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In the present study we study the two-dimensional systems of antiferromagnets with easy axis and the
variation of staggered magnetization with the increase of magnetic fields. The Aharonov-Bohm and the Zee-
man effects on the staggered magnetizations are examined. The reentrant behavior of paramagnetic phase is
shown to occur even at extremely high applied magnetic fields when only the Aharonov-Bohm effect is taken
into account. An inhomogeneous phdse., the inhomogeneous distribution with antiferromagnetic clusiers
also shown to exhibit the reentrant behavior. On the other hand, when the Zeeman effect is introduced, the
reentrant behavior occurs only at low fields below a critical magnetic field corresponding to a critical Zeeman
energy close to the hopping energy in the order of magnitude.

[. INTRODUCTION wheret is the hopping integralA is the electromagnetic
vector potentialipg=hcle, is the elementary flux quantum.
Earlier various studies were made for the two-The electron acquires the Aharonov-Bohm phase when hop-
dimensional(2D) systems of noninteracting electrons underping to the nearest-neighbor sités.is the on-site Coulomb
external magnetic field:2 Recently one among the interest- repulsion energy angl is the chemical potentia{ij) stands
ing subjects is concerned with the effects of the externafor summation over nearest-neighbor sitesndj. ¢/, (c;,)
magnetic field on the systems of interacting electrons. Helds the creatiortannihilatior) operator of an electron of spin
et al* studied the microscopic origin of metamagnetism forat sitei, andn;; (n;|), the number operator of an up-spin
antiferromagnets in the external magnetic field, by applyingdown-spin electron at site. _ _
the dynamical mean-field theory to the Hubbard model, N the present study we allow a unifornisite-
Bagehorn and Hetzebbserved the second-order phase tran/ndependentstaggered magnetization and a uniform doping
sition at zero temperature from the projector quantum Montdate:
Carlo calculation of the Hubbard model with an easy axis. 1 _
Earlier wé’ investigated the variation of staggered magne- m=3 > €ig(c] ci,), (2a)
tization with the external magnetic field for the two- '
dimensional systems of antiferromagnetically correlated 1
electrons, at half-filling(i.e., no hole dopingand at zero S=1—— > (ny), (2b)
temperature. The objective of the present paper is twofold; N5
one is to investigate for the hole-doped systems the effects afith Q= (#,7) and o=+ 1(—1) for spin-up(spin-down.
the Aharonov-Bohm phase on the phase diagram of stagHerer;=(i,,i,) with i, andi, being integers with the lattice
gered magnetization in the plane of temperature versus hokpacing of unity, andN is the number of lattice sites. For the
doping rate, and the other is to study the influence of thdsing antiferromagnet of present interest, the Mermin-
Zeeman coupling on the staggered magnetizataiferro- ~ Wagner theorem does not apply since the Ising system shows
magnetic order for the two-dimensional antiferromagnets spontaneous magnetization in a finite-temperature interval. It
with easy axis. is noted that earlier Onsa@e&nd Yana analyzed the critical
behavior of the two-dimensional Ising model on a square
lattice.
Il. AHARONOV-BOHM EFFECTS Introducing the mean-fielHartree-Fock approximation

_ o . and using the Landau gaude= B(0,x,0), we obtain, in mo-
We write the Hubbard model Hamiltonian describing thementum space,

two-dimensional system of antiferromagnetically correlated

electrons under an external magnetic fiéld, i
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where g=(2m¢/¢o,0)=(2mp/q,0) with p/q being the field; &=—2t\codk+cogk, for p/q=1/2, and &=
number of flux quanta per plaquette. The first term in @j. — 2t(cosk,+cosk,) for p/q=0.

