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Phase transitions between topologically distinct gapped phases in isotropic spin ladders
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We consider various two-leg ladder models exhibiting gapped phases. All of these phases have short-ranged
valence bond ground states, and they all exhibit string order. However, we show that short-ranged valence
bond ground states divide into two topologically distinct classes, and as a consequence, there exist two
topologically distinct types of string order. Therefore, not all gapped phases belong to the same universality
class. We show that phase transitions occur when we interpolate between models belonging to different
topological classes, and we study the nature of these transitions.

[. INTRODUCTION excitation spectrum with spin-spin correlation functions ex-
hibiting power-law behavior, it initially came as a surprise
Even though the spectrum of the spin-1/2 Heisenbergvhen it was found that the two-leg ladder had a gapped
chain was obtained by Bethalmost seventy years ago using spectrum  with  exponentially ~ decaying  spin-spin
his famous ansatz, low-dimensional spin systems are still gorrelations, while the gapless spectrum survived in the
strong area of activity, full of surprises and puzzles. A majorthree-leg ladder. Thus ladders could have a gapped or gap-
source of this activity was Haldane’s conjecténghich pre-  less spectrum, depending on the number of legs. More spe-
dicted that isotropic antiferromagnetic Heisenberg chaingifically, Heisenberg ladders with an even number of legs
with integer spin have a gapped spectrum, while chains withave a gapped spectrum, while ladders with an odd number
half-integer spin have a gapless spectrum. There has be®i legs have a gapless spectrum.
considerable theoretical and experimental evidence in sup- The appearance of a gapped spectrum for even-legged
port of Haldane’s conjecture; it is probably appropriate toladders and a gapless spectrum for odd-legged ladders is
call it a theorem, despite the lack of a rigorous mathematicahighly reminiscent of Haldane’s conjecture for spin chains.
proof2 Incidentally, the gapped phase in integer spin HeisenTherefore, a natural question arises: Is the gapped phase in
berg chains has come to be known as the Haldane phase.spin ladders related to the Haldane phase in spin chains? In
A breakthrough in understanding the nature of the Halparticular, does the gapped phase exhibit string order? For
dane phase came when it was realized that one can go witlthe rest of the paper, we will restrict our discussion to the
out a phase transition from the spin-1 Heisenberg chain ttwo-leg ladder.
the Affleck-Kennedy-Lieb-TasakiAKLT) model* where For the case of ferromagnetic interchain coupling, it is
the ground state is made up solely of nearest-neighbor valear that the two-leg ladder can be equivalent to the spin-1
lence bonds. The Haldane gap is thus related to the energhain, with the two spins on a rung forming an effecte
needed to break short-ranged valence bonds. =1. Such a phase is directly related to the Haldane phase,
Another important step was when den Nijs and Rommelsand the system has string order. Similarly, if the interchain
identified a hidden order in the Haldane phase of the spin-toupling is antiferromagnetic and along plaquette diagonals,
chain® They showed that although the sites wBi=1,0, when the interchain coupling is equal to the coupling along
—1 are not well ordered in position, their sequence is orthe chains, the model is in fact the composite spin represen-
dered in the way shown schematically in Fig. 1. That is, iftation of the spin-1 chain; thus, the gapped phase is equiva-
we remove all sites witl5*=0, the remaining sites have
Neel order. The order parameter which reveals this hidden(a) _‘ * o o o o ‘_
1 0 -1 0 0 0 0 1

order is the nonlocal string order parameter

-1
0=~ lim <3,an i > s;*)sj“>, (1)

li—j|—o I=i+1

-4
.

— 4

whereS/" is the spin-1 operator at siteanda=x,y,z. ] : 1 i 1 i A

(b) —4
A further impetus for the study of low-dimensional spin !
systems was given recently by the discovery of spin-ladder FIG. 1. (a) Typical configuration of the spin-1 chairb) Néeel
materials® Since the spin-1/2 Heisenberg chain has a gaplessrder after removing all sites wit§=0.
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lent to the Haldane phaséSee Sec. Il for a more detailed

. . . . . L. —e © < © < @ © o
discussion of the composite spin representatibmaddition : ! ' :J : ' : :
to the gap, these models exhibit another characteristic feature : ! : o : : :
—e = = & = 4 & &—

of the Haldane phase. Namely, the ground state is unique if
periodic boundary conditions are used, but it is fourfold de- FIG. 2. The usual two-leg ladder.
generate for open boundary conditions.

A gap appears in the excitation spectrum of spin laddergjtions petween spin models with topologically different
for other types of interchain coupling as well, namely, for sring order. A bosonization treatment of the various models
antiferromagnetic coupling along the rungs or ferromagnetigs presented in Sec. IV, and a discussion of the results ob-

coupling along plaquette diagonals. Whether these gappegiined is given in Sec. V. Finally, Sec. VI gives a summary
phases are related to the Haldane phase is much less obviods.our results and an outlook for future work.

