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Spin dynamics of Mn12-acetate in the thermally activated tunneling regime:
ac susceptibility and magnetization relaxation
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In this work, we study the spin dynamics of Mn12-acetate molecules in the regime of thermally assisted
tunneling. In particular, we describe the system in the presence of a strong transverse magnetic field. Similar
to recent experiments, the relaxation time/rate is found to display a series of resonances; their Lorentzian shape
is found to stem from the tunneling. The dynamic susceptibilityx(v) is calculated starting from the micro-
scopic Hamiltonian and the resonant structure manifests itself also inx(v). Similar to recent results reported
on another molecular magnet, Fe8, we find oscillations of the relaxation rate as a function of the transverse
magnetic field when the field is directed along a hard axis of the molecules. This phenomenon is attributed to
the interference of the geometrical or Berry phase. We propose susceptibility experiments to be carried out for
strong transverse magnetic fields to study these oscillations and for a better resolution of the sharp satellite
peaks in the relaxation rates.
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I. INTRODUCTION

In recent years, numerous experimental results on ma
scopic samples of molecular magnets, especi
Mn12-acetate and Fe8-triazacyclononane, have drawn atte
tion to the peculiar resonant structure observed in the hys
esis loops and relaxation time measurements,1–4 as well as in
the dynamic susceptibility.2,5 In this paper, we concentrat
on Mn12 ~shorthand for Mn12-acetate!. At low temperature,
the observed relaxation timest are long, up to severa
months and more, and display a series of resonances
faster relaxation as a function of an external magnetic fi
directed along the easy~z! axis of the sample. These ar
considered as signs of macroscopic quantum tunne
~MQT! of magnetization.

Typical experimental samples consist of single crystals
ensembles of aligned crystallites of identical Mn12 mol-
ecules. Each molecule has eight Mn31 and four Mn41 ions
which, in their ferromagnetic ground state, have a total s
S510. Due to strong anisotropy along one of the crystall
axes (z direction!, there is a high potential barrier

U~Sz!52ASz
22BSz

4 , ~1!

with A/kB'0.54 K andB/kB'0.0011 K, between the op
posite orientations of the spin (Sz5610); the easy axis is
the same for all the molecules.6 The dipolar interaction be
tween the molecular spins, a possible relaxation mechan
has been found to be weak in Mn12.7,8 Instead, the observe
resonant phenomena are attributed to quantumtunnelingof
single spins—the response being magnified by the la
number of them—interacting with the phonons in the latti
The role of the hyperfine interactions is still under som
controversy and is only briefly touched upon in the follo
ing.

The main features of the experimental findings can
understood in terms of two competing relaxation mec
PRB 620163-1829/2000/62~22!/15026~16!/$15.00
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nisms: quantum-mechanical tunnelingthrough and thermal
activationover the anisotropy barrier. At high temperature
(T.3 K or T.6 K, depending on the experiment9!, the
spins relax predominantly via thermal activation due to
phonons in the lattice.10–12In this regime, the relaxation time
follows the Arrhenius lawt5t0 exp(U/kBT), where U/kB
'60 K denotes the barrier height andt0'1028 s the in-
verse attempt frequency.13 When temperature is lowered t
2,T,3 K, the time required by the over-barrier relaxatio
increases exponentially but several of the excited states
remain thermally populated. An external magnetic field c
be used to bring pairs of states on the opposite sides of
barrier to degeneracy enhancing the probability to tun
across the barrier. The tunneling arises due to crystal
anisotropy and possible transverse magnetic field at the
of the spin. The tunneling amplitudes are the larger the clo
to the top of the barrier the states are and, consequently
thermal population of the higher states plays a key role
relaxation, cf., e.g. Refs. 10–12 and 14. At still lower tem
peratures, tunneling and the relaxation becomes sensitiv
fluctuations in the dipolar and hyperfine fields.15 In this pa-
per, we concentrate in the regime of thermally activated t
neling.

Several authors have investigated the spin dynamics th
retically with the emphasis ranging from ‘‘minimal’’ models
assuming as simple a spin HamiltonianHS and a model of
the surroundings as possible~in order to explain experi-
ments, that is!,10–12,14,16–18to more specific models for inves
tigating the role of the dipolar and/or hyperfin
interactions,19–21 and combinations of these.12,14,16,22 The
thermally activated relaxation has typically been studied
ing a master equation approach to describe the time ev
tion of the spin-density matrix.10–12,14,16–18,23The suscepti-
bility, on the other hand, has only been treated within
phenomenological model.5,24–26

The existing theories have been successful in explain
the general features seen in experiments. However, sev
15 026 ©2000 The American Physical Society
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points call for further attention.~i! A microscopic calculation
of the dynamic susceptibility is missing altogether.~ii ! The
effect of a strong transverse magnetic field has not been t
oughly studied and, in particular, not in the context of t
susceptibility.25 ~iii ! Several authors including ourselve
have found a series of side resonances to arise in t
calculations16,18,23—the fact that these peaks are not in ge
eral ~see Ref. 27 for exceptions! observed in experiments i
not quite clear. In this work, we aim at elucidating the
points and present calculations for the relaxation rates
susceptibility in a unified language that can be convenie
extended to systems with stronger couplings. We work w
a Hamiltonian similar to, e.g., Ref. 18, cf. Eqs.~2!–~4!, but
introduce an alternative framework to work with the dens
matrix. It is well known that all the resonances can be
hanced by a strong transverse magnetic field but we s
that the resonances can also be reduced and even suppr
Both the relaxation rate, see also Ref. 22, and susceptib
are found to display significant dependence on the direc
of the transverse field suggesting that interference effect
a geometrical phase could be observed also in Mn12 and,
what is more, do so in the regime of thermally activat
tunneling.

The paper is organized as follows. Section II introduc
the microscopic model used for Mn12 and a discussion on th
different interaction mechanisms in the system. In Sec.
we develop a time-dependent description of the system
terms of a kinetic equation and the resulting master equa
governing the spin dynamics. The kinetic equation is solv
for the field-dependent relaxation timest(H) and the static
susceptibilityx0(H). The dynamic susceptibilityx(v;H) is
calculated in Sec. III B and a Kubo-type formula is foun
Section IV displays the numerical results for botht(H) and
x(v;H) accompanied with a discussion on the results a
their relevance to experiments. In Sec. V we sum up
work.

II. SYSTEM

The spin Hamiltonian of a single Mn12 molecule can be
written in the formHS5Hz1HT . The first term,

Hz52ASz
22BSz

42gmBHzSz , ~2!

with Sz being the spin component along the easy axis~here
thez direction!, describes the part that commutes withSz . It
consists of the anisotropy terms of Eq.~1! and a Zeeman
term which enables external biasing of the energies. The
isotropy constants have been experimentally estimated28,29as
A/kB50.52–0.56 K andB/kB50.0011–0.0013 K; theg
factor is 1.9.30 The resulting energy levelsEm for the eigen-
states ofSzum&5mum& together with the potential barrier ar
shown schematically in Fig. 1.

The second term in the Hamiltonian,

HT52
1

2
B4~S1

4 1S2
4 !2gmB~HxSx1HySy!, ~3!

does not commute withSz and gives rise to tunneling. Th
B4 term arises from crystalline anisotropy,B45(4.3214.4)
31025 K ~below we useB458.631025 K, but the par-
ticular choice is unimportant for the results obtained!,28
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while the second term is the Zeeman term corresponding
transverse magnetic fieldH'5H sinu ~in spherical coordi-
nates,u is the polar angle away from thez axis; the azimuth
angle is denotedf: Hx5H'cosf andHy5H'sinf).

Figure 2 shows the eigenenergies ofHS as a function of
the longitudinal magnetic fieldHz . Away from the reso-
nances, the eigenstatesud& resemble the statesum& and are
also localized onto the different sides of the barrier—the l
ear field dependence of the eigenenergies stems from
Zeeman term in Eq.~2!. Close to the resonances,HT couples
the um& states across the barrier and gives rise to avoi
crossings in the energy diagram forEd . The magnitude of
these splittings directly gives the tunneling strengths. D
pending on the states in question as well as on the magni
of B4 (H'50 for the moment!, the splittings are found to
vary enormously: from 10210 K for the choiceB4 /kB54.3
31025 K and the statesm5610 up to almost 2 K for
B4 /kB514.431025 K and the resonancem562. This up-
per limit is already of the same order of magnitude as

FIG. 1. Schematic of the energy diagram for 2S11521 eigen-
states ofHz together with the functional form of the potential ba
rier ~solid line!. The figure also shows examples of possible tran
tion processes: spin-phonon coupling may changem by 61 or 62,
while the anisotropy term inHT yields tunnel couplings across th
barrier – an example of a third-order~in B4) process is depicted in
the figure.

FIG. 2. The eigenenergies of the 21 states as a function ofHz .
The inset shows a blow up of the higher energies at low field
note especially the avoided crossings of the statesm2m854 di-
rectly coupled by theB4 term in HT . There are similar, although
smaller, splittings for the lower levels as well. The three arro
denote the effective barrier height that decreases with increa
Hz .
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level spacing and in fact even exceeds it rendering pertu
tive calculations of the tunneling couplings/strengths som
what questionable. Therefore, even though we first formu
everything in a general form, independent of the choice
basis for the spins, we calculate the actual results workin
the eigenbasis ofHS . This choice of basis provides the a
ditional advantage that it allows us to consider arbitrar
strong magnetic fields.

