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Magnetization plateaus of the Shastry-Sutherland model for SrCw(BO3),:
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We study the Heisenberg antiferromagnet on the Shastry-Sutherland lattice under magnetic fields to clarify
the magnetic properties of SIgBO3),. Treating magnetic excitations promoted by the field as Bose particles
and using strong-coupling expansion, we derive an effective Hamiltonian for the effective magnetic particles.
Anisotropic repulsive interactions between effective particles induce “insulating” states with a stripe spin-
density wave(SDW) structure at magnetizatiom/mg,~ 1/3 and a checkerboard structure at 1/2, and thereby
form magnetization plateaus. Supersolid phases appear around insulating SDW phases by changing the mag-
netic field. The nature of these supersolid phases is discussed in detail. We also demonstrate how the geometry
of the Shastry-Sutherland lattice affects dynamical properties of magnetic excitations significantly and makes
quintuplet §=2) bound states condense for very small magnetization.

[. INTRODUCTION excitation has a gap above the ground state, and the spin
anisotropy is weak® This material seem8to be well de-
Since plateau structures were observed in the magnetiz&cribed with theS=1/2 Heisenberg antiferromagnet on the
tion process of a series of quasi-one-dimensional NiShastry-Sutherland latticé. (Hereafter we call this model
compoundg, magnetization plateaus have been attracting exSimply the Shastry-Sutherland modeThe ground state of
tensive interests. The appearance of plateaus in magnetiz&® Shastry-Sutherland model is exactly a direct product of
tion curves was explained as metal-insulator transitions ofe¢@! dimer singlets on bonds for the regionJ’/J<0.68
magnetic excitations driven by a magnetic fiélthagnetic (Refs. 17 and .1)6.6!”0' there is a fmlte 9ap apove the grounq
excitations crystallize and form spin-density wa@@DW) state. Su_scepflblllty and _specmc h_eat estlmated_from this
orders in the plateau states, and they are itinerant in the nonOdel 1g’V'th AL ex_perlmental
plateau states. Recently it was discussed that this pheno gsults.” (Recently the value has been modified 16/

enon is not limited to the one-dimensional systems but is, 0.635 by taking into account the three-dimensional cou-

: . : ling of Shastry-Sutherland layetd.In Ref. 15, Kageyama

:nore generl?l_,s??)nil occtl;rs n twci- ?n(? three-dlminSItqnal Ty_%t al. reported two plateaus ab/mg,=1/8 and 1/4 in the
ems as well. “betore the recent studies, magnetization pamagnetization curve of SrG(BO3),. Theoretically, we
teaus were already known to appeaméims,—1/3 in the gy gieq the magnetization process of the Shastry-Sutherland
antlfegromagnet|7(: compounds on 8the triangular - lattice,qqe, treating a dimer triplet as a particle, and thereby pre-
CeEu,” CsCuCl,” and RbFe(MoGQ),.” Theoretically, pla-  gicted a novel broad plateau mfmg,= 1/3 in our previous
teaus were seen at/mg,~= 1/3 in the Heisenberg antiferro- paper’ It was argued that the appearance is due to the
magnet on the triangular latti¢e;* and also atm/ms,  superfluid-insulator transition of the excitations. Quite re-
=1/2 in the multiple-spin exchange model with four-spin cently, the above 1/3 plateau was experimentally observed in
interactions'®* The 1/3 plateau comes from the appearancenagnetization measurements up to a strong field of 57 T.
of a collinearuudstaté **and the 1/2 plateau from theiud  As was predicted in Ref. 5, this plateau is the broadest one
state'®* These magnetization plateaus can also be regardasier found in this material. This seems to support the cor-
as superfluid-insulator transitions of flipped-spin degree ofectness of our argument based on the particle picture. This
freedom®® It may be worth mentioning that there is also material also shows peculiar dynamical propertfe3e.g.,
another trial to realize the magnetization plateau in two-one-magnon excitation is almost dispersionless, but two-
dimensional systems as gapped spin liquid states analogousagnon excitations have strong dispersidihe aim of this
to the fractional quantum hall effec(FQHE) wave paper is to present the details of our analyses and results
functions®® reported briefly in Ref. 5, and to proceed further thereby

Recently a  quasi-two-dimensional compoundgiving remarkable consequences of the correlating hopping
SrCw(BO3), is attracting extensive interests because itof the effective Hamiltonian. This correlated hopping can
shows magnetization plateaus and peculiar dynamical proglso explain the peculiar dynamical behaviors observed in
erties. The two-dimensional lattice structure o?Cuons in  experiment$?
SrCw(BOs), is the so-called Shastry-Sutherland latti¢é> The ground state of the Shastry-Sutherland model at zero
which is shown in Fig. 1. Susceptibility and specific-heatmagnetic field was studied for a varying ratié/J by the
data show that interactions are antiferromagnetic, the spimean-field approximatioft, exact diagonalization methdd,
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;N v tization, instead of the single dimer triplet. The nonplateau
! LR Al Bk state would be superfluid of these bound states at least for
very small magnetization. Above a certain threshold value of
magnetization, individual dimer triplets become elementary
/‘\\ D ra e, particles and the nonplateau state is characterized by super-
J k. P fluidity of single dimer triplets.
- Tes g " - . In Sec. V we also discuss spin excitation just below the
-~ R ' ey saturation field. It is found that the lowest-energy states exist
" v on a close curve instead of a point in the momentum space.
i _ Critical phenomena of the plateau transition are discussed
FIG. 1. Shastry-Sutherland lattice. ?olﬁdotteo} lines denote iy Sec. VI and are argued to be in the same universality class
bonds with strong exchangk(weak oneJ’). as the superfluid transition of the interacting boson system in

and series expansidAlt was found® that the ground state is the dilute limit.

