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This paper is devoted to the magnetic properties of isolated mesoscopic grains. We demonstrate that under
very general conditions the electron-electron interactions in such grains can be taken into account by a simple
interaction Hamiltonian. This Hamiltonian involves only three coupling constants, which correspond to charg-
ing, exchange interaction, and superconducting correlations. The most important condition for such a descrip-
tion is that Thouless conductance of each grain is large. Under this condition sample-to-sample fluctuations of
the coupling constants can be neglected. However, the thermodynamic properties can still remain sample
specific due to the one-electron part of the Hamiltonian. If the grain is made from a material that is close to the
threshold of ferromagnetic instability, the mesoscopic fluctuations of the magnetization are especially strong.
Moreover, the situation becomes multistable: free energy of each grain as a function of the magnetization is
characterized by a large number of local minima. We analyze the statistics of these minima and show that it
possesses simple scaling properties. Numerical simulations confirm this scaling.

I. INTRODUCTION have parallel spins. Assuming 8) symmetry in the spin
space of the system, we can write the exchange energy of

The simplest model of ferromagnetism in metallic sys-two electrons, which occupy the orbital statesand 8, in
tems was proposed by StorfeFhe magnetic ordering in this the usual Heisenberg form
model takes place when the increase in the orbital energy due A
to the promotion of electrons to higher-energy states is 625=—2Ja58152, (1.1
smaller than the energy gain due to the exchange interaction.
As soon as this happens, the system becomes unstable wi
respect to the transition to a state with a nonzero total Spin
and, hence, brokefiinvariance. In a bulk system only mac-
roscopically largeS matters. Therefore, the onset of the in-
stability is well determined—both the exchange and the or
bital energies are self-averaging quantities.

This might not be the case for a smathesoscopicme- 1
tallic grain since both orbital and exchange energies are Eg(l)—Eg'(O)zé’l—So— =Joi— =Joo- (1.2
sample specific. Therefore, one should expect strong meso- 2 2
scopic fluctuations of the magnetization of the grain made
from a material that is close to the Stoner instability. This — 0=2 —
paper is an attempt to develop a theoretical description of
these mesoscopic fluctuations.

Consider a mesoscopic grain with an even number of
electrons at zero temperatuiiess 0. Restricting ourselves to
the Hartree-Fock approximation, we can speak about orbital —+
states with energieS,. For a weak exchange interaction all
of the orbitals below the Fermi lev&l are double occupied _1_ 1

ere §_sz are the spin operators. From this point on, the
superscriptH indicates the quantities belonging to the sys-
tems with the Heisenberg form of the exchange interaction,
Eqg. (1.1). We can write the following expression for the
energy difference between the lowest energy states @ith
=0 andS=1:

(2-orbitalg, while those withe,>Er are empty(0-orbitals.
This state is a singlet5=0. Let «=0,1 label correspond-
ingly the highest 2-orbital and the lowest O-orbital in the —]
singlet ground state, see Fig. 1.

For the stronger exchange a state wifj;#0 can be- a) b)
come a ground state. Indeed, let us compare the lowest en-
ergiesEq(S) of the singlet §=0) and triplet §=1) states FIG. 1. Spin configuration fofa) the lowest energ$=0 state.
(see Fig. L The lowest triplet state has two single-occupiedq=0, —1, —2, . .., correspond to 2-orbitalsx=1,2, . . ., corre-
orbitals: «=0,1 (1-orbitalg, while a>1 and a<0 label spond to 0-orbitals(b) the lowest energyS=1 state.a=—1,
0-orbitals and 2-orbitals, respectively. For the ferromagnetic-2, ..., correspond to 2-orbitals,«=0, 1 correspond to
sign of the spin exchange the two electrons on the 1-orbital$-orbitals, andv=2, 3, ..., correspond to 0-orbitals.

0163-1829/2000/622)/1488612)/$15.00 PRB 62 14 886 ©2000 The American Physical Society



PRB 62 MESOSCOPIC MAGNETIZATION FLUCTUATIONS F@® . .. 14 887

[In derivation of Eq.(1.2) we used the fact thatgs,= (S

+1)—3/2, when we add spins of two-spin-1/2 particles.

Therefore, the triplet state becomes energetically more favor-

able than the singlet on&y(1)<Ey(0), provided thatly;  whereSis a half integer. One can see that for both Heisen-

+3Jo0>2(E1— &) berg and Ising exchange interactions, the system is unstable
This is a sufficient rather than a necessary conditiorSfor at

to be nonzero in the ground state. Even Eg(1)>E(0),

the spinS of the ground state is not necessarily zero. For the 6 <J. (1.8

lowest energy among the states with a total spime have

| | 1 2 1 1
Eo(S)—Eo| 5| =S 51—Jsz—zal+ 70 @7

Indeed, under this conditiorE(S) in Eq. (1.6b tends to

y y S —o as S—o. Equation(1.8) is nothing but the familiar
Eo(S)—E(0)= 21 Ca=E1-a” 51000 Stoner criterion of this instability. As soon as the parameters
“ of the system surpass the instability threshold, the ground
1 state acquires magnetization proportional to the volume of
5Jap- (1.3 the system.

B —S=sa = 2 . . . .. . .
1-S<a<p=S The situation in finite systems is somewhat different. We

Here «@<1—S labels 2-orbitals, +S<«&<$S labels start our discussion with a simple but instructive example of
1-orbitals, and 0-orbitals have labels>S. a grain with an even number of electrons without any disor-
One can also consider the situation with strong spin ander, i.e..&,,1—&,= 61 andJ,z=J. It turns out that for the

isotropy. Let it be the easy axéksing) anisotropy, so that Heisenberg case the spin of the ground s&fés finite al-
the state of an electron is characterized by zlm@mponent ready at
s, of its spin (s,= = 1/2), and the exchange energy equals
| 86,<23, (1.9
S 2Jaﬁsz(l)sz(2) . (14)
as can be directly seen from E@..2). Therefore,S can be
reater than zero even for the exchange, which is below the
ritical value given by the Stoner criteridd.8) (64/2=J,
<J<J¢=61). In this parameter domaiy=J/(25,—2J).
Because’; andJ are inversely proportional to the volume of
s 1 the system, the spin of the ground st&gdoes not scale
EL(S)—EL0)= > |E—E1 o _Jlala) with the volume. Equatior{(1.7g implies that for an odd
a= 2 ’ number of electrons the system s{@g>1/2 (though finitg
1 in the interval 25,/3=J,<J<J.= ;. On the contrary, in
“Jap- (1.5  the case of Ising interactio;=0 (1/2) for an everfodd
1-s5a,p<s 2 number of electrons as long d@s>J.
. In more realistic models, which take the randomness in
In a general case the orbital energigsand the exchange poth the level spacing and the exchange interaction into ac-
energies],; are random. In the limiS—o summation i coynt, the magnetization at0J< &, is essentially random
Egs. (1.3 and (1.9 leads to the self-averaging. Callingj  sjtuation far from Stoner instability was discussed in Refs. 2

=(&a+1—E,) mean-level spacing and=(J,s) mMean- and 3. In this paper we propose a theory of the magnetization
exchange coupling constaftere(- - -) stands for the en- near this critical points, —J< 6.

