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In this work, we study the spin dynamics of Mracetate molecules in the regime of thermally assisted
tunneling. In particular, we describe the system in the presence of a strong transverse magnetic field. Similar
to recent experiments, the relaxation time/rate is found to display a series of resonances; their Lorentzian shape
is found to stem from the tunneling. The dynamic susceptibjifw) is calculated starting from the micro-
scopic Hamiltonian and the resonant structure manifests itself algbai. Similar to recent results reported
on another molecular magnet, Jreve find oscillations of the relaxation rate as a function of the transverse
magnetic field when the field is directed along a hard axis of the molecules. This phenomenon is attributed to
the interference of the geometrical or Berry phase. We propose susceptibility experiments to be carried out for
strong transverse magnetic fields to study these oscillations and for a better resolution of the sharp satellite
peaks in the relaxation rates.

I. INTRODUCTION nisms: quantum-mechanical tunnelitiyough and thermal
activationover the anisotropy barrier. At high temperatures
In recent years, numerous experimental results on macrdT>3 K or T>6 K, depending on the experimeptthe
scopic samples of molecular magnets, especiallygpins relax predominantly via thermal activation due to the
Mn,-acetate and Feiriazacyclononane, have drawn atten- phonons in the lattic&*?In this regime, the relaxation time
tion to the peculiar resonant structure observed in the hystefollows the Arrhenius lawr= 7, expU/kgT), where U/kg
esis loops and relaxation time measuremérftas well asin  ~60 K denotes the barrier height ang~10"2 s the in-
the dynamic susceptibility® In this paper, we concentrate verse attempt frequency.When temperature is lowered to
on Mny, (shorthand for Mp-acetate At low temperature, 2<T<3 K, the time required by the over-barrier relaxation
the observed relaxation times are long, up to several increases exponentially but several of the excited states still
months and more, and display a series of resonances wittemain thermally populated. An external magnetic field can
faster relaxation as a function of an external magnetic fielde used to bring pairs of states on the opposite sides of the
directed along the easfz) axis of the sample. These are barrier to degeneracy enhancing the probability to tunnel
considered as signs of macroscopic quantum tunnelingcross the barrier. The tunneling arises due to crystalline

(MQT) of magnetization. anisotropy and possible transverse magnetic field at the site
Typical experimental samples consist of single crystals opf the spin. The tunngling amplitudes are the larger the closer
ensembles of aligned crystallites of identical Mrmol-  to the top of the barrier the states are and, consequently, the

ecules. Each molecule has eight Mnand four Mif* ions  thermal population of the higher states plays a key role in
which, in their ferromagnetic ground state, have a total spirielaxation, cf., e.g. Refs. 10-12 and 14. At still lower tem-
S=10. Due to strong anisotropy along one of the crystallinePeratures, tunneling and the relaxation becomes sensitive to

axes g direction, there is a high potential barrier fluctuations in the dipolar and hyperfine fiefdsin this pa-
per, we concentrate in the regime of thermally activated tun-
U(s,)=-AS-BS}, (1)  neling.

Several authors have investigated the spin dynamics theo-
with A/kg~0.54 K andB/kg~0.0011 K, between the op- retically with the emphasis ranging from “minimal” models,
posite orientations of the spirS{= =10); the easy axis iS assuming as simple a spin Hamiltoniafy and a model of
the same for all the molecul@sThe dipolar interaction be- the surroundings as possiblen order to explain experi-
tween the molecular spins, a possible relaxation mechanisrments, that i5!°~121416-1%o more specific models for inves-
has been found to be weak in Mn’® Instead, the observed tigating the role of the dipolar and/or hyperfine
resonant phenomena are attributed to quantummelingof  interactions:®2! and combinations of thesé41622The
single spins—the response being magnified by the largéhermally activated relaxation has typically been studied us-
number of them—interacting with the phonons in the lattice.ing a master equation approach to describe the time evolu-
The role of the hyperfine interactions is still under sometion of the spin-density matri}¢-121416-1823he syscepti-
controversy and is only briefly touched upon in the follow- bility, on the other hand, has only been treated within a
ing. phenomenological modéf4-2

The main features of the experimental findings can be The existing theories have been successful in explaining
understood in terms of two competing relaxation mechathe general features seen in experiments. However, several
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points call for further attentior(i) A microscopic calculation 0}
of the dynamic susceptibility is missing altogethér) The Elky
effect of a strong transverse magnetic field has not been thor- K)
oughly studied and, in particular, not in the context of the -20 ¢

susceptibility®® (i) Several authors including ourselves
have found a series of side resonances to arise in their
calculation$®*®2_the fact that these peaks are not in gen- —40 |
eral (see Ref. 27 for exceptiongbserved in experiments is
not quite clear. In this work, we aim at elucidating these
points and present calculations for the relaxation rates and -60 |
susceptibility in a unified language that can be conveniently
extended to systems with stronger couplings. We work with
a Hamiltonian similar to, e.g., Ref. 18, cf. Eq®)—(4), but
introduce an alternative framework to work with the density  F|G. 1. Schematic of the energy diagram f@-21=21 eigen-
matrix. It is well known that all the resonances can be enstates ofH, together with the functional form of the potential bar-
hanced by a strong transverse magnetic field but we shower (solid line). The figure also shows examples of possible transi-
that the resonances can also be reduced and even suppressia:processes: spin-phonon coupling may chamdsy +1 or =2,
Both the relaxation rate, see also Ref. 22, and susceptibilitwhile the anisotropy term ift{; yields tunnel couplings across the
are found to display significant dependence on the directiokarrier — an example of a third-ordén B,) process is depicted in
of the transverse field suggesting that interference effects dhe figure.
a geometrical phase could be observed also in,Mmd,
what is more, do so in the regime of thermally activatedwhile the second term is the Zeeman term corresponding to a
tunneling. transverse magnetic field, =H siné (in spherical coordi-
The paper is organized as follows. Section Il introduceghates,¢ is the polar angle away from treaxis; the azimuth
the microscopic model used for Njand a discussion on the angle is denote@: H,=H, cos¢ andH,=H, sin¢).
different interaction mechanisms in the system. In Sec. I, Figure 2 shows the eigenenergies’¢§ as a function of
we develop a time-dependent description of the system ithe longitudinal magnetic field,. Away from the reso-
terms of a kinetic equation and the resulting master equationances, the eigenstatg$) resemble the statdsn) and are
governing the spin dynamics. The kinetic equation is solvedlso localized onto the different sides of the barrier—the lin-
for the field-dependent relaxation timegH) and the static ear field dependence of the eigenenergies stems from the
susceptibilityxo(H). The dynamic susceptibility(w;H) is ~ Zeeman term in Eq2). Close to the resonance; couples
calculated in Sec. Ill B and a Kubo-type formula is found.the |m) states across the barrier and gives rise to avoided
Section IV displays the numerical results for be{tH) and ~ crossings in the energy diagram fig. The magnitude of
x(w;H) accompanied with a discussion on the results andhese splittings directly gives the tunneling strengths. De-

their relevance to experiments. In Sec. V we sum up thdending on the states in question as well as on the magnitude
work. of B, (H, =0 for the moment the splittings are found to

vary enormously: from 10% K for the choiceB,/kg=4.3
Il. SYSTEM X10 % K and the statesn==10 up to almos 2 K for
B,/kg=14.4<10"° K and the resonana@= = 2. This up-
The spin Hamiltonian of a single Mamolecule can be per limit is already of the same order of magnitude as the
written in the formHs="H,+H+. The first term,

H,= —AS—BS;—gueH,S,, 2) 0.0
with S, being the spin component along the easy dkire % -5.0
the z direction), describes the part that commutes wgh It

consists of the anisotropy terms of Ed) and a Zeeman

term which enables external biasing of the energies. The an- 0 %

isotropy constants have been experimentally estird&téds

Alkg=0.52—0.56 K andB/ks=0.0011-0.0013 K; theg -30

factor is 1.9%° The resulting energy leveE,, for the eigen-

states ofS,|m)=m|m) together with the potential barrier are -60 |

shown schematically in Fig. 1. ‘ .
The second term in the Hamiltonian, 0 1 2 3 4 HZ(T)s

FIG. 2. The eigenenergies of the 21 states as a functidt,of
The inset shows a blow up of the higher energies at low fields—
) . ) ) note especially the avoided crossings of the statesm’ =4 di-
does not commute witls, and gives rise to tunneling. The rectly coupled by the, term in ;. There are similar, although
B, term arises from crystalline anisotrop§,=(4.3—14.4)  smaller, splittings for the lower levels as well. The three arrows
x107° K (below we useB,=8.6x10 ° K, but the par- denote the effective barrier height that decreases with increasing
ticular choice is unimportant for the results obtain® H,.