the exact dimer state fa¥'/J<0.69, a gapped plaguette sin-
glet state for 0.69J'/J<0.86, and Nel-ordered state for Il. EEEECTIVE HAMILTONIAN
0.86<J’/J. The parameters of Srg{BO;), estimatedf8
asJ’/J=0.68(or 0.635 suggest that the spin state of the real  In this section we derive an effective Hamiltonian for the
material belongs to the dimer phase, but it is very close to th&agnetic excitations under a strong enough magnetic field.
phase boundary with the plaquette singlet phase. Consistendye begin with the)’ =0 limit. In this limit the lowest triplet
between theoretical and experimental results on the magnexcitation over thédimern singlet ground state is apparently
tization plateau atn/mg,= 1/3 (Refs. 5 and 1pand dynami- obtained by promoting one of the dimer singlets to a triplet.
cal behavior in inelastic neutron scatteifg also supports ~ Although the dimer product remains to be the exact ground
that the real material is in the dimer phase. state even for nonzerd’, the above completely localized
In this paper we study th&=1/2 Heisenberg antiferro- triplet does not; perturbatiod’ “broadens” the triplet by
magnet on the Shastry-Sutherland lattice and discuss th@xciting nearby singlets. Unlike the ground state which is
magnetic properties under a magnetic field. We analyze thiperfectly free from quantum fluctuation, excited states
model using strong-coupling expansion. In Sec. Il we derivestrongly suffer from it. This is one of the most important
an effective Hamiltonian for the dimer-triplet excitations. features of the model. As a resuliphysica) triplets can
Virtual triplet excitations yield various effective repulsive interact with each other with the help wirtual triplets cre-
interactions, which are responsible for the plateaus. Althouglated by perturbation and the effective Hamiltonian for the
the usual single-particle hopping is completely missing fromphysical triplet degrees of freedom should conteffective
the resulting Hamiltonian, correlated hopping processes ari@teractions.
contained instead. The most systematic way to take into account such virtual
In Sec. lll we investigate the magnetization process approcesses would be the strong-coupling expansiome
plying the classical approximation to the effective start from the limit)’=0 and treat the interaction with cou-
(pseudospin Hamiltonian and show that plateaus appear apling J’ by perturbation. In the absence of the external field,
m/mg,=1/3 and 1/2. Both of the plateau states are Mottthe spin states of a single isolated dini@rbond consists of
(SDW) insulators of magnetic excitations. Spatially aniso-a singlet and triplet separated by a ghpNhen the field is
tropic interactions perturbatively generated stabilize severahcreased until the lowest triplet witB’=1 intersects the
SDW structures. Near the plateau states, there are supersofithglet, we may keep only two states—the singlet and the
phases, in which SDW long-range ord&RO) and super- lowest triplet—as the physical degrees of freedom as far as
fluid coexist?®~*2Field (B) versus the coupling)(/J) phase the low-energy sector is considered.
diagram is also presented. We carry out the degenerate perturbation for such low-
Although the interdimer coupling’/J is not small, the energy degrees of freedom. Considering the tripiet ()
special geometry of the Shastry-Sutherland lattice stronglgtate withS*=1 as a particlga hard-core bosgnand the
suppresses bare one-particle hopping and hence the cordimer singlet 6=0) as a vacancy, we derive an effective
lated hopping becomes important. This fact leads to remarkHamiltonian for the magnetic particleSThe rest of the spin
able consequences on the motion of magnetic excitations. Istates, i.e., triplets wit*=0 and—1, are included into the
Sec. IV we investigate correlated hopping more closely andntermediate virtual states of the perturbat)orhe perturba-
demonstrate how it favors the formation of a bound pair oftional expansion is performed up to the third orderdiriJ
dimer triplets whichrepel each other at the level of the bare for degenerate states with a constant number of dimer triplet
Hamiltonian. This bound state has a relatively large disperexcitations with S°’=1. The final form of the effective
sion and may be an elementary particle at very low magneHamiltonian is as follows:

H:H0+H1+H2+H3, (1)

Ho=(J—B>Ei ni, 2
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J/

Hi=5 > ninj, 3
Jr2 J/2 Jr2
HZ:_TE ni*‘g% ni”ﬁﬁEA {20 a(1=)ni e+ (b, by -+ H.c)ni+ (b/b; o= blbj e+ H.C)
1 le
J/Z
X(ni—el_ni+el)}+_'z {er—el, (4)
4] ieB
Jr3 J’3 J’3 J'3
Ha=— E 2 nj— E % nin;+ E N%N nin;+ E .EA (4N NN o= 120 1 g (N — )N _ g +6(b], b o+ H.CON;
I le

+5(b/biy = bl bi o+ H.CH(NMi —e1 = Niseq) = (B, b+ H.CH(Ni s o et Ni—e1 — Nis o eaMivea) — (O] o +H.C)
X(Ni—e2-eaNiver— Ni—e+etMi—et) = 2(D} e e +H.CONj 2N e = 2(b]_ o b+ H.CIN oM e = 2(0] 94 by
+H.c.)ni_ezni_el—2(biT+ez_elbi+ H.c.)ni+e2ni+e1+(bf+e2bi+ H.c.)(ni+ez+elni+el—ni+e2_elni_el)+(bf_e2bi+H.c.)
X(Ni—er—etMi—e1~ Ni—ep+etNi+e1) + 2(b4 g s e by T H.CINi L eoNi e +2(D1 g g b+ H.CINi_ o e +2(b]_ g by
+H.CIN —eoNi o1 T 2(b]4 e 1 H.CON s o1+ 2(Dy o egbi 0= b o1 1B -2+ H.CINi ol

+2(b_ - ebir 2= bl e e1bi 2t HCINi 2N = (b, b ot H.CONI(N et +Miveo er T M2t Ni—e2ver)
—{(bbi_e+ H.cOni s o= (bbi s o+ H.CINi_eoh (N e =N 1) +2(0] b o+ H.CON(Mj _e1 +Nieeg) —3(bby ey

‘]’3
FH.CON (M- o a1 —Misep—ea) = 30Dy eg +H.CIN g (N o er— Ni—epren) ]+ o ,EB [e16], (5)
le

where indices andj run over an effective square lattice of neighbor oneVyyy are derived asVyy=J'/2+J'%/2)
dimer bonds(both horizontal and vertical and theA (B)  —J"%/8J2% and Vyyy=J"%/4J2. (There were a typographical
sublattice contains horizontéatertical) ones. The operat(h]‘iT error and a mistake in the coefficients of the third-order
(b;) creates(annihilates magnetic particle with spig?=1  terms ofVyy andVyyy in Ref. 5. There was also the same
at bondi, and n;=b'b;. The unit vectorse, and e, are ~ Mistake in Ref. 27.The third-neighbor repulsioV s be-
shown in Fig. 1. The interactions summed up Brsublat- ~ tWeen verticalhorizonta) bonds with the distancee? (2e;)

