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We present in this paper a nonlinearmodel analysis of a spin-1 antiferromagnetic Heisenberg chain in an
external commensurate staggered magnetic field. After rediscussing briefly and extending previous results for
the staggered magnetization curve, the core of the paper is a calculation at the tree level, of the Green functions
of the model. We obtain precise results for the elementary excitation spectrum and in particular for the spin
gaps in the transverse and longitudinal channels. It is shown that, while the spectral weight in the transverse
channel is exhausted by a single magnon pole, in the longitudinal one, besides a magnon pole a two-magnon
continuum appears as well whose weight is a steadily increasing function of the applied field, while the weight
of the magnon decreases correspondingly. The balance between the two is governed by a sum rule that is
derived and discussed. A detailed comparison with the present experimental and numerical state of the art as
well as with previous analytical approaches is also made.

I. INTRODUCTION gitudinal and transvers@vith respect to the direction of the
field) channels. The authors of Ref. 5 made instead an ana-
In recent times there has arisen a great experimefital lytic study of the model beginning with the familiar
and theoretic8l” interest in a class of magnetic materials of Mapping®** of the Hamiltonian(1) onto a nonlinear sigma-
the general compositioR,BaNiOs, with R being one of the model (NLoM). What they discussed very accurately was
magnetic rare-earth iorigypically: R=Nd orR=Pr). These actually a related and somewhat more phenomenological
materials are obtained by substitution from the referencénodel in which the strict NzM constraint is softened, then
compound ¥%BaNiO;, a highly one-dimensional compound replacing the original NirM with a theory of the szbgrg-
with negligible interactions among the spin-12Nilinear Landau-type parametrized by an adequate set of adjustable

: : P . tergsee Ref. 5 for details
chains. For this reason,BaNiOs is generally considered as P2'8me : . .
an almost ideal examéle of%:a:lg HaIda)r(e—gap system One of the purposes of the present paper is to investigate

: . ) ) . carefully what are the resulting similarities and/or differ-
with a spin gap oA, =0.41048(2) in units of the antiferro- oncoq when the NEM constraint is not softened but en-
magnetic(AFM) intrachain exchange couplifg.

o , i forced consistently at each level of approximation. We will
As the magnetié®" ions order antiferromagnetically be- report here only results at the tree-level of a loop

low a certain Nel temperatureTy, the RBaNiOs's have  expansior? i.e., essentially at the the mean-fielMFT)
been modeled, to a first approximation, as a seSefl  |evel, of the partition function of the model, supplementing
chains with a negligible interchain couplin@gs compared them however with a stability analysis, and deferring a sys-
with the intrachain one acted upon by an effective com- tematic evaluation of higher loop corrections, that are con-
mensurate staggered fiélcbughly proportional to the sub- siderably more involved, to a forthcoming paper.

lattice magnetization of thB®* lattice, and hence increasing ~ Our second purpose is to assess the validity in the present
when the temperature is decrease bellgy context of the so-called single-mode approximati&MA)

The above experimental scenario has motivated a renew#hat did prove beyond doubt its validity previously but in
of theoretical activity on the model, that is nonetheless alrather different context¥: We will provide here the explicit
ready quite interesting per se, of an integer-spin AFMproof of the fact that indeed the SMA is not applicable to
Heisenberg chain coupled to an external commensurate stadiscuss the elementary excitation spectrum in the longitudi-
gered field, that can be described by the model Hamiltoniamal channel, a claim that we had already put forward some

time ago’ without providing however there an explicit proof.
B i The paper is organized as follows. In Sec. Il we state the
’H—Z 19SS+ (= D'Hs S (D essentials of the general formalism and derive the saddle-
point approximation in the presence of a general external
where §=S(S+1) with San integer(we seth=1 hence- source field. This is needed in order to set up the consistent
forth, and takeS=1 for theNi®" chaing, J>0 andHgisthe  scheme of calculation of the propagators at the mean-field
external staggered field in appropriate uriése, e.g., Ref. 6 level that is reported in Sec. lll. In Sec. IV we study the
for details. analytic structure of the propagators, and notably of the lon-