For example, for antiferromagnetic interchain coupling along

the rungs, the zeroth order picture is given by studying the

limit in which the interchain coupling is much larger than the Il. THE MODELS

coupling along the chaingi.e., J,>J). In this limit, the We begin with two antiferromagnetic spin-1/2 Heisenberg
ground state is well described by a product of rung singletSghains with the Hamiltonian

with an energy gap-J, to break a singlet and form a triplet
excitation. Here, the ground state is unique, irrespective of
whether open or periodic boundary conditions are used. Nev-
ertheless, as was demostrated by Whitke antiferromag-
netic ladder can be transformed continuously to a model

(seemingly equivalent to the composite spin representatior\Nhereéi . (éi ) is the spin operator at siteon chain 1

of _the spin-1 gham by switching on an_lrrelevant fu_rther (chain 2. We will consider various forms for the interchain
neighbor coupling. Consequently, the antiferromagnetic lad-

der is also related, in some way, to the Haldane phase anC L':'F;:g]?ﬁterchain couplin

has string orde?? Ping
There are also other types of ladders exhibiting spin N

gapped phases, so the question of string order in ladders and S -

the relationship of the gapped phases to the Haldane phase Hl:‘llgl S Siz G

becomes even more interesting. In particular, the spin-1/2

chain with second—nei%gbor coupling is often represented

a two-leg zig-zag ladder. For a particular value of the cou- : ; e N e

plings, the so-called Majumdar-Ghosh paihtthe ground ?;grtglihﬁiﬁzgééﬁﬁgéj :Qggr;algdzlff, e will simply

state is known exactly. It is doubly degenerate and the exci- When J; is strongly ferromagneticJ(;<0 and|J,[>J)

tation spectrum is gapped; each ground state consists Oftﬁe two sriins on the rung form a triplet, the singlglet being

sequence of independent singlets. However, it was Showfﬁuch higher in energy. In this limit, the ladder behaves like
thzt tlgelthr/]lajun]darE)Ghoshh gva%ttlr?dt fr:at?\A h_as gerfgcr': str:ing spin—lgchain, and Egnce the speétrum is gapped. However,
or gr'l %S also ;ﬁn Sho : 3 ¢ ?h ?Jtér;l ar-'th O? it has been showifi that a gap is generated by an arbitrarily
Model can be smoothly connected 1o the fadder with strong, ferromagnetic coupling. Therefore, it appears that

ferrgmagne‘uc rung coupllng,.\_/vhlch is equivalent to a S’p”ﬁ"]Weak and strong ferromagnetic coupling are continuously re-
chain, without a phase transition. |ated

Since the ground state of the Majumdar-Ghosh mode When J; is strongly antiferromagneticJ¢>0 and J;

consists of d_ecoupled smglets, similar to the g_round state O>£J), the ground state is essentially a product of rung singlets
the ladder with strong antiferromagnetic coupling along the ith a gap to magnon excitations. Whap=J, it was shown
rungs, one might get the impression that al spln—gappe%:at the ground state is well described by a nearest-neighbor

phases can be smoothly connected to each other. By this Wgsonating valence bon@RVB) state and has a gap to the
mean that one can go from one model to another by continu-

ously varying the model parameters without undergoing excited state$® A typical configuration of the RVB state is

hase transition. In this paper. we show that the gappe hown in Fig. 3. Similar to the ferromagnetic case, it has
P L . paper, that the 9appefoqan showtf” that the spectrum is gapped for arbitrarily
phases in isotropic two-leg spin ladders divide into two to-

. - . .small antiferromagnetic interchain coupling. Therefore, weak
pologlcally distinct glasses. Thls |mpI|e§ that phase trans'Z’;md strong antiferromagnetic coupling also seem to be con-
tions must necessarily occur if we try to interpolate be’cweeqinuously related

nmootdz;:sggge)lr())ggIgga?egIgzeorl]itr(:gtrl);Iggﬁsgl(:r?tsfgif\:llzhjgggg We will also consider a ladder in which the interchain
phase of the spin-1 chain, all possess some kind of stringOUpIIng 's along plaquette diagonals
order.

The rest of the paper is organized as follows. In Sec. Il we
introduce the spin ladder models that we will consider, and
we recapitulate briefly what is known about these models. In
Sec. Il we discuss the relationship between valence bond FIG. 3. A typical configuration in the RVB state of the antifer-
states and string order, and also the possibility of phase tramemagnetic ladder. Solid lines represent singlet bonds.

N
HonZI (§,1'§i+1,1+ éi,2'§+1,2)y (2

4fescribes the usual rung coupling along the legs of the lad-

&— é—o & 66—
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FIG. 4. The diagonal ladder model. &S I S o
R N S NI I
\ RS RS RS S RS RS S
HZ:JZE& [SiarSiv12+Si2 Sl ) FIG. 6. The zig-zag ladder shown & a chain with first and

second neighbor interactiorib) a ladder.
Together withH,, this gives the ladder shown in Fig. AVe

will refer to this ladder as a “diagonal laddey.” N 2N

For J,=1J, this model is in fact theomposite spin repre- H=Ho+Hy+ H3=3321 S-St J_Zl S-Sz
sentationof a spin-1 chain. More precisely, by starting with . .
the Hamiltonian of a spin-1 chain (see Fig. 6. (We will refer to this type of laddeffor J;

=J;3] as a “zig-zag ladder.y
N The zig-zag ladder is knowhto have a quantum phase
H:Jizl Si-Sitas transition from critical, gapless behavior to a spontaneously
dimerized gapped phase &increases al=0.24115. More-
and representing the spin-1 operator on sites the sum of ~OVer, 3t tth? S_Pelf'ad Malumdt?f'ﬁhof'h ?618(%:0-533) ’tth.e "

: 2_2 & ' ground state is known exactly. It is twofold degenerate in the
two spin-1/2 operator§; =S 1+ S ,, we find thermodynamic limit, and each of the ground states is a se-
quence of decoupled singlets, as shown in Fig. 7. In fact, it
has been shown that for 0.241/J;<o, the zig-zag ladder
is gapped and has dimer ord@r° Therefore, it appears that
the entire range 0.241J/J;<w is continuously related to
he Majumdar-Ghosh point.