From this point on the superscriptindicates the quantities
belonging to the systems with the Ising form of the exchang
interaction[Eq. (1.4)]. The energy difference between states
with zero and finite total spin in this Ising case is

semble averagingwe obtain from Eqs(1.3) and (1.5 For finite S the functionsEq(S) from Egs. (1.6a8 and
(1.6b are random. Their statistics are determined by the
EE(S) _ ES(O) =25, l 3s 25(2S— 1)}\] probability distributions o€, andJ,, ;. Below we derive the
2 2 correlation function Eq(S;)Eo(S,)) for large but finiteS; ,
w2 in a realistic model of a weakly disordered or chaotic metal-
=S 0 - JSSH, (1.63 lic grain. This correlation function is sufficient to describe
1 25(25-1) the statistical mechanics of the grain. At high tgmperatures
EL(S)—EL(0)=525,— _[SJF —}J the randomness can be treated perturbatively in powers of
2 2 1/T (high-temperature expansiprThe low-temperature be-
—R5. 1 (1.6b havior of those systems is determined by the position and the
1 , . o .
structure of the deepest minimum of ti&S) function.
whereSis an integer. Therefore, one has to develop a description of the Spiaf

Note that for a grain with an odd number of electrons Egsthe ground stateEy(Sy) = min{E«(S)}. Since Sy is random,

(1.6a and(1.6b are slightly modified. The lowest possible one might be interested in the statisticsSgfand of E(S) for

spin is nowS=1/2 and the energy of a state with a s§iis  Sclose toS,. The problem of evaluation of statistics §f is

given by not trivial. In this paper we do not solve it completely. We
restrict ourselves to scaling analysis and numerical simula-
tion. Our attempt to construct an analytical description based
on the replicas symmetry breaking paradfgwill be pub-

(1.7a  lished elsewhere.

1 3
Z5l+ —-J,

EQ(S)—EQ<1)=5251—JS(S+1)— a

2
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The remainder of this paper is organized in the followingcan, under very general conditions, be described by a re-
way. In Sec. Il we discuss a model of interacting electrons irmarkably simple Hamiltonian with only three system-
a weakly disordered metallic grain and the statisticEgf dependent coupling constants. Let the dimensionless conduc-
andJ,; that follow from this model. Section Ill is devoted to tance g of the grain tend to infinity. We start with the
the derivation of the correlation functiofEqy(S;)Eo(S,))- simplest case when the electrons interact via a short-range
The scaling analysis of the structure of the minime&Eg(S) potential:
is performed in Sec. IV. In Sec. V the results are compared L .
with numerical simulations. Our findings are summarized in Hint(r)=A61Va(r). (2.9

Sec. V. HereV«LY is the volume of the grain and is a dimension-

less coupling constant. The matrix element of this interaction
in the basis of eigenstate@(?) of the noninteracting Hamil-
tonian is given by

Let us discuss the energy scales that determine properties
of a finite system of electrons. The single electron spectrum ay_ Fo* (M o* (1 - ‘
{E,}is chari;\cterized by the mean-levegll spacing P M’”_MslVJ’ drea(ney(Nenne,rn. (26

Il. ELECTRON-ELECTRON INTERACTIONS IN
ISOLATED METALLIC GRAINS

81=(Eir—E,), (2.1) We first.cons.ider t_he situation. without ma_\gnetic field

(Z-reversal invariance is preserye&ince no spatial symme-

where(- - -) stands for the ensemble averaging. Another reltries are assumedhe one-particle orbitals are not degener-
evant energy scale of the problem is the Thouless energgte and the eigenfunctions of one-particle Hamiltonian

Er~7/tery, Wherete is the time it takes for a classical o, (r) can be chosen to be redlhe off-diagonal elements in
counterpart of an electron to cover the energy shell in thgq. (2.6) are small ass,/E;=1/g because the integrand
single-particle phase space. For diffusive and ballistic sysyyickly oscillates. Thus they can be neglected. On the con-
temst,,4 equalsL?/D andL/vg, respectively. Heré is the trary, diagonal matrix elementsx( y, u, v are equal pair-
size of the systemy denotes the electronic Fermi velocity, wise) are much larger since the integrand in Eg.6) is

andD is the diffusion coefficient. _ ~ positive definite. Substituting the integrand by its mean
The important characteristic of the system is the ratio ofgjye, e.g.,

these two energy scales:

2.0\ 2,2\ —_\/—2
r r)H)=v-s, 2.
9=Eq/éy, 22 (@a(Ne3 1) 27
L . ) we find
which is known as the dimensionless conductance. Here we
discuss only metallic grains where all single-electron states Ma?=MZI=MJT=\5;. (2.9
are extended, and thus the dimensionless conductance is i .
large: Corrections to Eq(2.8) are negligible for exactly the same
reason as the off-diagonal matrix elements. As a result, in the
g>1. (2.3  limit E;—, Eq. (2.8) becomes exacf{Equation (2.8) is

valid for a# y; we discuss the significance of the “double
It is well knowrP~8that in this regime the statistics of the diagonal” elementV o later, see Eq(2.21).]

spectrum{&,,} on the scales smaller than the Thouless energy For the following discussion it is convenient to introduce
Er are well described by the random matrix theory gperators of the number of electrong on the orbitala and
(RMT).°>" 1! RMT gives a quantitative description of the phe- the spin&. on this orbital-
nomenon of the level repulsion. For an ensemble Nof PINSq '
X N,N—o matrices with random and independent matrix . .1
elements the probability density of a realization of the spec- na:2 azm'aa(r: Sazz

; R
> aly800, 00y (2.9
trum{&,} is given by **

g0
Herea:’w (a,,) createdannihilateg an electron with a spin
(2.4 ©oon the orbitale and a'wl are the Pauli matrices. Neglect-
ing the off-diagonal terms in the interaction Hamiltonian re-
duces it to the form

B |8M_5V|
P({SM})OCGX[{E s m(—5 )

1

The parametep in Eq. (2.4) can be equal to 1, 2, or 4 for
orthogonal, unitary, and simplectic ensembles, respectively.