In absence ofH' , there is a selection rule toHT : only
statesm andm8 that are a multiple of four apart are couple
Experimental data do not lend support to such a rule, h
ever, but rather suggest that all transitions are allowed
turns out that already a tiny transverse field in Eq.~3! is
sufficient in achieving this—such a field may arise due
dipolar and/or hyperfine interactions within the sample,
below, as well as due to uncertainty in the precise an
between the external field and the easy axis of the sam
We assume throughout the paper a small constant misa
ment angleu51° andH'5uHu•sinu. In places, we wish to
investigate the effects of a significantly stronger transve
field and state so explicitly. The transverse field increases
tunnel splittings iff is close tonp/2 (n is an integer!, i.e.,
along thex and y axes, or leads to oscillations in the spl
tings if f is close to one of the directionsp(2n11)/4. Be-
low we denote these special directions as the hard axes o
molecules.31 The tunnel splittings are illustrated in Fig. 3 a
a function ofH' and for different anglesf, see Ref. 32.

The usage ofHS of an isolated spin is based, first of a
on the assumption that the molecules indeed reside in t
S510 ground state.34 This is well justified for the experi-
mental temperatures below 3–6 K—the energy required
excite the system to the lowest excited state withS59 is
around 30 K. The second assumption is the absence of in
action. In reality, the spins interact with each other via dip
lar interaction, with the nuclear spins via hyperfine intera
tion, and with the phonons of the surrounding lattic
Experimental evidence shows that the dipolar interacti
are small forT.2 –2.4 K,15,35 while the hyperfine interac
tions produce an intrinsic broadening of the order of 10 m
to the spin states.12,35 We neglect these for the moment an
return to them in Sec. IV C.

The spin-phonon interaction is mediated by variations
the local magnetic field induced by lattice vibrations a
distortions. For tetragonal symmetry, this can be gener
formulated as, cf. Ref. 18,

FIG. 3. The tunnel splittingsDm,2m as a function of the trans
verse magnetic field;Hz50. The three types of curves correspo
to three different anglesf: 0°, dashed; 40°, dotted; and 45°, soli
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Hsp5g1~exx2eyy! ^ ~Sx
22Sy

2!1
1

2
g2exy^ $Sx ,Sy%

1
1

2
g3~exz^ $Sx ,Sz%1eyz^ $Sy ,Sz%!

1
1

2
g4~vxz^ $Sx ,Sz%1vyz^ $Sy ,Sz%!, ~4!

where eab and vab are the symmetric and antisymmetr
strain tensors, respectively, andgi ( i 51,2,3,4) are the spin-
phonon coupling constants. For these, we adopt the va
from Ref. 18:g1'g4/25A and ug2u'g1 and ug3u'g4.36 In
leading order ingi ’s, Hsp produces transitions such that fo
g1,2 terms,Dm562 and, forg3,4 terms,Dm561. The pho-
nons themselves are described by

Hph5(
kWs

vkWsbkWs
†

bkWs ~5!

as a bath of noninteracting bosons.
To be more quantitative, the phonons are assumed to

plane waves with a linear spectrum and three modes—
transverse and one longitudinal—denoted bys. The ele-
ments of the strain tensor,eab[(]aub1]bua)/2 and vab
[(]aub2]bua)/2, are defined in terms of the local displac
ment vector

ua~rW !5(
kWs

A \

2NMvkWs
ea

(s)@bkWs
†

1bkWs#eikW•rW. ~6!

Here bkWs
(†) are the bosonic operators for phonons with wa

vector kW , vkWs is the corresponding frequency, andea
(s) the

ath element~of x, y, andz) of the polarization vector;N is
the number of unit cells andM the mass per unit cell.

Above we considered the energy scales inherent toHS ,
and the spin-phonon rates, which are found below~Appendix
A! to be typically of the order of 1025–1024 K, fall in
between the extremes of the tunnel splittings. This value
very small compared to the stronger tunneling couplings
seems to suit well for a perturbative treatment. On the ot
hand, for the low-lying and weakly coupled states the sp
phonon rates may be several orders of magnitude larger
the tunnel splittings and one would expect the tunneling
be suppressed. However, the intermediate regime, where
tunneling and spin-phonon rates are of the same orde
magnitude, requires some extra care; see below.

III. DYNAMICS

The magnetization measured in experiments is the m
lecular magnetizationM (t)5gmB^Sz(t)& magnified by the
large number of molecules in the samples. In order to ca
late this, we start with the general formulation

^Sz~ t !&5Tr@Sz~ t !•r0
tot#, ~7!

where r0
tot5rSrph denotes the initial density matrix of th

whole system encompassing the spin and phonon degre
freedom. The interaction between the two is assumed to



o

n
cr

in
at
es

nc
tio

r

ip
he

i

n

e

n
e

e

r-

tion

the
-
s of

nn

ally

red
er-

the
he

sis
, in
non
of

ant
ou-

ic

tion
-

to

PRB 62 15 029SPIN DYNAMICS OF Mn12-ACETATE IN THE . . .
turned on adiabatically and only enters the time evolution
Sz(t) ~in Heisenberg picture and with the convention\
51)

^Sz~ t !&5Tr~e1 i * t0

t dt8H(t8)Sze
2 i * t0

t dt8H(t8)
•r0

tot!. ~8!

Expansion of the exponentials and a standard eliminatio
the phonon degrees of freedom leads to an effective des
tion of the spin in terms of a reduced density matrixr(t)
5Trph@r tot(t)#. The details of the calculation can be found
Ref. 38, where we also introduce a real-time diagramm
formalism40 for expressing and evaluating all the quantiti
to follow. The reduced density matrixr(t) describes the full
time evolution of the spin degrees of freedom in the prese
of the spin-phonon interaction and, e.g., the magnetiza
takes the form

M ~ t !5gmB^Sz~ t !&[gmBTrS@Szr~ t !#5gmB(
m

m•rm,m~ t !.

~9!

The diagonal elementsrm,m(t) are just the probabilities fo
the spin to be in the statesum&.

A. Kinetic equation

The time evolution ofr(t) is governed by the kinetic
equation

ṙ~ t !1 i @HS ,r~ t !#5E
0

t

dt8S~ t,t8!r~ t8!. ~10!

The commutator on the left-hand side of Eq.~10! corre-
sponds to the free~Hamiltonian! time evolution of the spin,
while the integral on the right-hand side describes a diss
tive interaction which is nonlocal in time and contains t
spin-phonon coupling terms. The kernelS(t,t8)5S(t2t8)
is derived in Ref. 38 and the expressions needed for
evaluation are given in Appendix A up to orderO(g2). It
depends only on the time difference since the Hamiltonia
time-translationally invariant. According to Eq.~A8!, we
find thatS(t2t8) is a fast decaying function of time, and w
make the simplifying Markov assumption thatr(t) remains
essentially constant over the time periodDt within which
S(t2t8) decays to zero and taker(t) in front of the
integral.41 This is justified at least for the longest relaxatio
time t1 ~see below!. For convenience, we also take the upp
integration limit to infinity.

After taking r(t) out of the integral in Eq.~10! the inte-
gration over time~up to infinity! can be performed and w
are left with a constantS. Equation~10! becomes

ṙ~ t !52 iL 0r~ t !1Sr~ t ![Wr~ t ! ~11!

with L0[@HS ,.#. This is similar to the master equation fo
mulations in the literature12,14,16–18and may be solved for the
eigensolutions ofW:

ṙ ( i )~ t !5Wr ( i )~ t !5l ir
( i )~ t ! ~12!

r ( i )~ t !5r ( i )~0!•el i t. ~13!
f

of
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The real parts of the eigenvalues correspond to relaxa
rates Re(l i)52t i

21 .
The eigensolution ofW with l050 corresponds to the

stationary state, defined asṙ (0)(t)50 with r (0)(t)5r (0). The
diagonal elements of are the thermal probabilities to find
spin in the respective states. In them basis, the static mag
netization and susceptibility are readily expressed in term
the diagonal componentsrm

(0)5rm,m
(0) yielding

M05gmB(
m

mrm
(0) , ~14!

x05
]M0

]Hz
5gmB(

m
m•

]rm
(0)

]Hz
. ~15!

Since the stationary probabilities are given by Boltzma
factors we obtain in the absence of tunneling

x052
~gmB!2

kBT (
m,m8

m~m82m!rm
(0)rm8

(0) . ~16!

In the presence of tunneling, this form remains essenti
the same up to transverse fields of the order of 1 T~in this
range most of the tunneling splittings are too small compa
to the level spacing in order to change the result consid
ably!.

For all the other solutions Re(l i),0 and the vectors
r ( i )(t) correspond to deviations fromr (0). The longest relax-
ation timet1 is several orders of magnitude larger thant2
and the respective solution is interpreted to correspond to
interwell relaxation, i.e., from one side of the barrier onto t
other.

Above we have considered the full~reduced! density ma-
trix r(t). In Appendix B, we discuss the choice of the ba
and argue that thed basis has certain advantages and, e.g.
the case of strong tunneling compared to the spin-pho
rates, it allows the restriction to the diagonal elements
r(t)d,d8 only. The nondiagonal elements become import
when the rates for the tunneling and the spin-phonon c
pling are of the same order of magnitude.

B. ac susceptibility

In this section we outline the derivation of the dynam
susceptibility

x~v![E
0

`

dteivtx~t!, ~17!

x~ t2t8!5
]́ M ~ t !

]́ Hz~ t8!
5gmB

]́ ^Sz~ t !&

]́ Hz~ t8!
. ~18!

