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Effects of magnetic field on the two-dimensional systems of antiferromagnetically
correlated electrons based on the Hubbard model Hamiltonian with easy axis:

Aharonov-Bohm and Zeeman effects
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In the present study we study the two-dimensional systems of antiferromagnets with easy axis and the
variation of staggered magnetization with the increase of magnetic fields. The Aharonov-Bohm and the Zee-
man effects on the staggered magnetizations are examined. The reentrant behavior of paramagnetic phase is
shown to occur even at extremely high applied magnetic fields when only the Aharonov-Bohm effect is taken
into account. An inhomogeneous phase~i.e., the inhomogeneous distribution with antiferromagnetic clusters! is
also shown to exhibit the reentrant behavior. On the other hand, when the Zeeman effect is introduced, the
reentrant behavior occurs only at low fields below a critical magnetic field corresponding to a critical Zeeman
energy close to the hopping energy in the order of magnitude.
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I. INTRODUCTION

Earlier various studies were made for the tw
dimensional~2D! systems of noninteracting electrons und
external magnetic field.1–3 Recently one among the interes
ing subjects is concerned with the effects of the exter
magnetic field on the systems of interacting electrons. H
et al.4 studied the microscopic origin of metamagnetism
antiferromagnets in the external magnetic field, by apply
the dynamical mean-field theory to the Hubbard mod
Bagehorn and Hetzel5 observed the second-order phase tr
sition at zero temperature from the projector quantum Mo
Carlo calculation of the Hubbard model with an easy ax
Earlier we6,7 investigated the variation of staggered magn
tization with the external magnetic field for the two
dimensional systems of antiferromagnetically correla
electrons, at half-filling~i.e., no hole doping! and at zero
temperature. The objective of the present paper is twof
one is to investigate for the hole-doped systems the effec
the Aharonov-Bohm phase on the phase diagram of s
gered magnetization in the plane of temperature versus
doping rate, and the other is to study the influence of
Zeeman coupling on the staggered magnetization~antiferro-
magnetic order! for the two-dimensional antiferromagne
with easy axis.

II. AHARONOV-BOHM EFFECTS

We write the Hubbard model Hamiltonian describing t
two-dimensional system of antiferromagnetically correla
electrons under an external magnetic field,3
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where t is the hopping integral;A is the electromagnetic
vector potential;f05hc/e, is the elementary flux quantum
The electron acquires the Aharonov-Bohm phase when h
ping to the nearest-neighbor sites.U is the on-site Coulomb
repulsion energy andm is the chemical potential.^ i j & stands
for summation over nearest-neighbor sitesi and j. cis

† (cis)
is the creation~annihilation! operator of an electron of spins
at site i, and ni↑ (ni↓), the number operator of an up-sp
~down-spin! electron at sitei.

In the present study we allow a uniform~site-
independent! staggered magnetization and a uniform dopi
rate,

m5
1

N (
is

eiQ•r is^cis
† cis&, ~2a!

d512
1

N (
i

^ni&, ~2b!

with Q5(p,p) and s511(21) for spin-up~spin-down!.
Herer i5( i x ,i y) with i x andi y being integers with the lattice
spacing of unity, andN is the number of lattice sites. For th
Ising antiferromagnet of present interest, the Merm
Wagner theorem does not apply since the Ising system sh
spontaneous magnetization in a finite-temperature interva
is noted that earlier Onsager8 and Yang9 analyzed the critical
behavior of the two-dimensional Ising model on a squ
lattice.

Introducing the mean-field~Hartree-Fock! approximation
and using the Landau gaugeA5B(0,x,0), we obtain, in mo-
mentum space,
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where g[(2pf/f0 ,0)5(2pp/q,0) with p/q being the
number of flux quanta per plaquette. The first term in Eq.~3!
represents hopping processes; the first term in the bra
represents the nearest-neighbor hopping in thex direction
and the last two terms in the bracket are the nearest-neig
hopping in they direction. The electromagnetic vector pote
tial A shifts the wave vector of electron byg[ugu52pp/q
in the x direction. The second term results from the antif
romagnetic order which shifts the wave vector byQ. The last
term shifts the total energy of the system as a result of h
doping. The exchange terms that appear in the Hartree-F
approximation vanish due to the constraint of the glo
SU~2! symmetry for the square lattice of the antiferroma
netically correlated electrons.