H=Ho+H,,

with J,=J. In the composite spin representation, the total
spin of each rung commutes with the Hamiltonian, so th
eigenstates can all be classified by the total spin on eac
rung. The set of eigenstates with only triplets on all of the
rungs corresponds to the spectrum of the spin-1 Heisenberg Ill. VALENCE BOND STATES AND STRING ORDER
chain. Hence, the low-energy spectrum of the composite spin
representation is identical to that of a spin-1 ch&ifhe
ground state of this model is well described by the AKLT
state? a typical configuration of which is shown in Fig. 5.
Here again, it has been shot¥rihat a gap appears for arbi-
trarily small J,>0. It has also been showhthat the spec-
trum is gapped fol,<0; in fact, the gap is generated for
arbitrarily smallJ,<0. Therefore, it appears that weak and
intermediate coupling are continuously related for badsh
>0 andJ,<0, however the gap vanishes Bt=0.

As previously mentioned, all of our models have short-
ranged(SR) valence bondVB) ground states, and all of our
models exhibit string order. In this section, we will argue
that there are two topologically distinct types of string order
and that these two types of string order are intimately related
to the VB structure.

In general, any singlet state of an @Jsymmetric model
can be represented in terms of VB’s. The SR-VB ground
states of gapped spin liquids are, in the typical case, a linear
combination of a large number of VB configurations, in

As one can see from Fig. 5, for a finite system there ar hi Y ' :
. . ) ; ich the probability to find a longer ranged VB is exponen-
effectively free spin-1/2's at the ends of the ladder, which aretially small. The gap in the spectrum is related to the finite

responsible for a fourfold degenerate ground state. When p%’nergy needed to break a VB. On the other hand, systems

riodic k_)ound.ary conditions are used, aII. of t_he SPINS argyith a gapless spectrum necessarily contain longer VB'’s as
bound into singlets and the ground state is unique. well

Finally,_we will consider an ?nterchain cou_pling similar to In order to see the connection between the VB structure
H,, but with only one of the diagonal couplings and string order, we first consider the diagonal ladder with
N J,=J. The ground state is well described by the RVB pic-
N > ture of the AKLT state. A typical configuration was shown in
H3:J3;1 Si+11Si2: (5) Fig. 5. One particular spin configuration of Fig. 5 is shown in
Fig. 8@). Suppose we add ttecomponent of the spins on

We consider such an interchain coupling because, for

=Js, we can write this model as a spin-1/2 Heisenberg chain (@ I I I I I I I I I I
with first and second neighbor interactions

N o NANNNNN\NN

FIG. 5. A typical configuration in the AKLT state of the diag- FIG. 7. The two degenerate ground states of the zig-zag ladder
onal ladder. Solid lines represent singlet bonds. at the Majumdar-Ghosh point. Solid lines represent singlet bonds.
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FIG. 10. (a) One particular spin configuration of Fig(aJ. (b)
Dashed lines encircling rung§’=S;;+S/,. (c) Dashed lines en-
circling plaquette diagonalss{=S/, ; ;+S',. Notice that after we
remove all sites witt§’=0, the remaining sites have Bleorder.

FIG. 8. (a) One particular spin configuration of Fig. %b)
Dashed lines encircling rung§=Sf,+S/,. Notice that after we
remove all sites witts/= 0, the remaining sites have Bleorder.(c)
Dashed lines encircling diagonalsS’=5/,,,+S/,. (Figure
adopted from Ref. 9.

spin-1 chain. Therefore, it has an AKLT-like ground state

the same rung, as shown in Figb® The totalS’ can take and string order due to triplets along the rungs. On the other
on the values 1,6;1. Considering this sequence, if we re- hand, the ground state of the diagonal ladder with ferromag-
move all sites withS’=0, the remaining sites have Ble Netic interchain coupling has an RVB-like ground state, simi-
order (i.e., there is string ordgrlf, on the other hand, the lar to that of the ladder with antiferromagnetic interchain

components of the spins along plaquette diagonals are addé;p’uplmg; as dlscgssed above string order is due to triplets
as shown in Fig. &), there is no string order. along plaquette diagonals. .

