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Mesoscopic magnetization fluctuations for metallic grains close to the Stoner instability
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This paper is devoted to the magnetic properties of isolated mesoscopic grains. We demonstrate that under
very general conditions the electron-electron interactions in such grains can be taken into account by a simple
interaction Hamiltonian. This Hamiltonian involves only three coupling constants, which correspond to charg-
ing, exchange interaction, and superconducting correlations. The most important condition for such a descrip-
tion is that Thouless conductance of each grain is large. Under this condition sample-to-sample fluctuations of
the coupling constants can be neglected. However, the thermodynamic properties can still remain sample
specific due to the one-electron part of the Hamiltonian. If the grain is made from a material that is close to the
threshold of ferromagnetic instability, the mesoscopic fluctuations of the magnetization are especially strong.
Moreover, the situation becomes multistable: free energy of each grain as a function of the magnetization is
characterized by a large number of local minima. We analyze the statistics of these minima and show that it
possesses simple scaling properties. Numerical simulations confirm this scaling.
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I. INTRODUCTION

The simplest model of ferromagnetism in metallic sy
tems was proposed by Stoner.1 The magnetic ordering in this
model takes place when the increase in the orbital energy
to the promotion of electrons to higher-energy states
smaller than the energy gain due to the exchange interac
As soon as this happens, the system becomes unstable
respect to the transition to a state with a nonzero total spS
and, hence, brokenT invariance. In a bulk system only mac
roscopically largeS matters. Therefore, the onset of the i
stability is well determined—both the exchange and the
bital energies are self-averaging quantities.

This might not be the case for a small~mesoscopic! me-
tallic grain since both orbital and exchange energies
sample specific. Therefore, one should expect strong m
scopic fluctuations of the magnetization of the grain ma
from a material that is close to the Stoner instability. Th
paper is an attempt to develop a theoretical description
these mesoscopic fluctuations.

Consider a mesoscopic grain with an even number
electrons at zero temperature,T50. Restricting ourselves to
the Hartree-Fock approximation, we can speak about orb
states with energiesEa . For a weak exchange interaction a
of the orbitals below the Fermi levelEF are double occupied
~2-orbitals!, while those withEa.EF are empty~0-orbitals!.
This state is a singlet,S50. Let a50,1 label correspond
ingly the highest 2-orbital and the lowest 0-orbital in t
singlet ground state, see Fig. 1.

For the stronger exchange a state withStotÞ0 can be-
come a ground state. Indeed, let us compare the lowes
ergiesE0(S) of the singlet (S50) and triplet (S51) states
~see Fig. 1!. The lowest triplet state has two single-occupi
orbitals: a50,1 ~1-orbitals!, while a.1 and a,0 label
0-orbitals and 2-orbitals, respectively. For the ferromagn
sign of the spin exchange the two electrons on the 1-orb
PRB 620163-1829/2000/62~22!/14886~12!/$15.00
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have parallel spins. Assuming SU~2! symmetry in the spin
space of the system, we can write the exchange energ
two electrons, which occupy the orbital statesa and b, in
the usual Heisenberg form

eab
H 522Jabŝ1ŝ2 , ~1.1!

where ŝ1,2 are the spin operators. From this point on, t
superscriptH indicates the quantities belonging to the sy
tems with the Heisenberg form of the exchange interacti
Eq. ~1.1!. We can write the following expression for th
energy difference between the lowest energy states witS
50 andS51:

E0
H~1!2E0

H~0!5E12E02
1

2
J012

3

2
J00. ~1.2!

FIG. 1. Spin configuration for~a! the lowest energyS50 state.
a50, 21, 22, . . . , correspond to 2-orbitals.a51,2, . . . , corre-
spond to 0-orbitals;~b! the lowest energyS51 state.a521,
22, . . . , correspond to 2-orbitals,a50, 1 correspond to
1-orbitals, anda52, 3, . . . , correspond to 0-orbitals.
14 886 ©2000 The American Physical Society
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@In derivation of Eq.~1.2! we used the fact that 2ŝ1ŝ25S(S
11)23/2, when we add spins of two-spin-1/2 particle#
Therefore, the triplet state becomes energetically more fa
able than the singlet one,E0(1),E0(0), provided thatJ01
13J00.2(E12E0).

This is a sufficient rather than a necessary condition foS
to be nonzero in the ground state. Even forE0(1).E0(0),
the spinSof the ground state is not necessarily zero. For
lowest energy among the states with a total spinS we have

E0
H~S!2E0

H~0!5 (
a51

S S Ea2E12a2
3

2
J12a,12aD

2 (
12S<a,b<S

1

2
Jab . ~1.3!

Here a,12S labels 2-orbitals, 12S<a<S labels
1-orbitals, and 0-orbitals have labelsa.S.

One can also consider the situation with strong spin
isotropy. Let it be the easy axes~Ising! anisotropy, so that
the state of an electron is characterized by thez component
sz of its spin (sz561/2), and the exchange energy equa

eab
I 522Jabsz(1)sz(2) . ~1.4!

From this point on the superscriptI indicates the quantities
belonging to the systems with the Ising form of the exchan
interaction@Eq. ~1.4!#. The energy difference between stat
with zero and finite total spin in this Ising case is

E0
I ~S!2E0

I ~0!5 (
a51

S S Ea2E12a2
1

2
J12a,12aD

2 (
12S<a,b<S

1

2
Jab . ~1.5!

In a general case the orbital energiesEa and the exchange
energiesJab are random. In the limitS→` summation in
Eqs. ~1.3! and ~1.5! leads to the self-averaging. Callingd1
5^Ea112Ea& mean-level spacing andJ5^Jab& mean-
exchange coupling constant~here ^•••& stands for the en-
semble averaging!, we obtain from Eqs.~1.3! and ~1.5!

E0
H~S!2E0

H~0!5S2d12
1

2 F3S1
2S~2S21!

2 GJ
5S2d12JS~S11!, ~1.6a!

E0
I ~S!2E0

I ~0!5S2d12
1

2 FS1
2S~2S21!

2 GJ
5S2d12JS2, ~1.6b!

whereS is an integer.
Note that for a grain with an odd number of electrons E

~1.6a! and ~1.6b! are slightly modified. The lowest possib
spin is nowS51/2 and the energy of a state with a spinS is
given by

E0
H~S!2E0

HS 1

2D5S2d12JS~S11!2
1

4
d11

3

4
J,

~1.7a!
r-

e

-

e

.