An extensive density matrix renormalization group gitudinal one, at the physical saddle-point, i.e., when the
(DMRG) study of the model of Eq(l) has been performed source field becomes the staggered static field of (Ey.
in Ref. 6, where very accurate results were reported for th&ection V is devoted to a discussion of our results and to a
staggered magnetization curve, the spin gaps, the static cadetailed comparison with previous theoretical approaches, as
relation functions and the correlation lengths in both the loniwell as to a discussion of some as yet unsolved problems that
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are posed by the experimental scenario that has been outlined
at the beginning. A useful sum rule for the propagators of the a(x)=SJ dx’ Go(x,x")I(X"), (8)
NLoM field is derived in the Appendix.

we obtain

Il. SADDLE-POINT APPROXIMATION FOR A GENERAL

1
SOURCE FIELD 3] Ef dxdxn’ (x)- Gg (x,x")n’ (x')

Under the Haldane mappifd: S~(—1)'Sn;+l;, n?

=1, wheren; represents the slowly-varying local staggered ) 1, , ) )
magnetization and; is the local generator of angular mo- +'j dxA(x)—5S f dxdx’ J(x) - Go(x,x") I(x").
mentum, the Zeeman term of E(L) becomesZ;(—1)*H,

-§~SZn;-He+=;(—1)!;-Hg. In the continuum limit the ©)

second term becomes a total derivative that can be neglect?\gow we can integrate out the fiefd, obtaining
if we adopt periodic boundary conditions on the chain. '

Going then to the continuum limit, integrating out the DN
fluctuation fieldl and implementing the N&M constraint 3[J]ocJ {_
n?(x)=1 [x=(x,7) with = the Euclidean timpwith the aid 2m
of a Lagrange multipliex =\(x), we obtain the partition
function: Z=Tr{exd — 8H]} of the model in the continuum
limit as the path integral: 3

SERIE ETr{|n(c3(;1)}+i f dx\ (X)

exp(—S[\;J]), (10

where

DX

2 eXF(_Seff), (2)

Z= f [Dn] 1
——Szf dxdx’J(X)- Go(x,x")I(X"). (11
where the effective actioB.;; is given by 2
_ ) We analyze now what are the general features of a saddle-
Seff:f dX{Le(X) = SHg-n(x) —iN(X)[n“(x)— 1]}, (3)  point approximation made in the presence of an arbitrary
(space-time dependgnsource fieldJ(x). We will also
where fdx=fdxf§d7- and the Euclidean Lagrangian is evaluate here the propagators at the mean-field level. The

given by saddle point will be determined by the equation:
1 O \;J]
_ T (a2 2 2 _
Le(X) ZgC(c |a,n|2+]a,n|?), (4) (—5)\()() )J 0, (12

and the NloM mapping predictsg=2/S for the coupling \here (...), means that we(functionally) differentiate
constant anct=2JSa (with a the lattice constantfor the  \yhjle keepingd constant. As

spin-wave velocity.
Now we promote3 to a generating functiong[J] by 5Go(X ,X")

replacingS,; with o0 = 2Galx 0Go(xxX') (13

SI1= [ dx{Le0 - SI00-n00 —INIFG0 -]}, 2
)

i—
and we will setJ=H only at the end of the calculations. ON(X)
Altogether(after an integration by palijts

~3Go(x0+ S [ dydy Go(y.)Go(xy')
<[y Iy -1, (14

1 . . . .
SJ]= ff dxdx,n(x)‘Gal(x,xl)n(x,)_sj dxJ(x) - N(x) we find the saddle-point equation in the form:

