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Phase transitions between topologically distinct gapped phases in isotropic spin ladders
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We consider various two-leg ladder models exhibiting gapped phases. All of these phases have short-ranged
valence bond ground states, and they all exhibit string order. However, we show that short-ranged valence
bond ground states divide into two topologically distinct classes, and as a consequence, there exist two
topologically distinct types of string order. Therefore, not all gapped phases belong to the same universality
class. We show that phase transitions occur when we interpolate between models belonging to different
topological classes, and we study the nature of these transitions.
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I. INTRODUCTION

Even though the spectrum of the spin-1/2 Heisenb
chain was obtained by Bethe1 almost seventy years ago usin
his famous ansatz, low-dimensional spin systems are st
strong area of activity, full of surprises and puzzles. A ma
source of this activity was Haldane’s conjecture,2 which pre-
dicted that isotropic antiferromagnetic Heisenberg cha
with integer spin have a gapped spectrum, while chains w
half-integer spin have a gapless spectrum. There has
considerable theoretical and experimental evidence in s
port of Haldane’s conjecture; it is probably appropriate
call it a theorem, despite the lack of a rigorous mathemat
proof.3 Incidentally, the gapped phase in integer spin Heis
berg chains has come to be known as the Haldane phas

A breakthrough in understanding the nature of the H
dane phase came when it was realized that one can go w
out a phase transition from the spin-1 Heisenberg chain
the Affleck-Kennedy-Lieb-Tasaki~AKLT ! model,4 where
the ground state is made up solely of nearest-neighbor
lence bonds. The Haldane gap is thus related to the en
needed to break short-ranged valence bonds.

Another important step was when den Nijs and Romme
identified a hidden order in the Haldane phase of the sp
chain.5 They showed that although the sites withSi

a51,0,
21 are not well ordered in position, their sequence is
dered in the way shown schematically in Fig. 1. That is
we remove all sites withSi

a50, the remaining sites hav
Néel order. The order parameter which reveals this hidd
order is the nonlocal string order parameter

O a52 lim
u i 2 j u→`

K Si
a expS ip (

l 5 i 11

j 21

Sl
aDSj

aL , ~1!

whereSi
a is the spin-1 operator at sitei, anda5x,y,z.

A further impetus for the study of low-dimensional sp
systems was given recently by the discovery of spin-lad
materials.6 Since the spin-1/2 Heisenberg chain has a gap
PRB 620163-1829/2000/62~22!/14965~10!/$15.00
g

a
r

s
th
en
p-

al
-

.
l-
th-
to

a-
gy

e
-1

-
f

n

r
ss

excitation spectrum with spin-spin correlation functions e
hibiting power-law behavior, it initially came as a surpris
when it was found that the two-leg ladder had a gapp
spectrum with exponentially decaying spin-sp
correlations,7 while the gapless spectrum survived in th
three-leg ladder. Thus ladders could have a gapped or
less spectrum, depending on the number of legs. More
cifically, Heisenberg ladders with an even number of le
have a gapped spectrum, while ladders with an odd num
of legs have a gapless spectrum.

The appearance of a gapped spectrum for even-leg
ladders and a gapless spectrum for odd-legged ladde
highly reminiscent of Haldane’s conjecture for spin chain
Therefore, a natural question arises: Is the gapped phas
spin ladders related to the Haldane phase in spin chains
particular, does the gapped phase exhibit string order?
the rest of the paper, we will restrict our discussion to t
two-leg ladder.

For the case of ferromagnetic interchain coupling, it
clear that the two-leg ladder can be equivalent to the sp
chain, with the two spins on a rung forming an effectiveS
51. Such a phase is directly related to the Haldane ph
and the system has string order. Similarly, if the interch
coupling is antiferromagnetic and along plaquette diagon
when the interchain coupling is equal to the coupling alo
the chains, the model is in fact the composite spin repres
tation of the spin-1 chain; thus, the gapped phase is equ

FIG. 1. ~a! Typical configuration of the spin-1 chain.~b! Néel
order after removing all sites withSi

a50.
14 965 ©2000 The American Physical Society
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lent to the Haldane phase.~See Sec. II for a more detaile
discussion of the composite spin representation.! In addition
to the gap, these models exhibit another characteristic fea
of the Haldane phase. Namely, the ground state is uniqu
periodic boundary conditions are used, but it is fourfold d
generate for open boundary conditions.

A gap appears in the excitation spectrum of spin ladd
for other types of interchain coupling as well, namely, f
antiferromagnetic coupling along the rungs or ferromagn
coupling along plaquette diagonals. Whether these gap
phases are related to the Haldane phase is much less obv
For example, for antiferromagnetic interchain coupling alo
the rungs, the zeroth order picture is given by studying
limit in which the interchain coupling is much larger than t
coupling along the chains~i.e., J'@J). In this limit, the
ground state is well described by a product of rung singl
with an energy gap;J' to break a singlet and form a triple
excitation. Here, the ground state is unique, irrespective
whether open or periodic boundary conditions are used. N
ertheless, as was demostrated by White,8 the antiferromag-
netic ladder can be transformed continuously to a mo
~seemingly! equivalent to the composite spin representat
of the spin-1 chain by switching on an irrelevant furth
neighbor coupling. Consequently, the antiferromagnetic l
der is also related, in some way, to the Haldane phase
has string order.8,9

There are also other types of ladders exhibiting s
gapped phases, so the question of string order in ladders
the relationship of the gapped phases to the Haldane p
becomes even more interesting. In particular, the spin
chain with second-neighbor coupling is often represented
a two-leg zig-zag ladder.10 For a particular value of the cou
plings, the so-called Majumdar-Ghosh point,11 the ground
state is known exactly. It is doubly degenerate and the e
tation spectrum is gapped; each ground state consists
sequence of independent singlets. However, it was sh
that the Majumdar-Ghosh ground state has perfect st
order.12 It has also been shown13 that the Majumdar-Ghosh
model can be smoothly connected to the ladder with str
ferromagnetic rung coupling, which is equivalent to a spin
chain, without a phase transition.