E0
I ~S!2E0

I S 1

2D5S2d12JS22
1

4
d11

1

4
J, ~1.7b!

whereS is a half integer. One can see that for both Heise
berg and Ising exchange interactions, the system is unst
at

d1,J. ~1.8!

Indeed, under this condition,E(S) in Eq. ~1.6b! tends to
2` as S→`. Equation ~1.8! is nothing but the familiar
Stoner criterion of this instability. As soon as the paramet
of the system surpass the instability threshold, the gro
state acquires magnetization proportional to the volume
the system.

The situation in finite systems is somewhat different. W
start our discussion with a simple but instructive example
a grain with an even number of electrons without any dis
der, i.e.,Ea112Ea5d1 andJab5J. It turns out that for the
Heisenberg case the spin of the ground stateSg is finite al-
ready at

d1,2J, ~1.9!

as can be directly seen from Eq.~1.2!. Therefore,S can be
greater than zero even for the exchange, which is below
critical value given by the Stoner criterion~1.8! (d1/25J0
,J,Jc5d1). In this parameter domainSg5J/(2d122J).
Becaused1 andJ are inversely proportional to the volume o
the system, the spin of the ground stateSg does not scale
with the volume. Equation~1.7a! implies that for an odd
number of electrons the system spinSg.1/2 ~though finite!
in the interval 2d1/35J0,J,Jc5d1 . On the contrary, in
the case of Ising interaction,Sg50 (1/2) for an even~odd!
number of electrons as long asd1.J.

In more realistic models, which take the randomness
both the level spacing and the exchange interaction into
count, the magnetization at 0,J,d1 is essentially random.
Situation far from Stoner instability was discussed in Refs
and 3. In this paper we propose a theory of the magnetiza
near this critical point,d12J!d1 .

For finite S the functionsE0(S) from Eqs. ~1.6a! and
~1.6b! are random. Their statistics are determined by
probability distributions ofEa andJab . Below we derive the
correlation function̂ E0(S1)E0(S2)& for large but finiteS1,2
in a realistic model of a weakly disordered or chaotic met
lic grain. This correlation function is sufficient to describ
the statistical mechanics of the grain. At high temperatu
the randomness can be treated perturbatively in power
1/T ~high-temperature expansion!. The low-temperature be
havior of those systems is determined by the position and
structure of the deepest minimum of theE(S) function.
Therefore, one has to develop a description of the spinSg of
the ground state:E0(Sg)5min$E0(S)%. SinceSg is random,
one might be interested in the statistics ofSg and ofE(S) for
Sclose toSg . The problem of evaluation of statistics ofSg is
not trivial. In this paper we do not solve it completely. W
restrict ourselves to scaling analysis and numerical sim
tion. Our attempt to construct an analytical description ba
on the replicas symmetry breaking paradigm4 will be pub-
lished elsewhere.5
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The remainder of this paper is organized in the followi
way. In Sec. II we discuss a model of interacting electrons
a weakly disordered metallic grain and the statistics ofEa
andJab that follow from this model. Section III is devoted t
the derivation of the correlation function̂E0(S1)E0(S2)&.
The scaling analysis of the structure of the minima ofE0(S)
is performed in Sec. IV. In Sec. V the results are compa
with numerical simulations. Our findings are summarized
Sec. VI.

II. ELECTRON-ELECTRON INTERACTIONS IN
ISOLATED METALLIC GRAINS

Let us discuss the energy scales that determine prope
of a finite system of electrons. The single electron spectr
$Ea% is characterized by the mean-level spacing

d15^Ea112Ea&, ~2.1!

where^•••& stands for the ensemble averaging. Another r
evant energy scale of the problem is the Thouless ene
ET'\/terg , where terg is the time it takes for a classica
counterpart of an electron to cover the energy shell in
single-particle phase space. For diffusive and ballistic s
temsterg equalsL2/D andL/vF , respectively. HereL is the
size of the system,vF denotes the electronic Fermi velocit
andD is the diffusion coefficient.

The important characteristic of the system is the ratio
these two energy scales:

g5ET /d1 , ~2.2!

which is known as the dimensionless conductance. Here
discuss only metallic grains where all single-electron sta
are extended, and thus the dimensionless conductanc
large:

g@1. ~2.3!

It is well known6–8 that in this regime the statistics of th
spectrum$Ea% on the scales smaller than the Thouless ene
ET are well described by the random matrix theo
~RMT!.9–11 RMT gives a quantitative description of the ph
nomenon of the level repulsion. For an ensemble ofN
3N,N→` matrices with random and independent mat
elements the probability density of a realization of the sp
trum $Em% is given by9,11

P~$Em%!}expFb

2 (
mÞn

lnS uEm2Enu
d1

D G . ~2.4!

The parameterb in Eq. ~2.4! can be equal to 1, 2, or 4 fo
orthogonal, unitary, and simplectic ensembles, respectiv
The orthogonal ~unitary! RM ensemble corresponds t
weakly disordered grains with preserved~violated! T invari-
ance and negligible interaction between orbital and spin
grees of freedom. In what follows, we restrict ourselves
these two ensembles, i.e., do not consider grains with s
orbit interaction. The latter would correspond to the simpl
tic ensemble,b54.

Now let us take the effects of electron-electron interact
in the grain into consideration. It turns out that a large cl
of such effects in agiven disordered closed metallic grai
n
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can, under very general conditions, be described by a
markably simple Hamiltonian with only three system
dependent coupling constants. Let the dimensionless con
tance g of the grain tend to infinity. We start with the
simplest case when the electrons interact via a short-ra
potential:

Ĥ int~rW !5ld1Vd~rW !. ~2.5!

HereV}Ld is the volume of the grain andl is a dimension-
less coupling constant. The matrix element of this interact
in the basis of eigenstateswa(rW) of the noninteracting Hamil-
tonian is given by

Mmn
ag5ld1VE drWwa* ~rW !wg* ~rW !wm~rW !wn~rW !. ~2.6!

We first consider the situation without magnetic fie
(T-reversal invariance is preserved!. Since no spatial symme
tries are assumed,the one-particle orbitals are not degene
ate and the eigenfunctions of one-particle Hamiltoni
wm(rW) can be chosen to be real. The off-diagonal elements in
Eq. ~2.6! are small asd1 /ET51/g because the integran
quickly oscillates. Thus they can be neglected. On the c
trary, diagonal matrix elements (a, g, m, n are equal pair-
wise! are much larger since the integrand in Eq.~2.6! is
positive definite. Substituting the integrand by its me
value, e.g.,

^wa
2~rW !wg

2~rW !&5V22, ~2.7!

we find

Mag
ag5Mgg

aa5Mga
ag5ld1 . ~2.8!