. 3G,+82fdd’G,G,'J-J’=1.
+i [ do, C ydy' Goly.)Go(xyJ[I(Y)-3(y")] -
and G, solves, with the appropriat¢Matsubara-Bose  Equation (15) will determine then a space-time-dependent
boundary conditions the equation saddle point that will be a functional o as well: A

=\*[x;J].
— i[czaiJr 92+ 2igeh (X)1Go(x,x') = 8D (x—x'). In mean-field theoryfMFT) one approximate3[J] as
™ 3[3]~exp(— S[A*33)), (16

Performing now the linear shift(x)=n’(x)+a(x), with  and hence the connected two-point propagators:
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GEP(x,x")=SH(T(*“()nP(x’)) = (n* () }(nP(x"))} 5°S
H(x,x")= NN [n=2*
~ 8%In3[J] a7 SN(X)ON(X') ] |
53%(x) 83F(x')
=6F(x,X’)+4SZGo(X’,X)f dydy’Go(y,x")
will be given by
X Go(x,y)[I(y)-IY) ], (23

G (XX )~ — 5Ji25[);3;J], 1 18) wherel is the “polarization bubble:”

(9254x7) T(x,X') = Go(%,X")Go(X' ). (24)

where now, when taking functional derivatives, one has to ¢ integral equation fod\/5J%(x) reads then
consider not only the explicit dependenceSxdn J but also
the implicit one through\*. We find then SN(Y)
dyH(x,y)| i
f YH( y)( W(X,))

5S Zfd( as) SN(Y)
53%(X) Y\ ony) 363%(x)

5S ) 19
834x)/

=—2$260(x,x’)jdyGo(x,y)J"(y). (25

But the first term on the right-hand side vanishes identically In the next section we will specialize the results obtained
at the saddle point, and so here to the physical cask=const=Hg, which will deter-
mine the physically relevant saddle point.

0S ( 4S ) lll. RESULTS AT THE PHYSICAL SADDLE POINT
N

8J4(X B 8J4(X
(x) (x) WhenJ=const=Hg, the associated saddle point will cor-

1 respond also to\ =const. Setting then—2igch=const
=—§SZJ’ dy[Go(X,y) +Go(y,x)]3*(y), (200  =c2¢ 2, translational invariance will be restored and the
following results can be easily derivéd:

. ) ] ] (1) The saddle-point condition is
which provides also the mean-field equation for tkeag-

gered “magnetization” induced by the source field 3Ga(0)+ SLH G (0)12=1 26
Proceeding one step further we find eventually o(0) s[Go(0)] ’ (26)
where Go(0) = Go(a=0)[q=(q,,=2mn/B)] and Gy(a),
1 the Fourier transform o6y(x), is given by
GeP(xx') = 5 S Go(x,X') + (x> x')] 67
_ 9c
Qi+ci(g?+e?)]

Go(q) 27)

+ 32 f dydy'[Go(X,y)Go(y.y")

whenG,(0)=gé&?/c. Explicitly, at T=0:’

8JP(x")

+(XHY')]J“(y)( i ) . (@)

3 Sg)\?
—2?7|n{A§+ \/1+(A§)7}:1—(?g> H24 (29)
This is the general structure of the mean-field propagators for

a general source field. and the cutoff can be disposed of by fitting it to the zero-field

—ee1 ; i
The functional derivative ok on the rhs of Eq(21) is gapAO—cg_ that is _know from the_ DMRG studies. Equa-
determined by tion (28) will determine then the field dependence of the

correlation lengthé, and it is clear that will depend qua-
5 (55) ( 5°S ) S\
—_ — +

dratically on the field.
) (5S[A;J]) (2) The magnetization is given by
s\ L anen'] e 0

s32\ 6N
oJ g 8252

(22 me=S(ng)= S?A(0)Hs=

H.. (29)

where the second term represents the variations& §\);  Comparison with the DMRG data of Ref. 6 shows a slight
with respect its explicit dependence dnAs all the quanti- overestimate of the values of the magnetization for small
ties in brackets have to be evaluated at the saddle point, thfgelds, but the agreement becomes better and better as the
equation becomes an inhomogeneous linear integral equatidield increase¢see Fig. 1L Note that, in view of this equa-

for 6N/ 5J% whose kernel is tion, the saddle-point condition can be written also as
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that can be solved by Fourier transforming it, thus yielding