The orthogonal (unitaryy RM ensemble corresponds to  H;,,=H®+A@+A{®= > [M%a' a,.al a

ay@ac@ac%yo, G yoy

weakly disordered grains with preservedolated 7 invari- ayooy
ance and negligible interaction between orbital and spin de- +M27at t aa t ot

i a,,8,5.8.,a,,+tM7a a. _a,a,.; |
grees of freedom. In what follows, we restrict ourselves by yaBaoBar,By0, 850 M3y 800800,8y08 s, ]
these two ensembles, i.e., do not consider grains with spin- (2.10

qrb|t mteractlorl The latter would correspond to the S|mplec-.|_O begin with, let us consider the first two terms in Eq.
tic ensemble3=4.

Now let us take the effects of electron-electron interaction(z'm' Using Eq.(2.9 and the identity

in the grain into consideration. It turns out that a large class

of such effects in ajiven disordered closed metallic grain OO

0-00’0-010:/[: 250’0150"0'1_ 0'10':’[!
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one can presertt ")+ H® in a usual Hartree-Fock form:

AOLA= [

ay

1 ~ A St
Maz— EM 73) n,n,—2M yZSQSV
(2.11)

Now we can use the remarkable independence of the matrix

elements of their indices, E¢R.8), and present Eq2.11) as

N . 1. 5
HO+H@ =\, §n2—252 : (2.12

HereS andn are the operators of the total spin and the total

number of electrons correspondingly,

=33, n=>n,.

a

(2.13

The third term in Eq(2.10 can be treated in a similar fash-

ion. One can write it as

A®=\&TT, T=2X a,a.,. (2.14
It follows from Egs. (2.12 and (2.14 that the Hamil-
tonianH,,; can be presented in terms of three operators,
andT from Egs.(2.13 and(2.14), rather than in terms of all
the operators,, S,, anda,;a,, with differenta. In fact,

this feature is not specific to the particular short-range inter- g
action Hamiltonian(2.5) and is determined by the chaoticity

of the eigenfunctionse,(r). It turns out thate,(r) are

Gaussian random variables that are not correlated with each

other. This is correct for eigenvectors NN, N—oo ran-
dom matrices?!

1
<‘P;(m)@v(n)>: Né,u,vémna
(2.159

2-p
<¢M(m)¢v(n)>: N 5,Lw5mnv

and(¢,(m))=0. Itis also correct for the Berry ans&tor
the wave functions in a chaotic grain

- - 1 - -
<<P;(r1)€0v(r2)>: v‘swh(rl_rz),

(2.15bH
- - 2—-B -
(eu(r)e(rp))= Téﬂvh(rl_rZ)'
Here h(F) is the familiar Friedel function:
- Jaz-1(%) 2]r]
h(r)=F(d/2)W, X= e (2.16

whered is the spatial dimension of the graihjs the Bessel

function, and\ ¢ is the Fermi wavelength. The characteristic
scale of the decay of this function is of the order of the
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It is easy to see that the correlators of the eigenvectors
(eigenfunctions (2.19 are invariant with respect to an arbi-
trary orthogonal transformation performed over them:

()D;,l,(m)_> z O/n':l;,(PM/(m,),

,u.',m/

(2.173
eu$1=3 [ aR0M (i e,
yn
S Ob Ok = S,
u'om
(2.17H
f dr 04 (ry,NOH " (r,ry)=6,,8(r1—ry).

o

Therefore, the ensemble-averaged part of the interaction
Hamiltonian must also be invariant with respect to such

transformationg.As to mesoscopic fluctuations Blfim, they
disappear in the univers@RM) limit, g—o (N—©), and

can be neglected under the conditi¢h3).] There are only
three operators, quadratic in the fermionic fields, that possess
this invariance:

1
_ Atz A
- E 2 amrlo-(rl ,(rzaa,ozi

-,I\—:z é‘aTé‘aii (21&
and the quartic operators may be constructed only as second
powers or products of these operators. Moreover, the Hamil-

tonian H;,, should also be invariant with respect to @Y
rotations in the spin space. Therefore, the spin may enter into
the interaction Hamiltonian only through the combination

2. Finally, H;,, must be invariant ‘with respect to (D
gauge transformations. It means thdy,; can include the

operatorT only as a produci "T. We conclude that in the
general case the limit of the infinite conductargeorre-
sponds to

Hint=Ecn?—J(S)%+ Agesl 'T. (2.19
(Linear inn term is allowed, but it can be included into the
one-particle part of the HamiltonignWe introduced three
coupling constant&., J, and\gcs, that correspond to the
three operators permitted by the symmetries. In the simple
model with the short-range interaction and preser¥ed-
variance,3=1, the above coupling constants have the fol-
lowing form:

1
ECZE)\élI JZZ)\(SJ_, )\BCS:)\al. (22@

electron wavelength\r, and for the purposes of convolu- If the 7 invariance is brokeng=2, transformation$2.17)

tion with any smooth function can be substituted\@s(r).
Equation(2.15bh becomes exact in the limg—co.

become unitary. The operatdrfrom Eq.(2.18 is incompat-
ible with such symmetry and thus;cs=0, for 8=2.
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We would like to emphasize once again that Ejj19 is It should be noted though that the RM theory is just an
the most general form of the Hamiltonian in the lingt  approximation. It becomes exact only in the ligi-~. For
—o0, For instance, one can check that it correctly takes intdinite g there are corrections to E(R.19, which sometimes
account interactions of the two electrons on the same orbitahre of importance. However, these correctiongsatl do not
Indeed, it follows from Eq(2.6) and the Gaussian distribu- bring essentially new physics to the problem of the small
tion Of (pa(F) [Wlth Corre|ati0n functions determined by Eqs grain ma.gnetization. For thIS reason we reStI’iCt Ourse|VeS to
(2.19] that the “double diagonal” matrix elemer1®® is  the Hamiltonian Eq(2.19.