1
Hr==5By(Si +S")~gus(HSHH,S), ()
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where €, and w5 are the symmetric and antisymmetric
0.0 2'0 4'0 strain tensors, respectively, agd (i=1,2,3,4) are the spin-

H(T) phonon coupling constants. For these, we adopt the values
from Ref. 18:9;~g,/2=A and|g,|~g; and|gs|~g,.%° In
leading order ing;'s, Hs, produces transitions such that for,
01 terms,Am=+*2 and, forg; ,terms,Am= + 1. The pho-
nons themselves are described by

level spacing and in fact even exceeds it rendering perturba-

tive calculations of the tunneling couplings/strengths some- ” _2 bl e 5

what guestionable. Therefore, even though we first formulate ph™ e~ @koDggko ®)
everything in a general form, independent of the choice of

basis for the spins, we calculate the actual results working ims a bath of noninteracting bosons.

the eigenbasis of{s. This choice of basis provides the ad-  To be more quantitative, the phonons are assumed to be
ditional advantage that it allows us to consider arbitrarilyplane waves with a linear spectrum and three modes—two
strong magnetic fields. transverse and one longitudinal—denoted dy The ele-

In absence oH, , there is a selection rule thy: only  ments of the strain tensok,z=(d,Ug+ dgu,)/2 and w g
statesnandm’ that are a multiple of four apart are coupled. =(d,uz— d,u,)/2, are defined in terms of the local displace-
Experimental data do not lend support to such a rule, howment vector
ever, but rather suggest that all transitions are allowed. It

FIG. 3. The tunnel splittinga ., _,, as a function of the trans-
verse magnetic field4,=0. The three types of curves correspond
to three different angleg: 0°, dashed; 40°, dotted; and 45°, solid.

turns out that already a tiny transverse field in E8). is . 5 : .

sufficient in achieving this—such a field may arise due to Un(N=2 \/5o—e7[b. +bi,le*".  (6)
) > ) -y - 2NMwji; ko

dipolar and/or hyperfine interactions within the sample, see ko 7

below, as well as due to uncertainty in the precise angli_| b he b . f h ith
between the external field and the easy axis of the sampl&'c'® Pk, aré the bosonic operators for phonons with wave
We assume throughout the paper a small constant misaligivectork, oy, is the corresponding frequency, anff’ the
ment angled=1° andH, =|H|-siné. In places, we wish to ath element(of x, y, andz) of the polarization vector\ is
investigate the effects of a significantly stronger transverséhe number of unit cells anill the mass per unit cell.
field and state so explicitly. The transverse field increases the Above we considered the energy scales inhererft{40
tunnel splittings if¢ is close tona/2 (n is an integey, i.e.,  and the spin-phonon rates, which are found belappendix
along thex andy axes, or leads to oscillations in the split- A) to be typically of the order of 10°-10 * K, fall in
tings if ¢ is close to one of the directions(2n+1)/4. Be- between the extremes of the tunnel splittings. This value is
low we denote these special directions as the hard axes of tivery small compared to the stronger tunneling couplings and
molecules’! The tunnel splittings are illustrated in Fig. 3 as seems to suit well for a perturbative treatment. On the other
a function ofH, and for different angle®, see Ref. 32. hand, for the low-lying and weakly coupled states the spin-
The usage of{s of an isolated spin is based, first of all, phonon rates may be several orders of magnitude larger than
on the assumption that the molecules indeed reside in thethe tunnel splittings and one would expect the tunneling to
S=10 ground stat&* This is well justified for the experi- be suppressed. However, the intermediate regime, where the
mental temperatures below 3—-6 K—the energy required téunneling and spin-phonon rates are of the same order of
excite the system to the lowest excited state vth9 is ~ magnitude, requires some extra care; see below.
around 30 K. The second assumption is the absence of inter-
action. In reality, the spins interact with each other via dipo- IIl. DYNAMICS
lar interaction, with the nuclear spins via hyperfine interac-
tion, and with the phonons of the surrounding lattice. The magnetization measured in experiments is the mo-
Experimental evidence shows that the dipolar interactiondecular magnetizatioM (t) =gug(S,(t)) magnified by the
are small forT>2-2.4 K>3 while the hyperfine interac- large number of molecules in the samples. In order to calcu-
tions produce an intrinsic broadening of the order of 10 mTiate this, we start with the general formulation
to the spin state¥’>° We neglect these for the moment and
return to them in Sec. IV C. (S,(1))=TI[S,(t)- p51], 7)
The spin-phonon interaction is mediated by variations in
the local magnetic field induced by lattice vibrations andwhere pg'=pSpP" denotes the initial density matrix of the
distortions. For tetragonal symmetry, this can be generallyvhole system encompassing the spin and phonon degrees of
formulated as, cf. Ref. 18, freedom. The interaction between the two is assumed to be
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turned on adiabatically and only enters the time evolution ofThe real parts of the eigenvalues correspond to relaxation

S,(t) (in Heisenberg picture and with the conventidn rates Ref;)=— ri’l.

=1) The eigensolution of/ with A\y=0 corresponds to the
stationary state, defined a€(t) =0 with p(O(t) = p(©. The

(S,(1))=Tr(e" i d'H)g g i dVH(W'). pioty -~ (g)  diagonal elements of are the thermal probabilities to find the

spin in the respective states. In thebasis, the static mag-

Expansion of the exponentials and a standard elimination afetization and susceptibility are readily expressed in terms of

the phonon degrees of freedom leads to an effective descrighe diagonal componentéﬁ)=p§,?)m yielding

tion of the spin in terms of a reduced density mafpif) '

=Trol p°(t)]. The details of the calculation can be found in

Ref. 38, where we also introduce a real-time diagrammatic Mo=gus> Mply, (14)
formalisnf® for expressing and evaluating all the quantities "

to follow. The reduced density matrpqt) describes the full M PRO

time evolution of the spin degrees of freedom in the presence onu :g/—LBE m. Pm ' (15)
of the spin-phonon interaction and, e.g., the magnetization dH, m dH,

takes the form . . i .
Since the stationary probabilities are given by Boltzmann

factors we obtain in the absence of tunneling
M (D) =gpe(S:(0) =gueTrd S:p(1)]=gra M- pmm().