P C C)

X(g)=—2—, 3
(a) Ao (37)

where, now

ms) 2

F(q)=6I'(q)+4| =| Go(q). (38)

(5) The longitudinal connected propagator is given by

oo b Gt(x—x’)=SZGO(x—x’)—2m§f dyGo(x—y)X(y—x").
0.0 0.1 0.2 0.3 04 05 (39
H

S

(6) The transverse propagat@hat has no nonconnected
FIG. 1. Staggered magnetization 81 as a function of the part9 is simply given by
staggered field: Dots: DMRG results of Ref. 6. Full line: our results.

Dashed line: results of Ref. 5. GI(X—X’)zSZGO(X—x’). (40
ms>2 Going to the Fourier space,
3Gy(0)+| =| =1. (30 ~ ~
Sols Gl(a)=S2Bo(a), (41)

(3) While the transverse susceptibility is given by’
=my/H =gS?¢%/c, the longitudinal one is given by the full
derivative: y*=dm,/dHs, i.e., by

which is[see Eq.(27)] a free boson propagator that, when
analytically continued to the real axis, has simple poles at

w=*e(q) with
d d[In(&?) i
xX=x" 1+<2Hs/§>£j=f[1+%]. (31 s(q)= 7P+ AF,  Ao=cé (42
) ) Notice also that
The derivative on the right-hand side can be obtained by
differentiating the saddle-point equation with respecHtg T-&T(0 43
and the explicit expression for- is
_ Explicitly, in Fourier space, one finds:(q) = S*Gy(q)
2 (29SE%H\ 21+ (AE? T PGy, c 0
XL=XT[1+ —Tr< 9=t S) (A9 ] (32)  —2m2Gy(q)X(q) and, with some algebra:
39 C AE
(clearly exhibiting:x"< xT always, the two coinciding only &L ()= SBo(q) 3f‘(q)
= imit A &s Q)= q)—= =
whenH =0). In the limit Aé>1, Eq.(32) reduces then to c 0 3T () +2(ma/9)%80(q)
1 ~
L=xT : 33 = 3I'(q)
A 2m 2 2 39 =Gi(q) —= = : (44)
1+ @(2985 Hs/c) 3I'(q) +2(ms/S)°Go(q)

(4) In the translationally invariant case, E5) for I'(q) is the convolution of twoG,'s that can be evaluated

S5\/8J° can be rewritten, using the equation for the magne EXPlicitly as
tization, as 1 dk 1
T(9)=5(gc)’ f S —coth Be(K)/2) ————
f ( S\(Y) ) 2 2 e(k)e(k+q)
dyH(x—y)| i =-2miGo(x—x"). (34
YH(x—y) 53°00) s Gol ). (39 okt @)+ e (K)
Making then the Ansatz: Qi+ [e(k+q)+e(k)]?
k+q)—e(k)
N ,_clk*a ] (45)
Sy T (39 2+ [e(k+ ) —o(k) 2

(Hence:6N/8J*=0 in the directions orthogonal to the figld The analytic continuation in frequency)(—iz) has a

Eq. (34) reduces to the following equation fot branch cut along the entire real axis for gk +«. The
discontinuity across the branch-cut vanishes however expo-
nentially with temperature in the range2Ay(q) <Re(z) <

JdyH(X‘y)X(V‘X'):‘ZGo(X_X') (38 12A4(q), where Ao(q)=cy(a/2)?+& 2=&(q/2) and,
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right at T=0, the branch cut extends only from« to _ (gc)? 1 9? (=