: - - : is Vaq=J"2/2]+3J'3/432. ThusV, is anisotropic and acts
tices are obtained by replacirg ande, in those onA sub- 3rd : 3rd p

lattices. The abbreviations NN and NNN denote pairs Ofonly in one direction. The effective Hamiltoni@) porrectly
nearest-neighbor and next-nearest-neighbor sites. reflects the space-group symmetry of the original Shastry-
gutherland model. If it is considered as a model of interact-

. . . . ing hard-core bosons onsauarelattice consisting of dimer
o.ne-partllcle hqpplng te.rm's I"@Tbi,”Lbier[’ which megns a b(?nds, it still contains m:Eix elements which arge not invari-
single dimer triplet excitation is dispersionless at this orderam under naive 90° rotation about one site. We show in Sec.
This is in a striking contrast with other spin gap systems,| that they lead to anisotropic SDW states with a stripe
e.g., the two-leg ladder. The energy gap of one dimer triplekcture. Longer-range repulsions between particles can ap-
excitation is evaluated as AE;(B)=J-B—J'?/J  pear from higher-order perturbations. Actually, Miyahara
—J3'%(23%). and Ued4’ independently took into account such long-range
On the other hand, the effective Hamiltonian containsinteractions in a phenomenological manner, also adding
many correlated-hopping processes, where an effective hogveak one-bodyhopping by hand. Our finding is that there is
ping of a particle is mediated by another one. Roughlymuch strongecorrelatedhopping processes and that triplets
speaking, these are closely related to two-particle Greeare not necessarily localized.
functions of the triplet bosons. This correlated hopping is
important for the dynamics of the Shastry-Sutherland model ll. MAGNETIZATION PROCESS
and it leads to many interesting conclusions; bound states
without attraction, supersolid states with stripe structure, etc. In order to discuss the ground-state properties of the ef-
Most terms of higher orders concern the correlated hoppingective Hamiltonian(1), we first consider only repulsive in-
Many two-body repulsive interactions are also derived,teractions. From naive consideration of the range and geom-
whose range and geometry are shown in Fig. 4 of Ref. 5. Thetry of the repulsive interactionsee Fig. 4 in Ref.  we
nearest-neighbor repulsiorVyy and the next-nearest- can imagine various insulating density-wave states of dimer
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triplets. Let us treat the repulsive interactions obtained at 1.2
different orders of)’'/J, separately.
(@) The strongest interaction comes from the first-order Ly (@JiJ=045
term and it is repulsive for adjacent triplets. This repulsive
interaction chooses a SDW state with a twdimen sublat- = 08 1
tice checkerboard structure at/mg,~=1/2, where the unit § 0.6 L
cell has four sites in the original Shastry-Sutherland lattice. §
[See Fig. B) in Ref. 5] 04 |
(b) The next strong repulsive interactions originate from
second-order terms and they are contained g andVjq. 02t ] SC expansion ——
Because of anisotropic interactiofy,4, a stripe SDW state ED (N=24) -----
with a six- (dimen sublattice structure is stabilized at 0 . : . . .
m/mg,= 1/3 as shown in Fig. 4. 0 05 1 é/?] 2 25 3
(c) The third-order perturbation generates the weakest in-
teractions, which favor a SDW state with a tédimer sub-
lattice checkerboard structure @ mg,~ 1/5.
These SDW states do not necessarily appear if we con- 1.2
sider all interactions and correlated hopping terms together.
Whether the SDW insulator is realized or not is determined 1} ®IiI=06
by competition between repulsive interactions and correlated
hopping. _ 08¢t
To consider both effects of correlated hoppings and inter- s
actions together, we study the effective Hamiltonian in the S 06f
classical limit. To this end, we map the hard-core boson sys- §
tem to theS=1/2 quantum(pseud® spin system and then 04 ¢
approximate the Pauli matrices by the components of a clas-
sical unit vector. Within the mean-field approximation, we 0.2} SC expansion ——
first search for the ground state taking into account two and 0 i ED (N =24) -----
four (dimen sublattices with a checkerboard structure and ' ' : ' :
also threg(dimer sublattices with a stripe structure, because 0 05 1 1‘%/ JZ 25 3 35
insulating states with these configurations are expected from
the above consideration. To take account of larger sublattice
structures, we next study the ground state of a finite system
with a Monte Carlo method, where we gradually decrease 1.2
temperatures to zero. We consider a finite cluster of 60
dimers and impose a periodic boundary condition that Lt (©JiJ=068 >
matches with all SDW configurations expected from the re- 7
pulsive interactions, i.e., a twddimer sublattic and a five- . 087 £
(dimen sublattice checkerboard structure and thrgémer) 2 4
sublattice stripe one. § 06 f :
The evaluated magnetization processes are shown for the & 7
casesl)/J’'=0.45, 0.6, and 0.68 in Figs(&, 2(b), and Zc), 04 ¥
respectively. Plateau structures appear at magnetization o .
m/mg,= 1/3 and 1/2, but no plateau appearsrdmg,= 1/5 027 [ Sgg’;%agsﬁ; ]
and 1/4. Neam/mg,~ 1/4, the slope of the curve becomes 0 , .

less steep, but not flat. This means thatrtieng,~= 1/4 state

is energetically stable, though it does not have spin gap. In
the plateau phases at/mg,~=1/3 and 1/2, there are SDW
orders and no off-diagonal long-range ord®DLRO), that
is, collinear spin states are realized. In the nonplateau phas
spins have ODLRO. The spin configuration of each phase i
explained in Secs. IlIA-IIC. A remark is in order here
about our classical approximation. We obtained several pl
teaus by analyzing the classical pseudospin Hamiltonian
From this, one may conclude that these plateaus are of
classical origin. However, the spins approximated by vectors