(gus)?
9 Xo=— k? > m(m' —m)p{@pl9). (16)
B m,m’

The diagonal elements,, (t) are just the probabilities for _ ) ) _
the spin to be in the statém). In the presence of tunneling, this form remains essentially

the same up to transverse fields of the order of 1inTthis
range most of the tunneling splittings are too small compared
to the level spacing in order to change the result consider-
The time evolution ofp(t) is governed by the kinetic ably).
equation For all the other solutions Re()<0 and the vectors
pM(t) correspond to deviations fropi®). The longest relax-
ation time 7, is several orders of magnitude larger than
and the respective solution is interpreted to correspond to the
interwell relaxation, i.e., from one side of the barrier onto the
The commutator on the left-hand side of E4O) corre- other.
sponds to the freéHamiltonian time evolution of the spin, Above we have considered the fgleduced density ma-
while the integral on the right-hand side describes a dissipatix p(t). In Appendix B, we discuss the choice of the basis
tive interaction which is nonlocal in time and contains theand argue that the basis has certain advantages and, e.g., in
spin-phonon coupling terms. The kerng(t,t’') =3 (t—t’") the case of strong tunneling compared to the spin-phonon
is derived in Ref. 38 and the expressions needed for itsates, it allows the restriction to the diagonal elements of
evaluation are given in Appendix A up to ordéx(g?). It p(t)q 4 only. The nondiagonal elements become important
depends only on the time difference since the Hamiltonian isvhen the rates for the tunneling and the spin-phonon cou-
time-translationally invariant. According to E4A8), we  pling are of the same order of magnitude.
find that>, (t—t’) is a fast decaying function of time, and we

A. Kinetic equation

. t
P(t)+i[Hs,p(t)]=fodt’E(t,t’)p(t’)- (10

make the simplifying Markov assumption thaft) remains B. ac susceptibility
essentially constant over the time peridad within which . , i L ,
S(t—t') decays to zero and takg(t) in front of the In this section we outline the derivation of the dynamic

integral®! This is justified at least for the longest relaxation SUSCeptibility

time 7, (see below For convenience, we also take the upper .

integration limit to infinity. X(w)Ef drel“7y(7), (17)
After taking p(t) out of the integral in Eq(10) the inte- 0

gration over time(up to infinity) can be performed and we

are left with a constank. Equation(10) becomes IM(t) H{S,(1))

x(t—t )—aHz(t,) —gusaHz(t,) :

(18
p(t)=—iLop(t)+Zp(t)=Wp(t) (11)
with Lo=[Hsg,.]. This is similar to the master equation for-

mulations in the literatufé**%~%nd may be solved for the
eigensolutions ofV:

For convenience, we assume in the following tHatcan be
tuned to any(statio value independent dff, and that the
actual measurement is done by applying a tiny ac-excitation
field h,(w) on top of the statitd,. The more general calcu-
. , , lation of dM ,(t)/dH4(t"), a,B=X,y,z, can be carried out
pM(t)=WpO(t)=x;pM(t) (12 along the same lines.
In Ref. 38 we show that the derivation with respect to
pD(t)=p@(0)- e, (13)  H,(t") yields
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X(t=t")=i(gue) ([SA1),St")]) (19 Tish |
2
which, when inserted to Eq17), is just the Kubo formula 107
for the linear response to an external magnetic field. The o |
diagrammatic evaluation of E@19) leads to the expression 100 ¢
;s 1 10°
=-— Myl ———
X(w) (g/"LB) darar d —Iw+IL0—E(w) d 10_4
XS ()gr,a Pl (20 o b _
where3 (w) is defined as the Laplace transform¥ft,0), 60 05 10 15 20

- " H(T
andX (w) is an auxiliary function arising from the derivative @

of 2 (t,0) with respect tdd,(t"). The explicit expressions for FIG. 4. Relaxation rat€ = 1/7 as a function of the longitudinal
i(w)d ar turn out |engthy and are Om|tted here magnetic field: without tunnelingdasheﬂi and with tunneling
The resolvent in Eq(20) is treated in terms of the eigen- (solid). Here, only the diagonal density matrix elements are used.

solutions of Wp(t) and the appropriate projections of the The large offset between the two curves is due to the broad Lorent-
= () (i) . zian shapes under the even resonances: there is a strong direct cou-
terms X (w)p'”’==,c;p'"” are used. In particular, for the

. ) . pling between the statetn=—m’'=-2 around H,=0, m=
component along the relaxing mog€(t), the resolvent in —3m’=1 under the second series of peaks,€2H,), andm=

Eq. (20) reads —4m’' =0 under the fourth series of peakd f~4H,). The sharp
resonances arise due to tunnel coupling of lower-lying states
1 1 1 their height reflects the energids,, via the Arrhenius lawl’
—jlotil,—3(w) - —To—W(w) =~ ot 7_1_1- xexd —B(E,—E_19 ], and the peak width is given by the tunnel

splitting. Here the temperature is 2.5 K.

The approximate sign is due to the Markov approximation
where3, (w)~2(0), cf. Appendix C. Apart from oner; this

is the well-known factor in expressions for susceptibility, The relaxation rate as a function of the longitudinal mag-
see, e.g., Refs. 44 or 24. The rest of E20) reduces to a netic fieldH, is shown in Fig. 4. The overall behavior is of
prefactor roughly proportional te; * but with weakH, and  the Arrhenius form, i.e.7~ 7o exd BU(H,)] where 7, only

o dependences. The respective projections along the oth@ives a constant offset to the semilogarithmic figure &rnd
modes turn out to be proportional to the time constants the effective height of the barrier; see Fig. 2. On top of this
These are very small and render all these terms negligible fg¢xponential field dependence, there are series of resonances
the frequencies considered below. Therefore we are left witfpcated at
the effective formula for the susceptibility

A. Relaxation rates

li
mm’ _
H, " =

2 12
Xo(H,T) . [A+B(m*+m'4)] (22)
X(H,T,0)~ 1

“Tor(HT)’ @D

corresponding to the values of the external field that brings

which has been widely used in explaining experiments, sedhe statesm and m’ on resonance; the resonances form
e.g., Ref. 5. For the low-frequency limit, we recover thedroups close to the fieldsl,~nH; wheren=m+m’ and

static susceptibility, i.e., ligy,ox(w) = xo Wherex is given ~ H1=A/gug, see Fig. 4. The broadest of the resonances re-
by Eq. (16). semble those seen in usual experiments, while most of the

resonances are too narrow to be seen and, as is discussed
below, already the phonon coupling is sufficient to suppress
them. One of the main topics of this paper is the possibility

In this section, we concentrate on results obtained in thé0 detect some of the satellite peaks by the application of a
eigenbasis of{s. This choice is advocated by three points. relatively strong transverse field, as well as to suppress
First, it allows us to consider much stronger transverse fieldéhe already visible peaks by pointitg, along one of the
(see the discussion on energy scales in Sgthéin the com- hard axes.
mon approach to calculate tunnel splittings in the leading- The whole curve in Fig. 4 can be understood in terms of
order perturbation theor*'* second, the origin of the the expression
Lorentzian shape of theégez%onances is seen to arise naturally
from the tunnel splittings>“° The third point is that, in this —1_ (N1-1 — BU(H
basis, all the relevant properties of the system are captured T _; (76”1 *Da(Ho)e™” 2, 23
by the diagonal elements(t)yq only.** This feature also
improves the performance of the numerics. We also presenfhere the indexa enumerates the resonandpairs of states
results obtained with the fuli(t) and discuss the differences M, andmy). As discussed in Appendix D, there is a certain
as examples of phonon-induced decoherence. The energieg‘) for each resonance; the functi@,(H,) is a tunneling-
are expressed in kelvin, magnetic fields in teslas, and rates induced Lorentzian that yields the peak shapes, @y ,)

s L. is the effective barrier height for theth resonance, i.el),

IV. RESULTS



PRB 62 SPIN DYNAMICS OF MnACETATE IN THE ... 15031

=Em —E_10 (E_19 is the energy of the metastable mini-

. : . 107 4
mum). The widths of the Lorentzian peaks are given by
T L
4|A,| 107

5Hz:—,7 (24
gMB|mn_ mn|

10
where 2A,| is the tunnel splitting between the resonant

states, cf. Appendix D. As is seen in the figure and also
suggested by the inset in Fig. 2, the background is not given
by the over-barrier relaxation but by the “leakage” due to

the direct coupling of states witm—m’'==*+4, e.g.,m= H,(T)
+2m’'=7%2 close toH,=0 andm==*=1m’'=*3 close to
H,=2H,. This effectively lowers the barrier height 1d FIG. 5. Magnification of the first and second clusters of peaks of

~E_,—E_;. The rates that determir‘ré)”), depend only Fig. 4 magnified(solid ling). The different curves correspond to:
weakly on temperature, the resonant states, tapdcf. Ap- ~ H.=0.0 T (solid), 0.01 T (dotteg, 0.05 T (dasheg 0.1 T (long
pendix D. This is in line with the experimental observationdashed and 0.2 T(dot dashel ¢=0° for all the curves. The
that the estimated prefactor of the Arrhenius lay, varies peaks further to the right correspond to resonances between lower

within an order of magnitude for different samples and resoStates, hence the higher maxima. The pedam left to right
nances. correspond to the resonanaes=1, ... ,4,m'=—m-1 in the left