Corrections to Eq.~2.8! are negligible for exactly the sam
reason as the off-diagonal matrix elements. As a result, in
limit ET→`, Eq. ~2.8! becomes exact.@Equation ~2.8! is
valid for aÞg; we discuss the significance of the ‘‘doub
diagonal’’ elementMaa

aa later, see Eq.~2.21!.#
For the following discussion it is convenient to introdu

operators of the number of electronsn̂a on the orbitala and
the spinSW a on this orbital:

n̂a5(
s

aas
† aas , SW a5

1

2 (
ss1

aas
† aas1

sW ss1
. ~2.9!

Hereaas
† (aas) creates~annihilates! an electron with a spin

s on the orbitala andsss1

i are the Pauli matrices. Neglec

ing the off-diagonal terms in the interaction Hamiltonian r
duces it to the form

Ĥ int5Ĥ (1)1Ĥ (2)1Ĥ (3)5 (
agss1

@Mag
agaas

† aasags1

† ags1

1Mga
agaas

† aas1
ags1

† ags1Mgg
aaaas

† aas1

† agsags1
#.

~2.10!

To begin with, let us consider the first two terms in E
~2.10!. Using Eq.~2.9! and the identity

sW ss8s
W

s1s
18
52dss

18
ds8s1

2dss8ds1s
18
,
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one can presentĤ (1)1Ĥ (2) in a usual Hartree-Fock form:

Ĥ (1)1Ĥ (2)5(
ag

F S Mag
ag2

1

2
Mga

agD n̂an̂g22Mga
agSŴ aSŴ gG .

~2.11!

Now we can use the remarkable independence of the m
elements of their indices, Eq.~2.8!, and present Eq.~2.11! as

Ĥ (1)1Ĥ (2)5ld1F1

2
n̂222SŴ 2G . ~2.12!

HereSŴ andn̂ are the operators of the total spin and the to
number of electrons correspondingly,

SŴ 5(
a

SŴ a , n̂5(
a

n̂a . ~2.13!

The third term in Eq.~2.10! can be treated in a similar fash
ion. One can write it as

Ĥ (3)5ld1T̂†T̂, T̂5(
a

âa↑âa↓ . ~2.14!

It follows from Eqs. ~2.12! and ~2.14! that the Hamil-
tonianĤ int can be presented in terms of three operatorsn̂, Ŝ,
andT̂ from Eqs.~2.13! and~2.14!, rather than in terms of al
the operatorsn̂a , Ŝa , and âa↑âa↓ with different a. In fact,
this feature is not specific to the particular short-range in
action Hamiltonian~2.5! and is determined by the chaoticit
of the eigenfunctionswa(rW). It turns out thatwa(rW) are
Gaussian random variables that are not correlated with e
other. This is correct for eigenvectors ofN3N, N→` ran-
dom matrices:11

^wm* ~m!wn~n!&5
1

N
dmndmn ,

~2.15a!

^wm~m!wn~n!&5
22b

N
dmndmn ,

and^wm(m)&50. It is also correct for the Berry ansatz12 for
the wave functions in a chaotic grain

^wm* ~rW1!wn~rW2!&5
1

V
dmnh~rW12rW2!,

~2.15b!

^wm~rW1!wn~rW2!&5
22b

V
dmnh~rW12rW2!.

Hereh(rW) is the familiar Friedel function:

h~rW !5G~d/2!
Jd/221~x!

xd/221
, x5

2purWu
lF

, ~2.16!

whered is the spatial dimension of the grain,J is the Bessel
function, andlF is the Fermi wavelength. The characteris
scale of the decay of this function is of the order of t
electron wavelength,lF , and for the purposes of convolu
tion with any smooth function can be substituted bylF

3d(rW).
Equation~2.15b! becomes exact in the limitg→`.
rix

l

r-

ch

It is easy to see that the correlators of the eigenvec
~eigenfunctions! ~2.15! are invariant with respect to an arb
trary orthogonal transformation performed over them:

wm~m!→ (
m8,m8

Omm8
mm8wm8~m8!,

~2.17a!

wm~rW !→(
m8

E drW1Omm8~rW,rW1!wm~rW1!,

(
m8,m8

Omm8
mm8Om8n

m8n
5dmndmn ,

~2.17b!

E drW(
m8

Omm8~rW1 ,rW !Om8n~rW,rW2!5dmnd~rW12rW2!.

Therefore, the ensemble-averaged part of the interac
Hamiltonian must also be invariant with respect to su
transformations.@As to mesoscopic fluctuations ofĤ int , they
disappear in the universal~RM! limit, g→` (N→`), and
can be neglected under the condition~2.3!.# There are only
three operators, quadratic in the fermionic fields, that poss
this invariance:

n̂5(
a,s

âa,s
† âas ,

SŴ 5
1

2 (
a,s1 ,s2

âas1

† sW s1 ,s2
âa,s2

,

T̂5(
a

âa↑âa↓ , ~2.18!

and the quartic operators may be constructed only as se
powers or products of these operators. Moreover, the Ha
tonian Ĥ int should also be invariant with respect to SU~2!
rotations in the spin space. Therefore, the spin may enter
the interaction Hamiltonian only through the combinati

SŴ 2. Finally, Ĥ int must be invariant with respect to U~1!
gauge transformations. It means thatĤ int can include the
operatorT̂ only as a productT̂†T̂. We conclude that in the
general case the limit of the infinite conductanceg corre-
sponds to

Ĥ int5Ecn̂
22J~SW !21lBCST̂

†T̂. ~2.19!

~Linear in n̂ term is allowed, but it can be included into th
one-particle part of the Hamiltonian.! We introduced three
coupling constantsEc , J, andlBCS, that correspond to the
three operators permitted by the symmetries. In the sim
model with the short-range interaction and preservedT in-
variance,b51, the above coupling constants have the f
lowing form:

Ec5
1

2
ld1 , J52ld1 , lBCS5ld1 . ~2.20!

If the T invariance is broken,b52, transformations~2.17!
become unitary. The operatorT̂ from Eq.~2.18! is incompat-
ible with such symmetry and thuslBCS50, for b52.
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We would like to emphasize once again that Eq.~2.19! is
the most general form of the Hamiltonian in the limitg
→`. For instance, one can check that it correctly takes i
account interactions of the two electrons on the same orb
Indeed, it follows from Eq.~2.6! and the Gaussian distribu
tion of wa(rW) @with correlation functions determined by Eq
~2.15!# that the ‘‘double diagonal’’ matrix elementMaa

aa is
different from diagonal ones, given by Eq.~2.8!:

Maa
aa5~42b!Mag

ag5~42b!ld1 . ~2.21!