For convenience, we assume in the following thatH' can be
tuned to any~static! value independent ofHz and that the
actual measurement is done by applying a tiny ac-excita
field hz(v) on top of the staticHz . The more general calcu
lation of ]́ Ma(t)/ ]́ Hb(t8), a,b5x,y,z, can be carried out
along the same lines.

In Ref. 38 we show that the derivation with respect
Hz(t8) yields
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x~ t2t8!5 i ~gmB!2^@Sz~ t !,Sz~ t8!#& ~19!

which, when inserted to Eq.~17!, is just the Kubo formula
for the linear response to an external magnetic field. T
diagrammatic evaluation of Eq.~19! leads to the expression

x~v!52~gmB!2 (
d,d8,d9

mdF 1

2 iv1 iL 02S~v!G
d,d9

3S̃~v!d9,d8rd8
(0) , ~20!

whereS(v) is defined as the Laplace transform ofS(t,0),
andS̃(v) is an auxiliary function arising from the derivativ
of S(t,0) with respect toHz(t8). The explicit expressions fo
S̃(v)d,d9 turn out lengthy and are omitted here.

The resolvent in Eq.~20! is treated in terms of the eigen
solutions ofWr(t) and the appropriate projections of th
terms S̃(v)r (0)5( icir

( i ) are used. In particular, for th
component along the relaxing moder (1)(t), the resolvent in
Eq. ~20! reads

1

2 iv1 iL 02S~v!
5

1

2 iv2W~v!
'

1

2 iv1t1
21

.

The approximate sign is due to the Markov approximat
whereS(v)'S(0), cf. Appendix C. Apart from onet1 this
is the well-known factor in expressions for susceptibili
see, e.g., Refs. 44 or 24. The rest of Eq.~20! reduces to a
prefactor roughly proportional tot1

21 but with weakHz and
v dependences. The respective projections along the o
modes turn out to be proportional to the time constantst i .
These are very small and render all these terms negligible
the frequencies considered below. Therefore we are left w
the effective formula for the susceptibility

x~H,T,v!'
x0~H,T!

12 ivt1~H,T!
, ~21!

which has been widely used in explaining experiments, s
e.g., Ref. 5. For the low-frequency limit, we recover t
static susceptibility, i.e., limv→0x(v)5x0 wherex0 is given
by Eq. ~16!.

IV. RESULTS

In this section, we concentrate on results obtained in
eigenbasis ofHS . This choice is advocated by three poin
First, it allows us to consider much stronger transverse fie
~see the discussion on energy scales in Sec. II! than the com-
mon approach to calculate tunnel splittings in the leadi
order perturbation theory;39,14 second, the origin of the
Lorentzian shape of the resonances is seen to arise natu
from the tunnel splittings.16,23 The third point is that, in this
basis, all the relevant properties of the system are capt
by the diagonal elementsr(t)d,d only.43 This feature also
improves the performance of the numerics. We also pre
results obtained with the fullr(t) and discuss the difference
as examples of phonon-induced decoherence. The ene
are expressed in kelvin, magnetic fields in teslas, and rate
s21.
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A. Relaxation rates

The relaxation rate as a function of the longitudinal ma
netic fieldHz is shown in Fig. 4. The overall behavior is o
the Arrhenius form, i.e.,t't0 exp@bU(Hz)# where t0 only
gives a constant offset to the semilogarithmic figure andU is
the effective height of the barrier; see Fig. 2. On top of t
exponential field dependence, there are series of resona
located at

Hz
m,m852

m1m8

gmB
@A1B~m21m82!# ~22!

corresponding to the values of the external field that brin
the statesm and m8 on resonance; the resonances fo
groups close to the fieldsHz'nH1 where n5m1m8 and
H15A/gmB , see Fig. 4. The broadest of the resonances
semble those seen in usual experiments, while most of
resonances are too narrow to be seen and, as is discu
below, already the phonon coupling is sufficient to suppr
them. One of the main topics of this paper is the possibi
to detect some of the satellite peaks by the application o
relatively strong transverse fieldH' as well as to suppres
the already visible peaks by pointingH' along one of the
hard axes.

The whole curve in Fig. 4 can be understood in terms
the expression

t215(
n

@t0
(n)#21Dn~Hz!e

2bUn(Hz), ~23!

where the indexn enumerates the resonances~pairs of states
mn andmn8). As discussed in Appendix D, there is a certa
t0

(n) for each resonance; the functionDn(Hz) is a tunneling-
induced Lorentzian that yields the peak shapes, andUn(Hz)
is the effective barrier height for thenth resonance, i.e.,Un

FIG. 4. Relaxation rateG51/t as a function of the longitudina
magnetic field: without tunneling~dashed! and with tunneling
~solid!. Here, only the diagonal density matrix elements are us
The large offset between the two curves is due to the broad Lor
zian shapes under the even resonances: there is a strong direc
pling between the statesm52m8522 around Hz50, m5
23,m851 under the second series of peaks (Hz'2H1), andm5
24,m850 under the fourth series of peaks (Hz'4H1). The sharp
resonances arise due to tunnel coupling of lower-lying statesm;
their height reflects the energiesEm via the Arrhenius lawG
}exp@2b(Em2E210)#, and the peak width is given by the tunn
splitting. Here the temperature is 2.5 K.



i-

n
ls
ve
to

on

so

ar
th
tw
on
e
n

m
ls
e

s
ow

d
u
tu

he
ou
re
ele

in
m

hig
in
-
he
, s
th

te
e

h
it

ei

li
as

le
ak,
si-

d in
g of
the

of
:

ower

e

spin-

rise
he
ghts

045
dif-
5°,

PRB 62 15 031SPIN DYNAMICS OF Mn12-ACETATE IN THE . . .
5Emn
2E210 (E210 is the energy of the metastable min

mum!. The widths of the Lorentzian peaks are given by

dHz5
4uDnu

gmBumn2mn8u
, ~24!

where 2uDnu is the tunnel splitting between the resona
states, cf. Appendix D. As is seen in the figure and a
suggested by the inset in Fig. 2, the background is not gi
by the over-barrier relaxation but by the ‘‘leakage’’ due
the direct coupling of states withm2m8564, e.g.,m5
62,m8572 close toHz50 andm561,m8573 close to
Hz52H1. This effectively lowers the barrier height toU
'E222E210. The rates that determinet0

(n) , depend only
weakly on temperature, the resonant states, andHz , cf. Ap-
pendix D. This is in line with the experimental observati
that the estimated prefactor of the Arrhenius law,t0, varies
within an order of magnitude for different samples and re
nances.

The sharpness of the narrowest peaks in Fig. 4 is an
fact of the reduced model used so far, i.e., neglect of
nondiagonal matrix elements, and let us next consider
things affecting these peaks: decoherence due to spin-ph
coupling and the broadening effect of a transversal magn
field H' . For other contributions such as the hyperfine a
dipolar interactions, see Sec. IV C.

The decay of the nondiagonal elements of the density
trix is a classical definition of decoherence and this is a
what is seen here when the above calculation is perform
using the full r(t). Inclusion of the off-diagonal element
still produces Lorentzian peaks but now the narr
resonances—with widths of the same order of magnitude
the spin-phonon coupling—are broadened and reduce
height. The narrowest peaks may even be completely s
pressed, see the solid-line curves in Fig. 5. Despite its in
tive appeal, the suppression of the narrow peaks should
taken only qualitatively because of the limitations of t
Born approximation used in treating the spin-phonon c
pling. For this reason, the following considerations are
stricted to regimes where the effect of the nondiagonal
ments ofr(t) is negligible.

The suppressing effect of the spin-phonon coupling be
essentially a constant, the sharper resonances can be
observable by broadening them with a transverse fieldH' ;
even ground-state tunneling has been observed in
enough fields.46 The various tunnel splittings are shown
Fig. 3 as a function ofH' pointed to three different direc
tions f. It can be seen that for small values of the field, t
splittings are essentially independent of the chosen angle
also Fig. 6. Furthermore, tunnel splittings between states
can be coupled with soleB4 terms ofHT are quite insensitive
to the transverse field below 0.1–0.2 T. Figure 5 illustra
the effect ofH'5Hx onto the two first series of peaks. Th
resonances that initially (Hx50) were broader thant0

(n)21

are seen to retain their height; the narrower peaks, suc
the two shown in the insets, are strongly broadened w
increasingHx and also their heights increase once th
widths become larger than the spin-phonon rates.

A transverse field cannot only increase the tunnel sp
tings but it can also reduce them, see Fig. 3. In the ideal c
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the splittings can even be suppressed by varying the angf
where the transverse field is pointed. For the zeroth pe
i.e., for Hz'0T, all ten resonances occur at the same po
tion and the suppression of any one of them is obscure
the relaxation rate curves by the simultaneous broadenin
other resonances. For this reason, let us first focus on
resonances occurring at finiteHz and return to theHz'0
case in the next section.

Figure 6 shows the tunnel splittingsD4,25 andD3,25, re-
spectively, as a function ofH' and for four different values

FIG. 5. Magnification of the first and second clusters of peaks
Fig. 4 magnified~solid line!. The different curves correspond to
H'50.0 T ~solid!, 0.01 T ~dotted!, 0.05 T ~dashed!, 0.1 T ~long
dashed!, and 0.2 T~dot dashed!; f50° for all the curves. The
peaks further to the right correspond to resonances between l
states, hence the higher maxima. The peaks~from left to right!
correspond to the resonancesm51, . . . ,4,m852m21 in the left
figure ~the two first ones are merged together! and m
52, . . . ,5,m852m22 in the right figure. Here we used also th
off-diagonal elements ofr(t) with the result that some of the
sharper peaks are reduced in height or even suppressed due to
phonon coupling. The peak widths show strongH' dependence
except for the second and fourth peaks on the right—these a
from B4

2 andB4
3 type of coupling. Once the peak widths due to t

tunnel splittings exceed the phonon-induced width, the peak hei
are essentially determined by the energyUn5En2E210 needed to
reach the resonant states.