0 05 1 15 2 25 3 35 4
BlJ

FIG. 2. Magnetization processes of the Shastry-Sutherland
é‘godel withd’/J=0.45(a), J'/J=0.6(b), andJ’/J=0.68(c). Solid
gn'e is obtained from the effective Hamiltonian in the classical limit
and the dotted one from the exact diagonalizatieb) of the origi-
nal Shastry-Sutherland model with the side=24. The solid line
af_or J'/J=0.68(c), taken from Fig. 5 of Ref. 5, is also shown for the
%omparison with ED.

are not the original ones but are pseudospins obtained fafefined by the triplet $=+1) and the singlet on a dimer
quantum objects—spin singlet and triplet—and hence theskond. In order to translate the classical pseudospin configu-
plateaus are not classical. ration into the originalS=1/2 one, it is convenient to con-
As has been mentioned above, the spin configurations olsider the so-called spin-coherent state which realizes almost
tained in our approximate method concern the pseudospitclassical” states using quantum states. It is well known that
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FIG. 3. Finite-size N=24) cluster that is used for the exact VY , | |
diagonalization study. :’]\:DIC)Z: e[

an S=1/2 coherent state specified by a classical unit vector AR

Q= (cos®d sin®,sind sin®,cosO) (6) t
FIG. 4. Stripe SDW structure at/mg,~= 1/3, which is stabilized

eby the anisotropic repulsiov;,4. Black bonds denote dimer triplet

excitations and white ones dimer singlets. Arrows show the range

of repulsive interactions.

is given by(aside from a phase factor coming from the gaug
degrees of freedom

|®,0)= é(l’z)‘bsin( %) |singled + ei(l’z)‘bcos( %) |triplet).
7) stripe and checkerboard structures, respectively, which are
shown in Figs. &) and Gb) in Ref. 5. These configurations
Plugging in the expressions (sfingle} and|triplet) interms  are consistent with the insulating states naively expected
of the originalS=1/2, we obtain from the range and geometry of repulsive interactions. The
particles are perfectly closed packedhadimg,= 1/2 and 1/3,

12D 0)1 avoiding the repulsive interactions from first- and second-
|®,0)=¢12%sin > E(HD_HT» order perturbations, respectivelBee Fig. 4 for the case of
: m/mg,=1/3)
+ e‘“’”%os( ;) IT1). (8)
B. Supersolid states on nonplateau states

Taking expectation values By applying a stronger magnetic field than the critical
value, the plateau states continuously change to supersolid
<q)’|sir|q)’@>:_i d®sin®, states in which superfluid components appear and coexist
22 with the SDW of the plateau states. Since the appearance of

the superfluid component is accompanied by the Goldstone
1 bosons, the plateau gap collapses.
(P,0]S)|®,0)=+——€?sind, Above the magnetizatiom/mg,~= 1/3, particles with den-
2\2 sity 1/3 still form SDW with the stripe structure, which is
equal to the one an/mg,~= 1/3, and the rest of the particles
((I),|S§|<I>,)=<®,®|S§|®,®)=E(1+cos®), (9) become s_uperfluid in “canals” l?etween strip§§ee Fig.

4 5(a).] Particles can hop across a line of SDW with the help of
correlated hopping term(see Fig. 6 and this hopping makes
correlations between superfluids in canals. These extra par-
ticles can Bose condense and the phases of the superfluid
particles align ferromagnetically inside an individual canal
3nd antiferromagnetically between canals.

The supersolid state abowa/mg,=1/2 maintains the

ame SDW as then/mg,=1/2 case and have superfluid

components as well. Phases of superfluid components form a
I§tripe structure and the phase of one stripe aligns antiparal-
lelly to those of the next one§See Fig. B).]
In both supersolid phases, a single dimer triplet can move
itself assistecby SDW LRO and it behaves as an elemen-
tary particle of the superfluid. The SDW forms a global net-
work of crystallized particles and it helps a dimer triplet to
hop along the network owing to the correlated hopping. We
roughly evaluate the hopping of an extra particle by treating

On the plateau states, dimer triplet excitations crystallizehe stripe SDW as a classical background. In Fig. 6 we show
forming SDW long-range orders, and there are spin gapghe matrix element of single-dimer-triplet hopping along a
The plateau states at/mg,=1/3 and 1/2 have SDW with stripe. Note that triplet excitations are not confined in a one-

we can see that in the presence of the superfluid LRO (
# 0,7) the off-diagonal elements of the origingd=1/2 spins
on a dimer bond align in an antiparallel manner.

In order to check the accuracy of the strong-coupling ex
pansion and the classical approximation, we also studied
finite system of the original Shastry-Sutherland model usin
the exact diagonalization method. We diagonalized a 24-sit
system with a periodic boundary conditigirig. 3 that
matches with the 12-sublattice structure at magnetizatio
abovem/mg,= 1/3 (see Sec. lll B. The results are shown in
Fig. 2. Total behavior shows good agreement with the resuItB
from the strong-coupling expansion. In the following, we y
discuss the nature of each phase and phase diagram.

A. SDW on plateau states



15072 TSUTOMU MOMOI AND KEISUKE TOTSUKA PRB 62

(W} (a) ” \‘ (W} l’ \‘ (W} A .'O.@'
Y BT LS | S A R | .0.9
~ - ~ -
,:d#u > d—: 7 )
N e \ ’ N -7 \ 7 B S -
[ [ saturated lar blatti
1\ 1\ 1\
v v ferromagnet 'ge sublattice
structure

la.rge sublattice

. . structure
Qo dimer singlets

-~ ) \ -~
. ] v Ll I : 0 Ty 0%
S~A-- \ 7 S~ i
" v " FIG. 7. Phase diagram @t=0 with the parameted’/J and the
H !‘\ ,,I~ i magnetic fieldB/J. The lower- and upper bold lines correspond to
'

’f%i* I :*%5‘ 2 the first critical field and the saturation field, respectively. For the
v latter, an analytic expression is availalidee Sec. Y Inserted fig-
R L k- ures denote density-wave order and phases of particles. Black bonds
l t%:& - ] S~ ,C# -7 ] = denote localized particlgglimer tripletg and white ones vacancies
\ 7

- (dimer singlets Arrows on dimer bonds denote phases of particles.