Since the ground state of the Majumdar-Ghosh mo
consists of decoupled singlets, similar to the ground stat
the ladder with strong antiferromagnetic coupling along
rungs, one might get the impression that all spin-gap
phases can be smoothly connected to each other. By thi
mean that one can go from one model to another by cont
ously varying the model parameters without undergoin
phase transition. In this paper, we show that the gap
phases in isotropic two-leg spin ladders divide into two
pologically distinct classes. This implies that phase tran
tions must necessarily occur if we try to interpolate betwe
models belonging to different topological classes. Althou
not all gapped phases are directly equivalent to the Hald
phase of the spin-1 chain, all possess some kind of st
order.

The rest of the paper is organized as follows. In Sec. II
introduce the spin ladder models that we will consider, a
we recapitulate briefly what is known about these models
Sec. III we discuss the relationship between valence b
states and string order, and also the possibility of phase t
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sitions between spin models with topologically differe
string order. A bosonization treatment of the various mod
is presented in Sec. IV, and a discussion of the results
tained is given in Sec. V. Finally, Sec. VI gives a summa
of our results and an outlook for future work.

II. THE MODELS

We begin with two antiferromagnetic spin-1/2 Heisenbe
chains with the Hamiltonian

H05J(
i 51

N

~SW i ,1•SW i 11,11SW i ,2•SW i 11,2!, ~2!

where SW i ,1 (SW i ,2) is the spin operator at sitei on chain 1
~chain 2!. We will consider various forms for the interchai
coupling.

The interchain coupling

H15J1(
i 51

N

SW i ,1•SW i ,2 ~3!

describes the usual rung coupling along the legs of the
der. This type of ladder is shown in Fig. 2.~We will simply
refer to this ladder model as ‘‘a ladder.’’!

When J1 is strongly ferromagnetic (J1,0 and uJ1u@J)
the two spins on the rung form a triplet, the singlet bei
much higher in energy. In this limit, the ladder behaves l
a spin-1 chain, and hence the spectrum is gapped. Howe
it has been shown14 that a gap is generated by an arbitrar
small ferromagnetic coupling. Therefore, it appears t
weak and strong ferromagnetic coupling are continuously
lated.

When J1 is strongly antiferromagnetic (J1.0 and J1
@J), the ground state is essentially a product of rung sing
with a gap to magnon excitations. WhenJ15J, it was shown
that the ground state is well described by a nearest-neigh
resonating valence bond~RVB! state and has a gap to th
excited states.15 A typical configuration of the RVB state is
shown in Fig. 3. Similar to the ferromagnetic case, it h
been shown16,17 that the spectrum is gapped for arbitrari
small antiferromagnetic interchain coupling. Therefore, we
and strong antiferromagnetic coupling also seem to be c
tinuously related.

We will also consider a ladder in which the intercha
coupling is along plaquette diagonals

FIG. 2. The usual two-leg ladder.

FIG. 3. A typical configuration in the RVB state of the antife
romagnetic ladder. Solid lines represent singlet bonds.
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H25J2(
i 51

N

@SW i ,1•SW i 11,21SW i ,2•SW i 11,1#. ~4!

Together withH0 this gives the ladder shown in Fig. 4.~We
will refer to this ladder as a ‘‘diagonal ladder.’’!

For J25J, this model is in fact thecomposite spin repre
sentationof a spin-1 chain. More precisely, by starting wi
the Hamiltonian of a spin-1 chain

H5J(
i 51

N

SW i•SW i 11 ,

and representing the spin-1 operator on sitei as the sum of
two spin-1/2 operatorsSW i5SW i ,11SW i ,2 , we find

H5H01H2 ,

with J25J. In the composite spin representation, the to
spin of each rung commutes with the Hamiltonian, so
eigenstates can all be classified by the total spin on e
rung. The set of eigenstates with only triplets on all of t
rungs corresponds to the spectrum of the spin-1 Heisen
chain. Hence, the low-energy spectrum of the composite
representation is identical to that of a spin-1 chain.18 The
ground state of this model is well described by the AKL
state,4 a typical configuration of which is shown in Fig. 5
Here again, it has been shown19 that a gap appears for arb
trarily small J2.0. It has also been shown19 that the spec-
trum is gapped forJ2,0; in fact, the gap is generated fo
arbitrarily smallJ2,0. Therefore, it appears that weak a
intermediate coupling are continuously related for bothJ2
.0 andJ2,0, however the gap vanishes atJ250.

As one can see from Fig. 5, for a finite system there
effectively free spin-1/2’s at the ends of the ladder, which
responsible for a fourfold degenerate ground state. When
riodic boundary conditions are used, all of the spins
bound into singlets and the ground state is unique.

Finally, we will consider an interchain coupling similar t
H2, but with only one of the diagonal couplings

H35J3(
i 51

N

SW i 11,1•SW i ,2 . ~5!

