity co
ponent. On the other hand, if we look at the lower pha
boundaries of the SDW phases, SDW structures chang
the transition points in our approximation. In this case
phase transitions are presumably of first order.

Now let us consider the case of second-order transit
We can imagine two different situations. The first one is~i!
the transitions driven by changing the external field while
coupling J8/J is kept fixed. This transition is seen in th
actual magnetization process. This type of field-induced tr
sitions has a close relationship to the filling-control insulat
to-superfluid transitions in Bose systems, and the meth
used there can be imported to our case. The second one~ii !
continuous quantum phase transitions occurring with fix
values of magnetization. As the limitJ8/J↗` is ap-
proached, the Shastry-Sutherland model reduces to the
nary S51/2 square-lattice Heisenberg antiferromagn
where no magnetization plateau appears. Hence magne
tion plateaus vanish at some critical values ofJ8/J and are
superseded by supersolid~or, superfluid! phases. In the
present model, there is no particle-hole symmetry aro
insulating phases apparently. We hence conclude that
above two transitions have the same universality class.

First of all, we have to keep in mind that because of
special geometry of the Shastry-Sutherland model there i
a priori reason for believing that the system is described
the ordinary Bose liquid with a well-defined one-particle d
persion«(p);p2. Actually, the low-order effective Hamil-
tonian~1! lacks the one-particle part. However, we have se
in Sec. IV that this leads to the formation of dispersive tw
triplet bound states in the low-field region, and in Sec. III
that SDW structure makes one particle dispersive in the
persolid phase aroundm/msat51/3 and 1/2.

Near the phase boundaries, the superfluid amplitud
small and we can map the problem onto the effect
Ginzburg-Landau model described by the superfluid or
parameter.37 ~These Bose particles are not necessarily dim
triplet excitations, but they can be plaquette triplet states
two dimer triplets or flipped spin states.5! This enables us to
conclude that the superfluid-onset transition would be
scribed by the (211)-dimensional classicalXY model when
the particle-hole symmetry exists and by thez52 mean-
field-like transitions when it does not.38,39 In our case, the
effective boson model in Sec. II does not have particle-h
symmetry and we hence conclude that the plateau trans
is of the dynamical exponentz52 and behaves as

um2mcu;uH2Hcu log~C/uH2Hcu! ~2D system!
~18!

in two dimensions. Heremc andHc denote the critical mag
netization and field at the plateau transition. In the real m
terial, there are weak interactions between two-dimensio
layers and these interactions will push the system above
upper critical dimension, i.e.,
,
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um2mcu;uH2Hcu ~3D and quasi-2D systems!.
~19!

Note that these forms are quite different from that in on
dimensional systems,2 um2mcu;AuH2Hcu.

Here we also give a comment about the case where
kinetic term of Bose particles does not behave as«(p);p2.
According to the scaling argument of Ref. 38, exponents
this kind of transitions should satisfy the relation

zn51. ~20!

If the one-particle dispersion is of the form«(p);pl ( l de-
notes an even integer!, the standard power-counting argu
ment shows that the upper critical dimensions are given
du5 l . For d< l , we obtainum2mcu;uH2Hcud/ l .

For the case that the SDW structure changes at ph
boundary, e.g., the boundary between the plateau stat
m/msat51/2 and the supersolid one belowm/msat51/2, the
system shows a first order phase transition in our approxi
tion. We do not find any incommensurate phase betw
them. To take into account the possibility of any secon
order phase transition or incommensurate phase, we nee
consider the effect of quantum fluctuations more serious

VII. DISCUSSIONS AND FUTURE PROBLEMS

To summarize, we studied the magnetic behavior of
Shastry-Sutherland model using strong-coupling expans
Magnetic excitations show insulator-supersolid transitions
magnetizationm/msat51/3 and 1/2, and thereby create ma
netization plateaus. The magnetization curve obtained n
m/msat51/3 looks similar to the experimental result.19

At zero magnetization, bound states of triplet excitatio
are formed by the correlated hopping process. Above
critical field, quintuplet (S52) bound states become eleme
tary particles in the ground state and they condense, whe
for large magnetization, the bound states are destroyed in
ground states and triplet excitations become elementary
ticles. Triplet excitations are essential for the plateau tran
tions atm/msat51/3 and 1/2. In the experiments, it is uncle
in which region bound states appear as elementary partic
One possibility is that they appear in the tail of the magn
tization process belowm/msat'0.025. In this region, the
slope of the magnetization curve is different from that of r
parts.15,19 Further detailed analyses are needed on the na
of quasiparticles.