2 ‘\ _- ~q II ‘\ . . ‘ ” 1
f#: :x%; - dimensional spacé‘canal”) between two rows of particles.
1 RN e \ 1 i i i

A dimer triplet can hop both parallel and perpendicular to the
" v " v stripe. The superfluid component of the system may behave

FIG. 5. Spin configurations in supersolid phases slightly above®S an anisotropic two-dimensional Bose gas. The hopping

m/me,= 1/3 (8) and 1/2(b). Black bonds denote dimer triplet exci- matrices inside of a stripe are negative, whereas those across

tations and white ones with arrows denote linear combinations oft line of triplet excitations are positive. This makes the

dimer triplets and singlets, which can be written as B). The  phases of the superfluid component ferromagnetic inside the

SDW components are equal to thosening,= 1/3 and 1/2, respec- Stripe and antiferromagnetic between stripes. A similar an-

tively. Superfluid components of magnetic excitations exist onisotropic superfluid was reported for the Bose-Hubbard

white bonds, and arrows on white bonds denote phdses par-  model with frustrating interactiors.

ticles (pseudospins The original spin configuration is recovered by

Eq. (8).

C. Phase diagram

We show the phase diagram f@t/J vs B/J at zero tem-
perature in Fig. 7, where the phase boundaries are not very
accurate. The plateau at/mg,~= 1/2 appears only in the re-
gion 0<J’/J<0.51, and one am/mg,=1/3 in 0<J'/J
<0.95. For largel’/J, insulating phases disappear and be-
come superfluid phases. This is because correlated hoppings
are dominant in the higher-order terms and they become ef-
ficient for largeJ’/J. The phase diagram may be not quali-
tatively accurate for largel’/J, since our arguments are
based on a strong-coupling expansion. Furthermore, there is
a possibility that the elementary particles change to plaquette
triplets?® for large J'/J, which is not taken into account in
our approximation.

Spin configurations at various values of magnetization are
summarized as follows

FIG. 6. Hopping processes of a single dimer excitatismaded (i) For 0<m/mg,<1/3, spin configuration has large sub-
one near a line of tr|p|et excitationéﬂack bondS tl:(\]')zn/u Iattice structures. The SyStem iS h|gh|y frustrated and we
+3(3)3n/832, t,=—(3")2n/43—5(3")3n/16J%, ty=—(3")%n? sometimes reached to different ground states with different
872, andt4:(J’)3n2/8J2_ Here we assume the particle density on magnetizations in the Monte Calro method. We expect that
each black bond to be. Matrices of hopping processes across theweak interactions or quantum fluctuations can drastically
line (t;,t,) are all positive and other ones are negative. change the ground-state properties. One reason for this am-
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biguity may be that a single dimer triplet is not an elemen- (1) |, ) o @ ., ' A v
tary particle at very low magnetization, but a bound pair of ] LA [] N AR U
triplets is.(See Sec. IV. -y o )

(i) At m/mg,=1/3, there is only SDW LRO with stripe PN PN I P
structure(Fig. 4). Pl ] P Cigal | RN ¥
(i) For 1/3<m/mg<m.; with 0.5<J'/J<0.8, and for TS SN ey

1/3<m/mg,< 1/2 with 3'/J< 0.5, the ground state shows su-

persolid states with stripe structureig. 5a)]. @3 ., L ., @ |, ) .
(iv) At m/mg,=1/2 for J'/J<0.5, there is only SDW o IR AT Yl SN -

LRO with the checkerboard structufBig. 6(b) in Ref. 5] 1] — l : .

The results of the exact diagonalizatifffigs. 2a) and (b)]

Y

indicate that this phase seems to be more stable than in our _ . \ [] ; LN N
. . . bl e S Sl pL anmmD 24 Sl
approximation because of quantum fluctuations. The phase R | B v ;
boundary atl’/J=0.51 might move to a larger value due to v " v
quantum effects. One possible reason for this discrepancy is FIG. 8. Four basef,1) (1), |i,2) (2), |i,3) (3), and|i,4) (4) of
that our classical approximation favors wavelike stageg., a bound state of two dimer triplets.
superfluid against the localized state.
(v) For 1/2<m/mg<mc,, if J'/J<0.51, spins become this sense, the readers should not be confuse® euith that
supersolid with stripe structuféig. 5b)]. used in Refs. 34 and 20.The energy spectrav;(P)(j
(vi) For mg;<m/mg,<1 with 0.51<J'/J, and for me, =1,2,3,4) of them are computed by diagonalizing the fol-
<m/mg,;<1 with J'/J<0.5, large sublattice structures, e.g., lowing hopping matrix:
a helical structure, appear. We will discuss the nearly satu-

- v ’ ~~

[y 1 v "

rated region in Sec. V. A new quantum phase may appear in [ 2VoT Vinn Inn Inn€e’y 0
this region. I 2Vo+ Vyn Jarg —Jyne Px
_|p ’
IV. BOUND STATE OF TWO DIMER TRIPLETS NEAR e Jara 2Vt Vi I
M=0 0 —JIne™x —JInN 2Vo+ Vnn
11
In this section we consider a striking effect of correlated
hopping on the dynamics of the Shastry-Sutherland model. there
is most clearly seen in the low-magnetization region where ERRIE
the number of magnetically excited triplets is small. Vo=J-B— —— —
First we suppose that there are only two excited triplets. J 237
When they are far apart from each other, an individual triplet
can hardly hof® and it gains little energy by moving on a 3’2 53’3
lattice. (This almost localizegroperty was actually observed JInn= 23 t—
in inelastic neutron-scattering experiméfsOn the other 16)
hand, when the two are adjacent to each other, the situation
is completely different. From the effective Hamiltonian, we Vien = £+ J_'Z_ J_'a
can easily see thabrrelatedhopping processes make coher- NNT 2 " 23 gj2’
ent motion of two triplets possible, where a pair of triplet
dimer excitations form a bound state wif=2. (In the 33
same way we can easily derive various bound states Siith V= —
=0, 1, 2 at zero magnetic fiefd.Here we only discuss the 45?
state withS?=2, which becomes dominant under the mag-
netic field) Using the effective Hamiltonian, we can exactly /7 - “‘\\ <
show bound states. Because of the correlating hoppings, one A ,', -7 vl
triplet excitation exists necessarily in nearest-neighbor or y \
next-nearest-neighbor sites of the other. A little calculation (O"l) \\ ‘\ ‘\
shows that the hopping processes are decomposed into the T \ PR \
center-of-mass motion and the relative motion, and that the g ,' Sso :\ - 2 ,' RN :\
latter is closed within the four states shown in Fig. 8. Hence ’ ’ ?
we can write the pair excited states as ) ,’\,’ )/
+ ’ . 7
A 4 P A /
;A exp(iP-r){cy(P)|i,1)+c,(P)|i,2)+c3(P)|i,3) ' \/t'x IR A
\\ y \\ \‘ \\ .
+cy(P)[i, 4}, (10 230,0) _-¥(1,0) -
where the two-dimensional momerRa (p,,p,) are defined ! R PLe /! )