— . figure (the two first ones are merged togetheand m
The sharpness of the narrowest peaks in Fig. 4 is an artL2 . .5m' =—m—2 in the right figure. Here we used also the

fact of the reduced model used so far, i.e., neglect of the, .’

di | trix el ¢ d let t ider t off-diagonal elements op(t) with the result that some of the
nondiagonal matrix €lements, and 1€t us next consiaer Wgharper peaks are reduced in height or even suppressed due to spin-

things affecting these peaks: decoherence due to spin-phongﬂOnon coupling. The peak widths show stroHg dependence
coupling and the broadening effect of a transversal magnetig,cent for the second and fourth peaks on the right—these arise
field H, . For other contributions such as the hyperfine andqn, B2 and B3 type of coupling. Once the peak widths due to the
dipolar interactions, see Sec. IV C. tunnel splittings exceed the phonon-induced width, the peak heights

~ The decay of the nondiagonal elements of the density magre essentially determined by the enetgy=E,—E 1, needed to
trix is a classical definition of decoherence and this is alsQeach the resonant states.

what is seen here when the above calculation is performed

using the full p(t). Inclusion of the off-diagonal elements the splittings can even be suppressed by varying the apgle

still produces Lorentzian peaks but now the narrow : . ;
resonances—uwith widths of the same order of magnitude Jwhere the transverse field is pointed. For the zeroth peak,

the spin-phonon coupling—are broadened and reduced i for H,~0T, all ten resonances occur at the same posi-

height. The narrowest peaks may even be completely su ion and the suppression of any one of them is obscured in

pressed, see the solid-line curves in Fig. 5. Despite its intuith€ relaxation rate curves by the simultaneous broadening of

tive appeal, the suppression of the narrow peaks should b%:[her resonances. For this reason, let us first focus on the

taken only qualitatively because of the limitations of theresongntches occiurrmtg at finité, and return to thed,~0
Born approximation used in treating the spin-phonon coyLase In the next section. -
Figure 6 shows the tunnel splittings, _s andA; _s, re-

pling. For this reason, the following considerations are re- . ; .
stricted to regimes where the effect of the nondiagonal eIe§peCt'Vely’ as a function dfl, and for four different values
ments ofp(t) is negligible.

The suppressing effect of the spin-phonon coupling being
essentially a constant, the sharper resonances can be made AK) T
observable by broadening them with a transverse field
even ground-state tunneling has been observed in high
enough field4® The various tunnel splittings are shown in
Fig. 3 as a function oH, pointed to three different direc-
tions ¢. It can be seen that for small values of the field, the
splittings are essentially independent of the chosen angle, see
also Fig. 6. Furthermore, tunnel splittings between states that I 1L
can be coupled with soB, terms ofHt are quite insensitive Ays A; 5
to the transverse field below 0.1-0.2 T. Figure 5 illustrates 107 s \ \
the effect ofH, =H, onto the two first series of peaks. The 00 05 10 00 0.5 1.0
resonances that initiallyH,=0) were broader tham{"~* H(T)
are seen to retain their height; the narrower peaks, such as g1 g The tunnel splittingg , _5 (left) andA,_s (right) as a

the two shown in the insets, are strongly broadened withynction of the transverse magnetic field whn is kept fixed at
increasingH, and also their heights increase once theirthe position of the corresponding resonance, 0.4581 T and 0.9045
widths become larger than the spin-phonon rates. T, respectively. In both figures, the four curves correspond to dif-

A transverse field cannot only increase the tunnel splitferent anglesp: 0°, dot-dashed; 40°, dotted; 43°, dashed; and 45°,
tings but it can also reduce them, see Fig. 3. In the ideal caseolid; the vertical axes are the same.

107"
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FIG. 7. Relaxation rate ! as in Fig. 5 but now for stronger
transverse field, and for different angleg. The line types and FIG. 8. Static susceptibility, as a function of the longitudinal
angles are as in Fig. 6 and the valuesHof=0.4311 T and 0.2643 magnetic field shown for different temperatures: Zg6lid), 2.5 K
T are chosen to match the first suppression poifus the actual  (dotted, 3 K (dashed, 4 K (long dashejl and 5 K (dot dashep
suppression occurring at the minimum value forthe values for  The dynamic susceptibility(w) is essentially composed of,
H, should be given with even higher accuracyemperature is  multiplied by the real and imaginary parts of 141w 7) shown in
25 K. the inset as the solid and dashed lines, respectively.

of ¢. The former corresponds to the resonance shown in th?emperature and, for the parameters and the curvag, af

left inset of Fig. 5, while the latter corresponds to the broadrig ‘g pecomes of the same order of magnitude as the actual
resonance in the right panel of Fig. 5—this is also the ON&elaxing mode oncéd,~0.9-1 T. However, such a mode
seen in experiments &i,~2H,. Figure 6 also exemplifies cqrresponds to very high frequencies and is neglected below.
some general properties of the tunnel splittings. As alreadynere could be also other sources of high-frequency contri-
mentioned above, tha's depend only weakly owb for low  pytions such as dipole-dipole flip flops, nuclear spin dynam-

H, , while for larger fields and close to the hard axes, the jcs or moving impurities but these are beyond the scope of
tunneling amplitudes are successively increased and reducggs work.

asH, is increased. On the other hand, with held fixed to As to the actual results, it is in principle sufficient to
one of the suppression points, thés oscillate as a function - compine the curves for of the previous section with those
of ¢. Similar to recent work on ke see, e.g., Ref. 47, these shown in Fig. 8. The shapes of the real and imaginary parts

phenomena are attributed to alternating constructive and dey 1/(1—jw7) readily imply how the resulting susceptibility
structive interference of the geometrical phase in the tunnelyenaves if one fixess—it turns out that all the structure

ing amplitudeg®**The number of minima foragiveliy,m'  found in 772 in the previous section can also be found in
appears to be, as was also pointed out in Ref. 22, given by () First, the response is the most sensitive to changes in
the number 0B, terms involved in coupling the statesand - \vhen w~7"1 or wr~1, cf. the inset of Fig. 8. Second,
m’. This ranges from zero at the top of the barrier to five forRe[X(Hz;w)] replicates the shape of(H,) and exhibits

the ground statem= + 10, cf. Fig. 3. _ peaks and valleys as ! increases and decreases. This is the
Figure 7 shows the relaxation rates corresponding to th@sse with the imaginary part, [p(H,;®)], as well, but

resonances of Fig. 6 witll,’s chosen to match the first only as long aso7=1, i.e., as long as we remain on the right
points of suppressiohiT'm' . The resonance width is found

to be very sensitive t@ quite as expected and, fgr=45°,

the left-most peak becomes suppressed. Note, that the sup-
pression is also quite sensitive to the valugdofas well and

the higher peaks in Fig. 7 are hardly affected at all by
changes ing.

B. ac susceptibility

This section contains the main results of this paper: study
of the interference effects in the dynamic susceptibility
x(w). The results are based on the approximate expression,
Eqg. (21), obtained above for the susceptibilif w), and the 044 0.46
results for the relaxation time, of the previous section.

Figure 8 illustrates the two contributions to H@1) (in all g1, 9. The real and imaginary parts of susceptibility for the
figures, the szusceptlblllty is expressed for a single spin and i@ame parameters as the dotted curves in the left panels of Fig. 7,
units of KT~ ). i.e,H, =04311 T,$=40°, andkgT=2.5 K. The curves corre-

In the present model, the main correction to E2{) cor-  spond to frequencie®;=0.02 Hz, ' (dotted; x” (dashedt and
responds to an intrawell mode describing transitions between,=0.5 Hz, y' (dot-dashel x” (solid). The frequencies were

the two lowest states on the same side of the anisotropghosen such thas,< 7~ for the both of the peaks in Fig. 7, hence
barrier. This correction increases with increasiHg and  the notches iny”, while w,>7"1 for all H,.