We consider such an interchain coupling because, foJ1
5J3, we can write this model as a spin-1/2 Heisenberg ch
with first and second neighbor interactions

FIG. 4. The diagonal ladder model.

FIG. 5. A typical configuration in the AKLT state of the diag
onal ladder. Solid lines represent singlet bonds.
l
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H5H01H11H35J3(
i 51

2N

SW i•SW i 111J(
i 51

2N

SW i•SW i 12

~see Fig. 6!. ~We will refer to this type of ladder@for J1
5J3# as a ‘‘zig-zag ladder.’’!

The zig-zag ladder is known10 to have a quantum phas
transition from critical, gapless behavior to a spontaneou
dimerized gapped phase asJ increases atJ50.241J3. More-
over, at the special Majumdar-Ghosh point11 (J50.5J3), the
ground state is known exactly. It is twofold degenerate in
thermodynamic limit, and each of the ground states is a
quence of decoupled singlets, as shown in Fig. 7. In fac
has been shown that for 0.241,J/J3,`, the zig-zag ladder
is gapped and has dimer order.10,20 Therefore, it appears tha
the entire range 0.241,J/J3,` is continuously related to
the Majumdar-Ghosh point.

III. VALENCE BOND STATES AND STRING ORDER

As previously mentioned, all of our models have sho
ranged~SR! valence bond~VB! ground states, and all of ou
models exhibit string order. In this section, we will argu
that there are two topologically distinct types of string ord
and that these two types of string order are intimately rela
to the VB structure.

In general, any singlet state of an SU~2! symmetric model
can be represented in terms of VB’s. The SR-VB grou
states of gapped spin liquids are, in the typical case, a lin
combination of a large number of VB configurations,
which the probability to find a longer ranged VB is expone
tially small. The gap in the spectrum is related to the fin
energy needed to break a VB. On the other hand, syst
with a gapless spectrum necessarily contain longer VB’s
well.

In order to see the connection between the VB struct
and string order, we first consider the diagonal ladder w
J25J. The ground state is well described by the RVB p
ture of the AKLT state. A typical configuration was shown
Fig. 5. One particular spin configuration of Fig. 5 is shown
Fig. 8~a!. Suppose we add thez component of the spins on

FIG. 6. The zig-zag ladder shown as~a! a chain with first and
second neighbor interactions~b! a ladder.

FIG. 7. The two degenerate ground states of the zig-zag lad
at the Majumdar-Ghosh point. Solid lines represent singlet bon



e-

d

b
in
ig
n
f,
g

-
i

t

u
u

te
her
ag-
i-

in
lets

r-
t of
pin

Fig.
e

Fig.
e

-

w-
own
is-

ars
ates

14 968 PRB 62KIM, FÁTH, SÓLYOM, AND SCALAPINO
the same rung, as shown in Fig. 8~b!. The totalSi
z can take

on the values 1,0,21. Considering this sequence, if we r
move all sites withSi

z50, the remaining sites have Ne´el
order ~i.e., there is string order!. If, on the other hand, thez
components of the spins along plaquette diagonals are ad
as shown in Fig. 8~c!, there is no string order.

Now consider the antiferromagnetic ladder withJ15J.
The ground state is well described by a nearest-neigh
RVB state, for which a typical configuration was shown
Fig. 3. One particular spin configuration is shown in F
9~a!. Suppose we look at thez component of the total spin o
a rung, as shown in Fig. 9~b!; the state has no string order. I
however, we consider thez component of the total spin alon
plaquette diagonals, as shown in Fig. 9~c!, string order is
found. It was shown by White8 that there is a 96.2% prob
ability of finding triplets along plaquette diagonals, and
was verified numerically8,9 that these triplets in fact exhibi
string order. It was also shown8,9 that no string order is found
if the total spin along rungs is considered.

As mentioned before, the ladder with ferromagnetic co
pling along the rungs is continuously related to the tr

FIG. 8. ~a! One particular spin configuration of Fig. 5.~b!
Dashed lines encircling rungs:Si

z5Si ,1
z 1Si ,2

z . Notice that after we
remove all sites withSi

z50, the remaining sites have Ne´el order.~c!
Dashed lines encircling diagonals:Si

z5Si 11,1
z 1Si ,2

z . ~Figure
adopted from Ref. 9.!

FIG. 9. ~a! One particular spin configuration of Fig. 3.~b!
Dashed lines encircling rungs:Si

z5Si ,1
z 1Si ,2

z . ~c! Dashed lines en-
circling plaquette diagonals:Si

z5Si 11,1
z 1Si ,2

z . Notice that after we
remove all sites withSi

z50, the remaining sites have Ne´el order.
~Figure adopted from Ref. 9.!
ed,

or

.

t

-
e

spin-1 chain. Therefore, it has an AKLT-like ground sta
and string order due to triplets along the rungs. On the ot
hand, the ground state of the diagonal ladder with ferrom
netic interchain coupling has an RVB-like ground state, sim
lar to that of the ladder with antiferromagnetic intercha
coupling; as discussed above string order is due to trip
along plaquette diagonals.