P

with respect to the chemical unit cell of the Shastry-
Sutherland lattice and unit vectors are defined in Figlr®. FIG. 9. Chemical unit cell of the Shastry-Sutherland lattice.
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Energy
J

2

15

0.5

b

FIG. 10. Energy spectrum of the effective Hamiltonian up to J_
third order at)’/J=0.63. A two-triplet bound state consists of four 01 02 03 04 05 0.6 0.7 §
branches and we show only the lowest deee the upper band ) ) .
which is apparently lower than the two-particle threshold. The spec- G- 11. Energy of two dimer triplets for variout/J. The
trum of a single dimer triplet excitationv) is also showr(lower dashed line denotgs Fhe energy of two noninteracting dimer triplets
band. (Note that it is dispersionless at this order. (2V0)_ and the solld_ line denotes the energy of the bound state of

two dimer triplets with the momentumm( 7).

J/2 3J/3 . . ) . .. .
Ja= 75+ = (120  combination of the four relative configurationis«) with
48l a=1, 2, 3, 4, so that the bound state may avoid the effect of
In addition, there is another type of correlated motion ob-YNN (note that only|i,2) and|i,3) feel the repulsiorVyy)

: : while gaining the kinetic energy by the coherent motion. For
tained from the above one by reversing the space abowt thelgrge Vo We can easily verify that the effect ofyy is

axis. Roughly speaking, this corresponds to the interchan ) ) N
O;(I dime:JsgAyarl?d BI gnd Iits specrt)ra are giveln by, gcanceled iME,. The energy gain due to the motion is larger
’ J

(—Py.Py). These branches together with a dispersionlesgan the cost from repulsion, and hence relatively stable

band of a pair isolated triplets give the entire spectra of th ound states are formed. L : N
two-triplet sector. Nexté we apply a magnetic field in thedirection. Be-
Since these bound states can move because of the corr‘t‘a"’luses .:2 bound states have lower energy thgn two un-
lated hopping process, energy spectra of these states are Og)ﬁo_und triplets, the bottom of the bound states first touches
. t

persive. We show only the lowest branch in Fig. 10. The e ground state when the field is increased and one-triplet
lowest énergy is given @@= (. 7) as B excitation still has a finite energy gap at the critical magnetic

field. By increasing the magnetic field more than the critical
1 field, a macroscopic number of bound states condense in-
AE,(B)=2V,+ 5{—Jsrd+ Viunt Vi stead of the single dimer triplets. Thus the non-plateau state
at very low magnetization may be a superfluid of bound
_ _ 2 2 states and is different from the almost localized dimer triplet
V0= Vi Vin) 180w (19 state discussed by Miyahara and Ué¥Zhe critical mag-
On the other hand, two independent dimer triplet excitationsetic field of the magnetization process, where the magneti-
(scattering staehave the dispersionless energpR;(B) zation starts to increase from zero, corresponds to half of the
=2V, (small dispersion appears at sixth order andenergy gapAE,(0). If we regard the slow increase of mag-
highett®). Expanding the right-hand side of E(L3) in  netization belowH,;=22.5 T (Ref. 15 as the consequence
J'1J, we can readily verify that there is a gain in kinetic of bound-state condensation, we can estimate the gap
energy of—J(J'/J)%/4 from the two-particle threshold. Ac- AE,(0) as 51.0 K from the magnetization procéss’ On
tually, the lowest energy of the bound state is smaller tharthe other hand, the one-triplet energy gaf,(0) is esti-
that of two independent dimer triplets state for aHyJ as  mated as 34.7 K from susceptibility, inelastic neutron
shown in Fig. 11. For example, fdf/J=0.68 andB=0, the  scattering® and ESR If we set the parameters ad
dispersion of a bound state takes the minimal value Q442 =81.4 K andJ’'=53.5 K, estimates of the energy gaps,
P= (7, ), whereas two independent dimer triplets have theAE;(0) andAE,(0), coincide with the experimental results.
energy 0.761 in total. As is easily seen, two triplets com-  We expect that these bound states are destroyed at higher
bined to form theS=2 bound states actually feel repulsive magnetization. Indeed, one-triplet excitations can move
interactions between each othee., Vyy,Vann=>0). Since  around aboven/mg,=1/3, as discussed in Sec. Il B, and
strong repulsiorVyy acts for a pair on adjacent bonds, onethey can gain more kinetic energy than bound states. There
may naively expect that such bound motions are not enemust be a transition of elementary particles from bound
getically favorable. However, we can take an optimal linearstates for very low magnetization to one-triplet states for
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high magnetization. We can see this transition, if we neglectation, but it will not occur. If bound states tend to crystal-
interactions between particles and apply mean-field approxiize, bound states loose kinetic energy and then they will be
mation to the correlated hopping term. As particle density isunbound by repulsive interaction between triplets.
increased, the one-particle hopping process effectively ap-
pears as téfrijrH.c.)(n) from the correlated hopping term
and then triplet particles gain kinetic energy. In this rough
estimation, a pair of unbound triplets have lower energy than There is another region where quantum effects manifest
the bound state abowe/mg,=0.253 forJ’'/J=0.63. We can themselves. In this section we briefly discuss the region just
expect that bound states disintegrate above a finite value dfelow the saturation field. In this region the one-particle ex-
magnetization and one-triplet particles turn to elementangitation can be obtained from the original Shastry-Sutherland
particles. This estimate of critical magnetization can bemodel without any approximation.
highly modified by strong correlation and readers should not The single-particle excitation over the fully polarized
consider the above value seriously. ground state is given by a single flipped spin. The dispersion
Finally we mention about crystallization of bound states.of this excitation is readily computed by diagonalizing the
One may expect bound states to crystallize at low magnetifollowing hopping matrix:

V. NEAR SATURATION

! !