different from diagonal ones, given by E@.9): Choosing the direction of the total spin of the system to
coincide with thez axis, we can express the energy of the
Mgg:(4_5)|\/|gz:(4—,3))\51_ (2.21 system through the occupation numbays, :
At first sight it appears that the Hamiltonié®.19 has to H_ B
be supplemented by an additional term proportional to E _Z‘, €aNa o= IS(STL), (224
M aw :3
aa where
Hocn 6, al.a,.al a, . (2.22 1
~ 8,180,180, 180, S=35|2 (Ne; =Ny =S4, (2.29
However, one notices that for any two distinct labels vy andSn. =N
there are three different off-diagonal elemes§?, M2, ao R . .
and M7 where;s double-dilagonal terivl ©® gs%ouldmbe Throughout this section we assumed that the metallic
aa’ 9 aa rain possesses rotational symmetry in the spin space. In

gkg‘g i'gtgngﬁouv%stng r?gggé (f\?o? Erizulla igeb;el\?gl?;Sh' ddition, it is worthwhile to discuss a case in which this
e y ; - Y '’ symmetry is broken and the interaction as only along one
provided that the sum in the right-hand side involves termseas axes. To make connection with the eneEQyS) that
with =y as well as those witla# y. Therefore, the inter- y '

action between electrons on the same orliltss not violate has been defined in Eq1.6h, we adopt the following

the invariance under the rotation of the basishich be- Hamiltonian:

comes exact in thg—« limit. On the other handan addi- o .

tional term of the form Eq(2.22) explicitly violates this sym- H=>, Eaaz'oaa'o—\](sz)z. (2.26
metry. For this reason we think that taking such a term into @o

account, as it was done in Ref. 3 is incorrect. Using the notation of Eg(2.25, we express the energy for

Let us briefly discuss the physical meaning of the thregpe Ising case as
terms in the Hamiltonian Eq2.19. The last one exists only
in the orthogonal caseB= 1) and leads to the superconduct- | )
ing instability provided thah 5c<<0, i.e., there is an attrac- E'=> &.n,,~ IS (2.27)
tion in the Cooper channel. Superconducting correlations are 7
suppressed by the magnetic field, and thus do not exist at The energyEq(S) that was introduced in the previous
B=2. Here we are not interested in the effects of superconsection can be obtained by minimizir at fixed S with
ductivity and assume that the grain is a normal metar at respect to the occupation numbers .. In spite of the
=0. It means thabhgcs>0. It is well known that the very simple form of Eqs.(2.24), (2.27), and(2.23 the problem
same renormalization that leads to superconductivity atemains nontrivial, since the spectryd,} is random. In the

Agcs<0 renormalizes the repulsive effective coupling con-fo|iowing sections we consider the effect of this randomness
stant in the Cooper channel to zesee, e.g., Ref. 23This 5 the properties of the ground state.

fact enables us to simply neglect this interaction.

The first two terms in Eq(2.19 represent the dependence
of the energy of the grain on the total number of the elec-
trons inside and on the total spin, respectively. They com- We are interested in the spontaneous magnetization of the
mute with each other and with the single-particle part of thesystem at low temperatures. Therefore, in the following dis-

Hamiltonian =€ ,a, ,a,., provided the grain is isolated. cussion we only compare the energies of the lowest lying
Therefore, all states of the grain can be classifiedlapdS. ~ states with a given spin. Hence, the state labeled by the total
As long as we are interested in spin structure of the sysSpin Sis the state for which the fir$tl/2+ S single electron

tem with afixed number of electronsve can disregard the States are occupied by spin-up and the #N£2— S by spin-
first term in EQ.(2.19. As a result we arrive at a simple down electrons. We ignore the excited states with the same

Hamiltonian total spin in the following discussiorilt can be shown that
taking these states into account introduces a nonessential ad-

_ At on a2 dition to the free energy.This enables ugbased on the

H= ;T Eala,o8a,ocI(S)". (2.23 Hamiltonian(2.24] to write the following energy functional:

Ill. THE EFFECTIVE HAMILTONIAN

Note that the only random component of the problem is E(S,&)= fg>ep(e)de— fo ep(€)de—IS(S+é—1)
0 &

the single-particle spectrufi€,}, while the exchangé does
not fluctuate. (3.1
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where p(e)=2=,6(e—¢&,) is the one-electron density of whereu is fixed (and small compared t6,), andV(S) is a
states and is the strength of the exchange interaction, andrandom potential which is determined by the fluctuations of
parameteré=1,2 characterizes two limiting cases of spin the density of stategp(e):
anisotropy:£=2 corresponds to the isotropic spin orientation
(Heisenberg modglwith the degeneracy of the stateS52 55 [e
+ 1, while £=1 describes the easy ax@sing) model where V(S)=— J deJ dey[Sp(ey)+Sp(—e€1)]. (3.9
states are only double degenerate. We have 2-orbitals at 0 0
<&., l-orbitals até_<&,<&-, and empty O-orbitals at
E£,>E&-~ . From the conservation of the total number of par-Below, we refer to this problem as a random potential prob-
ticles we obtain the following equations fér. and&_ : lem (RPB. Such a problem is well defined provided that the
correlation function for random potenti®k S) is given. One
& 0 can evaluate the statistics of the poten¥dlS), Eq. (3.9),
S= fo ple)de= f€<p(e)de. (3.2 using RMT.
The fluctuations of the density of state$y, averaged
The minimum of the energy function&B.) is the same as over energy intervals larger tha®} in the ensembles of RM
the ground state of the original system. The density of stateare Gaussian random variables. Therefore, using(&§),

can be represented as we conclude thaV/(S) is a Gaussian random variable as
well. The correlation functiorKV(S)V(S')) can be ex-
p(€)=1/6:+dp(e). (3.3 pressed through the correlator of the density of states. The
We are interested in the value of the sfis 1, which trans- CS;'?;%” function of the Fourier components &i(e) is
lates into the scale of orbital energies that is much larger thafl

&1. The fluctuations of the density of states averaged over

such an energy scale are much smaller than its mean value 2| k|
1/8,, and it is sufficient to keep only the terms lineardp. (8pdpp) = B
Thus we obtain from Eq3.2),

S(p+Kk), (3.10

ss, where B is 1 or 2 depending on whether the Hamiltonian
g>/5lzs_f dedp(e), belongs to an orthogonal or a unitary ensemble. Averaging
0 the productV(S;)V(S,) with the help of Eqs(3.9) and Eq.
(3.10, we obtain the correlation function:

E_165,=—S+ fo dedp(e). (3.9
521 & 1+ S;)?
(V(S)V($)) = —— 5 ~ SN S-SAnSet ————

In what follows we adopt the notation

_ 2
p=258,-23<5;. (3.5 In(S,+Sy)2 252) In(S,—S,)?