The diagonalization of Eq.~3! leads to the following gen-
eralized Harper’s equation:

det~Hks2EkI !50 ~4a!

with

Hks5F Tk Vs

Vs 2Tk
G , ~4b!

where

Tk52tF M1 e2 iky 0 0 eiky
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with Mn52 cos(kx1ng), and
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Here the matrixTk associated with electron hopping contai
information on the phase modulation of hopping electro
under the influence of the external field;Vs , is the antifer-
romagnetic electron correlations, andI , is the identity matrix.
Ek is the quasiparticle dispersion energy of the antiferrom
netically correlated electrons in the presence of magn
field. We obtain the dispersion energy of the interacting el
trons from the diagonalization of the Hamiltonian matr
Hks in Eq. ~4b! above,

Ek5A«k
21D2, ~5!

with the bang gap, 2D5mU. Here«k is the dispersion en
ergy of noninteracting electrons in the presence of magn
et
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field; «k522tAcos2kx1cos2ky for p/q51/2, and «k5
22t(coskx1cosky) for p/q50.

The staggered magnetizationm and the chemical potentia
m vary with both the temperatureT and the hole doping rate
~concentration! d. They are obtained from the use of se
consistent mean-field equations: we first write Eqs.~2a! and
~2b! in terms of quasiparticle operators in momentum sp
and then use the Fermi-Dirac distribution function for t
quasiparticles~fermions!, to finally obtain

15E dEg~E!
U

8uEu F tanh
E(1)

2T
2tanh

E(2)

2T G , ~6a!

d5E dE
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4 F tanh
E(1)

2T
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E(2)

2T G , ~6b!

whereE(6)56E1U/2(12d)2m. Hereg(E) is the density
of states for the electrons, which can be obtained from

g~E!52E 8 d2k

~2p!2
d~E2Ek!. ~7!

The integration*8d2k is over the reduced Brillouin zone o
(kx ,ky)u2p/q<kx<p/q and 2p/2<ky<p/2. The Bril-
louin zone is reduced by 1/q in thekx direction because ther
exist q plaquettes per magnetic unit cell, and its area is f
ther reduced by 1/2 as a result of the antiferromagnetic
dering.

Earlier, only for the case of zero magnetic field, a ree
trant behavior was discovered by other investigators;10–12

Halvorsen et al.11 found the reentrant behavior using th
Hubbard model in infinite dimensions within the se
consistent second-order weakU-perturbation treatment, an
Inabaet al.12 also obtained a similar reentrant behavior,
using the slave-boson approach to thet-J Hamiltonian. How-
ever, all of these studies are limited to the case of zero fi
It is thus of great interest to see how the externally appl
magnetic field affects the reentrant behavior and the ph
diagram. To incorporate the Aharonov-Bohm effect it is ne
essary to choose a sufficiently large size of square lattic
meet the periodic boundary conditions of magnetic unit ce
which correspond to various values of magnetic fields~or
p/q). For this study we have to choose the mean-field H
bard model calculations since the accurate exact diagona
tion ~Lanczos! method is presently limited to only a smal
size lattice. In order to examine the dependence of stagg
magnetizationm on the external magnetic field in the plan
of temperatureT versus doping rated we solve numerically
the analytically derived self-consistent mean-field equati
of Eqs.~6a! and ~6b! above. Figure 1 displays the predicte
staggered magnetization~antiferromagnetic order! between
two cases, i.e., one in the presence of the external field~dot-
ted lines! and the other in the absence of the external fi
~solid line!. The region below each solid curve represents
antiferromagnetic phase and the region above it, the p
magnetic phase. We find that the incorporation of t
Aharonov-Bohm phase reduces the antiferromagnetic reg
in the phase diagram and does not destroy the reentran
havior of the paramagnetic phase~follow the arrow in the
figure to see the reentrant behavior showing the transi
from a paramagnetic region to an antiferromagnetic region
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another paramagnetic region as temperature increases! even
in the presence of the applied magnetic field.