1 J » J B
--(J+43") 5 (1+e 'Px) € 'Pxe™ Py > (1+e 'Py)

2
l(1+épx) —E(J+4J’) l(1+e*ipy) J
2 2 2 2 10
ief'r’xépy 1(1+(-:J'py) —3(J+4J’) J—,(1+épx)
2 2 2 2
J' : J J' : 1
?(1+e'Pv) > ?(1+e"Px) _E(‘H‘”/)

In the above equation, momenta,(p,) are defined with one dimensional1D) and different from the usual two-
respect to the chemical unit cell. Reflecting the fact that alimensional2D) one. Hence the singularity of the magneti-
single unit cell contains four spins, the spectrum consists ofation curve near the saturation magnetization would be 1D-
four bands. Note that the four eigenvalues are invariant unlike, i.e.,|m.—m|~|H.—H]|. This behavior can be seen in
der the point group R, the results of the exact diagonalization in Fig. 2.
The location of the dispersion minimum,,;, together

(Px,Py)—>(Py.Px) and (py,py)—>(—px.py). (15  with the corresponding eigenvector determines the spin

structure at the semiclassical level. Usually spin states just

i i i ! < - e . . .
In the d|mgr limitJ /J.<1’ thellower two correspond to en below the critical field are correctly given by the classical
ergy of a singlet particle on dimer bonds, where the numbe 0del®>3® Detailed analyses of the wave functions reveal

two comes from the two mutually orthogonal dimer bonds,ihat the fourfold-degenerate classical helical order, which
and the higher two to a triplet{=0) one; our approxima- \yas pointed out by Shastry and Sutherlahdorresponds to
tion in Sec. Il corresponds to neglecting the latter as highefhe four apexes £ Pmax0): (0 Pmay) (Pmax=2 €0S ¥(J'/J))
lying. of the closed curve. The fate of the classical helical LRO

Although the expression of the dispersion is rather comwhen the quantum effects are fully taken into account is
plicated, we can locate the position of the band minima inunclear at present. The four ground states with helical LRO
the momentum space, which is relevant in determining there connected by a gapless line, which means stiffness of
structure in the vicinity of saturation. For<03’'/J<1, the helical order is vanishing. We hence expect that quantum
lowest band takes a minimal valueJ(1+J'/J)? on a fluctuations destroy the classical LRO.

closed curve On the other hand, fod’/J=1 the saturation fieldH.
) =4J’" becomesJ independent and the band minimum
J’ shrinks to a single poirp=(0,0); the spin structure realized
COSpy+ CoSpy =2 j) ' 18 i the vicinity of saturation is the classical staggered one

where spins connected k) bonds align antiferromagneti-
cally in thexy plane. Correspondingly, the transition to satu-
2 ration is the same as that of 2D superflgid.

17

This implies that magnetization saturates at

!

HCZJ(1+7

VI. CRITICAL PHENOMENA

Because of a dispersionless mode on the closed curve, the According to an analogy for many-particle theories, a pla-
density of state$DOS) near saturation magnetization is like teau state corresponds to a SDW insulating state and gapless
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ones to supersolid states. As the plateau states)/atg,; I[m—mJ~|H—HJ] (3D and quasi-2D systems

=0, 1/3 and 1/2 collapse by increasing the magnetic field, (19

zzﬁ?g#gncsompec;ncehngsh:ggeggnﬁgf;etisot:: dSirIzZ\:]ssigr?Ctsuuﬁme that these forms are quite different from that in one-
. ) e ' >“dimensional systenfsim—mg~ V[H—H.

perfluid LRO is accompanied by the gapless Goldstone mode Here we aI)s/o givel a cor$|1mer|1t abofj|t the case where the

in our two-dimensional case. Hence, collapse of the pIateaH- ; : 2
. : ' o inetic term of Bose particles does not behave: §s) ~ p“.
occurs at the same point with the onset of superfluidity com- b és) ~p

. According to the scaling argument of Ref. 38, exponents of
ponent. On the other hand, if we look at the lower phase, . -~ . !
boundaries of the SDW phases, SDW structures change %aqls kind of transitions should satisfy the relation
the transition points in our approximation. In this case the zv=1. (20)

phase transitions are presumably of first order. . ) o |
Now let us consider the case of second-order transition!f the one-particle dispersion is of the fora{p)~p’ (I de-

We can imagine two different situations. The first ongijs NOtes an even integerthe standard power-counting argu-
the transitions driven by changing the external field while theMent shows that the upper critical dlmenSI(Blns are given by
coupling J'/J is kept fixed. This transition is seen in the du=1. Ford=I, we obtainjm—m~[H—H]".

actual magnetization process. This type of field-induced tran- FOr the case that the SDW structure changes at phase
sitions has a close relationship to the filling-control insulator-Poundary, e.g., the boundary between the plateau state at
to-superfluid transitions in Bose systems, and the method®/Msa=1/2 and the supersolid one belaw'mg,=1/2, the
used there can be imported to our case. The second ¢ing is SyStem shows a flr_st order phase transition in our approxima-
continuous quantum phase transitions occurring with fixedion. We do not find any incommensurate phase between
values of magnetization. As the limid'/J "~ is ap- them. To take into account the possibility of any second-
proached, the Shastry-Sutherland model reduces to the ordifder phase transition or incommensurate phase, we need to
nary S=1/2 square-lattice Heisenberg antiferromagnet,cons'der the effect of quantum fluctuations more seriously.

where no magnetization plateau appears. Hence magnetiza-
tion plateaus vanish at some critical valueslof) and are VII. DISCUSSIONS AND FUTURE PROBLEMS
superseded by supersoligr, superfluid phases. In the

present model, there is no particle-hole symmetry aroun%h

insulating phases apparently. We hence conclude that tn\?lagnetic excitations show insulator-supersolid transitions at

above two transitions have the same universality class. o N )
First of all, we have to keep in mind that because of themagnetlzatmrm/msat 1/3 and 1/2, and thereby create mag