Now consider the antiferromagnetic ladder with=J. Finally, consider the zig-zag ladder at the Majumdar-
The ground state is well described by a nearest-neighbd?oSh point. The exact ground state is given by a product of
RVB state, for which a typical configuration was shown in découpled singlets, as shown in Fig. 7. One particular spin
Fig. 3. One particular spin configuration is shown in Fig. configuration for Fig. 7a) is shown in Fig. 1(a). Adding the

9(a). Suppose we look at thecomponent of the total spin on 2 compolnents _of the spins on the same rung, as shown.in Fig.
a rung, as shown in Fig.(B); the state has no string order. If, 10(b), it is obvious that we always get zero. However, if we
however, we consider thecomponent of the total spin along 2dd the spins along plaguette diagonals, as shown in Fig.
plaquette diagonals, as shown in Figc)9 string order is 1), we find string order. Now, however, consider the
found. It was shown by Whifethat there is a 96.2% prob- 9round state shown in Fig(). One particular spin configu-
ability of finding triplets along plaquette diagonals, and it "ation is shown in Fig. 1(B). Then, as shown in Fig. 1), if

was verified numericalf® that these triplets in fact exhibit W€ add the spins along the rungs, we find string order. How-
string order. It was also sho®fthat no string order is found €Ver, if we add the spins along plaquette diagonals, as shown
if the total spin along rungs is considered. in Fig. 11(c), we always get zero. This result is not surpris-

As mentioned before, the ladder with ferromagnetic coudNd: Since it was already showhthat the Majumdar-Ghosh

pling along the rungs is continuously related to the trugdround state has perfect string order. However, it appears
that, depending on which of the two degenerate ground states

® g = A — g .
a
A p— ¥ — @ \\\\\\\\\
(¢
0 1 -1 0 -1 1 0
C VRN NN AR AN NN RN
0 0 0 0 0 1

FIG. 9. (a) One particular spin configuration of Fig. 8b)
Dashed lines encircling rung§’=5/,+5,. (c) Dashed lines en- FIG. 11. (a) One particular spin configuration of Fig(bj. (b)
circling plaquette diagonalssf=S/,,,+S’,. Notice that after we  Dashed lines encircling rung/=Sj;+S/,. Notice that after we
remove all sites with§’=0, the remaining sites have Bleorder.  remove all sites wit!s’=0, the remaining sites have Bleorder.(c)
(Figure adopted from Ref. p. Dashed lines encircling plaquette diagon®s=S7, | ;+S,.
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is actually realized, string order can be due to the spins along

the rungs or to the spins along plaquette diagonals. o o v o
Motivated by the above examples, similar to Refs. 8 and (@)
9, we introduce two string order parameters ° —e —o

Ogag= — lim <(S°f1+8i‘f2) “ e : —_—

li=jl—e

j—1
X ex iwlg;rl (S"+S1%) | (S5 + s;fz)> :
FIG. 12. Solid lines connecting sites represent VB®. Q,
=odd: the number of VB’s crossing a vertical line is odbl) Q,
O&ver=— ‘_ Ii_r‘n (S%, 11T sﬁz) =even: the number of VB’s crossing a vertical line is even.
i—j|—=

j—1
X exp( i >, (S% 11+ SY)

I=i+1

It is also worth noting that for open boundary conditions
(S% . +S%) ). Qy=o0dd ground states have spin-1/2’s localized at the ends
L2 of the ladder, whileQ,=even states do not. As is obvious

from Fig. 12, these end spins occur for topological reasons.
©  Their b is probabl i
presence or absence is probably the simplest way to
determineQ, .

From the above examples, ti®pologica) parity of the
R-VB ground state and the type of string order seem to be
intimately related. It appears that ground states with
=odd haveQO,yq string order, while ground states wit@,
=even haved,e, String order.

Now suppose we smoothly vary the parameters of the
amiltonian, such that we interpolate between models be-
longing to different topological classes; a phase transition
necessarily occursA priori this transition could be either
At order or second order, depending on the actual path in

arameter space. When the transition is second order, the
) . . . ) . tring order parameters vanish at the transition point and the
configurations of the antiferromagnetic laddErg. 3), while ground state becomes a long-ranged VB state. In the next

it is always odd for the diagonal ladderBt=J (Fig. 5). For : : : L
the zig-zag ladder at the Majumdar-Ghosh point, the numb ?ectlon we analyze this problem in the weak coupling limit

of VB’s crossing an arbitrary vertical line depends on whick?usmg bosonizatiofs
of the two degenerate ground states we consider: it is even

for the state in Fig. (&), while it is odd for the state in Fig. IV. WEAK COUPLING ANALYSIS: BOSONIZATION
7(b%.hese examples are special cases of a more general clas—lr.] the bosonization_ treatment of the Iad.der mode[ shown
sification of SR-VB states. It has been shéivthat for " Fig. 13’. we start with two decoupled §p|n-1/2 chains and
SR-VB configurations on a two-dimensional square Iatticet.reat the interchain couplmgs perturbat[vely. Our conven-
two topological numbersQ,— even/odd an®, = even/odd, tions, as well as the bosonization of spin ladders, are pre-
can be defined. They are determined by the parity of thgented in deta_ll in Ref. 22. . .

number of SR-VB'’s crossing arbitrary horizontal and vertical _The Isotropic spln—1/2 Helsgnberg chain is known to be
lines parallel to thex andy axes, respectively. In the case of c_rmcgl. T.he effective Hamiltonian for long wavelength ex-
two-leg ladders, onlQ), is relevantQ, can be either even or citations is

odd, as illustrated more generally in Fig. 12. Hence, there is

a topological number which distinguishes between whether H :Ef dx
the number of SR-VB'’s cut by a vertical line is eve@( s=1279
=even) or odd Q,=odd). For any finite size system, the

even and odd sectors are coupled as long as there are VB's b
with length comparable to the system size. However, when J
the system is gapped and thus has a SR-VB ground state, the N i3
tunneling amplitude between the two sectors goes to zero x\\l\\,/x\\ s
exponentially fast ag —o0, and the ground state is a pure ®
Qy=even orQ,=odd state in the thermodynamic limit. Jl) L+k

Note that in long-ranged VB ground states of gapless mod-

els, the even and odd sectors remain coupled; hence, no suchFIG. 13. Most general ladder model which we will consider,
topological distinction is possible. H=Ho+Hs+Hy+Hs.