represents hopping processes; the first term in the bracket The staggered magnetizationand the chemical potential
represents the nearest-neighbor hopping inhgirection ,, vary with both the temperatufBand the hole doping rate
and the last two terms in the bracket are the nearest-neighb@toncentration 5. They are obtained from the use of self-
hopping in they direction. The electromagnetic vector poten- consistent mean-field equations: we first write E@s) and

tial A shifts the wave vector of electron lg=[g|=27p/q (2 in terms of quasiparticle operators in momentum space
in the x direction. The second term results from the antifer-agnd then use the Fermi-Dirac distribution function for the
romagnetic order which shifts the wave vector@yThe last  quasiparticlegfermions, to finally obtain

term shifts the total energy of the system as a result of hole

doping. The exchange terms that appear in the Hartree-Fock E() EC)
approximation vanish due to the constraint of the global 1:J dEg(E)8|E| tanh—— —tanh-— } (6a)
SU(2) symmetry for the square lattice of the antiferromag-
netically correlated electrons. 9(E) E(H) E(-)
The diagonalization of Eq3) leads to the following gen- 52] dE 7 tanh2_|_ +tanh2_|_ (6b)
eralized Harper's equation:
whereE(*) =+ E+U/2(1— 8) — u. Hereg(E) is the density
de(Hy,—El)=0 (48 of states for the electrons, which can be obtained from
with s
T, Vv g(E>=2f Sz E-E0. (7)
Hka:[v ! } (4D (2m
7 K The integration/’d?k is over the reduced Brillouin zone of
where (ke ky)|—7lq<ky=ml/q and —w/2<k,<m/2. The Bril-
. . louin zone is reduced by d/in thek, direction because there
- M, e 0 0 ey exist q plaquettes per magnetic unit cell, and its area is fur-
e M, 0 0 'Ejher reduced by 1/2 as a result of the antiferromagnetic or-
ering.
T=—t| O 0 |, (40 Earlier, only for the case of zero magnetic field, a reen-
0 0 . Mg e trant behavior was discovered by other investigatfrs?
ik ik Halvorsenet al!! found the reentrant behavior using the
Le ™ 0 0 e Mg Hubbard model in infinite dimensions within the self-
with M,,=2 cosk,+ng), and consistent second-order webkperturbation treatment, and
Inabaet al'? also obtained a similar reentrant behavior, by
" omU 7 using the slave-boson approach to thkkHamiltonian. How-
T T 0 0 0 0 ever, all of these studies are limited to the case of zero field.
It is thus of great interest to see how the externally applied
0 _ ﬂu 0 0 0 magnetic field affects the reentrant behavior and the phase
2 diagram. To incorporate the Aharonov-Bohm effect it is nec-
V= 0 0 0 0 essary to choose a sufficiently large size of square lattice to
v ' meet the periodic boundary conditions of magnetic unit cells
0 0 0 — omu 0 which correspond to various values of magnetic fields
2 p/q). For this study we have to choose the mean-field Hub-
omU bard model calculations since the accurate exact diagonaliza-
0 0 0 0 - tion (Lanczo$ method is presently limited to only a small-
L 2 ] size lattice. In order to examine the dependence of staggered

(4d) magnetizatiorm on the external magnetic field in the plane

Here the matrixT, associated with electron hopping contains ©f temperaturel’ versus doping raté we solve numerically
information on the phase modulation of hopping electrondghe analytically derived self-consistent mean-field equations
under the influence of the external fieM; , is the antifer-  Of Eqs.(6a) and(6b) above. Figure 1 displays the predicted
romagnetic electron correlations, ands the identity matrix. ~ Staggered magnetizatio@ntiferromagnetic ordgrbetween

Ey is the quasiparticle dispersion energy of the antiferromagtWo cases, i.e., one in the presence of the external it
netically correlated electrons in the presence of magnetiéed lines and the other in the absence of the external field
field. We obtain the dispersion energy of the interacting elec(solid line). The region below each solid curve represents the
trons from the diagonalization of the Hamiltonian matrix @ntiferromagnetic phase and the region above it, the para-