At first sight it appears that the Hamiltonian~2.19! has to
be supplemented by an additional term proportional
Maa

aa :3

Ĥ?}ld(
a

âa,↑
† âa,↑âa,↓

† âa,↓ . ~2.22!

However, one notices that for any two distinct labelsaÞg
there are three different off-diagonal elementsMag

ag , Mag
ga ,

and Maa
gg , whereas double-diagonal termMaa

aa should be
taken into account only once. As a result, the relations
~2.21! is exactly what is needed for Eq.~2.10! to be valid,
provided that the sum in the right-hand side involves ter
with a5g as well as those withaÞg. Therefore, the inter-
action between electrons on the same orbitaldoes not violate
the invariance under the rotation of the basis, which be-
comes exact in theg→` limit. On the other hand,an addi-
tional term of the form Eq.~2.22! explicitly violates this sym-
metry. For this reason we think that taking such a term in
account, as it was done in Ref. 3 is incorrect.

Let us briefly discuss the physical meaning of the th
terms in the Hamiltonian Eq.~2.19!. The last one exists only
in the orthogonal case (b51) and leads to the superconduc
ing instability provided thatlBCS,0, i.e., there is an attrac
tion in the Cooper channel. Superconducting correlations
suppressed by the magnetic field, and thus do not exis
b52. Here we are not interested in the effects of superc
ductivity and assume that the grain is a normal metal aT
50. It means thatlBCS.0. It is well known that the very
same renormalization that leads to superconductivity
lBCS,0 renormalizes the repulsive effective coupling co
stant in the Cooper channel to zero~see, e.g., Ref. 13!. This
fact enables us to simply neglect this interaction.

The first two terms in Eq.~2.19! represent the dependenc
of the energy of the grain on the total number of the el
trons inside and on the total spin, respectively. They co
mute with each other and with the single-particle part of
Hamiltonian (E aâa,s

† âa,s provided the grain is isolated
Therefore, all states of the grain can be classified byn andS.

As long as we are interested in spin structure of the s
tem with afixed number of electrons, we can disregard the
first term in Eq.~2.19!. As a result we arrive at a simpl
Hamiltonian

H5(
a,s

Eaâa,s
† âa,s2J~Ŝ!2. ~2.23!

Note that the only random component of the problem
the single-particle spectrum$Ea%, while the exchangeJ does
not fluctuate.
o
l.

o

p

s

e
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n-

t
-

-
-

e

s-

s

It should be noted though that the RM theory is just
approximation. It becomes exact only in the limitg→`. For
finite g there are corrections to Eq.~2.19!, which sometimes
are of importance. However, these corrections atg@1 do not
bring essentially new physics to the problem of the sm
grain magnetization. For this reason we restrict ourselve
the Hamiltonian Eq.~2.19!.

Choosing the direction of the total spin of the system
coincide with thez axis, we can express the energy of t
system through the occupation numbersna,s :

EH5(
a,s

Eana,s2JS~S11!, ~2.24!

where

S5
1

2 U(a ~na,↑2na,↓!U5uSzu, ~2.25!

and(na,s5N.
Throughout this section we assumed that the meta

grain possesses rotational symmetry in the spin space
addition, it is worthwhile to discuss a case in which th
symmetry is broken and the interaction as only along o
easy axes. To make connection with the energyE0

I (S) that
has been defined in Eq.~1.6b!, we adopt the following
Hamiltonian:

H5(
a,s

Eaâa,s
† âa,s2J~Ŝz!

2. ~2.26!

Using the notation of Eq.~2.25!, we express the energy fo
the Ising case as

EI5(
a,s

Eana,s2JS2. ~2.27!

The energyE0(S) that was introduced in the previou
section can be obtained by minimizingE at fixed S with
respect to the occupation numbersna,s . In spite of the
simple form of Eqs.~2.24!, ~2.27!, and ~2.25! the problem
remains nontrivial, since the spectrum$Ea% is random. In the
following sections we consider the effect of this randomn
on the properties of the ground state.

III. THE EFFECTIVE HAMILTONIAN

We are interested in the spontaneous magnetization o
system at low temperatures. Therefore, in the following d
cussion we only compare the energies of the lowest ly
states with a given spin. Hence, the state labeled by the
spin S is the state for which the firstN/21S single electron
states are occupied by spin-up and the firstN/22S by spin-
down electrons. We ignore the excited states with the sa
total spin in the following discussion.~It can be shown that
taking these states into account introduces a nonessentia
dition to the free energy.! This enables us@based on the
Hamiltonian~2.24!# to write the following energy functional

E~S,j!5E
0

E.

er~e!de2E
E,

0

er~e!de2JS~S1j21!,

~3.1!
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where r(e)5(ad(e2Ea) is the one-electron density o
states andJ is the strength of the exchange interaction, a
parameterj51,2 characterizes two limiting cases of sp
anisotropy:j52 corresponds to the isotropic spin orientati
~Heisenberg model! with the degeneracy of the state 2S
11, while j51 describes the easy axes~Ising! model where
states are only double degenerate. We have 2-orbitals aEa
,E, , 1-orbitals atE,,Ea,E. , and empty 0-orbitals a
Ea.E. . From the conservation of the total number of pa
ticles we obtain the following equations forE. andE, :

S5E
0

E.

r~e!de5E
E,

0

r~e!de. ~3.2!

The minimum of the energy functional~3.1! is the same as
the ground state of the original system. The density of sta
can be represented as

r~e!51/d11dr~e!. ~3.3!

We are interested in the value of the spinS@1, which trans-
lates into the scale of orbital energies that is much larger t
d1 . The fluctuations of the density of states averaged o
such an energy scale are much smaller than its mean v
1/d1 , and it is sufficient to keep only the terms linear indr.
Thus we obtain from Eq.~3.2!,

E. /d15S2E
0

Sd1
dedr~e!,

E, /d152S1E
2Sd1

0

dedr~e!. ~3.4!

In what follows we adopt the notation

m52d122J!d1 . ~3.5!

According to Eq.~1.8!, the bulk Stoner instability emerges
m50, so that the parameterm characterizes how close th
system is to the criticality threshold.

Substituting Eqs.~3.4! into Eq. ~3.1!, we obtain

E~S,j!5
m

2
S22~j21!~d12m/2!S2d1SE

2Sd1

Sd1
dr~e!de

1E
0

Sd1
@dr~e!1dr~2e!#ede. ~3.6!