—2A4(q) and from+2A,(q) to +o. The reason for this is )= J’ dk = f dk(k?+¢2)32
that the second term in curly brackets vanishes exponentially 8w e(k)> 4mClo

for B—. The same term vanishes also, irrespective of tem- (gé)2

perature, foig=0. For this reason we expect alB¢q) to be e (50)
an essentially positive quantity at all temperatures. Accord- _ _ _ _
ing also to Eq.(27), this implies thatF(q) is a positive- Ilwsertlng this expressw[‘together with the known value of
definite quantity, and hence that(x—x') is a positive- Go(0)]into the equation fof5¢(0) yields back precisely Eq.
definite kernel. (33) that had been obtained by lettidg—< in the previous
Now, the kerneH determines actually also the stability of equation for the longitudinal susceptibility wherever this did
the saddle point. Indeed, by expanding the actibh qua- not lead to divergent results, which is precisely the attitude
dratically around the(physica) saddle point in terms of that has been taken in the present calculation. All this shows
SN(X)=N(X)—\*, we obtain that (at least there are no inconsistencies in the MFT ap-
proach that has been adopted here.
1 In the next section we will discuss in detail the structure
SIN]=9\* ]+ EJ dxdx’ SN (X)H(Xx—x") SN (X") of the analytic continuation of the propagators to the com-
plex frequency plane and to the real axis.

(46)
and the positivity ofH will then guarantee that the physical IV. THE ANALYTIC STRUCTURE
saddle point is indeed differentially stable, i.e., a local mini- OF THE PROPAGATORS

mum.
We analyze now the asymptotic behavior of the longitu-
dinal propagator for both large and small values |qf.

At the present level of approximation the transverse
propagator is just a free-boson propagator. Analytic continu-
= ation is straightforward, leading to
While one sees immediately thAt q)~|q| 2 for large|q],

in the same limit> T'(g) ~In(g|?)/|qg|2, instead. Therefore, &T(q.2)= gcs (51)
~ ~ C ’
GL(q)~G/(q) for large|q|, and the(very) short-distance e%(q)—2°
behavior of the two propagators is the same. This implies [£(q)=c\q?+ & 2]. Going to the real axis from abowve
=w+in,p—>0",
lim GL(x) = lim G](x) = S?G(0). (47
x—0 x—0 ~T 77ch2
ImG(q,w)= T(q){ﬁ(w—c“(q»— S(w+e(q))}-

Recalling that, in the translationally invariant case, the full (52)

longitudinal propagatoB' is related to the connected one by
+(m./S)2=S"2{2GT(0)+ G-(0)}, and that therefore the Single poles at»=¢(q) which is the structure requiréd’
saddle-point condition can be again read simply as onéor the applicability of the SMA. The relation, which is a

implementing the constraint on the average, i.e., as, direct conseq_uenEeof the SMA: XTISQd(AT)Zv with Ay
=Ay=cé 1, is obeyed exactly, at this level of approxima-
(=1 (48) tion, in the transverse channel.
' Let us turn now to the longitudinal propagator, and let us
At the opposite end, wheg— 0: begin by looking at the polarization bubbld’(q)
=I'(q,Q,). We consider for simplicity only th&=0 limit
_ 332f(0)60(0) in which the second term on the rhs of E@5) can be
Ge(0)=—= —, (490 neglected. Then
3I'(0) +2(mg/S)%Go(0)
~ 1 , [ dk
which is markedly different fron!(0), coinciding with the F(a)=3(g0) f 2m
latter only forHs—0. The same will be true for the small-
momentum behavior dB5(q). The long-distance behaviors y 1 e(k+q)+e(k) (53
of the two propagators will be then definitely different for e(k)e(k+0a) 02+[e(k+q)+e(k)]?’
H.#0, and so we expect quite different asymptotic behav- i
iors at infinity, i.e., quite different correlation lengths. which we write for short as
On top of that, the equatiofcf., Eq. (43)] x-=GL(0) ~ 1 dk  Ak.q)
provides us also with an independent expression for the lon- [(q)==(gc)?| — _ Ak (54)
q g 2 21
2 2m O2+E(K,Q)