(The nameg)yyq and Ogyen Will be made clear below.We
saw that when one of the order parameters is finite, the othpé
vanishes. So, the antiferromagnetic ladder ias,;#0; the
composite spin model ha8,44# 0; the zig-zag ladder at the
Majumdar-Ghosh point is special—it can have eitli&g,
#0 or Oy4q# 0, depending on which of the two degenerate
ground states is actually realized. However, it cannot hav¢|
both finite simultaneously.

Let us now consider the topology of the VB’s in the
above examples; an interesting pattern emerges. If we cou
the number of VB’s crossing an arbitrary vertical line, we
find that this number is always even for the ground stat

KII2+ %(a,@)z}, (7)

N
"'/6
B

b -~ - - §
b - - - - -
p- - - - -

T
SN
"
'
[V
{
'
it
N

b- - - - - ¢
b- - - - -4
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where the bosonic phase fiel#, and its conjugate momen- Ji:‘]l, g}lz wdy, gé: wd. (14)
tum IT satisfy the commutation relation
For H,:
[P(x),IL(y)]=i8(x~y). )
i . i . i g%:4‘]21 952_4‘]11 952_477‘]1!
For an isotropic antiferromagnetic spin chala=1/2. We
will also need the bosonized form of the spin operators. They 2=2),, 0i=2md,, gi=27J,. (15
are??
For Hs:
s’ —i .
St (x)= B M[e—l(wxla)+cos( [47®)], 922233, g§’= —233, g§= —2md3,
\/5 2ma
B=l;, gi=nl;, gi=mJ;. (16)
Z .
Fx)= Do Ly oy ellmia SVETE) o It is useful to define the fields
a =
1 1
where the dual field®, is related toll by I1=04,0. D a=—=(DP1£Dy), Og,=—=(0,£0,). (17)
For the ladder, we simply attach a chain index to our V2 V2
fields. Therefore, In terms of these fields our Hamiltoniah=Hy+ H,+ H,
+H3 is
u 2 1 2
Ho=5| dx KIIT+ —(d,P1)
2 K Ug , 1 )
H=—= | dX| KIS+ —(d,Ps)
u 1 2 Kg
+ Ef dx| KI5+ K(ax%)Z}. (10
: - . . . . glf —ZCOS(\/ 7dy)
To bosonize the interchain coupling, we write the spin op-
erators in terms of uniform and staggered componerfs as 1
, —f dx| K IT2+—(3,®,)?
S()=3(x)+(—1)"*n;(x). (11 Ka
We find dx
+ f (277—a)2[gz coq V87d,)+0; cog V270 ,)]

Hl”‘]lf dX[J1(X) - Jo(X) + N1 (X) - Nx(X)], dx
+04 f (ZW—a)Zcos( V270 ,)cog BT Dy)

N f dx
9s (2ma

Inserting the expressions in E) into Eq.(12) gives 01=—2J1+41,+2);, ¢,=21,—4J,—2]3,

~2J2J dX[J1(X) - Jo(X) —n1(X) - Nx(X)],

008270 )cos \Brs), (19

H3~J3f dX[J1(x)-J(X) —Nny(x)-nx(xX)]. (12 where

dx . i =2md,—47ml,— 273, =ml+27,+ w3,
Hi:fm{gllCoi‘/477(‘1)1+q)2)]+9'2 Q3= cmly—amly—2mdz,  Qa=my T emdyt w3

O5=md1+2mI+ wl3,

X co§ \Am(®,—D,)]+g5 cog Va(0,—0,)]}

JL:J1+2J2+J3. (19)
Jy
+ ?vf dXﬁX(I)lo"xq)z AISO’
K‘JJ_ —-1/2 K‘]L 1/2
dx . K=K| 1 , u=ul1+ ,
+ [ =gl cog Vm(0,-0,)] um um
(27a)?
. B K‘JL —-1/2 B K‘JL 1/2
X O VAm(P1+ D ;)] + g} cog V(01— 0,)] K=Kl o Ua=ull=) - (20
xcog Jam(d,—Dy)]}. (13 ForJ, <1 we have
Theg}, g5, andgy terms come fromm, (x) - ny(x), while the KJ, KJ,
J\, g4, andgk terms come fromd;(x) - Jo(x). K=Kl 1=5,,] Us~ul 15—
For H;:
KJ, KJ,
01=-2)1, 9z=2J1, Q;=2mJy, Ka=K| 1t gum) Ya=Ul17 50 @
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I
5=-1y2 L=1r
v <®;>=\1/8
<O>(=0
<®> =\n/8 <d>=0 5
<®>=0 It <0,>=\n/2
’,/’ ’ <<DS>=0 II
JPtaad <®,> =Vn/8
III

FIG. 14. Phase diagram fdq#0 andJ,#0 with J;=0.