Finally, consider the zig-zag ladder at the Majumda
Ghosh point. The exact ground state is given by a produc
decoupled singlets, as shown in Fig. 7. One particular s
configuration for Fig. 7~a! is shown in Fig. 10~a!. Adding the
z components of the spins on the same rung, as shown in
10~b!, it is obvious that we always get zero. However, if w
add the spins along plaquette diagonals, as shown in
10~c!, we find string order. Now, however, consider th
ground state shown in Fig. 7~b!. One particular spin configu
ration is shown in Fig. 11~a!. Then, as shown in Fig. 11~b!, if
we add the spins along the rungs, we find string order. Ho
ever, if we add the spins along plaquette diagonals, as sh
in Fig. 11~c!, we always get zero. This result is not surpr
ing, since it was already shown12 that the Majumdar-Ghosh
ground state has perfect string order. However, it appe
that, depending on which of the two degenerate ground st

FIG. 10. ~a! One particular spin configuration of Fig. 7~a!. ~b!
Dashed lines encircling rungs:Si

z5S1,i
z 1Si ,2

z . ~c! Dashed lines en-
circling plaquette diagonals:Si

z5Si 11,1
z 1Si ,2

z . Notice that after we
remove all sites withSi

z50, the remaining sites have Ne´el order.

FIG. 11. ~a! One particular spin configuration of Fig. 7~b!. ~b!
Dashed lines encircling rungsSi

z5S1,i
z 1Si ,2

z . Notice that after we
remove all sites withSi

z50, the remaining sites have Ne´el order.~c!
Dashed lines encircling plaquette diagonals:Si

z5Si 11,1
z 1Si ,2

z .
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PRB 62 14 969PHASE TRANSITIONS BETWEEN TOPOLOGICALLY . . .
is actually realized, string order can be due to the spins al
the rungs or to the spins along plaquette diagonals.

Motivated by the above examples, similar to Refs. 8 a
9, we introduce two string order parameters

O odd
a 52 lim

u i 2 j u→`
K ~Si ,1

a 1Si ,2
a !

3expS ip (
l 5 i 11

j 21

~Sl ,1
a 1Sl ,2

a !D ~Sj ,1
a 1Sj ,2

a !L ,

O even
a 52 lim

u i 2 j u→`
K ~Si 11,1

a 1Si ,2
a !

3expS ip (
l 5 i 11

j 21

~Sl 11,1
a 1Sl ,2

a !D ~Sj 11,1
a 1Sj ,2

a !L .

~6!

~The namesOodd andOeven will be made clear below.! We
saw that when one of the order parameters is finite, the o
vanishes. So, the antiferromagnetic ladder hasOevenÞ0; the
composite spin model hasOoddÞ0; the zig-zag ladder at th
Majumdar-Ghosh point is special—it can have eitherOeven
Þ0 or OoddÞ0, depending on which of the two degenera
ground states is actually realized. However, it cannot h
both finite simultaneously.

Let us now consider the topology of the VB’s in th
above examples; an interesting pattern emerges. If we c
the number of VB’s crossing an arbitrary vertical line, w
find that this number is always even for the ground st
configurations of the antiferromagnetic ladder~Fig. 3!, while
it is always odd for the diagonal ladder atJ25J ~Fig. 5!. For
the zig-zag ladder at the Majumdar-Ghosh point, the num
of VB’s crossing an arbitrary vertical line depends on whi
of the two degenerate ground states we consider: it is e
for the state in Fig. 7~a!, while it is odd for the state in Fig
7~b!.

These examples are special cases of a more general
sification of SR-VB states. It has been shown21 that for
SR-VB configurations on a two-dimensional square latti
two topological numbers,Qx5even/odd andQy5even/odd,
can be defined. They are determined by the parity of
number of SR-VB’s crossing arbitrary horizontal and vertic
lines parallel to thex andy axes, respectively. In the case
two-leg ladders, onlyQy is relevant;Qy can be either even o
odd, as illustrated more generally in Fig. 12. Hence, ther
a topological number which distinguishes between whet
the number of SR-VB’s cut by a vertical line is even (Qy
5even) or odd (Qy5odd). For any finite size system, th
even and odd sectors are coupled as long as there are
with length comparable to the system size. However, w
the system is gapped and thus has a SR-VB ground state
tunneling amplitude between the two sectors goes to z
exponentially fast asL→`, and the ground state is a pu
Qy5even or Qy5odd state in the thermodynamic limi
Note that in long-ranged VB ground states of gapless m
els, the even and odd sectors remain coupled; hence, no
topological distinction is possible.
g
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It is also worth noting that for open boundary conditio
Qy5odd ground states have spin-1/2’s localized at the e
of the ladder, whileQy5even states do not. As is obviou
from Fig. 12, these end spins occur for topological reaso
Their presence or absence is probably the simplest wa
determineQy .

From the above examples, the~topological! parity of the
SR-VB ground state and the type of string order seem to
intimately related. It appears that ground states withQy
5odd haveOodd string order, while ground states withQy
5even haveOeven string order.

Now suppose we smoothly vary the parameters of
Hamiltonian, such that we interpolate between models
longing to different topological classes; a phase transit
necessarily occurs.A priori this transition could be eithe
first order or second order, depending on the actual pat
parameter space. When the transition is second order,
string order parameters vanish at the transition point and
ground state becomes a long-ranged VB state. In the n
section we analyze this problem in the weak coupling lim
using bosonization.23

IV. WEAK COUPLING ANALYSIS: BOSONIZATION

In the bosonization treatment of the ladder model sho
in Fig. 13, we start with two decoupled spin-1/2 chains a
treat the interchain couplings perturbatively. Our conve
tions, as well as the bosonization of spin ladders, are p
sented in detail in Ref. 22.

The isotropic spin-1/2 Heisenberg chain is known to
critical. The effective Hamiltonian for long wavelength e
citations is

Hs51/25
u

2E dxFKP21
1

K
~]xF!2G , ~7!