In Fig. 2 we display the temperature dependence of
staggered magnetization for various doping rates. At half
ing (d50) the staggered magnetization reaches a maxim
at zero temperature. On the other hand, away from half
ing (d5” 0) the predicted staggered magnetization show
maximum at a finite temperature. Above this temperature
reentrant behavior of the paramagnetic phase is obser
The reentrant behavior occurs by exhibiting a maxim

FIG. 1. Phase diagram of staggered magnetization for sev
values of magnetic flux quanta per plaquettep/q in the (T,d) plane
with U54t. Boundaries between the antiferromagnetic~AF! phase
and the paramagnetic~PM! phase are indicated by various curve
The arrow is a guide for the reentrant behavior of the paramagn
phase.

FIG. 2. Temperature dependence of staggered magnetiz
with p/q51/2 for various values of doping rates.
e
l-
m
l-
a
e
d.

value in the staggered magnetization at finite temperatu
This can be explained from the nesting property of the
ergy surface at saddle points.7,12 In Fig. 3 we display the
variation of the energy dispersion of the highest occup
subband as the external magnetic field~or p/q) changes. The
saddle points in the Brillouin zone are denoted by black d
at the bottom of the graph. The adjacent saddle points
separated by the well-defined nesting vector ofQ/q, by
which the staggered magnetization is defined. At the bott
of the graphs in Fig. 3 we display the variation of Ferm
surface~contour lines! with the magnetic field at finite dop
ing rates and at zero temperature. As is shown in the figu
the Fermi surface at zero temperature is predicted to ha
poor nesting property and consequently the staggered m
netization is expected to be small. As the temperature
creases, the Fermi surface tends to smear out, which al
increment in the number of nesting channels. As a con
quence the staggered magnetization will increase. As
temperature further increases, the Fermi surface nesting
eventually disappear. As a result the staggered magnetiza
will eventually disappear to allow a transition to a parama
netic phase. This is the reentrant behavior for the homo
neous phase which is well displayed in Fig. 1.

So far we have considered the case of homogeneous
lutions, i.e., the uniform staggered magnetization. It
known that the Hartree-Fock approximation for the 2D Hu
bard model leads to inhomogeneous solutions for the s
tems of correlated electrons away from half-filling.13–15For
the illustration of such an inhomogeneous solution we p
formed self-consistent mean-field calculations on a 12312
lattice with periodic boundary conditions, by choosing t
hole doping concentration ofd.0.1 (d514/144) at T
50.1t. The predicted inhomogeneous phase is shown in
4~a!. Phase separation is observed to occur between the h
rich regions and the hole-free regions of an antiferromagn
order. Since the system does not have a homogeneous
range antiferromagnetic order with momentumQ, we intro-
duce a magnetic order parameter defined by

ma5
1

N (
i

u^Si
z&u. ~8!

Although the nesting vectorQ does not appear in Eq.~8!, ma
can be used as a measure of local antiferromagnetic orde
the system of the inhomogeneous phase which consist
locally antiferromagnetic clusters separated by hole-rich
gions. In Fig. 4~b!, the calculatedma is shown as a function
of temperature. Interestingly enough, with the external m
netic field ofp/q51/2, ma is predicted to show a maximum
at a finite temperature, similarly to the case of homogene
phase shown in Fig. 2 for various hole doping rates. T
indicates the existence of the reentrant behavior even in
case of the inhomogeneous phase.