FIG. 6. The tunnel splittingsD4,25 ~left! andD3,25 ~right! as a
function of the transverse magnetic field whenHz is kept fixed at
the position of the corresponding resonance, 0.4581 T and 0.9
T, respectively. In both figures, the four curves correspond to
ferent anglesf: 0°, dot-dashed; 40°, dotted; 43°, dashed; and 4
solid; the vertical axes are the same.
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of f. The former corresponds to the resonance shown in
left inset of Fig. 5, while the latter corresponds to the bro
resonance in the right panel of Fig. 5—this is also the o
seen in experiments atHz'2H1. Figure 6 also exemplifies
some general properties of the tunnel splittings. As alre
mentioned above, theD ’s depend only weakly onf for low
H' , while for larger fields andf close to the hard axes, th
tunneling amplitudes are successively increased and red
asH' is increased. On the other hand, withH' held fixed to
one of the suppression points, theD ’s oscillate as a function
of f. Similar to recent work on Fe8, see, e.g., Ref. 47, thes
phenomena are attributed to alternating constructive and
structive interference of the geometrical phase in the tun
ing amplitudes.48,49The number of minima for a givenDm,m8
appears to be, as was also pointed out in Ref. 22, given
the number ofB4 terms involved in coupling the statesm and
m8. This ranges from zero at the top of the barrier to five
the ground statesm5610, cf. Fig. 3.

Figure 7 shows the relaxation rates corresponding to
resonances of Fig. 6 withH'’s chosen to match the firs

points of suppressionH'
m,m8 . The resonance width is foun

to be very sensitive tof quite as expected and, forf545°,
the left-most peak becomes suppressed. Note, that the
pression is also quite sensitive to the value ofH' as well and
the higher peaks in Fig. 7 are hardly affected at all
changes inf.

B. ac susceptibility

This section contains the main results of this paper: st
of the interference effects in the dynamic susceptibi
x(v). The results are based on the approximate express
Eq. ~21!, obtained above for the susceptibilityx(v), and the
results for the relaxation timet1 of the previous section
Figure 8 illustrates the two contributions to Eq.~21! ~in all
figures, the susceptibility is expressed for a single spin an
units of K T22).

In the present model, the main correction to Eq.~21! cor-
responds to an intrawell mode describing transitions betw
the two lowest states on the same side of the anisotr
barrier. This correction increases with increasingHz and

FIG. 7. Relaxation ratet21 as in Fig. 5 but now for stronge
transverse fieldH' and for different anglesf. The line types and
angles are as in Fig. 6 and the values ofH'50.4311 T and 0.2643
T are chosen to match the first suppression points~for the actual
suppression occurring at the minimum value forD the values for
H' should be given with even higher accuracy!. Temperature is
2.5 K.
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temperature and, for the parameters and the curves ofx0 in
Fig. 8, becomes of the same order of magnitude as the ac
relaxing mode onceHz'0.9–1 T. However, such a mod
corresponds to very high frequencies and is neglected be
There could be also other sources of high-frequency con
butions such as dipole-dipole flip flops, nuclear spin dyna
ics, or moving impurities but these are beyond the scope
this work.

As to the actual results, it is in principle sufficient t
combine the curves fort of the previous section with thos
shown in Fig. 8. The shapes of the real and imaginary p
of 1/(12 ivt) readily imply how the resulting susceptibilit
behaves if one fixesv—it turns out that all the structure
found in t21 in the previous section can also be found
x(v). First, the response is the most sensitive to change
t when v't21 or vt'1, cf. the inset of Fig. 8. Second
Re@x(Hz ;v)# replicates the shape oft(Hz) and exhibits
peaks and valleys ast21 increases and decreases. This is
case with the imaginary part, Im@x(Hz ;v)#, as well, but
only as long asvt>1, i.e., as long as we remain on the rig

FIG. 8. Static susceptibilityx0 as a function of the longitudina
magnetic field shown for different temperatures: 2 K~solid!, 2.5 K
~dotted!, 3 K ~dashed!, 4 K ~long dashed!, and 5 K ~dot dashed!.
The dynamic susceptibilityx(v) is essentially composed ofx0

multiplied by the real and imaginary parts of 1/(12 ivt) shown in
the inset as the solid and dashed lines, respectively.

FIG. 9. The real and imaginary parts of susceptibility for t
same parameters as the dotted curves in the left panels of Fi
i.e., H'50.4311 T,f540°, andkBT52.5 K. The curves corre-
spond to frequenciesv150.02 Hz, x8 ~dotted!; x9 ~dashed!; and
v250.5 Hz, x8 ~dot-dashed!, x9 ~solid!. The frequencies were
chosen such thatv1,t21 for the both of the peaks in Fig. 7, henc
the notches inx9, while v2.t21 for all Hz .
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hand side of the peak in Im@x(Hz ;v)#. For lowerv, vt can
cross the maximum point and the picture with the peaks
valleys turns upside down. These points are illustrated in
9 for a case corresponding to one of the curves in Fig. 7

Let us next consider a different scheme, keepingHz and
f fixed and varyingH' starting from zero field. The cas
Hz'0 T is of particular interest because it allows compa
son to recent experiments by Wernsdorfer done on the
lated material Fe8, cf. Ref. 50—the experimental dat
showed clear oscillations of the relaxation rates as a func
of H' in the thermally activated regime. By choosing para
eters in the feasible range of these experiments, we
somewhat similar oscillations also for Mn12. Figure 10
shows first the relaxation rates for two different combin
tions of temperature and the longitudinal field:T53.0 K
and Hz50.2 mT to show the behavior close to~or at! the
peak maximum and at a lower temperature, andT55.0 K
andHz510 mT as an example of the behavior further aw
from the maximum and at a higher temperature. Also thef
dependence is shown.

For f50°, the gentle oscillations resembling a strong
smeared staircase stem from the fact that the lower~in terms
of energy; higher in terms of rates! resonances are broaden

FIG. 10. Oscillations in the relaxation rate as a function ofH' .
The lower and upper groups of curves correspond toHz

50.0002 T, kBT53.0 K andHz50.01 T, kBT55.0 K, respec-
tively. The individual curves correspond to different anglesf: 0°
~dashed and dot-dashed!, 43° ~dotted!, and 45° ~solid and long
dashed!.

FIG. 11. Tunnel splittingsDm,2m for four resonances relevan
for Fig. 10. The dot-dashed and solid lines denote the anglef
50° and 45°, respectively.
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and one by one start to dominate the relaxation, see the
dashed curves in Fig. 11 for the tunnel splittings and Fig.
for the general idea. All the additional structure, seen forf
545°, is due to the oscillations in the tunnel splittings a
the suppression of some of the resonances. The position
the notches can be compared with the structure ofDm,2m in
Fig. 11 and one finds that for smallerHz the relaxation takes
place via the lower-lying resonances such asm566 and
m567; further away from the maximum, the broader res
nances between statesm564 andm565 act as the domi-
nant relaxation paths.

Figures 13 and 14 show the real part of the susceptib
x8 corresponding to the two cases of Fig. 10. The purpos
the different frequencies is to show that also here one
choose the structure of interest and study it by tuning
frequency to fulfillvt'1. In both figures, there are regime
where the susceptibility can be varied by a factor of 5;
Ref. 50 the oscillations were quite clear already with t
amplitude being a mere 20% of the signal.

FIG. 12. Log-log scale schematic of Lorentzian curves on top
each other similar to theHz'0 T situation for Mn12. The higher
the curves are the narrower they get and, on the other hand
higher theHz the lower the observed resonances are. The relaxa
rate is determined by the fastest possible rate, depicted in the fi
with the thick solid line.

FIG. 13. Real part of the susceptibility forHz50.2 mT, kBT
53.0 K, and for the anglesf50° ~dashed!, 43° ~dotted!, and 45°
~solid!. The upper three curves correspond to the frequencyv
510 Hz and the lower ones tov550 Hz. The line types corre-
spond to those fort21 in Fig. 10.
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C. Discussion—relevance to experiments

So far we have considered the simple model comprisin
single spin coupled to a phonon bath but, as was pointed
in the introduction, in real samples there are also other ki
of interactions. In this section, we consider the additio
features arising from the hyperfine and/or dipolar inter
tions and aim to point out the experimentally relevant aspe
of the results obtained above.

Let us first recall some experimental facts concerning
laxation measurements and results—these underlie also
understanding and appreciation of the susceptibility m
surements. Relaxation rates are typically measured by
magnetizing the sample to saturation, and then reversing
direction of the field and measuring the resulting magnet
tion as a function of time. The initial relaxation is observ
to be nonexponential—this is attributed to dipolar intera
tions, see below—while, at later times, it becom
exponential.15 Several authors have proposed an exten
exponentialM (t)5M (0)exp@2(t/t)b# to account for both of
these regimes with just one additional fitting parameterb. In
Ref. 15 it was found thatb varies fromb'0.5 below 2.0 K
to b'1—usual exponential relaxation—roughly above 2
K. The thus obtained relaxation rates exhibit a series
broad Lorentzian-shaped resonances; their height and l
tion correspond to tunneling-assisted relaxation three to
levels below the top of the barrier.