10°°

0.48 H,(T)
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FIG. 10. Oscillations in the relaxation rate as a functionof.
The lower and upper groups of curves correspond Hg
=0.0002 T,kgT=3.0 K andH,=0.01 T, kgT=5.0 K, respec-
tively. The individual curves correspond to different anglies0°
(dashed and dot-dashedt3° (dotted, and 45° (solid and long
dashegl

FIG. 12. Log-log scale schematic of Lorentzian curves on top of
each other similar to thel,~0 T situation for Mn,. The higher
the curves are the narrower they get and, on the other hand, the
higher theH, the lower the observed resonances are. The relaxation
rate is determined by the fastest possible rate, depicted in the figure
with the thick solid line.

hand side of the peak in [nv(H,;w)]. For lowerw, o7 can . .
cross the maximum point and the picture with the peaks angnd one by one start to dominate the relaxation, see the dot-

valleys turns upside down. These points are illustrated in Figh@shed curves in Fig. 11 for the tunnel splittings and Fig. 12
9 for a case corresponding to one of the curves in Fig. 7. for the .general idea. All 'the.addlfuonal structure, §§en¢or
Let us next consider a different scheme, keepihgand =45° is due. to the oscillations in the tunnel sphttmg.s. and
¢ fixed and varyingH, starting from zero field. The case the suppression of some of the resonances. The positions of
H,~0 Tis of particular interest because it allows compari-the notches can be compared with the structuragf , in
son to recent experiments by Wernsdorfer done on the ré=ig. 11 and one finds that for smallelr, the relaxation takes
lated material Fg cf. Ref. 50—the experimental data place via the lower-lying resonances suchmas =6 and
showed clear oscillations of the relaxation rates as a functiom= = 7; further away from the maximum, the broader reso-
of H, in the thermally activated regime. By choosing param-nances between states=+4 andm=*5 act as the domi-
eters in the feasible range of these experiments, we findant relaxation paths.
somewhat similar oscillations also for Mn Figure 10 Figures 13 and 14 show the real part of the susceptibility
shows first the relaxation rates for two different combina-y’ corresponding to the two cases of Fig. 10. The purpose of
tions of temperature and the longitudinal field=3.0 K  the different frequencies is to show that also here one can
andH,=0.2 mT to show the behavior close tor aj the  choose the structure of interest and study it by tuning the
peak maximum and at a lower temperature, drd5.0 K frequency to fulfillwr~1. In both figures, there are regimes
andH,=10 mT as an example of the behavior further awayyhere the susceptibility can be varied by a factor of 5; in
from the maximum and at a higher temperature. Alsodhe Ref. 50 the oscillations were quite clear already with the

dependence is shown. o _ amplitude being a mere 20% of the signal.
For ¢=0°, the gentle oscillations resembling a strongly-

smeared staircase stem from the fact that the Idweterms

of energy; higher in terms of rateesonances are broadened 60
AK) ' ' ‘ X
10° ¢ 40 |
=3
10 As,
L 20 r
107
6 0 = — hs .
10 0.0 0.5 1.0 1.5 2.0
- - ‘ H.(T)
0.0 05 1.0 1.5 2.0 I
H.(T) FIG. 13. Real part of the susceptibility fot,=0.2 mT, kgT

=3.0 K, and for the anglegp=0° (dasheq, 43° (dotted, and 45°
FIG. 11. Tunnel splittings\,, _p, for four resonances relevant (solid). The upper three curves correspond to the frequeacy
for Fig. 10. The dot-dashed and solid lines denote the angles =10 Hz and the lower ones =50 Hz. The line types corre-
=0° and 45°, respectively. spond to those for~ ! in Fig. 10.
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ian broadening, of the widthry,,,~6 mT*to all levels, i.e.,

the nuclear spins are importantly dynamic and their influence
on the molecular spin cannot be reduced to a rigid but spa-
tially varying background field. Simultaneously with the
broadening, the hyperfine interactions reduce the tunneling
amplitudes of the resonances for which< o, —this
should lead to reduced peak heightsrint(H,).

With this in mind, let us consider the different regimes in
terms of the relative magnitudes of the tunnel splitting and
the hyperfine broadening. First, for resonances with
> oy, the shapes of the resonances are expected to be
Lorentzian with the widths determined by the tunnel split-
tingsA. This is the regime, where all our results apply. In the

other extremeA <oy, the resonances should be essentially
suppressed providing one possible explanation why the sharp
satellite peaks are not observed in experiméhtsote that
the minuscule phonon-induced broadening or dephasing is
hidden under the hyperfine broadening and cannot be seen.
In this regime, one could in principle try and extend the
present theory by adding by hand a strong dephasing term to
the nondiagonal density matrix elements. The intermediate
So far we have considered the simple model comprising #€gime whereA~ oy, is the most interesting of the three
single spin coupled to a phonon bath but, as was pointed owases. In this regime, the peak shape should be a combina-
in the introduction, in real samples there are also other kind§on of Lorentzian and Gaussian curves and, depending on
of interactions. In this section, we consider the additionalwhich one ofA or oy, is larger, one of the shapes should
features arising from the hyperfine and/or dipolar interacdominate. In the tail region, i.e., away from the peak
tions and aim to point out the experimentally relevant aspectsiaxima, the Lorentzian tails dominate and it has been sug-
of the results obtained above. gested that this together with experimental error bars may
Let us first recall some experimental facts concerning reobscure the resolution between the two types of curves, cf.,
laxation measurements and results—these underlie also tleeg., Ref. 22.
understanding and appreciation of the susceptibility mea- The immediate conclusion from these considerations is
surements. Relaxation rates are typically measured by firghat, if the application oH, broadens some of the tunnel
magnetizing the sample to saturation, and then reversing theplittingsAp, ' to exceedry,,,, the corresponding resonance
direction of the field and measuring the resulting magnetizashould become observable. If, on the other hand, the trans-
tion as a function of time. The initial relaxation is observedverse field is applied along one of the hard axes, a given
to be nonexponential—this is attributed to dipolar interac-resonance becomes suppressed for certain special values of
tions, see below—while, at later times, it becomesH, ; in the presence of the hyperfine interactions this should
exponential® Several authors have proposed an extendethappen already whel,, ., becomes smaller tham,,. The
exponentiaM (t) =M (0)exd —(t/7)?] to account for both of intermediate regime can be intentionally achieved by tuning
these regimes with just one additional fitting paramg@ein  the tunnel splitting from being well belowr,, to above it.
Ref. 15 it was found thaB varies fromB~0.5 below 2.0 K This may provide means to probe the Gaussian broadening,
to B~1—usual exponential relaxation—roughly above 2.4see also the subsection below focusing on the advantages of
K. The thus obtained relaxation rates exhibit a series obusceptibility measurements.
broad Lorentzian-shaped resonances; their height and loca- Dipolar interactions The intermolecular spin-spin inter-
tion correspond to tunneling-assisted relaxation three to fouactions are of dipolar form and they are weaker in;Mthan,
levels below the top of the barrier. e.g., in Fg. Due to their short range, the dipolar fields can
This shows two clear differences as compared to thevary in space changing the local field at the position of the
present work: in experiment, the relaxation may be nonexpoindividual molecules. In our view, the essential difference
nential even though the single-spin model always yields exbetween the hyperfine and dipolar interactions can be stated
ponential behavior, and no satellite peaks are obsefseel as follows: even if one could measure the response of a
Ref. 27 for exceptions In order to understand these discrep- single molecule, this would always be dressed by the level
ancies, let us first consider the effect of the nuclei via thebroadening and reduction in tunneling amplitudes due to hy-
hyperfine interactions and then the intermolecular dipolar inperfine interactions intrinsic to each molecule; the dipolar
teractions. fields, on the other hand, just change the molecule’s local
Hyperfine interactionsin Mn,,, all the manganese nuclei electromagnetic environment.
have magnetic momenta and the hyperfine interaction be- In experiment, the relaxation of the magnetizatidr{t)
tween the nuclei and the molecular spin state is relativelyeads to time-dependent dipolar fields and, in order to de-
large, of the order of 10 mT. Recently, several authors havecribe the relaxation correctly, it would be necessary to solve
investigated how this affects tunneling and the relaxation irfor M(t) self-consistently, for simulations see, e.g., Refs. 19
Mn,,. 12141920224y the present purposes, the relevant effecand 53. However, it is this time-dependent field that provides
of the hyperfine interactions is to induce @trinsic Gauss- an explanation to the initial nonexponential relaxation. For

FIG. 14. Real part of the susceptibility fé#,=10 mT, kgT
=5.0 K, and for the anglegp=0° (dot-dashefl and 45° (long
dashedq i.e., the line types correspond to those in Fig. 10. The
upper pair of curves correspondsdoe=250 Hz and the lower one
to w=1250 Hz.