III. ZEEMAN EFFECTS

With the inclusion of Zeeman coupling term, the tw
dimensional Hubbard model Hamiltonian is written

H52t (
^ i j &s

~cis
† cj s1H.c.!1U(
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FIG. 3. Variation of quasipar-
ticle energy dispersion surface o
the highest occupied subband wit
various values ofp/q. Black dots
denote the saddle points of th
surface. Rectangles at the botto
of each graph represent the re
duced Brillouin zones, and arrow
are the nesting vectors betwee
two adjacent saddle points. Th
thick contour lines are Fermi sur
faces at zero temperature and
various hole-doping rates:~a! d
50.33, ~b! d50.30.
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where h is the Zeeman energy ands511(21) for up
~down! spin. For an accurate account of the Zeeman ef
for the systems of correlated electrons, the above Ha
tonian will be diagonalized by applying the Lanczos ex
diagonalization method to a tiltedA103A10 square lattice
with periodic boundary conditions. For the small size
square lattice above~owing to current difficulty of using a
sufficiently large size of square lattice!, the exact diagonal-
ization treatment yields inaccurate accounts of
Aharonov-Bohm effects owing to the failure of meeting t
periodic boundary conditions with various sizes of magne
unit cells. Thus we focus only on the effect of the Zeem
coupling.

For the exact diagonalization treatment, the uniform@q
5(0,0)# and staggered@Q5(p,p)# magnetization is de-
fined by16

^~mq!2&5K S 1

N (
i

eiq•r iSi D 2L . ~10!

Here (mq)2 represents the square of the uniform and
staggered magnetizations corresponding toq5(0,0) andq
5Q[(p,p), respectively. We show the predicted magne
zation withU54t as a function of the applied field in Fig. 5
Appearance of the stepwise curves is inevitable due to
finite-size effect. This is because owing to the small s
lattice the difference in number between the up (N↑) and
down (N↓) spins discretely varies with the change of ma
netic field, e.g.,N↑2N↓50,2, . . . ,10 for thesmall size of
the half-filled A103A10 lattice. As the number of lattice
sites and thus the number of electron spins increases
stepwise curves are expected to gradually disappear. F
relatively low magnetic field corresponding to the Zeem
energy belowh&0.3t, we find that antiferromagnetic corre
lations ~staggered magnetizations! are present with no ne
uniform magnetization. For the Zeeman energy in the ra
of 0.3t&h&0.6t, the mixed phase of the staggered magn
zation and the uniform magnetization appears. In this ra
the uniform magnetization rapidly increases while the st
gered magnetization appreciably decreases. This indic
that the phase transition is of second order by showing
mixed phase, as is displayed in Fig. 5. Although not sho
here, a similar behavior is observed for the case of wea
ct
il-
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electron correlations, i.e., the Coulomb repulsion ofU,4t.
The phase transition tends to occur at a critical Zeeman
ergy,hc.0.6t below a lower hopping energy.

Now, with the introduction of only the Zeeman effects
the Hartree-Fock calculations, Fig. 6 displays the magnet
tion as a function of the Zeeman energy. The quantitat
difference between the Hartree-Fock and the exact diago
ization results is observed in that the critical Zeeman ene
appears at a larger value compared to the exact diagona
tion result. However in both methods the critical Zeem
energyhc is found to be close to the hopping energyt in the
order of magnitude~with hc.0.6t for the exact diagonaliza
tion method andhc.1.2 for the Hartree-Fock method!. De-
spite the quantitative differences, a similar trend in the re
trant behavior is observed with the fields below a critic
magnetic field. Unlike the case of the exact diagonalizati
it is found that the phase transition is of first order, showi
no distinctive mixed phase of the staggered magnetiza
~antiferromagnetic order! and the uniform magnetization
Now, as is shown in Fig. 7 the inclusion of both th
Aharonov-Bohm and the Zeeman effects shows a similar
ture with nearly the same critical Zeeman energy to the re
obtained only for the Zeeman effects~see Fig. 6!. For com-
pleteness, only with the inclusion of the Aharonov-Boh
effects does Fig. 8 display the persistence of the stagg
magnetization~antiferromagnetic order!, even at very high
fields. This is why there exists the persistence of the re
trant behavior even at extremely high magnetic fields, a
shown in Figs. 1 and 2.