J=-1, J =4
I
<®;> =n/8
v <S®a> =0
<®>=\n/8 <®>=0 %
<®>=0 - <O, =\n2
,',<q)s> =0 II
L <> =NT/8
I

FIG. 15. Phase diagram fdr#0 andJ;#0 with J,=0.

We are interested in whether or not the interchain coutwo special lines in the phase diagram. Along the lihe
pling causes a gap in the excitation spectrum. Therefore, we J,/2, the n;-n, terms vanish and only thé,-J, terms
would like to identify the relevant operators; these operatorsemain. ForJ;,J,<0, the system is gapless; fdf,J,>0,
will “pin” their arguments, thus causing gaps to appear. Tothe g, term is marginally relevant and the system is gapped.
do this we consider the scaling dimensions of the operatorslowever, the ground state is twofold degener@oe J,,J,

in the interchain coupling®?? The scaling dimensions
of the operators are the followingcos/87®)]

=2Ks, [COS(\/E(I)a)]ZZKa, [COS(\/E®a)]
=1/(2K,), [cos270,)cos(8wdy)]=2K+1/(2K,),

[cos{/27m0,)cos(/8md,)]= 2K+ 1/(2K,). Therefore,g,
will grow at large distances foK <1, g, will grow for
K,<1, g5 will grow for K,>1/4, g, will grow for 2K
+1/(2K,) <2, g5 will grow for 2K+ 1/(2K,) < 2.

In what follows, we will consider the phases and transi-

tions that occur when we vary;, J,, andJs. In order to
make things more tractable, we will consider
dimensional slices in the full;-J,-J5 space.

A. J;#0 and J,#0 with J;=0

In this case, forJ,=0 andJ,;=J we recover the usual
antiferromagnetic ladder; fa¥,=0 andJ;— — o we recover
a spin-1 chain, where the spins on each rung fornsarn .

Similarly, for J;=0 andJ,=J we recover the composite
spin representation for a spin-1 chain, and it was previousl|

two-

>0): (PH=(2n+1)Vm/8, (O )=2m\m/2 or (D)
=2nyw/8, (0,)=(2m+1)ym/2. Choosingn=0 and m
=0, we have(dg)=\7/8, (0,)=0 or (d)=0, (0,)
=/m/2. The other special line i¥,= —J4/2. Along this line
theJ; - J, terms vanish and the, - n, terms all have the same
scaling dimension= 1. Along this line the spectrum is
gapped. This line will be discussed in greater detail in Sec.
V.

B. J,#0 and J3;#0 with J,=0

In this case, forJ;=0 andJ;=J we recover the usual
antiferromagnetic ladder; fal;=0 andJ;— — we recover
a true spin-1 chain. Fal;=J;# 0 we have a zig-zag ladder;
in particular, forJ;=J3=2J we have the Majumdar-Ghosh
point where the ground state is dimerized with twofold de-
generacy.

The phase diagram in thl-J5 plane is shown in Fig. 15.
The regions I, I, 1ll, and IV have properties identical to the

>\}1-\]2 phase diagram discussed above. The Jigre — J; has

shown that the composite spin representation has the sarhEoPerties identical to the lin@,=—J,/2 discussed above,

low-energy physics as the true spin-1 ch&in.
The phase diagram in thg-J, plane is shown in Fig. 14.

In regionl theg,; andg; terms are the most relevant. There-

fore, &5 and ®, are pinned with{®s)=(2n+1)/«/8 and
(0,)=m\27. Without loss of generality, we can choose
=0 andm=0. This gives(®¢)=+/7/8 and(®,)=0. In re-

gion Il the g; and g; terms are again the most relevant.

Again, &, and ®, are pinned. Now, however{®dy)
=n\7/2 and(®,)=(2m+1)/7/2. Choosingn=0 andm
=0, (®)=0 and(0,)= /#/2. In region Ill theg; andg,
terms are the most relevant. Therefokk, and ®, are
pinned with (®)=n{m/2 and (®,)=(2m+1)=/8.
Choosingn=0 andm=0 gives(®¢)=0 and(®,)=\//8.
In region 1V, similar to region lll, they; andg, terms are the
most relevant, sabg and ®, are pinned. However, in this
region (®)=(2n+1)\#/8 and (®,)=m\m/2. Choosing
n=0 andm=0, (®,)=/7/8 and(d,)=0. There are also

and will be discussed in greater detail in Sec. V. The line
J,;=J; is special. As pointed out by Nersesyanal.,?* we
must be careful of the “twist” operators which appear.
Along this line, the interchain coupling of the staggered
components can be written as

Hint” J dx[nlaxnz_ nzaxnl]- (22)

Explicitly, the terms are

dx .
Hint:gif (277—a)zz9x(1)a sin(\/87dy)
! dX .
+92j Wﬁxq)s sin(y87d,)

dx
+géf Wﬁx@s sin(\270,), (23)
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TABLE I. Results for thel;-J, andJ;-J; phase diagrams.