Integrating Eq.~3.6! by parts and using Eq.~3.5! to neglect
m as compared tod1 , we obtain

E~S,j!5
m

2
S22~j21!d1S2E

0

Sd1
deE

0

e

de1

3@dr~e1!1dr~2e1!#. ~3.7!

Thus we reduced the original problem to finding t
minima of the random function

E~S,j!5
m

2
S22~j21!d1S1V~S!, ~3.8!
d

-

es

n
er
lue

wherem is fixed ~and small compared tod1), andV(S) is a
random potential which is determined by the fluctuations
the density of statesdr(e):

V~S!52E
0

d1S

deE
0

e

de1@dr~e1!1dr~2e1!#. ~3.9!

Below, we refer to this problem as a random potential pro
lem ~RPP!. Such a problem is well defined provided that t
correlation function for random potentialV(S) is given. One
can evaluate the statistics of the potentialV(S), Eq. ~3.9!,
using RMT.

The fluctuations of the density of states,dr, averaged
over energy intervals larger thand1 in the ensembles of RM
are Gaussian random variables. Therefore, using Eq.~3.9!,
we conclude thatV(S) is a Gaussian random variable a
well. The correlation function̂ V(S)V(S8)& can be ex-
pressed through the correlator of the density of states.
correlation function of the Fourier components ofdr(e) is
given by10

^drkdrp&5
2uku
b

d~p1k!, ~3.10!

where b is 1 or 2 depending on whether the Hamiltonia
belongs to an orthogonal or a unitary ensemble. Averag
the productV(S1)V(S2) with the help of Eqs.~3.9! and Eq.
~3.10!, we obtain the correlation function:

^V~S1!V~S2!&5
d1

2

p2b
F2S1

2ln S1
22S2

2ln S2
21

~S11S2!2

2

3 ln~S11S2!21
~S12S2!2

2
ln~S12S2!2G .

~3.11!

Equations~3.8! and ~3.11! define the random potentia
problem. In the next section we will show that the statistic
description of this function possesses simple scaling pro
ties.

IV. SCALING ANALYSIS

It follows from Eq. ~3.11! that the correlation function o
the random potential is a homogeneous function of deg
two:

^V~gS1!V~gS2!&5g2^V~S1!V~S2!&. ~4.1!

Equation ~4.1! means that the probability of the potenti
realizationV(S) is the same as the probability of the pote
tial gV(g21S), and by no means expresses the scaling
the potential of a given realization.

Our goal now is to demonstrate that this property of t
Gaussian random potential dictates a particular scaling f
for all the moments of the free energyF of the system:
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F~T,m;$V~S!%!52T lnH (
S>0

2S S1
1

2D j21

3expS 2
E~S,j!

T D J
52T lnH 2E

0

`

dSSjexpS 2
E~S,j!

T D J ,

~4.2!

where energyE(S) is given by Eq.~3.8!. Note that in Eq.
~4.2!, which is valid in the continuous limit, we neglecte
unity in comparison with 2S. This is because we have a
ready used several times the fact thatS@1, and keeping this
unity in the pre-exponential factor would be beyond the
curacy of the calculation.

It follows from Eqs. ~4.2! and ~3.8! that for any given
realization of the random potentialV(S), the following iden-
tity holds:

F„gT,g21m;$gV~g21S!%…1gT ln 21gjT ln g

5gF„T,m;$V~S!%…1T ln 2. ~4.3!

According to Eq.~4.1! the probability of the potential real
ization V(S) is the same as the probability of the potent
gV(g21S). Therefore, the moments of the free energy p
sess the following scaling property:

^F~gT,g21m!&1gT ln 21gjT ln g

5g^F~T,m!&1T ln 2^Fn~gT,g21m!&c

5gn^Fn~T,m!&c , n52,3,4, . . . , ~4.4!

where^•••& stands for the ensemble averaging and subsc
c means the irreducible average~cumulant!.

We can use the fact that the only available variable w
the dimensionality of energy isd1 /Ab, see Eq.~3.11!, and
conclude that the moments of the free energy should b
the following scaling form:

^F~T,m!&52TF j

2
lnS T

m D1 ln 21
22j

2
ln

p

2 G
2

d1
2

bm
f j

(1)~u,b!,

^@F~T,m!#n&c5S d1
2

bm D n

f j
(n)~u,b!, n52,3, . . . .

~4.5!

Here we introduced scaling variable

u5
bmT

d1
2

, ~4.6!

which has the meaning of a dimensionless temperature
Eq. ~4.5!, f j

(n) are dimensionless functions that cannot
found from the scaling arguments alone.

The statistics of the magnetization can be calculated w
the help of the identity that follows straightforwardly from
Eqs.~3.8! and ~4.2!:
-

l
-

pt

h

of

In

h

S2̄52
]F

]m
. ~4.7!

The overbar in Eq.~4.7! and below stands for the thermody
namic average within a given realization ofV(S). In a com-
plete analogy with the derivation of Eq.~4.5!, we obtain the
following scaling behavior of the magnetization:

^S2̄&5
jT

m
1

d1
2

bm2
Gj

(1)~u,b!,

^@S2̄#n&c5S d1
2

bm2D n

Gj
(n)~u,b!, n52,3, . . . . ~4.8!

For n51 one finds from Eq.~4.7! that

Gj
(1)~u,b!522u2

d

du
@u21f j

(1)~u,b!#. ~4.9!

There is no straightforward relation betweenG(n) and f (n)

functions for n.1. It is noteworthy that for the easy axi
~Ising! case (j51) the scaling functionsf 1

(n) (u,b) and
G1

(n) (u,b) do not depend onb.
Let us discuss the asymptotic behavior of functionsf j

(1,2)

from Eq. ~4.5!. We begin with the high-temperature regim
u→`. One can expand Eq.~4.2! up to second order in the
potentialU(S), where

U~S!52~j21!S1V~S!, ~4.10!

to obtain

F'2T
j

2
lnS T

m D2T ln 22T
22j

2
ln

p

2
1U~S!u0

2
U~S!2u02U~S!u02

2T
. ~4.11!

Here we introduced the following notation:

•••u0[

E
0

`

dSSj21e2mS2/2T
•••

E
0

`

dSSj21e2mS2/2T

. ~4.12!