According to Eq(1.8), the bulk Stoner instability emerges at

un=0, so that the parameter characterizes how close the (3.11
system is to the criticality threshold.
Substituting Egs(3.4) into Eq. (3.1), we obtain Equations(3.8) and (3.11) define the random potential

problem. In the next section we will show that the statistical

S6 s . . . .
E(S.&)= %Sz_(g_ 1)(8y— ul2)S— 518f 1 Sp(e)de S::cnptmn of this function possesses simple scaling proper-

S5,
+ fo [Op(€)+ op(—e)]ede. (3.6 IV. SCALING ANALYSIS

It follows from Eq. (3.1 that the correlation function of
the random potential is a homogeneous function of degree
two:

Integrating Eq.(3.6) by parts and using Ed3.5) to neglect
p as compared té,, we obtain

S6q €
E<S’5>=§52—<5—1>515— fo de fodfl (V(YSOV(7S)) = AV(SPV(Sp).  (4.])

X[op(e1)+p(—e1)]. (3.7 Equation (4.1 means that the probability of the potential
realizationV(S) is the same as the probability of the poten-
ThUS we reduced the Ol’lglnal problem to flnd|ng the“a' ’yV(»y 18) and by no means expresses the Sca“ng for
minima of the random function the potential of a given realization.
Our goal now is to demonstrate that this property of the
Gaussian random potential dictates a particular scaling form

It S
E(S8)= 2 S = (E-1)aSHV(S), 3.8 for all the moments of the free energyof the system:
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1\¢°1t —— JF
F(T,u{V(SH=-TIn{ >, 2[S+= P=2—. 4.7
$=0 2 g
E(S,é) The overbar in Eq4.7) and below stands for the thermody-
T T ) namic average within a given realization\6€S). In a com-
plete analogy with the derivation of E(.5), we obtain the
% E(S¢) following scaling behavior of the magnetization:
=—TIn 2[ dS§exr{— ) ,
° ! — T &
="+ —"=-cM0,p),
(4.2 ($9 w2 (6,8)

where energye(S) is given by Eq.(3.8). Note that in Eq.
(4.2), which is valid in the continuous limit, we neglected 52
unity in comparison with 8. This is because we have al- <[SZ]”>C=(—12
ready used several times the fact tBat1, and keeping this Bu
unity in the pre-exponential factor would be beyond the ac
curacy of the calculation.

It follows from Eqgs. (4.2 and (3.8) that for any given

n

G"(6,8), n=23,.... (49

Forn=1 one finds from Eq(4.7) that

d
realization of the random potentisl(S), the following iden- GM(6,8)= - 202d—[0’1ff§1)( 6,8)]. (4.9
tity holds: 0
_ _ There is no straightforward relation betwe&d™ and f("
1, . 1
FOT.y ui{V(y "9N+yTIn2+yETIny functions forn>1. It is noteworthy that for the easy axis
= yF(T,w{V(SH+TIn2. 4.3 (Ising) case €=1) the scaling functions‘(l“) (0,8) and

. . . G{" (6,8) do not depend oB.
According to Eq.(4.1) the probability of the potential real- Let us discuss the asymptotic behavior of functicbﬁsz)

ization V(S) is the same as the probability of the potentialf 7 . .

_ rom Eq.(4.5. We begin with the high-temperature regime,
YW(y~1S). Therefore, the moments of the free energy oS-y ((])gest):an expagnd Ed4.2) up tgo secopnd order ingthe
sess the following scaling property: . o

potentialU(S), where
(F(yT,y 2u))+yTIn2+ yéTIny

U(S)=—((—-1)S+V(9), (4.10
— + n -1
WE(T )+ TIN2(F (YT, ¥y u))e o obtain
=yNF"(T,u))e, nN=234..., (4.9 ;
—E T
where(- - -} stands for the ensemble averaging and subscript F~ —Tiln(—) —TlIn 2—TTIn§ +U(9)]o
¢ means the irreducible averageumulan. K
We can use the fact that the only available variable with U(S2[-—U(S)|2
; o . (S)?lo—U(S)lo
the dimensionality of energy i8,//3, see Eq(3.11), and - o7 (4.11
conclude that the moments of the free energy should be of
the following scaling form: Here we introduced the following notation:
F(T = Tgl T In2 2—§|7-r - —1,—us?2T
(F(T,p))=~— 2N ) N2t ——ny fodsg e ST
52 o= — . (4.12
_ 71 f dS g 1e—us¥2T
ﬁﬂfé (alﬁ)l 0
§2\n The fourth and fifth terms in the expansi@h11) are random
<[F(T.M)]n>c=<—l> fM(9,8), n=23,.... guantities. Averaging them with the help of E®.11), we
Bul ¢ obtain
(4.9
Here we introduced scaling variable In2 2In2
d 10(0)=— +0We), 1(0)=0=—"+0(1),
o P11 .6 (4.133

8
. . . : 1 B m\ 4In2 C, 1
which has the meaning of a dimensionless temperature. I6{(6,8)= /6 7+,8 2— 5 t— 7+O —1,
Eq. (4.5, f" are dimensionless functions that cannot be w Vo

found from the scaling arguments alone. (4.13h
The statistics of the magnetization can be calculated with

the help of the identity that follows straightforwardly from ) _ _ \ﬁ

Egs. (3.9 and(4.2): 19(0.8)= 0C,+2\0B| D, 2C2 +0O(1).
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The numerical coefficient€, and D, have the following The estimate of the position of the minimus,, for the
meaning: Heisenberg casé= 2, differs from Eq.(4.16 only slightly.

It follows from Eq. (3.8) that

Bu
Co= T52<V(S )]0?), 1Sy~ 1~ (VA(Sy)). (4.19
. oo (4.14  As aresult,
D=8 o ((V(9)]o)- (S V(S)|0))- &2 a

' (H=—|1+ ﬁ) (4.19

Their numerical values are K

Herea is a numerical constant of order unity, which cannot
2 [ (rdx (1-x)? nl 1 be determined within scaling considerations only. Therefore,
0 VX (1+x)3 X the functionG{Y tends to a constant a8—0 but in the
Heisenberg case this constant dependgon
According to Eq.(4.9), this means that*) also has a
finite limit at T=0. Moreover, the squared spin of the ground
state fluctuates from sample to sample and the fluctuations
__—3I2 _ - are of the order of its average val As a result, all of
Dp=m" *46In(J2+1)~22In2]~0.5976, the functionsf™, GM must reaths f>|n|te limits for both
whereW’ (z)=(d?/dz?)InT'(2) is the second logarithmic de- Heisenberg and Ising cases.