FIG. 12. Solid lines connecting sites represent VB’s.~a! Qy

5odd: the number of VB’s crossing a vertical line is odd.~b! Qy

5even: the number of VB’s crossing a vertical line is even.

FIG. 13. Most general ladder model which we will conside
H5H01H11H21H3.
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14 970 PRB 62KIM, FÁTH, SÓLYOM, AND SCALAPINO
where the bosonic phase field,F, and its conjugate momen
tum P satisfy the commutation relation

@F~x!,P~y!#5 id~x2y!. ~8!

For an isotropic antiferromagnetic spin chain,K51/2. We
will also need the bosonized form of the spin operators. T
are22

S1~x!5
Sj

1

Aa
5

exp~2 iApQ!

A2pa
@e2 i (px/a)1cos~A4pF!#,

Sz~x!5
Sj

z

a
5

1

Ap
]xF1ei (px/a)

sin~A4pF!

pa
, ~9!

where the dual field,Q, is related toP by P5]xQ.
For the ladder, we simply attach a chain index to o

fields. Therefore,

H05
u

2E dxFKP1
21

1

K
~]xF1!2G

1
u

2E dxFKP2
21

1

K
~]xF2!2G . ~10!

To bosonize the interchain coupling, we write the spin o
erators in terms of uniform and staggered components a25

Si~x!5Ji~x!1~21!x/ani~x!. ~11!

We find

H1;J1E dx@J1~x!•J2~x!1n1~x!•n2~x!#,

H2;2J2E dx@J1~x!•J2~x!2n1~x!•n2~x!#,

H3;J3E dx@J1~x!•J2~x!2n1~x!•n2~x!#. ~12!

Inserting the expressions in Eq.~9! into Eq. ~12! gives

Hi5E dx

~2pa!2$g1
i cos@A4p~F11F2!#1g2

i

3cos@A4p~F12F2!#1g3
i cos@Ap~Q12Q2!#%

1
J'

i

p E dx]xF1]xF2

1E dx

~2pa!2
$g4

i cos@Ap~Q12Q2!#

3cos@A4p~F11F2!#1g5
i cos@Ap~Q12Q2!#

3cos@A4p~F12F2!#%. ~13!

Theg1
i , g2

i , andg3
i terms come fromn1(x)•n2(x), while the

J'
i , g4

i , andg5
i terms come fromJ1(x)•J2(x).

For H1:

g1
1522J1 , g2

152J1 , g3
152pJ1 ,
y

r

-

J'
1 5J1 , g4

15pJ1 , g5
15pJ1 . ~14!

For H2:

g1
254J2 , g2

2524J1 , g3
2524pJ1 ,

J'
2 52J2 , g4

252pJ2 , g5
252pJ2 . ~15!

For H3:

g1
352J3 , g2

3522J3 , g3
3522pJ3 ,

J'
3 5J3 , g4

35pJ3 , g5
35pJ3 . ~16!

It is useful to define the fields

Fs,a5
1

A2
~F16F2!, Qs,a5

1

A2
~Q16Q2!. ~17!

In terms of these fields our HamiltonianH5H01H11H2
1H3 is

H5
us

2 E dxFKsPs
21

1

Ks
~]xFs!

2G
1g1E dx

~2pa!2cos~A8pFs!

1
ua

2 E dxFKaPa
21

1

Ka
~]xFa!2G

1E dx

~2pa!2@g2 cos~A8pFa!1g3 cos~A2pQa!#

1g4E dx

~2pa!2
cos~A2pQa!cos~A8pFs!

1g5E dx

~2pa!2
cos~A2pQa!cos~A8pFa!, ~18!

where

g1522J114J212J3 , g252J124J222J3 ,

g352pJ124pJ222pJ3 , g45pJ112pJ21pJ3 ,

g55pJ112pJ21pJ3 ,

J'5J112J21J3 . ~19!

Also,

Ks5KS 11
KJ'

up D 21/2

, us5uS 11
KJ'

up D 1/2

,

Ka5KS 12
KJ'

up D 21/2

, ua5uS 12
KJ'

up D 1/2

. ~20!

For J'!1 we have

Ks'KS 12
KJ'

2up D , us'uS 11
KJ'

2up D ,

Ka'KS 11
KJ'

2up D , ua'uS 12
KJ'

2up D . ~21!
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We are interested in whether or not the interchain c
pling causes a gap in the excitation spectrum. Therefore
would like to identify the relevant operators; these operat
will ‘‘pin’’ their arguments, thus causing gaps to appear.
do this we consider the scaling dimensions of the opera
in the interchain coupling.23,22 The scaling dimensions
of the operators are the following:@cos(A8pFs)#
52Ks , @cos(A8pFa)#52Ka , @cos(A2pQa)#
51/(2Ka), @cos(A2pQa)cos(A8pFs)#52Ks11/(2Ka),
@cos(A2pQa)cos(A8pFa)#52Ka11/(2Ka). Therefore,g1
will grow at large distances forKs,1, g2 will grow for
Ka,1, g3 will grow for Ka.1/4, g4 will grow for 2Ks
11/(2Ka),2, g5 will grow for 2Ka11/(2Ka),2.

In what follows, we will consider the phases and tran
tions that occur when we varyJ1 , J2, and J3. In order to
make things more tractable, we will consider tw
dimensional slices in the fullJ1-J2-J3 space.