This shows two clear differences as compared to
present work: in experiment, the relaxation may be nonex
nential even though the single-spin model always yields
ponential behavior, and no satellite peaks are observed~see
Ref. 27 for exceptions!. In order to understand these discre
ancies, let us first consider the effect of the nuclei via
hyperfine interactions and then the intermolecular dipolar
teractions.

Hyperfine interactions. In Mn12, all the manganese nucle
have magnetic momenta and the hyperfine interaction
tween the nuclei and the molecular spin state is relativ
large, of the order of 10 mT. Recently, several authors h
investigated how this affects tunneling and the relaxation
Mn12.12,14,19,20,22For the present purposes, the relevant eff
of the hyperfine interactions is to induce anintrinsic Gauss-

FIG. 14. Real part of the susceptibility forHz510 mT, kBT
55.0 K, and for the anglesf50° ~dot-dashed! and 45° ~long
dashed!, i.e., the line types correspond to those in Fig. 10. T
upper pair of curves corresponds tov5250 Hz and the lower one
to v51250 Hz.
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ian broadening, of the widthshyp'6 mT,35 to all levels, i.e.,
the nuclear spins are importantly dynamic and their influe
on the molecular spin cannot be reduced to a rigid but s
tially varying background field. Simultaneously with th
broadening, the hyperfine interactions reduce the tunne
amplitudes of the resonances for whichD,shyp—this
should lead to reduced peak heights int21(Hz).

With this in mind, let us consider the different regimes
terms of the relative magnitudes of the tunnel splitting a
the hyperfine broadening. First, for resonances withD
@shyp the shapes of the resonances are expected to
Lorentzian with the widths determined by the tunnel sp
tingsD. This is the regime, where all our results apply. In t
other extreme,D!shyp, the resonances should be essentia
suppressed providing one possible explanation why the s
satellite peaks are not observed in experiments.52 Note that
the minuscule phonon-induced broadening or dephasin
hidden under the hyperfine broadening and cannot be s
In this regime, one could in principle try and extend t
present theory by adding by hand a strong dephasing ter
the nondiagonal density matrix elements. The intermed
regime whereD'shyp is the most interesting of the thre
cases. In this regime, the peak shape should be a comb
tion of Lorentzian and Gaussian curves and, depending
which one ofD or shyp is larger, one of the shapes shou
dominate. In the tail region, i.e., away from the pe
maxima, the Lorentzian tails dominate and it has been s
gested that this together with experimental error bars m
obscure the resolution between the two types of curves,
e.g., Ref. 22.

The immediate conclusion from these considerations
that, if the application ofH' broadens some of the tunne
splittingsDm,m8 to exceedshyp, the corresponding resonanc
should become observable. If, on the other hand, the tra
verse field is applied along one of the hard axes, a gi
resonance becomes suppressed for certain special valu
H' ; in the presence of the hyperfine interactions this sho
happen already whenDm,m8 becomes smaller thanshyp. The
intermediate regime can be intentionally achieved by tun
the tunnel splitting from being well belowshyp to above it.
This may provide means to probe the Gaussian broaden
see also the subsection below focusing on the advantage
susceptibility measurements.

Dipolar interactions. The intermolecular spin-spin inter
actions are of dipolar form and they are weaker in Mn12 than,
e.g., in Fe8. Due to their short range, the dipolar fields c
vary in space changing the local field at the position of
individual molecules. In our view, the essential differen
between the hyperfine and dipolar interactions can be st
as follows: even if one could measure the response o
single molecule, this would always be dressed by the le
broadening and reduction in tunneling amplitudes due to
perfine interactions intrinsic to each molecule; the dipo
fields, on the other hand, just change the molecule’s lo
electromagnetic environment.

In experiment, the relaxation of the magnetizationM (t)
leads to time-dependent dipolar fields and, in order to
scribe the relaxation correctly, it would be necessary to so
for M (t) self-consistently, for simulations see, e.g., Refs.
and 53. However, it is this time-dependent field that provid
an explanation to the initial nonexponential relaxation. F

e



ia

dy
d

s
es
ds
s

fa
tio
a
fo
t

us
u-
he

th
m

l
e

n
rin
lit
i

g
re
e

am
on
b
w

s,
s-
n

ive
-
o
ol
ee

ns

o

.e.,
ob-

ula-

al
nd

ep-
il-

is

sen-
lso

asis
ng
etic
and
top
ts,
nel
gle

t-
at

e
tive
the
that
rv-

ng
eir
ir
el
of
t in

nce
R

al

on
be

e-

PRB 62 15 035SPIN DYNAMICS OF Mn12-ACETATE IN THE . . .
example in Ref. 15, it is therefore concluded that the dev
tion from a single-exponential relaxation, i.e.,bÞ1, demon-
strates the important role of the dipolar interactions and
namics of the spin distribution. It should be kept in min
though, that also a static distribution of local fields~be it
dipolar or not!—and hence relaxation rate
t21(Hz

local) –leads to a superposition of exponential rat
which looks nonexponential. Such a distribution of fiel
also hides all features int21(Hz) that are sharper than thi
distribution.

The time dependence of the dipolar fields owes to the
that the sample is first magnetized and, as the field direc
is abruptly reversed, the dipolar distribution finds itself f
from equilibrium and quickly starts to relax. The reason
such experiments is the strong response from almost all
spins.

In anticipation of the discussion on susceptibility, let
consider the dipolar distributions at equilibrium. By distrib
tion we mean spatial variations in the dipolar field at t
locations of the individual molecules. First, forHz'0 T, the
annealed~not quenched! distribution is random but due to
the low temperatures,kBT!E692E610, almost all the spins
are aligned with the easyz axis—randomly pointing to the
positive and negative directions—and only contribute to
local longitudinal field. On the other hand, the equilibriu
magnetization is close to saturation already forHz'H1, thus
drastically narrowing the dipolar distribution—e.g., forT
53.0 K ~5.0 K! andHz5H1, more than 95%~85%! of all
the spins are aligned parallel toHz and all the molecules fee
essentially the same field. Such distributions have been
perimentally verified in Fe8, cf. Ref. 51.

Susceptibility. The influence of the dipolar dynamics o
relaxation can be avoided almost completely by measu
linear response to a small ac field, i.e., the ac susceptibi
instead ofM (t). This has the advantage that the system
probed in its equilibrium state and ideally by a small enou
field that in itself does not perturb the equilibrium. Therefo
we propose that the susceptibility measurements provid
gentle or noninvasive means to probe the relaxation dyn
ics in absence of the time-dependent dipolar distributi
Furthermore, while the hyperfine interactions cannot
tuned, the static distribution can be made markedly narro
by a finite Hz , see above. As, on the other hand,x0 de-
creases with increasingHz , the first group of resonance
close toH1, is especially attractive for investigating the o
cillations in the relaxation rates as well as the hyperfi
fields themselves. All of the resonances aroundH1 depend
strongly on H' and can be broadened such thatD.shyp
making them observable; the peaks can also be select
suppressed iff'45°. The hyperfine fields may even sim
plify the observation of the suppressions as very narr
peaks are strongly reduced in height. For a sharp dip
distribution, we expect that also the crossover betw
Lorentzian and Gaussian shapes oft21(Hz) should be ob-
servable when changing the tunnel splittings with the tra
verse field.

V. CONCLUSIONS

To conclude, we present a diagrammatic description
the spin dynamics of the molecular magnet Mn12. The work
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focuses on the regime of thermally activated tunneling, i
T.2.0 K, and emphasizes the phenomena that could be
served for strong transverse magnetic fields. In the calc
tions, we study the dynamics of a single spinS510 coupled
to a phonon bath. The role of the phonons is in the therm
activation of the spins to states with higher energies a
larger tunneling amplitudes.

As the first main result, we calculate the dynamic susc
tibility x(v) starting from the same microscopic Ham
tonian as is used for the relaxation rates. Susceptibility
found to reflect the rich structure found int21(Hz) and we
argue that susceptibility measurements are in fact more
sitive and better controlled in terms of time scales and a
the dipolar interactions than the relaxation experiments.

All the results obtained are calculated using the eigenb
of the spin Hamiltonian, which naturally accounts for stro
transverse magnetic fields. A strong transverse magn
field enhances tunneling through the anisotropy barrier
enables relaxation via eigenstates further away from the
of the barrier. In relaxation or susceptibility measuremen
this would lead to shifted and higher resonances. The tun
splittings are found to be very sensitive to the azimuth an
f of the transverse fieldH' . It is found that, in the direc-
tions f5p(2n11)/4, the tunnel splittings exhibit alterna
ing minima and maxima and become totally suppressed
certain values ofH' . This phenomenon is attributed to th
interference of the geometrical or Berry phase of alterna
tunneling paths, with a destructive interference leading to
suppressions. As the second major result, we predict
these oscillations in the tunnel splittings should be obse
able both in the relaxation rates and the susceptibility.
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APPENDIX A: SPIN-PHONON RATES

In this appendix, we give the phonon-induced transiti
rates S between different spin states—the details can
found elsewhere.38 In the d basis, the elementsSdd1 ,d8d

18
(t

2t8) correspond to transitions between the elementsrd8d
18

andrdd1
of the reduced density matrix. The two timest and

t8 (t8,t; belowt[t2t8) define the interval over which the
interaction takes place. Let us first write down the full tim
dependent result,

S~t!dd1 ,d8d
18
5 (

m1 , . . . ,m4

Gm2m1 ,m3m4
•H ^m1ud8&^dum2&

3^m3ud1&^d18um4&@e2 i (Ed2Ed18
)(t)G~2t!