1
= —2[‘If’(1/4) -V’ (3/4)]~0.3712,
41

rivative of theI" function. Substituting Eqs(4.133 and Let us discuss the physical meaning of the low-
(4.13b into Eq. (4.9), we find temperature expansion using
21n2 1 dGy
G{M(h) = — (5) Ggl)(0)=eg1>(0)+ew+0(02) (4.20

B 1 have a simple interpretation in terms of the characteristics of
(D) gy = 2§(1) _ [P il p p
G27(6)=2137(6.8) G 2 +O Jo the absolute minima of the random potent4lS).
Consider a realization of the random potentiglS). The

Equations(4.133, (4.13b, and (4.15 are valid in the energy of the systen{3.8) has only a finite number of
high-temperature regime where the disorder only weakly afminima and there are no symmetry reasons for degeneracies.
fects the temperature fluctuations of the spin. There is ndherefore, at low enough temperatures, only the vicinity of
parametrically justified theoretical approach to analyze thehe ground-state spi§, determines all of the thermodynamic
situation at low temperatures. The popular approach to thproperties of the system. Close to the minimum the Hamil-
RPP is the replica symmetry breaking andaz.*°The re-  tonian can be approximated as
sults of such a calculation will be published elsewhdirere
we restrict ourselves to a qualitative consideration, which r
yields the answers up to numerical coefficients. E(S)~E(Sy) + 7(5_ 59)2' (4.21)

We employ arguments similar to those of LarKifor the
collective pinning of the vortex lattice, and of Imry and ¥a  The corresponding value of the square of the magnetization
for the random spin systems. Let us first discuss the Isings
¢=1, case. At the poing; of the global minimum of the

) (4.15 as an example. Both the constant term and the derivative

energyE(S), Eq.(3.8), mi{E(S)}=E(S;), the random po- S—ZZSZ+35‘11 4.22
tential V(S,) is of the same order of magnitude as the qua- 9 e :
dratic term,u82/2 and has the opposite sign. This condition o
can be ertten as Naturally, S? is a sample-dependent quantity as well s
andSy. Averaging Eq.(4.22 over the realization and com-
%SSZ <V2(Sg)>. 4.16 paring the result with Eq€4.8) and(4.20), we find
2
At T=0 the entropy term is not important. Hence the spin at (S >_ 5—6(1)(0)
zero temperature is equal & and does not depend on the
degeneracy of the state. Using E§.11), we find that
1\ dc®
52 35-1M<—> =< 4¢ (4.23
<82>| B 2 (4.17) My deo

This means that the low-temperature expansion determines
Therefore, the functioG{> tends to a constant independent the averaged location of the absolute minima and the curva-
of B as 6—0. ture in this minima.



14 894 I. L. KURLAND, I. L. ALEINER, AND B. L. ALTSHULER PRB 62

V. NUMERICAL SIMULATIONS

V(S
AN

The RPP(3.8) with the Gaussian random potent\4(S),
characterized by its correlat¢8.11), is easily accessible for ~ 130] ,"'\‘A ~
numerical simulations. Indeed, instead of generating the en
semble of potential¥(S) with the given correlator, one can /
use the connection of (S) with the spectra of random ma-  jpo}
trices (see Sec. I\ /'*\ \/\,

We carried out numerical simulations for both the or- /
thogonal 3=1) and unitary =2) ensembles. In the /%/M
former case we generated 1200200 symmetric i, Sor AT A /
=H,,) matrices with real matrix elements,, . These ma- /,J"a*/ /
trix elements were independent Gaussian random number ey A AR /"-\\

with the following moments: 0*@9@“’“" "'\.:. \ moF
(Ha)=0, ((Hap?=1. (5.1) \ M~~~

To obtain a matrix from the unitary ensemble we gener- S0 ‘“\»-w"/ M\'\ "‘-\
ated simultaneously a symmetric Rg, and an antisymmet- "«—-\V"-{W\
ric ImH,, real matrices (Rel,,=ReH,,; ImH,, hY %
= —ImH,,) with the same dispersion as aboi&. (5.1)). 00} ‘M”M"\\x ]
The combination R#l,,+iImH,, is a matrix element of Y
the Hamiltonian from the unitary ensemble. . ‘ ‘ . . ‘

In our analytic calculations we assumed that the mean- 0 100 200 300 400 500
level spacingd, does not depend on the location of the en- S
ergy strip whered, is calculated. Strictly speaking, this is not
the case for the Gaussian ensembles of random matrices. It j

FIG. 2. Several realizations of the random potentiaB) for

well knownt! that the density of the random matrix eigenval- =2
ues is distributed according to the Wigner semicircle law: E(9)
This density is larger in the middle of the bane ¢lose to Z=Y (2S+ 1)5‘1exy{ - _) (5.4)
zerg and vanishes at the band edgeg, as \/eoz— €. Ac- s=0 T
cordingly the mean-level spacing depends on the energy: for a given realization and then evaluated the ensemble av-
2 erage of different moments of randdffu, T) andS?. All of
A .
81(€)=5,(0) / —. (5.2  the data presented below are results of averaging over 12000
€y—€ realizations of random matrices.