C. Discussion—relevance to experiments
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example in Ref. 15, it is therefore concluded that the deviafocuses on the regime of thermally activated tunneling, i.e.,
tion from a single-exponential relaxation, i.8#1, demon- T>2.0 K, and emphasizes the phenomena that could be ob-
strates the important role of the dipolar interactions and dyserved for strong transverse magnetic fields. In the calcula-
namics of the spin distribution. It should be kept in mind, tions, we study the dynamics of a single sfis 10 coupled
though, that also a static distribution of local fieltse it ~ to & phonon bath. The role of the phonons is in the thermal
dipolar or noj—and hence relaxation rates activation of.the spir)s to states with higher energies and
7 L(H?) _leads to a superposition of exponential rates/arger tunneling amplitudes. ,

which ‘looks nonexponential. Such a distribution of fields /S the first main result, we calculate the dynamic suscep-

also hides all features in~ X(H,) that are sharper than this 1P x(w) starting from the same microscopic Hamil-
distribution. tonian as is used for the relaxation rates. Susceptibility is

ound to reflect the rich structure found in *(H,) and we

The time depgnd_ence of the. dipolar fields owes to t'he f".’lcgrgue that susceptibility measurements are in fact more sen-
that the sample is first magnetized and, as the field directiogy; e ang petter controlled in terms of time scales and also

s abruptl_y rgversed, th? dipolar distribution finds itself fary,q dipolar interactions than the relaxation experiments.
from equilibrium and quickly starts to relax. The reason for || the results obtained are calculated using the eigenbasis
such experiments is the strong response from almost all thgs the spin Hamiltonian, which naturally accounts for strong
spins. . _ . transverse magnetic fields. A strong transverse magnetic

In anticipation of the discussion on susceptibility, let usfield enhances tunneling through the anisotropy barrier and
consider the dipolar distributions at equilibrium. By distribu- enables relaxation via eigenstates further away from the top
tion we mean spatial variations in the dipolar field at theof the barrier. In relaxation or susceptibility measurements,
locations of the individual molecules. First, fl,~0 T, the this would lead to shifted and higher resonances. The tunnel
annealed(not quencheddistribution is random but due to splittings are found to be very sensitive to the azimuth angle
the low temperature&gT<E.g—E. 1, almost all the spins ¢ of the transverse fieltH, . It is found that, in the direc-
are aligned with the easy axis—randomly pointing to the tions ¢=(2n+1)/4, the tunnel splittings exhibit alternat-
positive and negative directions—and only contribute to théng minima and maxima and become totally suppressed at
local longitudinal field. On the other hand, the equilibrium certain values oH, . This phenomenon is attributed to the
magnetization is close to saturation alreadyHgr=H,, thus  interference of the geometrical or Berry phase of alternative
drastically narrowing the dipolar distribution—e.g., for tunnellng'paths, with a destructive !nterference Ieadmg to the
=3.0 K (5.0 K) andH,=H,, more than 95%85%) of all suppressions. As _the second major result, we predict that
the spins are aligned parallel kb, and all the molecules feel these OSC|_IIat|ons in the_z tunnel splittings should _b_e_ observ-
essentially the same field. Such distributions have been ex@Plé both in the relaxation rates and the susceptibility.
perimentally verified in Fg cf. Ref. 51.

Susceptibility The influence of the dipolar dynamics on
relaxation can be avoided almost completely by measuring We are grateful to Myriam Sarachik and Yicheng Zhong
linear response to a small ac field, i.e., the ac susceptibilityas well as Wolfgang Wernsdorfer for the discussions on their
instead ofM(t). This has the advantage that the system isexperiments and M.S. and Y.Z. for providing us with their
probed in its equilibrium state and ideally by a small enoughunpublished data. We would also like to thank Michael
field that in itself does not perturb the equilibrium. Thel’eforel_euenberger and Daniel Loss for the fruitful exchange of
we propose that the susceptibility measurements provide gheoretical ideas. The calculations were in part carried out in
gentle or noninvasive means to probe the relaxation dynamhe Center for Scientific ComputingSO in Finland. This
ics in absence of the time-dependent dipolar distributionwork has been supported by the Finnish Academy of Science
Furthermore, while the hyperfine interactions cannot beand Letters, the Finnish Cultural Foundation, the EU TMR
tuned, the static distribution can be made markedly narrowesietwork “Dynamics of Nanostructures,” the Swiss National
by a finite H,, see above. As, on the other hang, de-  Foundation, and DFG through SFB 195.
creases with increasinfl,, the first group of resonances,
close toH, is especially attractive for investigating the os- APPENDIX A: SPIN-PHONON RATES
cillations in the relaxation rates as well as the hyperfine
fields themselves. All of the resonances arotthddepend

ACKNOWLEDGMENTS

In this appendix, we give the phonon-induced transition
strongly onH, and can be broadened such that oy, ratesX between different spin states—the details can be

making them observable; the peaks can also be selectiver)gund elsewheré” In the d basis, the elementSqq, aq; (t
suppressed ifp~45°. The hyperfine fields may even sim- —t’) correspond to transitions between the elemenig;
plify the observation of the suppressions as very narrowandpgg, of the reduced density matrix. The two timieand
peaks are strongly reduced in height. For a sharp dipola (t'<t; belowr=t—t') define the interval over which the

distribution, we expect that also the crossover betweefheraction takes place. Let us first write down the full time-
Lorentzian and Gaussian shapes7of(H,) should be ob- dependent result

servable when changing the tunnel splittings with the trans-

verse field.
E(T)ddl,d/dfm E

TR,

X(mg|dy){dj|mg)[e” ' Ea~E)IT (- 7)

m szml,m3m4' <ml|d,><d|m2>
A
V. CONCLUSIONS

To conclude, we present a diagrammatic description of -
the spin dynamics of the molecular magnet MnThe work +e (Ba"Ba)(IT(7)]
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- % <E|m2>(m3|a)[ 5dl,d1<m1|d,><d| m,)

% efi(Fd*Edi)(T)I‘( — 7') + 5d’d'<ml|d1>

X (dj|m)e Ea~ BT (7). (A1)
The term
szml,m3m4: \/sz,mlsm3,m4' Cg,g’ (AZ)

(é=my—my, &' =my—my; for the spin-phonon Hamiltonian
considered here, these can take valaek or *=2) further
consists of

0, for |&[#[¢'|
1, g=¢=+1
Cff’: (AS)
’ 15 1
et gl lE=1E1=2,
16 8 =

which implies the selection rules arising from the spin-
phonon Hamiltonian, and

Smy.m, = (2M+ & VS(S+1) —my(my+¢)  (Ad)
for é&==1 or
Sy .m, ={[S(S+1)—my(m;+v)]
X[S(S+1)— (my+v)(my+2v)]}Y2  (A5)

for é&==*2, v=sgn(¢). The functionl'(t) entering Eq(A1l)

contains all the information concerning the phonon spec

trum, energies, and temperature,

r(t)zf dol(w)e' (AB)
® A2 w3 )
— . . alot
= focdw12pcsh4 v e (A7)
Tt
) A2 | _2(2)4 1+2ch(§)
12pc%h* B W(ﬂ)
s
+imd"(t) (A8)
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Eddl,d’di:I 2 szml,m3m4’
m; my

{ (my|d")(d|m;)(mg|dy)

I'w)
—w+Ed,—Edl+i n

x(aimy [ do

I'(w)

- 2 (a|m2>

d

X(ms[d)-| 8a, a;(meld")

* IN'w)
><<d|m4)f do——

+ 8g,qa/(my|dy)

I'(w)
—wt+Ey—Egtin

X<d5_| m4> f,wdw

}_ %o

The above integrals are explicitly evaluated in Ref. 38. For
the rates between the diagonal statesd; andd’=d;, the
above expressions are greatly simplified. In this case, rates
similar to those in, e.g., Ref. 18 are obtained.