1e2 i (Ed82Ed1
)(t)G~t!#
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2(
d̄

^d̄um2&^m3ud̄&@dd1 ,d
18
^m1ud8&^dum4&

3e2 i (Ed̄2Ed18
)(t)G~2t!1dd,d8^m1ud1&

3^d18um4&e
2 i (Ed82Ed̄)(t)G~t!#J . ~A1!

The term

Gm2m1 ,m3m4
5ASm2 ,m1

Sm3 ,m4
•Cj,j8 ~A2!

(j[m22m1 ,j8[m32m4; for the spin-phonon Hamiltonian
considered here, these can take values61 or 62) further
consists of

Cj,j85H 0, for ujuÞuj8u

1, j5j8561

15

16
1

1

8
dj,j8 , uju5uj8u52,

~A3!

which implies the selection rules arising from the sp
phonon Hamiltonian, and

Sm2 ,m1
5~2m11j!AS~S11!2m1~m11j! ~A4!

for j561 or

Sm2 ,m1
5$@S~S11!2m1~m11n!#

3@S~S11!2~m11n!~m112n!#%1/2 ~A5!

for j562, n5sgn(j). The functionG(t) entering Eq.~A1!
contains all the information concerning the phonon sp
trum, energies, and temperature,

G~ t !5E
2`

`

dvG~v!eivt ~A6!

[E
2`

`

dv
A2

12rc5\4
•

v3

ebv21
•eivt ~A7!

5
A2

12rc5\4
•H 22S p

b D 4F 112ch2S pt

b D
sh4S pt

b D G
1 ipd-~ t !J . ~A8!

This part is defined such that it is independent of the s
states and only contains the termA2 from the coupling con-
stants that turns out to be constant for all the rates.

The actual transition rates are obtained from Eq.~A1! by
integrating over the time differencet5t2t8. This takes us
to the energy representation, combining the exponential
tor in Eq. ~A1! with the eiv(t2t8) of the Fourier transform in
Eq. ~A7!. The integration overt yields
-

-

n

c-

Sdd1 ,d8d
18
5 i (

m1 , . . . ,m4

Gm2m1 ,m3m4
•H ^m1ud8&^dum2&^m3ud1&

3^d18um4&E
2`

`

dvF G~v!

2v1Ed82Ed1
1 ih

1
G~v!

v2Ed
18
1Ed1 ihG2(

d̄
^d̄um2&

3^m3ud̄&•F dd1 ,d
18
^m1ud8&

3^dum4&E
2`

`

dv
G~v!

v2Ed
18
1Ed̄1 ih

1dd,d8^m1ud1&

3^d18um4&E
2`

`

dv
G~v!

2v1Ed82Ed̄1 ihG J . ~A9!

The above integrals are explicitly evaluated in Ref. 38. F
the rates between the diagonal states,d5d1 andd85d18 , the
above expressions are greatly simplified. In this case, r
similar to those in, e.g., Ref. 18 are obtained.

With all the contributions toS written down, we can find
an estimate for the order of magnitude of the elements~the
individual rates! Sdd1 ,d8d

18
. The most interesting piece of in

formation for each state is thelargest ratecoupling that state
to other states—this rate plays a key role in justifying t
neglect of the nondiagonal states inr(t), see Appendix B, as
well as in the suppression of the narrow resonances foun
the text.

The prefactor inG(v), cf. Eq. ~A7!, amounts to 7.0
3105c25 s5 m25 K22, where the sound velocityc is ex-
pressed in meters per second. The units are chosen such
whenv is expressed in kelvin, alsoG(v) is given in kelvin.
For v.0 ~and alsov.kBT), i.e., for transitions related with
phonon absorption, the energy-dependent part ofG(v)
strongly decreases for increasingv; for v,0, corresponding
to phonon emission,G(v) approaches the temperatur
independent power-law dependencev3. The largestG(v)’s
are attained for these latter processes in connection with l
energy spin states. The contribution from the spin operat
cf. Eqs.~A4! and ~A5!, on the other hand, is larger for spi
states closest to the top of the barrier and tends to balanc
changes inG(v) and reduce the variations inSdd1 ,d8d

18
for

different states and for varyingHz . The typical energy scale
arising from the spin-phonon rates is found to
1025–1024 K.

APPENDIX B: CHOICE OF BASIS

In Sec. III, we decidedly formulated the more gene
equations independent of the chosen basis forHS . In this
appendix, we consider the eigenbases ofHS or thed basis, in
more detail.

The ~strong! tunneling poses a problem for the diagram
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matic formulation in them basis, but this can be easil
solved by first diagonalizingHS and then expressing all th
equations in its eigenbasis. In thisd basis, the kinetic equa
tion for the diagonal and off-diagonal density matrix e
ments reads

ṙ~ t !d,d5 (
d1 ,d18

Sdd,d1d
18
r~ t !d1 ,d

18
~B1!

and

ṙ~ t !d,d852 i ~Ed2Ed8!r~ t !d,d81 (
d1 ,d18

Sdd8,d1d
18
r~ t !d1 ,d

18
,

~B2!

respectively. From the knowledge of~the full! r(t) we can
again obtain, e.g., the magnetization

M ~ t !5gmB(
d,d8

(
m

^d8um&m^mud&rd,d8~ t ! ~B3!

[gmB(
d,d8

md,d8rd,d8~ t !, ~B4!

wheremd,d8 is defined in this way as the matrix element
Sz in the d basis.

When the tunneling rates dominate the kinetic equatio
the main features of the eigenstates can be understoo
even simpler terms as follows. When a given state is
resonant, there is essentially a one-to-one correspondenc
tween each of them and d states, i.e., also thed states are
localized on one or the other side of the barrier. Close t
resonance, two statesml and mr on different sides of the
barrier, see Fig. 15, get coupled and form an approxim
two-state system described by

H25S Eml
D

D* Emr

D . ~B5!

The nondiagonal elements denote the tunnel splitting as
tained from the diagonalization of the full spin Hamiltonia
the subscripts stand for the left and right sides of the barr
The eigensolutions to this are the symmetric and antis
metric combinations of the respectivem states

FIG. 15. Schematic of the situation discussed in the text. If
spin-phonon coupling denoted by the arrows andS ’s is much
weaker than the tunnel couplingD between the statesuml& and
umr&, these states can be thought of as an effective two-state sys
The eigenstates of the two-state system are depicted as dashed
separated in energy by 2uDu. The subscripts of theS ’s correspond
to those used in the text.
s,
in

ff
be-

a

te

b-

r.
-

uds&5auml&1bumr&, ~B6!

uda&5buml&2aumr& ~B7!

that extend through the barrier, see Fig. 15. The factora
andb are the normalized constants

a5
D

A«̂21uDu2
, ~B8!

b5
«̂

A«̂21uDu2
~B9!

with «̂5 1
2 @(El2Er)2A(El2Er)

214uDu2#.
The biggest simplification is attained when we argue th

for the most values ofHz , we can restrict our consideration
to the diagonal elements of the density matrix. A naive ju
tification for this concerns the stationary values of the d
sity matrix elements@obtained by requiringṙ(t)d,d850#.
This leads to the immediate conclusion that all the o
diagonal elements between nonresonant states are negli
small. Furthermore, the nondiagonal elements are also
small for any pair of resonant states as long as the tun
splitting of that particular resonance is larger than the sp
phonon rates coupling these states to others, see the e
Appendix A.

We also investigated the temporal behavior of the o
diagonal elements in terms of the reduced model shown
Fig. 15 and the results lend support to the above conclusi
The idea of this simulation was to prepare the system into
statedi at the initial timet0, let the system then evolve in
time according to the kinetic equation, and see how the
diagonal elementsr(t)ds ,da

andr(t)da ,ds
behave. The reso

nant pair of states in the figure is similar to the one in E
~B6! and ~B7! and it is coupled to two lower, nonresona
statesdi and df . The rates depicted in the figure areSu
5S l l ,i i andSd'(S i i ,l l 1S f f ,rr )/2. The magnitudes of thes
rates—as compared to the tunnel splittingu2Du—determine
two regimes. If 2uDu@Sd , the amplitudes of the nondiago
nal elements are found to quickly reach their maxim
}Su /u2Du and their values orbit around and ‘‘decay’’ to
wards the respective complex stationary values. On the o
hand, according to the detailed-balance relation, the stat
ary values of the diagonal elements are proportional
Su /Sd . Hencer(t)d,d8 /r(t)d(8)}Sd /u2Du and we can ne-
glect the nondiagonal elements, ifSd!2uDu. In this case the
kinetic equation, Eqs.~B1! and ~B2!, becomes very simple
Eq. ~B2! can be neglected and the rateS acquires the form,
cf. Appendix A,

Sd8d8,dd56Gdd8,d8d

pA2

12rc5\4
•

DE3

ebDE21
, ~B10!

where

Gdd8,d8d5 (
m1 ,m2

(
m3 ,m4

Gm4m3 ,m2m1
•^d8um4&^m3ud&^dum2&

3^m1ud8& ~B11!

contains all the details of the spin-phonon coupling, see A
pendix A. In the opposite case, 2uDu!Sd , the nondiagonal

e

m.
ines
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elements do not perform orbiting motion in the compl
plane but increase motonously to roughly one half ofr

d(8)
(0)

.
In this case, the off-diagonal elements clearly cannot be
glected.