I I 11 \Y,
D (Pg)= /8 (Pg)=0 (P5)=0 (Pg)= /8
Dy, 0, (0)=0 () =72 (Pg)=Vml8 (Py)=0
Order Parameter Oodd Oeven Oeven Oodd
Jo,=3,/2: J,,J3>0—first order transition J,,J3<0—second order transition
(J3=J1) (D)= /8, (04)=0 or (P)=0, (O,)=m/2 d4 and P, critical
Jo=—J4/2: level crossing in the excited states
(J3=—J1)

whereg;, g5, g5~Jz. These terms are subtle because theyorder, but it does not tell us in which topological sector the
have nonzero conformal spin. As pointed out in Ref. 23, sorder exists. Taking into account the physical picture we get
seemingly irrelevant operator with nonzero conformal spinfrom the VB states in Sec. lll, we can understand the various
can generate relevant operators. However, since we are oniggions and transition lines which have been obtained in the
considering the S(2) symmetric case, the terms generatedphase diagrams by bosonization. The results are summarized
are less relevant than tldg- J, terms already present. There- in Table I.

fore, similar to the lined,=J4/2, for J;<0 the system is
gapless; fold;>0 theg, term is marginally relevant and the
spectrum is gapped, with the ground state being twofold de-
generate.

A. \]1¢0 and J2=/=O Wlth J3=O

The lineJ;=0 with J,>0 is continuously related to the
composite spin model; the composite spin model &gg
string order. Therefore, it appears that regiois continu-
ously related to this model, and hence ldag, string order.

As discussed in Sec. lll, the two-leg ladder models weThe line J,=0 with J;>0 is continuously related to the
have considered can have eitf@f,, or O g, .,string order,  usual antiferromagnetic ladder; the antiferromagnetic ladder
but not both simultaneously. In our case, since we are onlflasOg e, String order. Therefore, it appears that region Il is

V. DISCUSSION OF THE RESULTS

considering S(2) symmetric models®*=OY= (0% There-
fore, for simplicity, we focus only or© 2.

continuously related to this model, and hence [g.,
string order. Along the lind,;=0 with J,<0, we have fer-

To bosonize the string order parameter, we first write it inromagnetic interchain coupling along plaquette diagonals.

a more convenient form. Using the identity eixg®)=2iS,
we can write

1 s !
Ogad=7 lim <(e'7rs"l+emsiv2)exl{i77 > (ST+Sh)
li— I=i+1 ' ’

a

X (ei 7TS]-‘1+ ei WSﬁZ)> ,

lim

1 B a H 3
O%er= Z‘~ < (e ™Si+11+ €' 7S 2)
[

i—1

X exp( i ™ :|E+ ) (S 11T S%)

(€S 11+ €l ”Sja,z)> :

(24)
BosonizingO ¢4q and O % ¢, gives
Oéven/odd: lim <ei V“ﬂ(bs(x)eii VJZ(DS(y))- (25)
X*y‘ﬂco

We see that all we need is fdrg to get pinned to have string
order. The operators for both ¢, and O, have the same

For |J,|~J; the ground state is similar to the RVB state of
the ladder with antiferromagnetic interchain coupling.
Hence, this model ha®g,., string order. It appears that re-
gion Ill is continuously related to this model, and hence has
Ogyven String order. Finally, the lind,=0 with J;<0 is con-
tinuously related to the spin-1 chain in which the spins on a
rung form an effectiveS=1. Since the ground state of the
spin-1 chain is described by the AKLT state, this model has
Ooqq String order. Therefore, it appears that region IV is con-
tinuously related to this model, and hence g string
order. We see that a transition betwe&@g,y and Og, e, String
order occurs along the link=J,/2. ForJ,<0 the transition

is second order; fod,>0, there is a marginally relevant
operator which drives the transition first ord&?’ The line
J,=—J,/2 is interesting, so we discuss it in detail.

Along the lineJ,= —J;/2 there is a change in the prop-
erties of the system: above the lin®, is pinned; below the
line, ®, is pinned. However, we believe this is a level cross-
ing in the excited states; the properties of the ground state
remain the same. Hence, the system does not undergo a
phase transition when we cross this line. To show this, it is
useful to expresét, in terms of Majorana fermiors. We
begin on the linel,= — J,/2; along this line, thd, - J, terms
vanish and the, - n, terms all have the same scaling dimen-

bosonized form because the nonlocal string operator makeson. Rescaling our fields,
the continuum limit insensitive to physics occurring on the

order of a single lattice spacing, such as whether triplets lie
predominantly along rungs or along diagonals. Therefore, the
bosonized string order parameter tells us that we have string

I,— I, ®,—K.P,, (26)

1
VKa
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H, has the form we interpret the change frof, being pinned toP, being
pinned as a level crossing in the excited states. Hence, the

_Ug 2 2 system does not appear to undergo a phase transition when
Ha_?f XIS+ (9P )] crossing this line.
dx .
+ f (277—61)2[92 cog V4md,)+g; cog\4mO,)]. B. J;#0 and J;#0 with J,=0

The lineJ;>0 with J3=0 is continuously related to the

@27 usual antiferromagnetic ladder; the antiferromagnetic ladder
Using thaf® hasOgen String order. Therefore, it appears that region Il is
continuously related to this model, and hence s,
string order. The line);<0 with J;3=0 is continuously re-
lated to the spin-1 chain in which the spins on a rung form an
effective S=1. Since the ground state of the spin-1 chain is
described by the AKLT state, this model hékyq string
order. Therefore it appears that region IV is continuously
related to this model, and hence @gq string order. Along
the lineJ; =0, the coupling along the rungs is zero and only
the diagonal interchain couplings, is nonzero. This is simi-
lar to the case when only; # 0, except with chain-1 shifted