A. J1Å0 and J2Å0 with J3Ä0

In this case, forJ250 and J15J we recover the usua
antiferromagnetic ladder; forJ250 andJ1→2` we recover
a spin-1 chain, where the spins on each rung form anS51.
Similarly, for J150 and J25J we recover the composit
spin representation for a spin-1 chain, and it was previou
shown that the composite spin representation has the s
low-energy physics as the true spin-1 chain.18

The phase diagram in theJ1-J2 plane is shown in Fig. 14
In regionI theg1 andg3 terms are the most relevant. Ther
fore, Fs and Qa are pinned witĥ Fs&5(2n11)Ap/8 and
^Qa&5mA2p. Without loss of generality, we can choosen
50 andm50. This giveŝ Fs&5Ap/8 and^Qa&50. In re-
gion II the g1 and g3 terms are again the most relevan
Again, Fs and Qa are pinned. Now, however,̂ Fs&
5nAp/2 and^Qa&5(2m11)Ap/2. Choosingn50 andm
50, ^Fs&50 and^Qa&5Ap/2. In region III theg1 andg2
terms are the most relevant. Therefore,Fs and Fa are
pinned with ^Fs&5nAp/2 and ^Fa&5(2m11)Ap/8.
Choosingn50 andm50 gives^Fs&50 and^Fa&5Ap/8.
In region IV, similar to region III, theg1 andg2 terms are the
most relevant, soFs and Fa are pinned. However, in this
region ^Fs&5(2n11)Ap/8 and ^Fa&5mAp/2. Choosing
n50 andm50, ^Fs&5Ap/8 and^Fa&50. There are also

FIG. 14. Phase diagram forJ1Þ0 andJ2Þ0 with J350.
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two special lines in the phase diagram. Along the lineJ2
5J1/2, the n1•n2 terms vanish and only theJ1•J2 terms
remain. ForJ1 ,J2,0, the system is gapless; forJ1 ,J2.0,
the g4 term is marginally relevant and the system is gapp
However, the ground state is twofold degenerate~for J1 ,J2

.0): ^Fs&5(2n11)Ap/8, ^Qa&52mAp/2 or ^Fs&
52nAp/8, ^Qa&5(2m11)Ap/2. Choosingn50 and m
50, we have^Fs&5Ap/8, ^Qa&50 or ^Fs&50, ^Qa&
5Ap/2. The other special line isJ252J1/2. Along this line
theJ1•J2 terms vanish and then1•n2 terms all have the sam
scaling dimension5 1. Along this line the spectrum is
gapped. This line will be discussed in greater detail in S
V.

B. J1Å0 and J3Å0 with J2Ä0

In this case, forJ350 and J15J we recover the usua
antiferromagnetic ladder; forJ350 andJ1→2` we recover
a true spin-1 chain. ForJ15J3Þ0 we have a zig-zag ladder
in particular, forJ15J352J we have the Majumdar-Ghos
point where the ground state is dimerized with twofold d
generacy.

The phase diagram in theJ1-J3 plane is shown in Fig. 15
The regions I, II, III, and IV have properties identical to th
J1-J2 phase diagram discussed above. The lineJ352J1 has
properties identical to the lineJ252J1/2 discussed above
and will be discussed in greater detail in Sec. V. The l
J15J3 is special. As pointed out by Nersesyanet al.,24 we
must be careful of the ‘‘twist’’ operators which appea
Along this line, the interchain coupling of the stagger
components can be written as

H int;E dx@n1]xn22n2]xn1#. ~22!

Explicitly, the terms are

H int5g18E dx

~2pa!2]xFa sin~A8pFs!

1g28E dx

~2pa!2]xFs sin~A8pFa!

1g38E dx

~2pa!2]xQs sin~A2pQa!, ~23!

FIG. 15. Phase diagram forJ1Þ0 andJ3Þ0 with J250.
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TABLE I. Results for theJ1-J2 andJ1-J3 phase diagrams.

I II III IV

Fs ^Fs&5Ap/8 ^Fs&50 ^Fs&50 ^Fs&5Ap/8
Fa , Qa ^Qa&50 ^Qa&5Ap/2 ^Fa&5Ap/8 ^Fa&50
Order Parameter Oodd Oeven Oeven Oodd

J25J1/2: J2 ,J3.0—first order transition J2 ,J3,0—second order transition
(J35J1) ^Fs&5Ap/8, ^Qa&50 or ^Fs&50, ^Qa&5Ap/2 Fs andFa critical
J252J1/2: level crossing in the excited states
(J352J1)
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whereg18 , g28 , g38;J3. These terms are subtle because th
have nonzero conformal spin. As pointed out in Ref. 23
seemingly irrelevant operator with nonzero conformal s
can generate relevant operators. However, since we are
considering the SU~2! symmetric case, the terms generat
are less relevant than theJ1•J2 terms already present. There
fore, similar to the lineJ25J1/2, for J3,0 the system is
gapless; forJ3.0 theg4 term is marginally relevant and th
spectrum is gapped, with the ground state being twofold
generate.

V. DISCUSSION OF THE RESULTS

As discussed in Sec. III, the two-leg ladder models
have considered can have eitherO odd

a or O even
a string order,

but not both simultaneously. In our case, since we are o
considering SU~2! symmetric models,O x5O y5O z. There-
fore, for simplicity, we focus only onO z.

To bosonize the string order parameter, we first write it
a more convenient form. Using the identity exp(ipSz)52iSz,
we can write

O odd
z 5

1

4
lim

u i 2 j u→`
K ~eipSi ,1

a
1eipSi ,2

a
!expS ip (

l 5 i 11

j 21

~Sl ,1
a 1Sl ,2

a !D
3~eipSj ,1

a
1eipSj ,2

a
!L ,

O even
z 5

1

4
lim

u i 2 j u→`
K ~eipSi 11,1

a
1eipSi ,2

a
!