With all the contributions t& written down, we can find
an estimate for the order of magnitude of the eleméifis
individual rate$2ddl,d,di. The most interesting piece of in-

formation for each state is tHargest ratecoupling that state

to other states—this rate plays a key role in justifying the
neglect of the nondiagonal statesg(t), see Appendix B, as
well as in the suppression of the narrow resonances found in
the text.

The prefactor inl'(w), cf. Eq. (A7), amounts to 7.0
X10°c~°m %K ~2, where the sound velocitg is ex-
pressed in meters per second. The units are chosen such that,
whenw is expressed in kelvin, aldo(w) is given in kelvin.

For w>0 (and alsow>kgT), i.e., for transitions related with
phonon absorption, the energy-dependent partl'¢fo)
strongly decreases for increasingfor «<<0, corresponding

to phonon emissionI'(w) approaches the temperature-
independent power-law dependensg The largest’(w)’s

are attained for these latter processes in connection with low-
energy spin states. The contribution from the spin operators,
cf. Egs.(A4) and(A5), on the other hand, is larger for spin
states closest to the top of the barrier and tends to balance the
changes in"(w) and reduce the variations mddl,d’di for

different states and for varying,. The typical energy scale
arising from the spin-phonon rates is found to be
107°-10"* K.

This part is defined such that it is independent of the spin

states and only contains the te¥d from the coupling con-
stants that turns out to be constant for all the rates.

The actual transition rates are obtained from &) by
integrating over the time difference=t—t’. This takes us

APPENDIX B: CHOICE OF BASIS

In Sec. lll, we decidedly formulated the more general
equations independent of the chosen basisHgr In this

to the energy representation, combining the exponential facappendix, we consider the eigenbases(gfor thed basis, in

tor in Eq. (A1) with the e'“(t"t") of the Fourier transform in
Eq. (A7). The integration over yields

more detail.
The (strong tunneling poses a problem for the diagram-
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|ds>:a|ml>+:8|mr>i (B6)

|da)=B|m)—alm) (B7)
that extend through the barrier, see Fig. 15. The factors
and B are the normalized constants

A
= ——, (B8)
|m;)~d;) lmyg)~dy) \/(::2+|A|2
FIG. 15. Schematic of the situation discussed in the text. If the e
spin-phonon coupling denoted by the arrows ad is much B=—= (B9)
weaker than the tunnel coupling between the statesn;) and \/§2+|A|2
|m;), these states can be thought of as an effective two-state system.
The eigenstates of the two-state system are depicted as dashed linvggh &= %[(E| —E)— \/(E| - Er)2+ 4|A|2]-
separated in energy byl &|. The subscripts of th&’s correspond The biggest simplification is attained when we argue that,
to those used in the text. for the most values ofl,, we can restrict our considerations

to the diagonal elements of the density matrix. A naive jus-
matic formulation in them basis, but this can be easily tification for this concerns the stationary values of the den-
solved by first diagonalizing{s and then expressing all the sity matrix elementgobtained by requiringo(t)q q-=0].
equations in its eigenbasis. In thisbasis, the kinetic equa- This leads to the immediate conclusion that all the off-
tion for the diagonal and off-diagonal density matrix ele- diagonal elements between nonresonant states are negligibly
ments reads small. Furthermore, the nondiagonal elements are also very
small for any pair of resonant states as long as the tunnel
splitting of that particular resonance is larger than the spin-
phonon rates coupling these states to others, see the end of
Appendix A.
and We also investigated the temporal behavior of the off-
diagonal elements in terms of the reduced model shown in
: : Fig. 15 and the results lend support to the above conclusions.
p(Dga=—1(Eq—Eg)p(Dga+ X 2 g0r,0,0P (Daty 0 Tr?e idea of this simulation waspt% prepare the system into the
(B2) stated; at the initial timetg, let the system then evolve in
time according to the kinetic equation, and see how the off-
respectively. From the knowledge (the full) p(t) we can  diagonal elementp(t)y_,q, andp(t)q, o behave. The reso-

again obtain, e.g., the magnetization nant pair of states in the figure is similar to the one in Egs.
(B6) and (B7) and it is coupled to two lower, nonresonant
M(t)=gus>, >, (d’|mym(m|d)pgq (t) (B3) statesd; and d;. The rates depicted in the figure a¥g,

p()ge= 2 2 4d,dyd;P(Day 0! (B1)
dy.dg

dq,dg

dd’ m =3 ;i andX g~ (X +3¢s,r)/2. The magnitudes of these
rates—as compared to the tunnel splittiizg | —determine
—gusS Mygpag(t), (B4)  two regimes. If 2A[>3, the amplitudes of the nondiago-
dda ' nal elements are found to quickly reach their maxima

wheremy 4 is defined in this way as the matrix element of *2y/|2A] and their values orbit around and “decay” to-
d.d’ y wards the respective complex stationary values. On the other

S, in the d basis. h : . : :
. . L . and, according to the detailed-balance relation, the station-
When the tunneling rates dominate the kinetic equations g

the main features of the eigenstates can be understood dy values of the diagonal elements are proportional to
even simpler terms as follows. When a given state is of u/Za. Hencep(t)aq /p(t)a)=q/|2A] and we can ne-

. ; lect the nondiagonal elementsif<2|A|. In this case the
resonant, there is essentially a one-to-one correspondence t%

tween each of then and d states, i.e., also the states are Ene(tgzz)e ?::ﬁtlggniqigtle) dagr%?ﬁ)e, ngggiﬁgg%;'{g maz
localized on one or the other side of the barrier. Close to q- 9 q ’

resonance, two statey, and m, on different sides of the & Appendix A,

barrier, see Fig. 15, get coupled and form an approximate A2 AE3
two-state system described b Sad da=FGygr g . ., (B10)
Yy y d’d’,dd dd’,d d12p05ﬁ4 QPAE_
Hom Em A 85) where
2 A* Emr .

Gyg’ a'd= G (d’"|my){ms|d){d|m
The nondiagonal elements denote the tunnel splitting as ob-_ ¢ lemz m32,m4 mamg.mymy (0 IMa){msld)(dIm;)

tained from the diagonalization of the full spin Hamiltonian; ,

the subscripts stand for the left and right sides of the barrier. X(myld") (B11)

The eigensolutions to this are the symmetric and antisymeontains all the details of the spin-phonon coupling, see Ap-
metric combinations of the respectivestates pendix A. In the opposite case|®| <3, the nondiagonal
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elements do not perform orbiting motion in the complexbut the Markov approximation may give erroneous results

plane but increase motonously to roughly one halbgf). for the faster eigenmodes for which E5) no longer holds
In this case, the off-diagonal elements clearly cannot be néfUe-
glected.