. .~ “netization plateaus. The magnetization curve obtained near
special geometry of the Shastry-Sutherland model there is ni%/msat: 1/3 looks similar to the experimental restt.

a priori. reason for _bteevir_1g that the system is desc'ribed.by At zero magnetization, bound states of triplet excitations

:)heersoi(r)?]':?gEggékgagl:’;"ﬂ:hzV;’:J\Ilzgfé'gfgf?gcet;\?gﬂggi(lj_'s'ar'e. formed by the correlated hopping process. Above the

tonian(1) lacks the one-particle part. However, we have see gritical f'.eld’ q_umtuplet =2) bound states become elemen-

in Sec. IV that this leads to the formation of d,ispersive two- 2y particles in t.h © ground state and they condense, wh_ereas

triplet Bound states in the low-field region, and in Sec. Il Bfor large magnet|zat|pn, the b_ou!’]d states are destroyed in the

that SDW structure makes one particle di,spersive in fhe s _.round s.tates anq tr_lplet excnatlons. become elementary par-
icles. Triplet excitations are essential for the plateau transi-

perngg? fhh:sehg;zugggr?éa;éf ?hn: S%L/Jz.erﬂuid amplitude itions atm/mg,= 1/3 and 1/2. In the experiments, it is unclear
P ’ P P ih which region bound states appear as elementary particles.

small and we can map the problem onto the effective S . ,
. ; : One possibility is that they appear in the tail of the magne-
Ginzburg-Landau model described by the superfluid Orde{izati(?n proce)és belo /n)gsafzpo.ozs. In this region, thge

parameter” (These Bose particles are not necessarily dimet lope of the magnetization curve is different from that of rest

triplet excitations, but they can be plaquette triplet states of 1519 £ rther detailed analyses are needed on the nature

two dimer triplets or flipped spin statésThis enables us to parts. ™ "Fur
conclude that the superfluid-onset transition would be de9f quasiparticles.
P In the present analysis, we did not find the plateaus at

scribed by the (& 1)-dimensional classicalY model when m/mg,=1/8 and 1/4. The mechanism of stabilizing these

the particle-hole symmetry exists and by the 2 mean- plateaus is not yet clear. It may be natural to believe that

LAl . ; 39
E?fgcltlil\(li ggggﬁlﬁ?: d\clavlhi(re]nslttacd(??tsjor:aajnoltnh(;l\J/:a Caasrﬁé:ltah-ﬁol edimer triplet excitations are crystallized by longer-range re-
) P ulsive interaction. $=2 bound states cannot crystallize be-

symmetry and we hence conclude that the plateau transitiop . . o .
is of the dynamical exponet=2 and behaves as Cause of a special origin of the binding energy as we dis

cussed in Sec. IY.We can consider two origins for the
repulsions as follows.

To summarize, we studied the magnetic behavior of the
astry-Sutherland model using strong-coupling expansion.

I[m—mJ~|H—HJlog(C/|[H—H{) (2D system
(19 (1) Though we cut the perturbation series at third order,
the higher-order expansions can produce longer-range repul-
in two dimensions. Heren. andH, denote the critical mag- sions between particles. These repulsive interactions may in-
netization and field at the plateau transition. In the real maduce crystallization at low magnetization.
terial, there are weak interactions between two-dimensional (2) Longer-range repulsions can come from other antifer-
layers and these interactions will push the system above th®magnetic spin interactions in the original spin model,
upper critical dimension, i.e., which have not been accounted for in the pure Shastry-
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Sutherland model. If we treat the antiferromagnetic interacproblem. A trick invented by Bloc¢i solves this difficulty.
tions between next-neighbor dimer bonds, we can produc&he key is to introduce a new operatdthrough the follow-
crystallization at low magnetization. For example, Mt ing relation:

Hartmanret al. demonstrated the appearance of a 1/4 plateau

considering another spin interaction, which acts between PPy=UK. (A3)

nearest-neighbor dimefs. The operatotJ can be expanded as
It is unclear which spin interaction is important in the real
material. We need a first-principle calculation to estimate
exchange couplings. We also need to keep in mind that the
real material is close to the plaquette singlet phase. Under the . - )
magnetic field, if this phase becomes more stable than th@/here thenth order coefficientdJ)™™ are given by
dimer singlet state and plaquette triplets become elementary uO@=p,

particles, plaquette triplets may crystallize and hence create ’
magnetization plateaus at low magnetization as discussed in u=svp,,
Refs. 5 and 26. This should be considered in the future.

u=n20 UM, (A4)

U@ =(SVSW S2VSV) Py,
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Then Eq.(Al) can be recasted as

APPENDIX A: EFFECTIVE HAMILTONIAN (PoHU —E,)K|g.s.1)=0. (A7)

In this appendix we briefly explain how to obtain the ef- This is a usual eigenvalue problem and the matrix we have to
fective Hamiltonian in the framework of degenerate pertur-diagonalize is finally given by

bation. We suppose that the ground states of the unperturbed

Hamiltonian (H,) are degenerated and we diagonalize these Her=PoHU
degenerate ground states by degenerate perturbation. Let the
operatorsP, and Q, be the projection operators onto the =Ey+APoVPy+ 7\2P0VE — QoVP,
degeneratéunperturbegiground-state sector and its comple- 0~ "to
ment, respectively. In addition, we define a projectianto 1
the perturbed ground-statg.s) sector. +2\3| PV Q,V Q,VP

According to Ref. 41, the problem of degenerate pertur- O Eg—Ho O Eg—Ho 0" °
bation reduces to solving the following problem:

PoHPPy|g.s.ia)=E K|g.s./@), (A1) —PoV(E—H)ZQoVPoVPo +-. (A8)
0~ /to
where the Hermitian operaté¢ is defined by Note that non-Hermitian terms appear in general when we
K=P,PP,. (A2)  Proceed to terms higher than second order. Reality of the

eigenvalues is no longer guaranteed. To remedy this short-
However, this form is not so convenient to our purposecoming, we have used the averageHf; and’H [, which is
because it does not take the form of the ordinary eigenvaluaow Hermitian.
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