In the present analysis, we did not find the plateaus
m/msat51/8 and 1/4. The mechanism of stabilizing the
plateaus is not yet clear. It may be natural to believe t
dimer triplet excitations are crystallized by longer-range
pulsive interaction. (S52 bound states cannot crystallize b
cause of a special origin of the binding energy as we d
cussed in Sec. IV.! We can consider two origins for th
repulsions as follows.

~1! Though we cut the perturbation series at third ord
the higher-order expansions can produce longer-range re
sions between particles. These repulsive interactions may
duce crystallization at low magnetization.

~2! Longer-range repulsions can come from other antif
romagnetic spin interactions in the original spin mod
which have not been accounted for in the pure Shas
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Sutherland model. If we treat the antiferromagnetic inter
tions between next-neighbor dimer bonds, we can prod
crystallization at low magnetization. For example, Mu¨ller-
Hartmannet al.demonstrated the appearance of a 1/4 plat
considering another spin interaction, which acts betw
nearest-neighbor dimers.40

It is unclear which spin interaction is important in the re
material. We need a first-principle calculation to estim
exchange couplings. We also need to keep in mind that
real material is close to the plaquette singlet phase. Unde
magnetic field, if this phase becomes more stable than
dimer singlet state and plaquette triplets become elemen
particles, plaquette triplets may crystallize and hence cre
magnetization plateaus at low magnetization as discusse
Refs. 5 and 26. This should be considered in the future.
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APPENDIX A: EFFECTIVE HAMILTONIAN

In this appendix we briefly explain how to obtain the e
fective Hamiltonian in the framework of degenerate pert
bation. We suppose that the ground states of the unpertu
Hamiltonian (H0) are degenerated and we diagonalize th
degenerate ground states by degenerate perturbation. Le
operatorsP0 and Q0 be the projection operators onto th
degenerate~unperturbed! ground-state sector and its compl
ment, respectively. In addition, we define a projectionP onto
the perturbed ground-state~g.s.! sector.

According to Ref. 41, the problem of degenerate pert
bation reduces to solving the following problem:

P0HPP0ug.s.;a&5EaKug.s.;a&, ~A1!

where the Hermitian operatorK is defined by

K[P0PP0 . ~A2!

However, this form is not so convenient to our purpo
because it does not take the form of the ordinary eigenva
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problem. A trick invented by Bloch42 solves this difficulty.
The key is to introduce a new operatorU through the follow-
ing relation:

PP05UK. ~A3!

The operatorU can be expanded as

U5 (
n50

`

lnU (n), ~A4!

where thenth order coefficientsU (n) are given by

U (0)5P0 ,

U (1)5SVP0 ,

U (2)5~SVSV1S2VS0V!P0 ,

U (3)5~SVSVSV1S3VS0VS0V1S2VSVS0V1SVS2VS0V

1S2VS0VSV!P0 , . . . . ~A5!

In the above equations, we have used a short-hand nota
Sk defined by

Sk[H 2P0 for k50

1

~E2H0!k
Q0 for k>1.

~A6!

Then Eq.~A1! can be recasted as

~P0HU2Ea!Kug.s.;a&50. ~A7!

This is a usual eigenvalue problem and the matrix we hav
diagonalize is finally given by

Heff5P0HU

5E01lP0VP01l2P0V
1

E02H0
Q0VP0

1l3F P0V
1

E02H0
Q0V

1

E02H0
Q0VP0

2P0V
1

~E02H0!2
Q0VP0VP0G1•••. ~A8!

Note that non-Hermitian terms appear in general when
proceed to terms higher than second order. Reality of
eigenvalues is no longer guaranteed. To remedy this sh
coming, we have used the average ofHeff andH eff

† , which is
now Hermitian.
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