The fourth and fifth terms in the expansion~4.11! are random
quantities. Averaging them with the help of Eq.~3.11!, we
obtain

f 1
(1)~u!5

ln 2

p2
1O~1/u!, f 1

(2)~u!5u
2 ln 2

p2
1O~1!,

~4.13a!

f 2
(1)~u,b!5AuAbp

2
1bS 22

p

2 D1
4 ln 2

p2
2

C2

2
1OS 1

Au
D ,

~4.13b!

f 2
(2)~u,b!5uC212AubFD22Ap

2
C2G1O~1!.
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The numerical coefficientsC2 and D2 have the following
meaning:

C25
bm

Td1
2 ^V~S!u02&,

~4.14!

D25bS m

Td1
2D 3/2

^~V~S!u0!•~S•V~S!u0!&.

Their numerical values are

C25
2

p2 S E0

1dx

Ax

~12x!2

~11x!3
ln

1

x
21D

5
1

4p2
@C8~1/4!2C8~3/4!#'0.3712,

D25p2 3/2@6 ln~A211!22A2ln 2#'0.5976,

whereC8(z)5(d2/dz2)ln G(z) is the second logarithmic de
rivative of the G function. Substituting Eqs.~4.13a! and
~4.13b! into Eq. ~4.9!, we find

G1
(1)~u!5

2 ln2

p2
1OS 1

u D ,

~4.15!

G2
(1)~u!52 f 2

(1)~u,b!2AuAbp

2
1OS 1

Au
D .

Equations~4.13a!, ~4.13b!, and ~4.15! are valid in the
high-temperature regime where the disorder only weakly
fects the temperature fluctuations of the spin. There is
parametrically justified theoretical approach to analyze
situation at low temperatures. The popular approach to
RPP is the replica symmetry breaking ansatz.4,14–16The re-
sults of such a calculation will be published elsewhere.5 Here
we restrict ourselves to a qualitative consideration, wh
yields the answers up to numerical coefficients.

We employ arguments similar to those of Larkin17 for the
collective pinning of the vortex lattice, and of Imry and Ma18

for the random spin systems. Let us first discuss the Is
j51, case. At the pointSg of the global minimum of the
energyE(S), Eq. ~3.8!, min$E(S)%5E(Sg), the random po-
tential V(Sg) is of the same order of magnitude as the qu
dratic termmSg

2/2 and has the opposite sign. This conditi
can be written as

m

2
Sg

2.A^V2~Sg!&. ~4.16!

At T50 the entropy term is not important. Hence the spin
zero temperature is equal toSg and does not depend on th
degeneracy of the state. Using Eq.~3.11!, we find that

^S2̄& I.
d1

2

bm2
. ~4.17!

Therefore, the functionG1
(1) tends to a constant independe

of b asu→0.
f-
o
e
e

h

g,

-

t

The estimate of the position of the minimum,Sg , for the
Heisenberg case,j52, differs from Eq.~4.16! only slightly.
It follows from Eq. ~3.8! that

mSg21'A^V2~Sg!&. ~4.18!

As a result,

^S2̄&H5
d1

2

m2 S 11
a

b D . ~4.19!

Herea is a numerical constant of order unity, which cann
be determined within scaling considerations only. Therefo
the function G2

(1) tends to a constant asu→0 but in the
Heisenberg case this constant depends onb.

According to Eq.~4.9!, this means thatf (1) also has a
finite limit at T50. Moreover, the squared spin of the grou
state fluctuates from sample to sample and the fluctuat
are of the order of its average value^Sg

2&. As a result, all of
the functions f (n), G (n) must reach finite limits for both
Heisenberg and Ising cases.

Let us discuss the physical meaning of the lo
temperature expansion using

Gj
(1)~u!5Gj

(1)~0!1u
dGj

(1)

du
1O~u2! ~4.20!

as an example. Both the constant term and the deriva
have a simple interpretation in terms of the characteristic
the absolute minima of the random potentialV(S).

Consider a realization of the random potentialV(S). The
energy of the system~3.8! has only a finite number o
minima and there are no symmetry reasons for degenera
Therefore, at low enough temperatures, only the vicinity
the ground-state spinSg determines all of the thermodynam
properties of the system. Close to the minimum the Ham
tonian can be approximated as

E~S!'E~Sg!1
m r

2
~S2Sg!2. ~4.21!

The corresponding value of the square of the magnetiza
is

S2̄5Sg
213j21

T

m r
. ~4.22!

Naturally, S2̄ is a sample-dependent quantity as well asm r
andSg . Averaging Eq.~4.22! over the realization and com
paring the result with Eqs.~4.8! and ~4.20!, we find

^Sg
2&5

d1
2

bm2
Gj

(1)~0!,

3j21m K 1

m r
L 5

dGj
(1)

du
1j. ~4.23!

This means that the low-temperature expansion determ
the averaged location of the absolute minima and the cu
ture in this minima.
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V. NUMERICAL SIMULATIONS

The RPP~3.8! with the Gaussian random potentialV(S),
characterized by its correlator~3.11!, is easily accessible fo
numerical simulations. Indeed, instead of generating the
semble of potentialsV(S) with the given correlator, one ca
use the connection ofV(S) with the spectra of random ma
trices ~see Sec. III!.

We carried out numerical simulations for both the o
thogonal (b51) and unitary (b52) ensembles. In the
former case we generated 120031200 symmetric (Hag
5Hga) matrices with real matrix elementsHag . These ma-
trix elements were independent Gaussian random num
with the following moments:

^Hag&50, ^~Hag!2&51. ~5.1!

To obtain a matrix from the unitary ensemble we gen
ated simultaneously a symmetric ReHag and an antisymmet
ric Im Hag real matrices (ReHag5ReHga ; Im Hag
52Im Hga) with the same dispersion as above~Eq. ~5.1!!.
The combination ReHag1 i Im Hag is a matrix element of
the Hamiltonian from the unitary ensemble.

In our analytic calculations we assumed that the me
level spacingd1 does not depend on the location of the e
ergy strip whered1 is calculated. Strictly speaking, this is n
the case for the Gaussian ensembles of random matrices
well known11 that the density of the random matrix eigenva
ues is distributed according to the Wigner semicircle la
This density is larger in the middle of the band (e close to
zero! and vanishes at the band edges6e0 asAe0

22e2. Ac-
cordingly the mean-level spacing depends on the energy

d1~e!5d1~0!A e0
2

e0
22e2

. ~5.2!