gitudinal susceptibility, explicitly showing how it results

from both one- and two-magnon contributiofthe latter
where

coming from the “polarization bubble’f(q)].
In explicit terms, we have, ak=0 E(k,q)=e(k+q)+e(k) (55
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and Let us consider now the full longitudinal propagator:
_ Eka) GLi(q,Q,)=9gc¥
ARD= s tcra) 6 )
[3T(q,20)/29¢][ Q7+ %(a) ]+ (ms/S)?
E(k,q)=E(—k—q,9) (57) " " °

. (63)
and the same will hold true fok(k,q).

Performing now the analytic continuation and going to the  Performing the analytic continuation, omitting specifica-

real axis from above: tion of the labelq and defining:
T(q,0)=T1(d,0) +iT2(q,0), (58 G(2)=8L(q,Q,/gcS, T(2)=3T(q,Q,)/29c,
where 85=(ms/S)?, e=¢(q), (64)
r 3 E Zf %P A(k,q) 5g we are led to study the analytic structure of a function of the
1(q;w)_2(gc) 2 Ez(k,q)—wz ( ) form:
“P" standing for Cauchy principal pariand I'(z
( 9 y principal pal 6(2)= 2( )2 65
1 I'(z)(ec—2z°)+ 6
I 2 —
2(g,@)=7(90) fdke(k)e(k+q)[6(w E(k.a)) (0=5<1,e<2Ay). I'(2) will be given by
—6(w+E(k,q))] (60) do' Ty(w')
_ . L . Iz)=| — (66)
which is odd ine (which implies thatl’1(g,®) will be an T o -7

even function ofw) and positive for positive. ) ) . .
To evaluatd™, explicitly it will be enough to consider the With I'>(») having all the properties that have been listed
positive frequency part. Notice that, for any fixeg @above(odd inw, positive for positivew and vanishing for
mi{E()}=2A0(0) [Ao(q)=e(a/2),A0(0)=Aq], and |w|<2A, [cf. Eq.(61)], thus producing a bra-mch (_:utl?(z)
therefore:T'5(q,w) =0 for |w|<2A¢(q), as we know al- for real z=w and 2Ao<[w|<+=). We will write I'(w
ready. Otherwise, it is easy to see graphically that the equat i0") =T'1(w) +T'z() on the real axis. The analytic prop-
tion w=E(k,q) has two solutions at=k*(q,w)=ko—q/2 erti_es ofG(z_) will be determined in turn by its spectral
and at k=—k* —q=ko—q/2, where ko Welgh_t function. _ _ .
— (a)/ZC) \/[w2_4AS(Q)]/(w2—C2q2). Gomg to the real axis we find, faa=w+1i 7, 7]>0
Then we obtain easily, as(k)e(k+q)[JE(k,q)/dK]
=c?[ke(k+q)+ (k+q)e(k)]:

gz
Fz(q,w)=mﬁ(wz—M%(q))sgr(w), (61) A(w)=(*— 0+ 7P ) 1(0)+2n0l ) (w)+ 5, (68)

Glotin)=Gi(w)+iGy(w), (67)

where, defining

where C(Q)=|k*8('kf+Q)+(k*+Q)8(|§*)| and k* B(w)=270l (0)— (e~ 0’+ 7’ )[y(w), (69
=k*(q,|w|). An explicit analytic expression fdr, can then _

be written down in general, but it is not especially illuminat- G1and G2 are given by

ing, although it can be very useful for numerical calculations.