H,, in Eq. (4b) above, magnetic phase. We find that the incorporation of the
7 Aharonov-Bohm phase reduces the antiferromagnetic region
E, = /82k+A21 (5)  inthe phase diagram and does not destroy the reentrant be-

havior of the paramagnetic phagellow the arrow in the
with the bang gap, 2=mU. Hereeg, is the dispersion en- figure to see the reentrant behavior showing the transition
ergy of noninteracting electrons in the presence of magnetifrom a paramagnetic region to an antiferromagnetic region to
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1 . - - value in the staggered magnetization at finite temperatures.
U=4t This can be explained from the nesting property of the en-
ergy surface at saddle poirt$? In Fig. 3 we display the

variation of the energy dispersion of the highest occupied
o8 | i subband as the external magnetic fig@dp/q) changes. The

saddle points in the Brillouin zone are denoted by black dots
at the bottom of the graph. The adjacent saddle points are

£ separated by the well-defined nesting vector @fg, by

E 06 | which the staggered magnetization is defined. At the bottom
o of the graphs in Fig. 3 we display the variation of Fermi
g surface(contour line$ with the magnetic field at finite dop-

% ing rates and at zero temperature. As is shown in the figures,
5 the Fermi surface at zero temperature is predicted to have a
E*OA T poor nesting property and consequently the staggered mag-

3 netization is expected to be small. As the temperature in-

creases, the Fermi surface tends to smear out, which allows
increment in the number of nesting channels. As a conse-
- quence the staggered magnetization will increase. As the
temperature further increases, the Fermi surface nesting may
eventually disappear. As a result the staggered magnetization
: will eventually disappear to allow a transition to a paramag-
P il . netic phase. This is the reentrant behavior for the homoge-

0 0 0.1 02 03 0.4 neous phase which is well displayed in Fig. 1.

So far we have considered the case of homogeneous so-
lutions, i.e., the uniform staggered magnetization. It is

FIG. 1. Phase diagram of staggered magnetization for sever%nown that the Hartreg—Fock approximation .for the 2D Hub-
values of magnetic flux quanta per plaquette in the (T, ) plane ard model leads to inhomogeneous soluthns f91r5the sys-
with U=4t. Boundaries between the antiferromagné#€) phase tems of Cor_related electron_s away from ha'f'f'””*@- For
and the paramagneti®M) phase are indicated by various curves. the illustration of such an inhomogeneous solution we per-
The arrow is a guide for the reentrant behavior of the paramagnetiformed self-consistent mean-field calculations on &12

0.2

doping rate, &

phase. lattice with periodic boundary conditions, by choosing the
hole doping concentration ob6=0.1 (6=14/144) atT

another paramagnetic region as temperature incrpases - O-1L: The predicted inhomogeneous phase is shown in Fig,

in the presence of the applied magnetic field. 4(a). Phase separation is observed to occur between the hole-

In Fig. 2 we display the temperature dependence of théiCh regi(_)ns and the hole-free regions of an antiferromagnetic
staggered magnetization for various doping rates. At half fifj-order. Smpe the system does not have a homogeneous long-
ing (6=0) the staggered magnetization reaches a maximu nge antlferror_nagnetlc order with mqment@nwe intro-
at zero temperature. On the other hand, away from half fill- uce a magnetic order parameter defined by
ing (6#0) the predicted staggered magnetization shows a 1
maximum at a finite temperature. Above this temperature the Ma=y > [(SH]. 8
reentrant behavior of the paramagnetic phase is observed. !

The reentrant behavior occurs by exhibiting a maximumA|though the nesting vectdp does not appear in E¢8), m,
can be used as a measure of local antiferromagnetic order for

0.3 : — the system of the inhomogeneous phase which consists of
P 1 locally antiferromagnetic clusters separated by hole-rich re-
93’ U=4t gions. In Fig. 4b), the calculatedn, is shown as a function
of temperature. Interestingly enough, with the external mag-
netic field ofp/q=1/2, m, is predicted to show a maximum
at a finite temperature, similarly to the case of homogeneous
phase shown in Fig. 2 for various hole doping rates. This
indicates the existence of the reentrant behavior even in the
case of the inhomogeneous phase.