It is also well known that Eq.~5.2! is just an asymptotic law
which becomes exact in the limitN→`, whereN is the rank
of the matrices;e0}AN. At finite N there are corrections to
Eq. ~5.2!, which become most pronounced close to t
edges.11

Taking all of this into account, we first discarded the lo
est and the highest 100 states in the spectrum of each ran
matrix. After that, we unfolded the rest of the spectrum
cording to Eq.~5.2! and obtained for each matrix 1000 e
genstates that obey local Wigner-Dyson statistics and h
uniform density. We also scaled outd1(0) and ended up
with the mean-level spacing equal to unity.

To evaluate the realization ofV(S), which corresponds to
a given random matrix, one can simply sum up energies
the lowest 5001S states~filled by electrons with spin up!
and the lowest 5002S states~spins down!. SubtractingS2

from the resulting sum, we obtain the random potentialV(S)
in units of d1 . Some particular realization of the rando
potential for differentb is presented in Fig. 2.

Using the generated potentialV(S), we calculated the
free energy,F(m,T), Eq. ~4.2!, and the thermodynamic
magnetization

S2̄5
1

Z (
S>0

S2~2S11!j21expS 2
E~S!

T D , ~5.3!
n-

rs

-

-
-

t is

:

e

om
-

ve

of

Z5 (
S>0

~2S11!j21expS 2
E~S!

T D ~5.4!

for a given realization and then evaluated the ensemble

erage of different moments of randomF(m,T) andS2̄. All of
the data presented below are results of averaging over 12
realizations of random matrices.

Figure 3 demonstrates the scaling properties for the m
free energy derived in the preceding section, Eq.~4.5!. We
evaluatedf (1) for different values ofT, m, andb, and plot-
ted it as a function of the scaling variableu, Eq. ~4.6!. One
can see that for the Ising case the data for different value
m and for bothb51 andb52 collapse on a single curve i
accord with Eq.~4.5!. The scaling functionf 1

(1)(u) at u@1
approaches its high-temperature asymptotic value
p22ln 2'0.070@Eq. ~4.13a!# within statistical errors.

For the Heisenberg case the high-temperature expan
predicts thatf 2

(1) behaves atu@1 as @compare with Eq.
~4.13b!#

f 2
(1)~u,b!'1.25Aub10.429b10.095. ~5.5!

The best-fit lines obtained for the numerical data are
scribed by

f 2
(1)~u,b!'~1.18260.002!

3Aub1~0.3160.02!b10.1260.03.

~5.6!

This is in a good agreement with Eq.~5.5!, taking into ac-
count the fact that there should be corrections to Eq.~4.13b!
of order 1/Au andm @since we neglectedm as compared to
d1 using the condition in Eq.~3.5!#.

FIG. 2. Several realizations of the random potentialV(S) for
b52.
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Figure 4 illustrates the behavior of the mesoscopic fl
tuations of the free energy, see Eq.~4.4!,

f j
(2)~u!5

~bm!2

d1
4 $^@F~T,m!#2&2^F~T,m!&2%.

FIG. 3. ~a! The contribution to the free energy from disord
@function f 1

(1) , Eq. ~4.5!# in the Ising (j51) case. The logarithmic
scale is chosen to demonstrate the fact that the scaling function
to a constant in both low- and high-temperature regimes. The s
line is the result of the high-temperature expansion. The statis
errors depend onu only and are plotted in the center of the figur
~b! Function f 2

(1) in the Heisenberg case (j52). The scaling func-
tions are different for the unitary (b52) and orthogonal (b51)
ensembles. TheAu scale was chosen to illustrate the agreem
with the high-temperature expansion obtained in Eq.~4.13b!. Solid
~dotted! line represents the predicted high-u behavior for the unitary
~orthogonal! case. At low temperature the functions tend to co
stants larger than the ones predicted by the high-u expansion.

FIG. 4. ~a! The averaged fluctuations of the free energy of
grain in the Ising case (j51) rescaled according to Eq.~4.5!. At
u→0 the scaling function approaches a positive constant. The s
line is the high-u asymptotic behavior described by Eq.~4.13a!. ~b!
The averaged fluctuations of the free energy in the Heisenberg
rescaled as in~a!. We divided the scaling functionf 2

(2) by Au and
plotted the ratio as a function ofAu to demonstrate the agreeme
with the high-temperature expansion@Eqs.~4.13b!#. The solid~dot-
ted! line represents high-u asymptotic behavior for the unitary~or-
thogonal! caseb52 (1).
-

For the Ising case atu@1 according to Eq.~4.13a! f 1
(2)

'0.1405u . The numerical simulations give the slope of th
best-fit line equal to 0.135860.0002. Therefore, the result
agree well. We can rewrite Eq.~4.13b! for the Heisenberg
case as

f 2
(2)~u,b!

Au
'0.371Au1230.132Ab1O~1/Au!, ~5.7!

i.e., f 2
(2)(u,b)/Au is a linear function ofAu. The numerics

indeed demonstrates such a linear dependence which ca
best fitted by

f 2
(2)~u,b!

Au
'~0.35360.006!Au12~0.16060.003!Ab

1O~1/Au!. ~5.8!

Once again, the agreement is quite reasonable since ther
correctionsO(m) to the coefficients.

Figure 5 presents the numerical results for the sponta
ous magnetization~5.3!. We plot the difference between^S2̄&
and its high-temperature asymptotic:

G(1)5m2bF ^S2̄&2
jT

m G ~5.9!

as the function of the scaling variableu. Once again, all the
curves collapse in accordance with Eq.~4.8!. The function
G1

(1) approaches the asymptotic value within statistical

es
id
al

t

-

lid

se

FIG. 5. ~a! The contribution from disorder to the averaged ma
netization squared in Ising case (j51) scaled bybm2 @see Eq.
~4.8! for the definition#. One can see that the scaling functionG1

(1)

has constant limits in both low- and high-temperature regimes.
solid line is a high-temperature expansion@Eq. ~4.15!#. The statis-
tical errors depend onu only and are plotted in the center of th
figure. ~b! The contribution from disorder and2JS term to the
averaged magnetization squared in the Heisenberg case (j52)
scaled as in~a!. The scaling functions are different for the unita
(b52) and orthogonal (b51) ensembles. TheAu scale was cho-
sen to illustrate the agreement with the high-temperature expan
obtained in Eq.~4.15!. Solid ~dotted! line represents result of high
u expansions for the unitary~orthogonal! case. At low temperature
the functions go to constants higher than the ones predicted by
high-u expansions.
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rors. The collapse of the data atu→0 justifies the order-of-
magnitude estimate that led to Eq.~4.17!. For the Heisenberg
case Eq.~4.15! predicts the following high-u behavior:

G2
(1)~u!51.25Aub10.858b10.1901OS 1

Au
D .

~5.10!