It simplifies greatly forg—0, where we get simphC(q Gi(w)— A(o)l'y(w) —B(w)I'(w) 70
=0)=(|o|/2c) Jw?—4AJ. ! A2(w)+B2(w)

The (integrablg square-root singularity at the edges of

the branch cuts ig present at finitg as well, and and
indeed, for w?=2A§(q), we obtain, to leading order
C(a) = a(q) Ja?—403(q) + O(w?~4A3(a)) with  a(q) Gyw)= ALl TBlOL(0) = gy
=[Ao(a)/2cA,){] 0] —G*c*/2A0(q)}. A (@) +B%w)
By exploiting the parity ofl’,,I"; will be given then, via ]
dispersion relations, by Even for »—0, G, need not vanish whei’, does. In
particular, we inspect its structure fbw|<2A,. Sending
< do’ 7 to O inside theI”s (and only therg we have,
rl(q,w)=2f —ow'l'y(q,0")P for |o|<2A0:A(w)=(e?—w?+ 7)) (0)+85, B(w)
280(@) T w’2—w2> =270l (), leading to
(62) 2 2 2
which shows thaf";(q,) will be strictly positive for |o)| G0 €™t 7+ oIl () 72

<2A(q), a result that will prove to be useful shortly. [2— w?+ 7+ 6IT 1(w) >+ 472 w?
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L is a steadily decreasing function of the field, and the qua-

] dratic regime nea ;=0 is confined to a very narrow region
of fields. For higher fields there is an intermediate region in
which v is almost linear in the field, and we find numerically
that for S=1 it saturates in the high-field limit to

- lim y=lim y=0.279. (79

Hg— 5—1

03 ] More than 70% of the quasiparticle weight is then lost

02} . when the system evolves towards saturation. No significant

o1l ] changes are expected fqe- 0.

0ol \ \ \ \ ] To complete the analysis we have to investigate the range

0.0 0.1 02 03 0.4 05 |w|>2A, of G,(w) whereT',(w) does not vanish. With
H some long but straightforward algebra we find
S
FIG. 2. The relative quasiparticle weight of the pole of the lon- Ol 5(w)

gitudinal propagator as a function of the staggered field angl at Ga(w)=

(€= 0?)*(Tx(@))*+(5+ (2= 0?)T'y(w))?
(80)

and for |w|>2A,. Therefore, in this range of frequenci&,
will vanish asHs—0 and we will recover the simple pole

Gy(w)= 27w 73 structure with the longitudinal and transverse propagators be-
2 [€2— w?+ p°+ 5/r1(w)]2+4,72w2' coming equal. The longitudinal pole will survive also up to
saturation, but with a strongly field-dependent strength.
From the structure 06,(w) it is clear that That as the field increases the spectral weight that is lost
s from the pole gets transferred to the two-magnon continuum
lim G =S S(F C ()=l e2— ' (80) (and vice versa when the field decreasissdictated,
o0 2@)=msgriw)d(f(w); fw)=w'~e I'(o) e.g., by the sum rule
(74)
+ 0
Remembering thal'; is an even function ofs, we can f_x - @ImGa(w)=1. (81)
write I';=T";(»?), andf(w)=0 will have solutions atw=
* e with The sum rule(81) is just one of the general sum rules con-
nected with the moment expansions of the spectral weight
2 o 3 functions that are related to equal-time expectation values of
€ TE€ + PNE (75) .
T1(e) multiple commutators and that have been known for a long

_ _ time in many-body theory®!” A proof of the sum rule
which reducesas it should to e*=¢?(q) whens—0. More-  adapted to the specific context of the &l will be given in
over, the Appendix.(Note, however, that whilgcf. Eg. (52)] all