) o . Figure 3 demonstrates the scaling properties for the mean
It is also well known that Eq(5.2) is just an asymptotic law, free energy derived in the preceding section, &g5). We
which becomes exact in the linfit—o, whereN is the rank  ayajuatedf®) for different values ofT, w, andB, and plot-
of the matrice.szooc VN. At finite N there are corrections to teq it as a function of the scaling variabfe Eq. (4.6). One
Eq. (5.2, which become most pronounced close to thecan see that for the Ising case the data for different values of
edges: w and for both=1 andB=2 collapse on a single curve in

Taking all of this into account, we first discarded the low- ccord with Eq(4.5). The scaling functiorf{"(6) at 6> 1
est and the highest 100 states in the spectrum of each randoéBproaches its high-temperature asymptotic value of

matrix. After that, we unfolded the rest of the spectrum ac-_-2|,, 2~0.070[Eq. (4.133] within statistical errors.

cording to Eq.(5.2) and obtained for each matrix 1000 ei-  pqr the Heisenberg case the high-temperature expansion
genstates that obey local Wigner-Dyson statistics and hav,

: , Bredicts thatf{)) behaves at9>1 as[compare with Eq.
umform density. We alsc_) scaled 065(0) and ended up (4.135] 2
with the mean-level spacing equal to unity.
To evaluate the realization (S), which corresponds to $9(0,8)~1.25/6+0.4293+0.095. (5.5)
a given random matrix, one can simply sum up energies of o _ )
and the lowest 500S states(spins dowi. Subtractings?  Scribed by
from the resulting sum, we obtain the random potentigd) (1) _
in units of §;. Some particular realization of the random f57(6,5)~(1.182£0.002

potential for differentg is presented in Fig. 2. % \/0_,8+(O.31t 0.028+0.12+0.03.
Using the generated potenti®(S), we calculated the

free energy,F(u,T), Eq. (4.2, and the thermodynamic (5.6

magnetization This is in a good agreement with E€5.5), taking into ac-

count the fact that there should be corrections to(BdL3b

E S 25+ 1)¢ 1ex;< _ E(S)), (5.3 of order 14/6 and ® [sir_me we neglectegh as compared to
Z 50 T 8, using the condition in Eq3.5)].

=
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@ "X (@)= 4=0.08, p=2 (1) @ Y (O)— 4=0.08, =2 (1) @028 I gg((\;\)), 1u=0.186, 5=2‘((1)) ] @
= 0(8)- p=0.04,p=2(1] =T [0 (A)- n=0.04, 8=2 (1) /i < 0 (8) - u=008, =2 (| )
“:0‘13 28_90 ()= 1=0.02, p=2 (1) w3 4 O (+)— u=0.02, =2 (1)/* ©N0.26 [ %O*(+) =004 =2 (1)_ (DN
0.12 9&2@* N ¥ I‘APA 1
“etondy 024} XK
@¥ .
011} o ] & 022} gi
0.1-1111?%1[][‘ ] 0.2-1111151]]”
R
0.09 ¢ * 1 018} *
8 b
008} % ] 016} %
3 —% -
007} —bﬁw 0.14 AT h:
H . . L : . . . o Ok . . . d
75 05 25 0 25 1§ S5 -25 0 25 0 2 4 6 8
a) In® b) o' a) In® b) o'

FIG. 3. (@) The contribution to the free energy from disorder FIG. 5. (a) The contribution from disorder to the averaged mag-
[function f{", Eq.(4.9] in the Ising €=1) case. The logarithmic netization squared in Ising casé=1) scaled bysu? [see Eq.
scale is chosen to demonstrate the fact that the scaling function go€s.8) for the definitior. One can see that the scaling funct'@ﬁi”
to a constant in both low- and high-temperature regimes. The solithas constant limits in both low- and high-temperature regimes. The
line is the result of the high-temperature expansion. The statisticadolid line is a high-temperature expansidyg. (4.19]. The statis-
errors depend o@ only and are plotted in the center of the figure. tical errors depend o only and are plotted in the center of the
(b) Functionf(zl) in the Heisenberg cas€€ 2). The scaling func-  figure. (b) The contribution from disorder andg JS term to the
tions are different for the unitaryd=2) and orthogonal §=1) averaged magnetization squared in the Heisenberg cése)(
ensembles. The/# scale was chosen to illustrate the agreementscaled as ir(@). The scaling functions are different for the unitary
with the high-temperature expansion obtained in @ql3h. Solid  (8=2) and orthogonal §=1) ensembles. The/é scale was cho-
(dotted line represents the predicted higtbehavior for the unitary  sen to illustrate the agreement with the high-temperature expansion
(orthogonal case. At low temperature the functions tend to con-obtained in Eq(4.19. Solid (dotted line represents result of high-
stants larger than the ones predicted by the Wigh¢ansion. 0 expansions for the unitarfprthogonal case. At low temperature

the functions go to constants higher than the ones predicted by the

Figure 4 illustrates the behavior of the mesoscopic fluc-high-6 expansions.

tuations of the free energy, see E4.4),
For the Ising case a#>1 according to Eq(4.133 f{?

(Bur)? ~0.140% . The numerical simulations give the slope of the
f2(6)= T{<[F(Tyﬂ)]2>—<F(T,M)>2}- best-fit line equal to 0.13580.0002. Therefore, the results
1 agree well. We can rewrite E@4.13b for the Heisenberg
case as

~
b
th

Fve (O)— 1=0.08, =2 (1)
0 (A)- u=0.04, =2 (1) A
(D (+)- 4=0.02, =2 (1) A |

by (O)— 1=0.08, §=2(1)
0 (A)- p=0.04, f=2(1)
p O (+)- u=0.02, p=2(1 ¢

26,8 -
< ~0.371/6+2x0.132/8+ O(1/6), (5.7)

Vo

£,2X©)
1 eye'”

25 i.e., 1$2(6,8)/\0 is a linear function of,/6. The numerics
indeed demonstrates such a linear dependence which can be
2 best fitted by
A
15t 12(0,)

<~ ~(0.353+0.006 \/6+2(0.160+0.003 V3

NG

+0(148). (5.9

Once again, the agreement is quite reasonable since there are
correctionsO(w) to the coefficients.

FIG. 4. (a) The averaged fluctuations of the free energy of the Figure 5 presents the numerical results for the spontane-
grain in the Ising caseg=1) rescaled according to E¢4.5. At  OUS magnetizatiofb.3). We plot the difference betweds?)
6—0 the scaling function approaches a positive constant. The soli@nd its high-temperature asymptotic:
line is the high# asymptotic behavior described by Ed.133. (b)
The averaged fluctuations of the free energy in the Heisenberg case N &T
rescaled as itta). We divided the scaling functioft?) by /6 and (- m (5.9
plotted the ratio as a function aff to demonstrate the agreement
with the high-temperature expansiffgs.(4.135]. The solid(dot- ~ @s the function of the scaling variabfe Once again, all the
ted line represents higlé-asymptotic behavior for the unitafpr-  curves collapse in accordance with Hg.8). The function
thogonal caseg=2 (1). G(ll) approaches the asymptotic value within statistical er-

. . ] 0.5k . . . h
0 20 40 0 2 4 6 8
a) e b) o'’