For Mn;, we can attain the whole range of cases: for the APPENDIX D: LORENTZIAN PEAK SHAPES

most strongly coupled lev@ 2|A|>3,, while for the
lower levels, 2A|<X4. In the former case, the diagonal
elements py(t) are sufficient in describing the system
whereas, in the latter case, we either have to include th
nondiagonal states or restrict our considerations to magnet
fields for whichAE>X,; for all the levels, cf. Ref. 16. In the

The series of peaks found in the relaxation rates/times, cf.
Fig. 4, may be understood in terms of different relaxation
gaths, each path with a possible tunneling channel giving rise

a peak—see Ref. 18 for nice illustrations of the paths. In
this appendix, we sketch a derivation that aims to show that

text, we neglect the nondiagonal elements in the calculatiof!® Lorentzian peak shapes are actually something to be ex-

of and in some of the analytical considerations butpeCted' . . .
coéége the two cases in Sec IVy When the spin system is somehow disturbed away from

equilibrium and then let relax, it quickly acquires a meta-
_ stable state, a thermal equilibrium separately on each side of
APPENDIX C: LAPLACE TRANSFORMATION the barrier. This initial thermalization into the metastable
In this appendix, we consider the Laplace transformatiorstate is driven by the spin-phonon interaction that can change
the spin statemby =1 or =2. At a much longer time scale,
I the system relaxes over the barrier towards the real equilib-
f(2)= fo dte (1) (€D rium configuration. For the relaxation to take place, the cru-
cial step is the final transition that transfers the spin onto the
of the kinetic equation, E¢10). We also give another proof other side of the barrier. We can distinguish two regimes in
of the applicability of the Markov approximation in calculat- terms of how this critical transition takes place. In absence of
ing the relaxation rates. tunneling, e.g., in off-resonance conditions, the relaxation is
The kinetic equation is readily transformed into only possible over the top of the barrier, while for relatively
. ) strong tunnel splitting and for resonant conditions, the domi-
—izp(2)=p(t=0)=—iLop(2) +2(2)p(2)  (C2)  nant path is via tunneling across the barrier well below its
top. When the tunneling is weak compared with the spin-
=p(2)=— p(.t=0) _ phonon interaction, the tunneling rate is the bottle neck for
—iz+ilo—2(2) the relaxation to take place. In Ny this is the case for
(C3)  tunneling between the low-lying states witm|>4 (for H,
The poles of Eq.(C3), i.e., the solutions of—iz,+il, ~0 T). However,. for_ the experimentally relevant reso-
—3.(z)=0, yield the exact eigenvalues to the kinetic equa-"ances, the tunneling is strong and takes place between the

tion: z=w: +i/7 . For the slowest mode of the time evolu- Nigher states. In this case, the spin actually oscillates back
tion. one can consider the expansion and forth through the barrier until it relaxes to some lower

state on either side of the barrier. This is the case of interest

92.(2) here.
3(z1)~2(0)+2;- 7z (CH In the strong-tunneling regime, the system is best de-
z=0 scribed in terms of thel basis where it suffices to consider

The prefactor of the, may be evaluated to be proportional the diagonal elements of the density matrix. In order to get a
to [7,-MNfAEKsT,D}] "2, i.e., to the maximal ratio be- MOre intuitive picture of the relaxation, let us consider a
tween the interwell relaxation ratert/and the other charac- Situation where the system has been prepared onto one side
teristic energy scales in the problem: level spacing and/off the barrier and has reached the metastable thermal equi-
splitting AE, temperaturésT, and the cutoff of the phonon librium there. This initial condition is convenient for two
spectrumD [in Ref. 38, a cutofD is introduced in order to Purposes: first, the relaxation only proceeds into one direc-
assure that all the integrals arising from E&9) are conver- tion and, second, the phonon-induced transitions on this one
gent. It turns out that the actual relaxation rates are severafide of the barrier are accounted for by the thermal probabili-

orders of magnitude smaller than any other energy scale arties py (tilde denotes the metastable state and we write just

it becomes safe to approximate one index for the diagonal matrix elementket us further
consider relaxation via a single tunneling resonance and take
p(t=0) _ p(t=0) into account the states and transition processes illustrated in

(€5 Fig. 16. The system starts in the initial state (localized

. N onto the left side of the barrier; m;), is then activated onto
where %(0) has been identified as the constantof the  resonance into either the symmetric or antisymmetric state,
Markov approximation above and/ is defined accordingly, denoted byd, and d,, respectively, and at some point is
cf. Eq. (12). This approximation is valid for the relaxation transferred down to the final stade (localized onto the right
mode and timer;, side of the barrier;~m;). The subsequent intravalley relax-

ation is so fast that after the transition de the relaxation
(cey  can be considered complete. The statgsand d, extend
through the barrier and this is the key point of the present

P~ L, =300) - i W
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im) B ld, —a m) states—as a result, tRes can be taken out of the brackets in
Lyt PN | the last forms of the above formulas. By further noting that
5 o B due to normalizatior{a|?+|B|?=1 and that the resulting
N ds probabilities are time independent, we obtain
, X m
zmy My ¢ A7, B szl e

~= a O

lm)~Id,) img)~dyp) P o 2mi vm|pd|

FIG. 16. lllustration of the parameters discussed in the text:
states in then andd bases, transition rat&s,, ., , and factorst «
and B from Eq. (B5).

Emm

-
pa,~|Bl Emi,m|pdi

, ) . . The ratio of theX's is just the thermal factor exp B(E
discussion: the spin is transferred through the barrier in a . ~ . .
single step, the rate being determined by thermal activation_Ei)]’_Cf' detailed .balance, anﬂji is the thermal probability
but also by the magnetic-field dependent amplitudesnd 0 be in a state with enerdy; over the lowest energl 1o
B, from Eqgs.(B6) and(B7), for the two extended states to be On the left-hand sidéfor H,>0). Together these yield a
on either side of the barrier. These amplitudes determine th&ctorc-exd —B(E—E_10) ], wherec is a normalization con-
relative probabilities for the activation process to couple tostant equal te_ o which is close to unity for the tempera-
the resonant states. tures of interest.

The above discussion can be formulated in the language In the next and final step, the relaxation rate is obtained

of a master equation:
pa,(1)=0
~34 4 pa (D)= (g, a.+2a a)Pa(t)
~[(ds M), mpa, (1)
= (KoM ZZ i, + (D M) [PZ oy )P (1)
=1a]*Z m, mPq (1)

_(|ﬁ|22mf,mr+|a|22mi,m|);ds(t) (Dl)

$a,(0=0
”Eda,d:f;di(t) —(Zq, a0, T 2q, ,da);da(t)a
%|<da| m|)|22m| ,mizdi(t)

- (|<da| mr>|22mf ,mr+ |<da| m|)|22mi ,m|)5da(t)

from the knowledge of these probabilities and the rates to be
dragged down on the right-hand side of the barrier, i.e.,

_lN ~ ~
T ~24, 4, Pd, T 2d, 4, Pd,

~ |B|22mf ,mr;ds+ | alzsz ,mr;da
~2|a|?B|?2 mc-e AETE0. (D3
The exponential factor is just the effective Arrhenius factor
seen in experiments,cY, n =7, ", and
(2[A])?

4|a|?|Bl*= :
TR eIV

(D4

Here 2A| is the tunnel splitting. It is more or less indepen-
dent ofH, but ¢é= Em —Em can be tuned with the magnetic

field. In terms of the field, the width of the resonant peak at
its half maximum is

4|A|
:gMB|m|_mr| .
This sketch of a derivation introduces all the factors seen

in experiments: the Arrhenius law with a reasonable prefac-
tor 751, that depends weakly on temperature and the particu-

SH, (D5)

= |:8|22mI ,mipdi(t)
—(IaIZEmf ,mr+|,8|22mi *ml)};da(t)' (D2)  lar resonance, see the two last paragraphs of Appendix A,
) N ) _ and peaks of accelerated relaxation superimposed on it. The
The approximate equalities are just a reminder that we havgeak heights or the relaxation rates on resonance are found to
neglected, e.g., the contributions from states above the resgprrespond to the Boltzmann or Arrhenius factor with the
nance as well as the return possibility from stdte These  energy corresponding to the effective barrier height. The
equations can be simplified by the assumptid, »  peak shape is Lorentzian as observed in experiment with
~2mf,mr which is reasonable for a pair of resonantwidths given by precisely the tunnel splittings.
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