For Mn12 we can attain the whole range of cases: for
most strongly coupled level~s! 2uDu@Sd , while for the
lower levels, 2uDu!Sd . In the former case, the diagon
elements rd(t) are sufficient in describing the syste
whereas, in the latter case, we either have to include
nondiagonal states or restrict our considerations to magn
fields for whichDE@Sd for all the levels, cf. Ref. 16. In the
text, we neglect the nondiagonal elements in the calcula
of x(v) and in some of the analytical considerations b
compare the two cases in Sec. IV.

APPENDIX C: LAPLACE TRANSFORMATION

In this appendix, we consider the Laplace transformat

f ~z![E
0

`

dt e2 izt f ~ t ! ~C1!

of the kinetic equation, Eq.~10!. We also give another proo
of the applicability of the Markov approximation in calcula
ing the relaxation rates.

The kinetic equation is readily transformed into

2 izr~z!2r~ t50!52 iL 0r~z!1S~z!r~z! ~C2!

⇒r~z!5
r~ t50!

2 iz1 iL 02S~z!
.

~C3!

The poles of Eq.~C3!, i.e., the solutions of2 izi1 iL 0
2S(zi)50, yield the exact eigenvalues to the kinetic equ
tion: zi5v i1 i /t i . For the slowest mode of the time evolu
tion, one can consider the expansion

S~z1!'S~0!1z1•
]S~z!

]z U
z50

1•••. ~C4!

The prefactor of thez1 may be evaluated to be proportion
to @t1•min$DE,kBT,D%#21, i.e., to the maximal ratio be
tween the interwell relaxation rate 1/t1 and the other charac
teristic energy scales in the problem: level spacing and
splitting DE, temperaturekBT, and the cutoff of the phonon
spectrumD @in Ref. 38, a cutoffD is introduced in order to
assure that all the integrals arising from Eq.~A9! are conver-
gent#. It turns out that the actual relaxation rates are sev
orders of magnitude smaller than any other energy scale
it becomes safe to approximate

r~z!'
r~ t50!

2 iz1 iL 02S~0!
5

r~ t50!

2 iz2W
, ~C5!

where S(0) has been identified as the constantS of the
Markov approximation above andW is defined accordingly,
cf. Eq. ~11!. This approximation is valid for the relaxatio
mode and timet1,

r (1)~z!5
r (1)~ t50!

2 iz21/t1
, ~C6!
e-

e

e
tic
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but the Markov approximation may give erroneous resu
for the faster eigenmodes for which Eq.~C5! no longer holds
true.

APPENDIX D: LORENTZIAN PEAK SHAPES

The series of peaks found in the relaxation rates/times
Fig. 4, may be understood in terms of different relaxati
paths, each path with a possible tunneling channel giving
to a peak—see Ref. 18 for nice illustrations of the paths
this appendix, we sketch a derivation that aims to show t
the Lorentzian peak shapes are actually something to be
pected.

When the spin system is somehow disturbed away fr
equilibrium and then let relax, it quickly acquires a met
stable state, a thermal equilibrium separately on each sid
the barrier. This initial thermalization into the metastab
state is driven by the spin-phonon interaction that can cha
the spin statesm by 61 or 62. At a much longer time scale
the system relaxes over the barrier towards the real equ
rium configuration. For the relaxation to take place, the c
cial step is the final transition that transfers the spin onto
other side of the barrier. We can distinguish two regimes
terms of how this critical transition takes place. In absence
tunneling, e.g., in off-resonance conditions, the relaxation
only possible over the top of the barrier, while for relative
strong tunnel splitting and for resonant conditions, the do
nant path is via tunneling across the barrier well below
top. When the tunneling is weak compared with the sp
phonon interaction, the tunneling rate is the bottle neck
the relaxation to take place. In Mn12, this is the case for
tunneling between the low-lying states withumu.4 ~for Hz
'0 T). However, for the experimentally relevant res
nances, the tunneling is strong and takes place between
higher states. In this case, the spin actually oscillates b
and forth through the barrier until it relaxes to some low
state on either side of the barrier. This is the case of inte
here.

In the strong-tunneling regime, the system is best
scribed in terms of thed basis where it suffices to conside
the diagonal elements of the density matrix. In order to ge
more intuitive picture of the relaxation, let us consider
situation where the system has been prepared onto one
of the barrier and has reached the metastable thermal e
librium there. This initial condition is convenient for tw
purposes: first, the relaxation only proceeds into one dir
tion and, second, the phonon-induced transitions on this
side of the barrier are accounted for by the thermal probab
ties r̃d ~tilde denotes the metastable state and we write
one index for the diagonal matrix elements!. Let us further
consider relaxation via a single tunneling resonance and
into account the states and transition processes illustrate
Fig. 16. The system starts in the initial statedi ~localized
onto the left side of the barrier,;mi), is then activated onto
resonance into either the symmetric or antisymmetric st
denoted byds and da , respectively, and at some point
transferred down to the final statedf ~localized onto the right
side of the barrier,;mf). The subsequent intravalley relax
ation is so fast that after the transition todf the relaxation
can be considered complete. The statesds and da extend
through the barrier and this is the key point of the pres
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discussion: the spin is transferred through the barrier i
single step, the rate being determined by thermal activa
but also by the magnetic-field dependent amplitudesa and
b, from Eqs.~B6! and~B7!, for the two extended states to b
on either side of the barrier. These amplitudes determine
relative probabilities for the activation process to couple
the resonant states.

The above discussion can be formulated in the langu
of a master equation:

ṙ̃ds
~ t !50

'Sds ,di
r̃di

~ t !2~Sdf ,ds
1Sdi ,ds

!r̃ds
~ t !

'u^dsuml&u2Sml ,mi
r̃di

~ t !

2~ u^dsumr&u2Smf ,mr
1u^dsuml&u2Smi ,ml

!r̃ds
~ t !

5uau2Sml ,mi
r̃di

~ t !

2~ ubu2Smf ,mr
1uau2Smi ,ml

!r̃ds
~ t ! ~D1!

ṙ̃da
~ t !50

'Sda ,di
r̃di

~ t !2~Sdf ,da
1Sdi ,da

!r̃da
~ t !,

'u^dauml&u2Sml ,mi
r̃di

~ t !

2~ u^daumr&u2Smf ,mr
1u^dauml&u2Smi ,ml

!r̃da
~ t !

5ubu2Sml ,mi
r̃di

~ t !

2~ uau2Smf ,mr
1ubu2Smi ,ml

!r̃da
~ t !. ~D2!

The approximate equalities are just a reminder that we h
neglected, e.g., the contributions from states above the r
nance as well as the return possibility from statedf . These
equations can be simplified by the assumptionSmi ,ml

'Smf ,mr
which is reasonable for a pair of resona

FIG. 16. Illustration of the parameters discussed in the te
states in them andd bases, transition ratesSm,m8 , and factors6a
andb from Eq. ~B5!.
e

da

B

a
n

he
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o-

states—as a result, theS ’s can be taken out of the brackets
the last forms of the above formulas. By further noting th
due to normalizationuau21ubu251 and that the resulting
probabilities are time independent, we obtain

r̃ds
'uau2

Sml ,mi

Smi ,ml

r̃di
,

r̃da
'ubu2

Sml ,mi

Smi ,ml

r̃di
.

The ratio of theS ’s is just the thermal factor exp@2b(El

2Ei)#, cf. detailed balance, andr̃di
is the thermal probability

to be in a state with energyEi over the lowest energyE210
on the left-hand side~for Hz.0). Together these yield a
factorc•exp@2b(El2E210)#, wherec is a normalization con-
stant equal tor̃210 which is close to unity for the tempera
tures of interest.

In the next and final step, the relaxation rate is obtain
from the knowledge of these probabilities and the rates to
dragged down on the right-hand side of the barrier, i.e.,

t21'Sdf ,ds
• r̃ds

1Sdf ,da
• r̃da

'ubu2Smf ,mr
r̃ds

1uau2Smf ,mr
r̃da

'2uau2ubu2Smf ,mr
c•e2b(Ei2E210). ~D3!

The exponential factor is just the effective Arrhenius fac
seen in experiments,12 cSmf ,mr

5t0
21, and

4uau2ubu25
~2uDu!2

~Eml
2Emr

!21~2uDu!2
. ~D4!

Here 2uDu is the tunnel splitting. It is more or less indepe
dent ofHz but j[Eml

2Emr
can be tuned with the magneti

field. In terms of the field, the width of the resonant peak
its half maximum is

dHz5
4uDu

gmBuml2mr u
. ~D5!

This sketch of a derivation introduces all the factors se
in experiments: the Arrhenius law with a reasonable pref
tor t0

21, that depends weakly on temperature and the part
lar resonance, see the two last paragraphs of Appendix
and peaks of accelerated relaxation superimposed on it.
peak heights or the relaxation rates on resonance are foun
correspond to the Boltzmann or Arrhenius factor with t
energy corresponding to the effective barrier height. T
peak shape is Lorentzian as observed in experiment w
widths given by precisely the tunnel splittings.

t:
an,

dez,
1J.R. Friedman, M.P. Sarachik, J. Tejada, and R. Ziolo, Phys. R
Lett. 76, 3830~1996!.

2J.M. Hernandez, X.X. Zhang, F. Luis, J. Bartolome, J. Teja
and R. Ziolo, Europhys. Lett.35, 301 ~1996!.