0.2

m/2

0.1
Ill. ZEEMAN EFFECTS

With the inclusion of Zeeman coupling term, the two-
dimensional Hubbard model Hamiltonian is written

0 02 04 06 08
temperature (kT/t)

H=—t ¢l ci,+H.c)+UY, niny —h>, ocl ¢,
FIG. 2. Temperature dependence of staggered magnetization (ij}u( e ) Z T % e

with p/q=1/2 for various values of doping rates. 9
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FIG. 3. Variation of quasipar-
ticle energy dispersion surface of
the highest occupied subband with
various values op/q. Black dots
denote the saddle points of the
surface. Rectangles at the bottom
of each graph represent the re-
duced Brillouin zones, and arrows
are the nesting vectors between
two adjacent saddle points. The
thick contour lines are Fermi sur-
faces at zero temperature and at
various hole-doping rateqia) &
=0.33,(b) §=0.30.

where h is the Zeeman energy and=+1(—1) for up  electron correlations, i.e., the Coulomb repulsionUsf 4t.
(down) spin. For an accurate account of the Zeeman effecThe phase transition tends to occur at a critical Zeeman en-
for the systems of correlated electrons, the above Hamilergy,h.=0.6t below a lower hopping energy.

tonian will be diagonalized by applying the Lanczos exact Now, with the introduction of only the Zeeman effects in
diagonalization method to a tilted10x \/10 square lattice the Hartree-Fock calculations, Fig. 6 displays the magnetiza-
with periodic boundary conditions. For the small size oftion as a function of the Zeeman energy. The quantitative
square lattice abovéowing to current difficulty of using a difference between the Hartree-Fock and the exact diagonal-
sufficiently large size of square latticehe exact diagonal- ization results is observed in that the critical Zeeman energy
ization treatment vyields inaccurate accounts of theappears at a larger value compared to the exact diagonaliza-
Aharonov-Bohm effects owing to the failure of meeting thetion result. However in both methods the critical Zeeman
periodic boundary conditions with various sizes of magneticenergyh, is found to be close to the hopping enettgy the

unit cells. Thus we focus only on the effect of the Zeemanorder of magnitudéwith h.=0.6t for the exact diagonaliza-
coupling. tion method and.=1.2 for the Hartree-Fock methpdDe-

For the exact diagonalization treatment, the unifdmn  spite the quantitative differences, a similar trend in the reen-
=(0,0)] and staggeredQ=(7,7)] magnetization is de- trant behavior is observed with the fields below a critical
fined by® magnetic field. Unlike the case of the exact diagonalization,

. ) it is found that the phase transition is of first order, showing
((mq)2>=<(— 2 e‘q'ris) > (10) no Q|st|nct|ve ml_xed phase of the s;aggered magnetization
N 4 (antiferromagnetic ordgrand the uniform magnetization.
) Now, as is shown in Fig. 7 the inclusion of both the
Here (mq)® represents the square of the uniform and theanaronov-Bohm and the Zeeman effects shows a similar fea-
staggered magnetizations correspondingte(0,0) andq  ture with nearly the same critical Zeeman energy to the result
=Q=(m, ), respectively. We show the predicted magneti-obtained only for the Zeeman effedtsee Fig. 6. For com-
zation withU =4t as a function of the applied field in Fig. 5. pleteness, only with the inclusion of the Aharonov-Bohm
Appearance of the stepwise curves is inevitable due to theffects does Fig. 8 display the persistence of the staggered
finite-size effect. This is because owing to the small SiZQ‘nagnetization(antiferromagnetic ordag'r even at very h|gh
lattice the difference in number between the Wb, X and  fields. This is why there exists the persistence of the reen-
down (N|) spins discretely varies with the change of mag-trant behavior even at extremely high magnetic fields, as is
netic field, e.g.N;—N,;=0,2,...,10 for thesmall size of shown in Figs. 1 and 2.
the half-filled y10x /10 lattice. As the number of lattice We estimate the Zeeman energies corresponding to the
sites and thus the number of electron spins increases, tharious magnetic flux quantaq. Choosing the lattice spac-
stepwise curves are expected to gradually disappear. Foriag a as the nearest-neighbor Cu-Cu distance in the figh-
relatively low magnetic field corresponding to the Zeemancuprates, e.ga=3.5 A for La,_,Sr,CuQ,,'’ the estimated
energy belowh=0.3t, we find that antiferromagnetic corre- Zeeman energy is
lations (staggered magnetizationare present with no net
uniform magnetization. For the Zeeman energy in the range
of 0.3=h=0.6&, the mixed phase of the staggered magneti-
zation and the uniform magnetization appears. In this range
the uniform magnetization rapidly increases while the stag-
gered magnetization appreciably decreases. This indicateghere g is the Bohr magneton. For the choice of the hop-
that the phase transition is of second order by showing theing energy oft=0.4 eV obtained from a local-density-
mixed phase, as is displayed in Fig. 5. Although not showrfunctional calculatiort® the magnetic fields associated with
here, a similar behavior is observed for the case of weakahe flux quanta abov@/gq=1/5 correspond to the Zeeman