;j dx[ 12+ (9,®)?]
— i f A Yhortn— Wl a1,

1
—cos\Am®) =i (ki — YY),

1 ) to the right by one lattice spacing. Therefodg>0 is simi-
ECOE{ Vam0)= '("”E"”[_ ‘/’I‘/’JFQ)' (28) lar to the usual antiferromagnetic ladder aha< 0 is similar
) to the spin-1 chain, except with chain-1 shifted to the right
Ha can be written as by one lattice spacing. Hencé;>0 hasO,qyq string order,
and J;<0 hasOg, String order. It appears that region | is
Ho= —iuaf AX(Ph Rt r— Wk | Oxthar) continuously related to the ling;>0 and that region IIl is
continuously related to the lin@;<0. Therefore, region |
i dx hasO,qq string order and region 11l ha®e,e,String order. A
+ Ef 5 a9 U rtaL— e ar) phase transition occurs along the lifg=J;. For J;<0 the
transition is second order, while fdg>0 a marginally rel-
+gg(¢;R¢;L— ¢;’L¢;R)], (29  evant operator drives the transition first order. Similar to the

line J,=—J,/2, the system changes character when crossing
the lineJ;= —J;. Above the line,®, is pinned; below the
line ®,, is pinned. Similarly, we believe that there is no
phase transition as we cross this line; it is a level crossing in
the excited states.

It is interesting to note that in our model, the zig-zag
ladder(i.e., the lineJ;=J,) is actually a transition line. For
J3;>0 the line is a first order transition line, while fdg
—iv, <0 the transition is second order. Therefore, the Majumdar-

Ha= 5 f X[ (Erdxér— ELIxEL) (MRIXIR— MLIxML) ] Ghosh point actually lies on a first order transition line.

Now introduce two independent Majorana fermighand »
defined by

1 1
lﬂa,R:E(fR‘H 7R), ¢a,L:E(§L+i 7). (30)

Finally, H, can be written as

[ dx
+§fﬁ (92— 093)éréL T (92 03) 7r77]. (3D

VI. CONCLUDING REMARKS

In this paper we studied the gapped phases in two-leg spin
This is the Hamiltonian for two massive Majorana fermions.ladders. The ground states of these ladders are well described
As is well known, massive Majorana fermions describe theby SR-VB states. There are two topologically distinct classes
long distance properties of the Ising model away from criti-characterized by whether the number of VB'’s cut by a ver-
cality. tical line is even Q,=even) or odd Q,=odd). Note that

For J,~—J,/2 (i.e., J,=—J,/2+ 6, |6]<1), theJ;-J, this classification o), =even andQ,=odd can be used for
terms do not vanish. However, very close to the lihe even-leg ladders but not for odd-leg ladders. For odd-leg
—J,/2, we can still writeH, in terms of Majorana fermions. ladders, one gets an even-odd alternation, as shown sche-
The J,-J, terms can be written as four-fermion interactions matically in Fig. 16. This even-odd alternation implies a two-
which just renormalize the velocity and fermion masSes. fold degenerate ground state, consistent with the Lieb-
The key thing to notice is that when we cross the lige Schultz-Mattis theorerft
—J1/2, the values of the fermion masses change, but their Associated withQ,=even andQ,=odd, we considered
signs do not change. It is well known that théMajorana  the “even” and “odd” string order parameters of E(f) for
fermion mass changing sign corresponds to the orderthe ladder model shown in Fig. 13. Using known results for
disorder transition of the Ising model. Since there is noparticular values of the coupling constants along with
change in sign when we cross the lihng= —J, /2, the struc-  bosonization, we obtained the phase diagrams inJthé,
ture of the ground state does not appear to change. Thereforend J;-J; planes, shown in Figs. 14 and 15, respectively.
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spin ladders with four-spin plaquette couplifgs$?® both
having a non-Haldane-like dimerized phase. Altho@his
still a good topological number for the dimerized ground
state, it is not clear if string order is simply due to the short-
ranged nature of the VB’s and survives the transition from
the Haldane phase to the dimerized phase.

It is clear from this analysis that the apparently featureless
. ) _ spin liquid phase of spin-gapped two-leg ladders actually has

FIG. 16. A VB configuration which could occur for a three-leg g rich underlying topological structure. It remains to be seen
ladder, provided the couplings are chosen so that the ground state\jshat role these ideas may play in the doped systems. More
_described_ bygSR-VB state. Notice that the number of bonds Crosiirecisely, does this topological structure survive when the
ing a vertical line alternates. system is doped, and is pairing ultimately related to the to-
pological structure?

— |

0@

While these results cover only parts of theJ,-J; param-
eter space, we believe that the association of the string order
parametersD ¢, and O g4 With Q,=even andQ,=odd is
appropriate for this model in general. We would like to thank L. Balents and G. Sierra for help-
We should emphasize that this classification @f  ful discussions. E.H.K. gratefully acknowledges the warm
=even andQ,=odd relies on the possibility of writing the hospitality of Argonne National Laboratory, where parts of
singlet ground state of the ladder as a superposition of VBhis manuscript were written. G.F. and J.S. are grateful to the
configurations. This may break down in anisotropic modelsUniversity of California at Santa Barbara for their warm hos-
and so by introducing anisotropic couplings the two topo-pitality. This work was supported by the Joint US-Hungarian
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