3expS ip (
l 5 i 11

j 21

~Sl 11,1
a 1Sl ,2

a !D ~eipSj 11,1
a

1eipSj ,2
a

!L .

~24!

BosonizingO odd
z andO even

z gives

O even/odd
z 5 lim

ux2yu→`
^eiA2pFs(x)e2 iA2pFs(y)&. ~25!

We see that all we need is forFs to get pinned to have string
order. The operators for bothO odd

z andO even
z have the same

bosonized form because the nonlocal string operator ma
the continuum limit insensitive to physics occurring on t
order of a single lattice spacing, such as whether triplets
predominantly along rungs or along diagonals. Therefore,
bosonized string order parameter tells us that we have s
y
a
n
nly

e-

e

ly

es

ie
e

ng

order, but it does not tell us in which topological sector t
order exists. Taking into account the physical picture we
from the VB states in Sec. III, we can understand the vari
regions and transition lines which have been obtained in
phase diagrams by bosonization. The results are summa
in Table I.

A. J1Å0 and J2Å0 with J3Ä0

The lineJ150 with J2.0 is continuously related to the
composite spin model; the composite spin model hasOodd
string order. Therefore, it appears that regionI is continu-
ously related to this model, and hence hasOodd string order.
The line J250 with J1.0 is continuously related to the
usual antiferromagnetic ladder; the antiferromagnetic lad
hasOeven string order. Therefore, it appears that region II
continuously related to this model, and hence hasOeven
string order. Along the lineJ150 with J2,0, we have fer-
romagnetic interchain coupling along plaquette diagon
For uJ2u'J1 the ground state is similar to the RVB state
the ladder with antiferromagnetic interchain couplin
Hence, this model hasOeven string order. It appears that re
gion III is continuously related to this model, and hence h
Oevenstring order. Finally, the lineJ250 with J1,0 is con-
tinuously related to the spin-1 chain in which the spins o
rung form an effectiveS51. Since the ground state of th
spin-1 chain is described by the AKLT state, this model h
Oodd string order. Therefore, it appears that region IV is co
tinuously related to this model, and hence hasOodd string
order. We see that a transition betweenOodd andOevenstring
order occurs along the lineJ25J1/2. ForJ2,0 the transition
is second order; forJ2.0, there is a marginally relevan
operator which drives the transition first order.26,27 The line
J252J1 /2 is interesting, so we discuss it in detail.

Along the lineJ252J1/2 there is a change in the prop
erties of the system: above the line,Qa is pinned; below the
line, Fa is pinned. However, we believe this is a level cros
ing in the excited states; the properties of the ground s
remain the same. Hence, the system does not underg
phase transition when we cross this line. To show this, i
useful to expressHa in terms of Majorana fermions.25 We
begin on the lineJ252J1/2; along this line, theJ1•J2 terms
vanish and then1•n2 terms all have the same scaling dime
sion. Rescaling our fields,

Pa→
1

AKa

Pa , Fa→AKaFa , ~26!
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Ha has the form

Ha5
ua

2 E dx@Pa
21~]xFa!2#

1E dx

~2pa!2@g2 cos~A4pFa!1g3 cos~A4pQa!#.

~27!

Using that23

u

2E dx@P21~]xF!2#

52 iuE dx@cR
†]xcR2cL

†]xcL#,

1

pa
cos~A4pF!5 i ~cR

†cL2cL
†cR!,

1

pa
cos~A4pQ!5 i ~cR

†cL
†2cL

†cR
† !, ~28!

Ha can be written as

Ha52 iuaE dx~ca,R
† ]xca,R2ca,L

† ]xca,L!

1
i

2E dx

2pa
@g2~ca,R

† ca,L2ca,L
† ca,R!

1g3~ca,R
† ca,L

† 2ca,L
† ca,R

† !#. ~29!

Now introduce two independent Majorana fermionsj andh
defined by

ca,R5
1

A2
~jR1 ihR!, ca,L5

1

A2
~jL1 ihL!. ~30!

Finally, Ha can be written as

Ha5
2 iva

2 E dx@~jR]xjR2jL]xjL!~hR]xhR2hL]xhL!#

1
i

2E dx

2pa
@~g22g3!jRjL1~g21g3!hRhL#. ~31!

This is the Hamiltonian for two massive Majorana fermion
As is well known, massive Majorana fermions describe
long distance properties of the Ising model away from cr
cality.

For J2'2J1/2 ~i.e., J252J1/21d, udu!1), the J1•J2
terms do not vanish. However, very close to the lineJ25
2J1 /2, we can still writeHa in terms of Majorana fermions
The J1•J2 terms can be written as four-fermion interactio
which just renormalize the velocity and fermion masse25

The key thing to notice is that when we cross the lineJ25
2J1/2, the values of the fermion masses change, but t
signs do not change. It is well known that the~Majorana!
fermion mass changing sign corresponds to the ord
disorder transition of the Ising model. Since there is
change in sign when we cross the lineJ252J1 /2, the struc-
ture of the ground state does not appear to change. There
.
e
-

ir

r-
o

re,

we interpret the change fromQa being pinned toFa being
pinned as a level crossing in the excited states. Hence,
system does not appear to undergo a phase transition w
crossing this line.