GW=pu?p
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rors. The collapse of the data &t-0 justifies the order-of- =, O 0 O
magnitude estimate that led to Hd4.17). For the Heisenberg Lol o
case Eq(4.15 predicts the following high® behavior: Y 15}
3
(1) ! 5, 1
G3(0)=1.25/0B+0.8583+0.190+ O —|. A
3(0) B B 7 sl © o o
(5.10 ¥ ©
The best-fit lines are described by 12y
1t 0
G(6)=(1.171+0.006 68+ (0.54+0.01 N . N °
It ; L
+(0.29+0.03. (5.11 107 IO-LIl

Again the results agree up @( ) in the slope an®(1/1/6)
in the intercept. There are downward deviations for the FIG.6.0 (O) represent$uS)™ for g=1 (2). O () rep-
smallestu at high temperature. They are likely due to the resents(u|Sy[)" for =1 (2). All data are for the Heisenberg
finite-size effectgthe magnetization becomes too close to its(é=2) case. Without disorder the relatigiu’Sg)=(u|Sy|)=1
maximal valueS=500 determined by the size of the RM holds (4, is set to 1).
As a result the scaling is violated.

As a matter of fact, the scaling is violated whgnis too o H 1 o H 1
small or too large. At larges the typical ground-state spin  (Sg)z=1=(1.600.00) —, (Sj)-,=(1.33£0.0) —,
becomes of the order of unity and the conditi&® 1, used M H

throughout this paper, no longer holds. Asdecreases, the (5.14b
magnetization becomes of the order of the system $ze, and
~500, whereas in making arguments about scaling we as-
sumed no upper bound on the valueSfTherefore, in ob- 1 1[03x0.1, é&=1
taining the numerical values for the scaling functionsfat <—> =—10.7+0.1, &=2. (5.19
—0, we used the values g@f that correspond to the ground- M K
state magnetizatiosy from ~15 to ~150 hundreds. The . . .
linear interpolation of the numerical curves @0 results Figure 6 illustrates the behavior of the averaged and
in the following values for the low-temperature asymptoticsfescaled zero-temperature magnetizatiof{Sy[)" and its
of the scaling function&™®), Eq. (4.9): square,u2<SZ>H in the Heisenberg case. The magnetization
squared(Sé) is well described by Eq(4.19 with the nu-
G{"(0)=0.256+0.005, G§(0,8=1)=1.60+0.01, merical constana~0.6. The contribution from disorder to
(5.12 the averaged magnetizatiQngDH is an order of magnitude
G{M(0,8=2)=2.65+0.01. smaller than the magnetization itself. Without disorder

) ) ) . [V(S)=0] the magnetization is the same for all graig
In the Ising case the slope of this function can be determined. 1/u [Eq. (3.8]. The correction due to randomness is

rather well: around 9% in the orthogong@=1 and 4% in the unitary
4G B=2 case.
—L —_07+01, (5.133
dg VI. CONCLUSIONS

whereas evaluation of this slope in the Heisenberg case re- \ye considered manifestations of electron-electron inter-
quires much better statistics. From what we had it followsactions in the properties of isolated metallic grains with large

that Thouless conductancgs> 1. It turned out that the interaction
) o 1) o effects can be taken into account by a rather simple interac-
dG;7(B=1) —0.1+-0.2 dG;"(B=2) —0.2+0.3 tion Hamiltonian(2.19. We then applied this description to
de D de R study the mesoscopic spontaneous magnetization of the me-

(5.13b tallic grains whose bulk counterparts are only slightly below

Even though the values of the slope are smaller than thgje point of Stoner insta_tbility. In this case the problem maps
statistical errors, we do know the behaviorSfat low tem- onto the random potential problem, Hg.8), where the total

perature. The smallness of the slope just means that thSO'r?]:;Stzeiss%sgﬁ?egggsbth(tahredeo?efr:?ygsiogﬂr:?;;rﬁ ran-
change of magnetization squared with temperature is onl y P Y

slightly different from the one predicted by the highex- ue to the fact thathe one-electron spectruim such a grain

: . is sample specific. At the same time, the fluctuations of the
Eg:;'ﬁg'e tJhs;?g Egs(5.133, (5.13, and Eqs.(4.23, we exchange interaction constant can be neglected provided that

g>1.
52 The correlation function(3.11) of the random potential
(S2)'=(0.256+ 0.005 ——, (5.149  V(S) follows directly from the Wigner-Dyson spectral sta-

tistics and possesses a specific invariadc# under scaling
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transformations. This invariance dictates a particular scalindperg case a small magnetic field should suppress the average
of the ensemble averaged thermodynamic properties of theagnetization by only 5%. This is a much smaller effect than
grains as well as of the higher moments of their mesoscopithe one predicted in Ref. 3. The discrepancy is due to erro-
fluctuations. Dependence of all these quantities on temperaeous choice of the model Hamiltonian in that refereses
tureT and on the distance from the point of Stoner instabilitythe discussion in Sec. Il after E(R.21)].
w can be determined, see E¢8.5), (4.8), and(4.9), up to Of course, the evaluation of the scaling functions lies be-
some functions of the dimensionless effective temperaturgong the simple analysis. In the high-temperature regime it is
0=puT, where =1 (2) corresponds to the orthogonal possible to develop a regular perturbative expansion. At low
(unitary) Dyson ensemble. , temperature an analytic technique based on the replica sym-
According to Eq.(4.8), in the Ising case the zero- o4y preaking paradigm can be used. The corresponding
temperature magnetization typically gets reduced by a factogycj1ation will be reported elsewhete.
of 2 when the system is driven frofi=1to f=2.Inthe | the present paper, we analyzed the low-temperature
Heisenberg case the average zero-temperature magnetizatigey mptotic behavior numerically. We have shown that these
is largely determined by the nonrandom part of the Hamil-asymptotics are determined by a single absolute minimum of
tonian (3.8) (without disorderS;=1/u). The fluctuations of = 4 random potentialnot accessible by a regular perturbation
the magnetization become suppressed by a factaf208s  theory). Using those numerical results, we were able to de-

the system goes from the orthogonal to the unitary ensemblgermine the average position and curvature for such minima,
If the grains are large enough, the transition between thesgse Eqgs(5.12 and (5.13b.

ensembles can be completed in magnetic fields, which pro-

duce still negligible Zeeman splitting. As a result, an anoma-

lously weak magnetic field would substantialigducethe ACKNOWLEDGMENTS
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