The best-fit lines are described by

G2
(1)~u!5~1.17160.006!Aub1~0.5460.01!b

1~0.2960.03!. ~5.11!

Again the results agree up toO(m) in the slope andO(1/Au)
in the intercept. There are downward deviations for
smallestm at high temperature. They are likely due to t
finite-size effects~the magnetization becomes too close to
maximal valueS5500 determined by the size of the RM!.
As a result the scaling is violated.

As a matter of fact, the scaling is violated whenm is too
small or too large. At largem the typical ground-state spi
becomes of the order of unity and the conditionS@1, used
throughout this paper, no longer holds. Asm decreases, the
magnetization becomes of the order of the system sizeS
'500, whereas in making arguments about scaling we
sumed no upper bound on the value ofS. Therefore, in ob-
taining the numerical values for the scaling functions au
→0, we used the values ofm that correspond to the ground
state magnetizationSg from ;15 to ;150 hundreds. The
linear interpolation of the numerical curves atu→0 results
in the following values for the low-temperature asymptot
of the scaling functionsG(1), Eq. ~4.8!:

G1
(1)~0!50.25660.005, G2

(1)~0,b51!51.6060.01,
~5.12!

G2
(1)~0,b52!52.6560.01.

In the Ising case the slope of this function can be determi
rather well:

dG1
(1)

du
520.760.1, ~5.13a!

whereas evaluation of this slope in the Heisenberg case
quires much better statistics. From what we had it follo
that

dG2
(1)~b51!

du
50.160.2,

dG2
(1)~b52!

du
50.260.3.

~5.13b!

Even though the values of the slope are smaller than
statistical errors, we do know the behavior ofS2 at low tem-
perature. The smallness of the slope just means that
change of magnetization squared with temperature is o
slightly different from the one predicted by the high-T ex-
pansion. Using Eqs.~5.13a!, ~5.13b!, and Eqs.~4.23!, we
conclude that

^Sg
2& I5~0.25660.005!

d1
2

bm2
, ~5.14a!
e

s-

d

e-
s

e

he
ly

^Sg
2&b51

H 5~1.6060.01!
d1

2

m2
, ^Sg

2&b52
H 5~1.3360.01!

d1
2

m2
,

~5.14b!

and

K 1

m r
L 5

1

m H 0.360.1, j51

0.760.1, j52. ~5.15!

Figure 6 illustrates the behavior of the averaged a
rescaled zero-temperature magnetizationm^uSgu&H and its
squarem2^Sg

2&H in the Heisenberg case. The magnetizati
squared̂ Sg

2&H is well described by Eq.~4.19! with the nu-
merical constanta'0.6. The contribution from disorder to
the averaged magnetization^uSgu&H is an order of magnitude
smaller than the magnetization itself. Without disord
@V(S)50# the magnetization is the same for all grainsSg
51/m @Eq. ~3.8!#. The correction due to randomness
around 9% in the orthogonalb51 and 4% in the unitary
b52 case.

VI. CONCLUSIONS

We considered manifestations of electron-electron in
actions in the properties of isolated metallic grains with lar
Thouless conductance,g@1. It turned out that the interaction
effects can be taken into account by a rather simple inte
tion Hamiltonian~2.19!. We then applied this description t
study the mesoscopic spontaneous magnetization of the
tallic grains whose bulk counterparts are only slightly belo
the point of Stoner instability. In this case the problem ma
onto the random potential problem, Eq.~3.8!, where the total
spin of the system plays the role of the coordinate. The r
domness is manifested by the potentialV(S) and is entirely
due to the fact thatthe one-electron spectrumin such a grain
is sample specific. At the same time, the fluctuations of
exchange interaction constant can be neglected provided
g@1.

The correlation function~3.11! of the random potentia
V(S) follows directly from the Wigner-Dyson spectral sta
tistics and possesses a specific invariance~4.1! under scaling

FIG. 6. h (s) representŝm2Sg
2&H for b51 (2). L (!) rep-

resents^muSgu&H for b51 (2). All data are for the Heisenber
(j52) case. Without disorder the relation̂m2Sg

2&5^muSgu&51
holds (d1 is set to 1).
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transformations. This invariance dictates a particular sca
of the ensemble averaged thermodynamic properties of
grains as well as of the higher moments of their mesosco
fluctuations. Dependence of all these quantities on temp
tureT and on the distance from the point of Stoner instabi
m can be determined, see Eqs.~4.5!, ~4.8!, and ~4.9!, up to
some functions of the dimensionless effective tempera
u5bmT, where b51 (2) corresponds to the orthogon
~unitary! Dyson ensemble.

According to Eq. ~4.8!, in the Ising case the zero
temperature magnetization typically gets reduced by a fa
of A2 when the system is driven fromb51 to b52. In the
Heisenberg case the average zero-temperature magnetiz
is largely determined by the nonrandom part of the Ham
tonian ~3.8! ~without disorderSg51/m). The fluctuations of
the magnetization become suppressed by a factor ofA2 as
the system goes from the orthogonal to the unitary ensem
If the grains are large enough, the transition between th
ensembles can be completed in magnetic fields, which
duce still negligible Zeeman splitting. As a result, an anom
lously weak magnetic field would substantiallyreduce the
spontaneous magnetization in the Ising case or suppres
fluctuations in the Heisenberg one. This is due to the w
known fact that the unitary spectra are more rigid than
thogonal ones. However, the difference between the ave
magnetization with and without disorder is about 9%
orthogonal (b51) and 4% for unitary (b52) ensembles
~see Fig. 6! in the Heisenberg case. Therefore, in the Heis
g
he
ic
a-

re

or

tion
-

le.
se
o-
-

its
l-
-
ge
r

-

berg case a small magnetic field should suppress the ave
magnetization by only 5%. This is a much smaller effect th
the one predicted in Ref. 3. The discrepancy is due to e
neous choice of the model Hamiltonian in that reference@see
the discussion in Sec. II after Eq.~2.21!#.

Of course, the evaluation of the scaling functions lies b
yond the simple analysis. In the high-temperature regime
possible to develop a regular perturbative expansion. At
temperature an analytic technique based on the replica s
metry breaking paradigm can be used. The correspond
calculation will be reported elsewhere.5

In the present paper, we analyzed the low-tempera
asymptotic behavior numerically. We have shown that th
asymptotics are determined by a single absolute minimum
a random potential~not accessible by a regular perturbatio
theory!. Using those numerical results, we were able to
termine the average position and curvature for such mini
see Eqs.~5.12! and ~5.13b!.
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