B. J1Å0 and J3Å0 with J2Ä0

The lineJ1.0 with J350 is continuously related to the
usual antiferromagnetic ladder; the antiferromagnetic lad
hasOeven string order. Therefore, it appears that region II
continuously related to this model, and hence hasOeven
string order. The lineJ1,0 with J350 is continuously re-
lated to the spin-1 chain in which the spins on a rung form
effectiveS51. Since the ground state of the spin-1 chain
described by the AKLT state, this model hasOodd string
order. Therefore it appears that region IV is continuou
related to this model, and hence hasOodd string order. Along
the lineJ150, the coupling along the rungs is zero and on
the diagonal interchain coupling,J3, is nonzero. This is simi-
lar to the case when onlyJ1Þ0, except with chain-1 shifted
to the right by one lattice spacing. Therefore,J3.0 is simi-
lar to the usual antiferromagnetic ladder andJ3,0 is similar
to the spin-1 chain, except with chain-1 shifted to the rig
by one lattice spacing. Hence,J3.0 hasOodd string order,
andJ3,0 hasOeven string order. It appears that region I
continuously related to the lineJ3.0 and that region III is
continuously related to the lineJ3,0. Therefore, region I
hasOodd string order and region III hasOevenstring order. A
phase transition occurs along the lineJ35J1. For J3,0 the
transition is second order, while forJ3.0 a marginally rel-
evant operator drives the transition first order. Similar to
line J252J1/2, the system changes character when cross
the line J352J1. Above the line,Qa is pinned; below the
line Fa , is pinned. Similarly, we believe that there is n
phase transition as we cross this line; it is a level crossing
the excited states.

It is interesting to note that in our model, the zig-za
ladder~i.e., the lineJ35J1! is actually a transition line. For
J3.0 the line is a first order transition line, while forJ3
,0 the transition is second order. Therefore, the Majumd
Ghosh point actually lies on a first order transition line.

VI. CONCLUDING REMARKS

In this paper we studied the gapped phases in two-leg
ladders. The ground states of these ladders are well desc
by SR-VB states. There are two topologically distinct clas
characterized by whether the number of VB’s cut by a v
tical line is even (Qy5even) or odd (Qy5odd). Note that
this classification ofQy5even andQy5odd can be used fo
even-leg ladders but not for odd-leg ladders. For odd-
ladders, one gets an even-odd alternation, as shown s
matically in Fig. 16. This even-odd alternation implies a tw
fold degenerate ground state, consistent with the Li
Schultz-Mattis theorem.21

Associated withQy5even andQy5odd, we considered
the ‘‘even’’ and ‘‘odd’’ string order parameters of Eq.~6! for
the ladder model shown in Fig. 13. Using known results
particular values of the coupling constants along w
bosonization, we obtained the phase diagrams in theJ1-J2
and J1-J3 planes, shown in Figs. 14 and 15, respective
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While these results cover only parts of theJ1-J2-J3 param-
eter space, we believe that the association of the string o
parametersO even

a and O odd
a with Qy5even andQy5odd is

appropriate for this model in general.
We should emphasize that this classification ofQy

5even andQy5odd relies on the possibility of writing the
singlet ground state of the ladder as a superposition of
configurations. This may break down in anisotropic mode
and so by introducing anisotropic couplings the two top
logical sectors may be coupled.

Another interesting problem is related to the spin-1 ch
with bilinear and biquadratic exchange interactions28 and

FIG. 16. A VB configuration which could occur for a three-le
ladder, provided the couplings are chosen so that the ground st
described by a SR-VB state. Notice that the number of bonds cr
ing a vertical line alternates.
ng

tt

.

er

B
,
-

n

spin ladders with four-spin plaquette couplings,19,29 both
having a non-Haldane-like dimerized phase. AlthoughQy is
still a good topological number for the dimerized grou
state, it is not clear if string order is simply due to the sho
ranged nature of the VB’s and survives the transition fro
the Haldane phase to the dimerized phase.

It is clear from this analysis that the apparently featurel
spin liquid phase of spin-gapped two-leg ladders actually
a rich underlying topological structure. It remains to be se
what role these ideas may play in the doped systems. M
precisely, does this topological structure survive when
system is doped, and is pairing ultimately related to the
pological structure?
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19Ö. Legeza, G. Fa´th, and J. So´lyom, Phys. Rev. B55, 291 ~1997!.
20S.R. White and I. Affleck, Phys. Rev. B54, 9862~1996!.
21N.E. Bonesteel, Phys. Rev. B40, 8954~1989!.
22E.H. Kim and J. So´lyom, Phys. Rev. B60, 15 230~1999!.
23A.M. Tsvelik, Quantum Field Theory in Condensed Matter Phy

ics ~Cambridge University Press Cambridge, 1995!; A.O. Gogo-
lin, A.A. Nersesyan, and A.M. Tsvelik,The Bosonization Ap-
proach to Strongly Correlated Systems~Cambridge University
Press, Cambridge, 1999!.

24A.A. Nersesyan, A.O. Gogolin, and F.H.L. Essler, Phys. R
Lett. 81, 910 ~1998!.

25D.G. Shelton, A.A. Nersesyan, and A.M. Tsvelik, Phys. Rev.
53, 8521~1996!.

26It should be noted that this phase boundary has been determ
numerically in Ref. 27. The boundary lies along the lineJ2

5J1/2 for weak coupling, but it has been shown to bend
larger values ofJ1 andJ2.

27Z. Weihong, V. Kotov, and J. Oitmaa, Phys. Rev. B57, 11 439
~1998!.
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