We estimate the Zeeman energies corresponding to
various magnetic flux quantap/q. Choosing the lattice spac
ing a as the nearest-neighbor Cu-Cu distance in the highTc
cuprates, e.g.,a.3.5 Å for La22xSrxCuO4,17 the estimated
Zeeman energy is

h5mBB5mB

f0~p/q!

a2
.2.0

p

q
eV, ~11!

wheremB is the Bohr magneton. For the choice of the ho
ping energy oft.0.4 eV obtained from a local-density
functional calculation,18 the magnetic fields associated wi
the flux quanta abovep/q51/5 correspond to the Zeema
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energies greater than the hopping energy. Indeed, the
antiferromagnetic order~staggered magnetization! tends to
disappear at such high magnetic fields, as are well displa
in Figs. 5–7. Thus, with the introduction of the Zeeman
fects the reentrant behavior is expected to occur only w
fields below the critical magnetic fieldhc which corresponds
to the Zeeman energy close to the hopping energyt in the
order of magnitude.

IV. CONCLUSION

In the present study, by applying the self-consist
Hartree-Fock mean-field method to the two-dimensional

FIG. 4. ~a! Illustration of an inhomogeneous phase with the h
doping rate,d.0.1 (14/144) atT50.1t andU54t. The length of
arrow at each site indicates the magnitude of spin and the siz
circle denotes the magnitude of hole charge density.~b! ma ~a mea-
sure of local antiferromagnetic order! as a function of temperatur
with p/q51/2.
he

ed
-
h

t
-

FIG. 5. Staggered~solid line! and uniform~dotted line! magne-
tizations as a function of Zeeman energy based on the exact di
nalization~Lanczos! method.

FIG. 6. Staggered~solid line! and uniform~dotted line! magne-
tizations as a function of Zeeman energy based on the s
consistent Hartree-Fock method with the consideration of only
Zeeman effect withU54t.

FIG. 7. Staggered~solid line! and uniform~dotted line! magne-
tizations as a function of Zeeman energy based on the s
consistent Hartree-Fock method with the consideration of both
Aharonov-Bohm and the Zeeman effects withU54t.
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tiferromagnets, we examined both the phase diagram of
staggered magnetization~antiferromagnetic order! in the
(T,d) plane as a function of magnetic flux quantum~mag-
netic field! and the magnetization as a function of the Ze
man energy. We find that for the homogeneous phase

FIG. 8. Staggered~solid line! and uniform~dotted line! magne-
tizations as a function of Zeeman energy based on the s
consistent Hartree-Fock method with the consideration of only
Aharonov-Bohm effect withU54t.
hy
he

-
he

Aharonov-Bohm effect causes a reduction of the antifer
magnetic region in the phase diagram~see Fig. 1!. The reen-
trant behavior of the paramagnetic phase is observed eve
extremely high magnetic fields corresponding top/q51/2.
We also noted that the phase-separated inhomogeneous
tem @see Fig. 4~a!# allows the reentrant behavior@see Fig.
~4~b!# similarly to the case of the homogeneous antifer
magnetic systems~see Figs. 1 and 2!. However, unlike the
above cases, with the inclusion of only the Zeeman effe
the reentrant behavior is expected to occur only with l
fields below a critical magnetic field corresponding to a cr
cal Zeeman energy close to the hopping energy in the o
of magnitude. Both the Hartree-Fock and the exact diago
ization methods yielded a similar critical Zeeman energy
the order of magnitude. However, it is found that the p
dicted phase transition by the Hartree-Fock method is of fi
order while it is of second order by the exact diagonalizat
method. The inclusion of both the Aharonov-Bohm and t
Zeeman effects yielded similar results to the above case
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