3L. Thomas, F. Lionti, R. Ballou, D. Gatteschi, R. Sessoli, and
v.

,

.

Barbara, Nature~London! 383, 145 ~1996!.
4J.M. Hernandez, X.X. Zhang, F. Luis, J. Tejada, J.R. Friedm

M.P. Sarachik, and R. Ziolo, Phys. Rev. B55, 5858~1997!.
5F. Luis, J. Bartolome, J.F. Fernandez, J. Tejada, J.M. Hernan

X.X. Zhang, and R. Ziolo, Phys. Rev. B55, 11 448~1997!.



o
nd

c

ce
la
th
ti
g
th
c

u

s.

B

-

ys

,

-

g
-

cifi
nt

J.

n,

n,

M
n,

K
J

n the
ori-

for

n
nd
le
of

wer
f this
n.

ges

is is

ome

ies

. 45
f the
und

p-
er-
nal
ual.
a-
or
in

ev.

15 040 PRB 62TEEMU POHJOLA AND HERBERT SCHOELLER
6A. Ganeschi, D. Gatteschi, and R. Sessoli, J. Am. Chem. S
113, 5873 ~1991!; R. Sessoli, D. Gatteschi, A. Caneschi, a
M.A. Novak, Nature~London! 365, 141 ~1993!.

7R. Sessoli, Mol. Cryst. Liq. Cryst.274, 145 ~1995!.
8Some authors do report possible observations of dipolar effe

especially at low temperature, see, e.g., Refs. 15 and 35.
9The division between thermally activated and tunneling-enhan

relaxation depends on typical experimental time scales. In re
ation measurements, the magnetization first relaxes faster
exponentially and only asymptotically reaches an exponen
regime. ForT.3 K, almost all the spins relax before reachin
this stage. In susceptibility experiments, on the other hand,
relevant time scale is the measurement frequency and this
keep up with the relaxation rate up to 5–6 K.

10J. Villain, F. Hartmann-Boutron, R. Sessoli, and A. Rettori, E
rophys. Lett.27, 159 ~1994!.

11P. Politi, A. Rettori, F. Hartmann-Boutron, and J. Villain, Phy
Rev. Lett.75, 537 ~1995!.

12F. Hartman-Boutron, P. Politi, and J. Villain, Int. J. Mod. Phys.
10, 2577~1996!.

13M.A. Novak and R. Sessoli, inQuantum Tunneling of Magneti
zation, edited by L. Gunther and B. Barbara~Kluwer, Dordrecht,
1995!.

14D.A. Garanin and E.M. Chudnovsky, Phys. Rev. B56, 11 102
~1997!.

15L. Thomas, A. Caneschi, and B. Barbara, Phys. Rev. Lett.83,
2398 ~1999!.

16F. Luis, J. Bartolome, and J.F. Fernandez, Phys. Rev. B57, 505
~1998!.

17A. Fort, A. Rettori, J. Villain, D. Gatteschi, and R. Sessoli, Ph
Rev. Lett.80, 612 ~1998!.

18M.N. Leuenberger and D. Loss, Europhys. Lett.46, 692 ~1999!;
Phys. Rev. B61, 1286~2000!.

19N.V. Prokof’ev and P.C.E. Stamp, Phys. Rev. Lett.80, 5794
~1998!.

20D.A. Garanin, E.M. Chudnovsky, and R. Schilling
cond-mat/9911055~unpublished!.

21M. Al-Saqer, V. V. Dobrovitski, B. N. Harmon, and M. I. Kast
nelson, cond-mat/9909278~unpublished!.

22I. Tupitsyn and B. Barbara, cond-mat/0002180~unpublished!.
23T. Pohjola and H. Schoeller, Physica B284-288, 589 ~2000!.
24E. Chudnovsky and J. Tejada,Macroscopic Quantum Tunnelin

of the Magnetic Moment~Cambridge University Press, Cam
bridge, 1998!, Chap. 6.

25The calculation of the time- and frequency-dependent spe
heat of Ref. 26 resembles the susceptibility calculation prese
in this paper.

26J.F. Fernandez, F. Luis, and J. Bartolome, Phys. Rev. Lett.80,
5659 ~1998!; F. Fominaya, J. Villain, T. Fournier, P. Gandit,
Chaussy, A. Fort, and A. Caneschi, Phys. Rev. B59, 519~1999!.

27A.D. Kent, Y. Zhong, L. Bokacheva, D. Ruiz, D.N. Hendrickso
and M.P. Sarachik, Europhys. Lett.49, 521 ~2000!; Y. Zhong,
M.P. Sarachik, J. Yoo, and D.N. Hendrickso
cond-mat/0006114~unpublished!.

28A.L. Barra, D. Gatteschi, and R. Sessoli, Phys. Rev. B56, 8192
~1997!.

29Y. Zhong, M.P. Sarachik, J.R. Friedman, R.A. Robinson, T.
Kelley, H. Nakotte, A.C. Christianson, F. Trouw, S.M.J. Aubi
and D.N. Hendrickson, J. Appl. Phys.85, 5636~1999!.

30R. Sessoli, H.L. Tsai, A.R. Shake, S. Wang, J.B. Vincent,
Folting, D. Gatteschi, G. Christou, and D.N. Hendrickson,
Am. Chem. Soc.115, 1804~1993!.
c.

ts,

d
x-
an
al

e
an

-

.

c
ed

.

.

.

31This bears analogy to the related molecular magnet Fe8, which
has hard, medium, and easy axes—the interference effects i
tunnel splittings appear when the external magnetic field is
ented parallel to the hard axis.

32Similar results were recently reported in Ref. 22; see Ref. 33
a detailed analysis of the interference effects.

33M.N. Leuenberger and D. Loss, cond-mat/0006075~unpub-
lished!.

34In Ref. 21 the authors calculate the energy spectrum for M12

starting from the magnetic momenta of the 12 Mn atoms a
find different level splittings to those predicted by the simp
S510 model. The discrepancy varies between different pairs
states and as ratio varies between 0.8 to 5 from higer to lo
states, respectively. Such details do not affect the essence o
paper and may be inserted as parameters into the calculatio

35W. Wernsdorfer, R. Sessoli, and D. Gatteschi, Europhys. Lett.47,
254 ~1999!.

36This choice of parameter values was recently questioned~Ref. 37!
but the qualitative results of Sec. IV are robust against chan
in the details of the spin-phonon coupling. This is due to:~i! the
magnitude of the coupling constants scales the results but th
counterbalanced by the uncertainty in the sound velocityc; ~ii !
whether the spin state can change in steps of one, two or s
larger amount, also mainly affects the scaling of the results;~iii !
the coupling is too weak to significantly influence the energ
or the tunneling of the spins.

37E.M. Chudnovsky and D.A. Garanin, Europhys. Lett.52, 245
~2000!.

38T. Pohjola and H. Schoeller, cond-mat/0005135~unpublished!.
39D.A. Garanin, J. Phys. A24, L61 ~1991!.
40H. Schoeller and G. Scho¨n, Phys. Rev. B50, 18 436~1994!; J.

König, J. Schmid, H. Schoeller, and G. Scho¨n, ibid. 54, 16 820
~1996!.

41Rigorously taken, instead ofr(t8)'r(t), we should user(t8)

5eiHS(t2t8)r(t)e2 iHS(t2t8) and insert this into Eq.~10!. Com-
bining the exponential factors yields the expressions of Refs
and 18. This procedure complicates the correspondence o
indices in the equations and in the diagrams, and, as this is fo
to make very little difference to the final results,~Ref. 42! we
neglect this step here.

42We performed the calculation with both kinds of Markov a
proximations and the results did not show any significant diff
ences. It is also noteworthy that when using only the diago
states of the eigenbasis the two approximations become eq

43We have solved the problem numerically for the full density m
trix in both bases, i.e., either first diagonalizing the spin part
taking the tunneling matrix elements into account to all orders
the m basis. The results are of course equivalent.

44R. Kubo, M. Toda, and N. Hashitsume,Statistical Physics II,
Nonequilibrium Statistical Mechanics~Springer, New York,
1985!.

45K. Blum, Density Matrix Theory and Applications, 2nd ed.~Ple-
num Press, New York, 1996!, Chap. 8.

46G. Belessa, N. Vernier, B. Barbara, and D. Gatteschi, Phys. R
Lett. 83, 416 ~1999!.

47W. Wernsdorfer and R. Sessoli, Science284, 133 ~1999!.
48D. Loss, D.P. DiVincenzo, and G. Grinstein, Phys. Rev. Lett.69,

3232 ~1992!; J. von Delft and C.L. Henley,ibid. 69, 3236
~1992!.

49A. Garg, Europhys. Lett.22, 205 ~1993!.



lly

ow
t is

PRB 62 15 041SPIN DYNAMICS OF Mn12-ACETATE IN THE . . .
50W. Wernsdorfer, Physica B284–288, 1231 ~2000!; W. Werns-
dorfer ~private communication!.

51W. Wernsdorfer, T. Ohm, C. Sangregorio, R. Sessoli, D. Mai
and C. Paulsen, Phys. Rev. Lett.82, 3903~1999!.

52For this reason, the features in, e.g., Fig. 11 that depend onD6,26
,

and D7,27 may be unobservable for transverse fields bel
1–1.5 T, but the features do persist to higher fields than wha
shown here.

53T. Ohm, C. Sangregorio, and C. Paulsen, Eur. Phys. J. B6, 195
~1998!; J. Low Temp. Phys.113, 1141~1998!.