/
h=MBB=MBw:2.OE ev, (12)
a q
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(a)
0.6
0-3 T 1 T T
U=4t 5 i g m,
025 . .5 7
E - -
3 0.15 | - = -
.8 ;
2 0 L . .
g 0lr 7 0 1 2 3 4
& Zeeman Energy ( h/t)
005 T 1 FIG. 6. Staggeregsolid line) and uniform(dotted ling magne-
tizations as a function of Zeeman energy based on the self-
0 L L 1 consistent Hartree-Fock method with the consideration of only the
0 0.2 0.4 0.6 0.8 1 Zeeman effect withJ =4t.
(b) temperature (T/t)

FIG. 4. (a) lllustration of an inhomogeneous phase with the hole

doping rate,6=0.1 (14/144) aff=0.1t andU=4t. The length of 0.6
arrow at each site indicates the magnitude of spin and the size of
circle denotes the magnitude of hole charge denéitym, (a mea- ~ 05 t=1, U=4
sure of local antiferromagnetic ordeas a function of temperature EU mg
with p/q=1/2. -
g
energies greater than the hopping energy. Indeed, the the,§
antiferromagnetic ordefstaggered magnetizatipnends to Q
disappear at such high magnetic fields, as are well displayed &
in Figs. 5—7. Thus, with the introduction of the Zeeman ef- b
fects the reentrant behavior is expected to occur only with
fields below the critical magnetic field, which corresponds . .
to the Zeeman energy close to the hopping energythe 2 3 4
order of magnitude. Zeeman Energy ( h/f)
IV. CONCLUSION FIG. 7. Staggeredsolid line) and uniform(dotted ling magne-

. ) tizations as a function of Zeeman energy based on the self-
In the present study, by applying the self-consistentconsistent Hartree-Fock method with the consideration of both the
Hartree-Fock mean-field method to the two-dimensional anAharonov-Bohm and the Zeeman effects witl 4t.
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0.6 - T Aharonov-Bohm effect causes a reduction of the antiferro-
magnetic region in the phase diagréasee Fig. 1L The reen-
05 t=1,U=4 trant behavior of the paramagnetic phase is observed even at
E@ extremely high magnetic fields correspondingpttm = 1/2.
= 0.4 We also noted that the phase-separated inhomogeneous sys-
g 03l m tem [see Fig. 4a)] allows the reentrant behavigsee Fig.
3 . Q (4(b)] similarly to the case of the homogeneous antiferro-
B> 02 | magnetic systemésee Figs. 1 and)2 However, unlike the
8 above cases, with the inclusion of only the Zeeman effects
§ 01t the reentrant behavior is expected to occur only with low
m, fields below a critical magnetic field corresponding to a criti-
0 cal Zeeman energy close to the hopping energy in the order

of magnitude. Both the Hartree-Fock and the exact diagonal-
ization methods yielded a similar critical Zeeman energy in
the order of magnitude. However, it is found that the pre-
dicted phase transition by the Hartree-Fock method is of first
FIG. 8. Staggeredsolid line) and uniform(dotted ling magne-  order while it is of second order by the exact diagonalization
tizations as a function of Zeeman energy based on the selfmethod. The inclusion of both the Aharonov-Bohm and the

consistent Hartree-Fock method with the consideration of only theZeeman effects yielded similar results to the above case.
Aharonov-Bohm effect witi =4t.

Zeeman Energy ( h/t)
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