5 moments exist for the transverse propagator, wkgnis
ﬂzz izz 6 dI'y(e) (76) given by Eqs(77) and(80) only the first moment will exist
do ¢ dw? @ IN(w? do? | and all the others will turn out to be divergent. This is just an

artifact of the mean-field approximatiqisee, e.g., the dis-
According to known formulas, then cussion of a similar problem in Ref. 1y
The pole ate; represents the longitudinal magnon. It will
lim Gz(w)=yi{é(w—eL)—é(w+eL)}, (777 be a well-defined excitation as long a$(q)<4A5(q),
70 2eL which we will prove to be the case. It will be higher in
energy[as we have proved previously thB{(q,w)>0 for
|w|<2A4(q)] than the two(degeneratetransverse magnons
5 dly(w?) 1 that both have energy, arlldlwlill begome degeneratg with
7:[ 1+ 1_1 } ) (78)  the latter whens—0 [the limit in which the full S@3) in-
a):EL

where

I'(w? dow? variance is restordd

Just as in the transverse cdse=¢(q) = /c2q+AZ A;
This proves of course that the longitudinal propagator(lres  =c¢ 1=A,], we can define a longitudinal gap, via A,
the range we are examiningimple poles on the real axis at =¢, (q=0), i.e.,

w=*¢_, and the prefactoy will give the reduction of the
guasiparticle weight with respect to the pure bosonic case. by
As for small fields,6=H2, y will approach 1 quadrati- Af=AT+ TL(0A)" (82
cally in the field wherHy4—0. A numerical plot of the rela- nemt
tive quasiparticle weighy atq=0 is presented in Fig. 2. It In general,
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quantitative discrepancies in the low-field regime. We also
find that neaH =0 the longitudinal gap increases roughly
as three times the transverse ofectually, Iirmsﬁo(A,_

—Ap)/(Ar—Ay)=3.58]. For Hy— instead,

8ySyJ1—vy%/4
y?=1+ 2y 2y , (89)
3[1— ;tan*1 y\/1—y7/4H
and, forS=1
AL
lim 7. —1.855, (90)
HSHOC T

i.e., for high fieldsA, tends to increase slightly less than

FIG. 3. Results for the spin gaps in the longitudinal and trans{Wice At. This is in agreement with the DMRG results of
verse channels. Dots and full line: DMRG results of Ref. 6 and oufR€f. 6. Notice that, however, the limiting form of E(B9)
mean-field results for the transverse gap. Triangles and dot-dashé@lls us immediately that the ratio of the saturation values of
line: DMRG results of Ref. 6 and our mean-field results for thethe gaps will tend exactly to two in the largetimit, and
longitudinal gap. Dashed line: SMA predictions for the longitudinal indeed it is not difficult to see that

gap(Refs. 5 and Y.

g’c (+* do’
Fl(O,w)z—Ilmf —
2, ol2ag@ T

1 C!)/2_(1)2

X

(w’2—4Ag) (0% +w’+ 7]2)2—4w2w,2
(83

As we are assuming here <2A:, the limiting procedure
becomes trivial and we obtain,

T, (0A )_3 f“’dw 1 1
1UAD=79 oap T /_(w2—4AT2) w2 A2

Equation(82) can be rewritten in dimensionless form as

(84

A 2—1+ 49 85
At 7 3gF(AL/AT)’ (85)
where
R >—f+wdx L1 <2 @9
)= 2 M X2—4X2—y2’ y )

Explicitly,

——tan?!

T
2

F(y)= m[ évl—y2/4“ (87
and, definingy=A, /At we obtain, withg=2/S,
8miy SV1-y?/4
]

y?=1+ (88)

3[ 1— —tan?!
v

2
. L a
lim —~2-—

T s? oy
Ho—o©

for S>1, with a a numerical constant of order 0.5. The rela-
tive quasiparticle weighy can also be shown to be of order
S 2 in the same limit, i.e., it will vanish when the magnon
poles reach the edge of the continuum.

V. DISCUSSION AND CONCLUSIONS

We summarize here our results, comparing them at the
same time with those obtained within other approaches. We
will list and discuss only a few relevant points:

(i) In zero field the excitation spectrum consists of the
well-known degenerate triplet of massive Haldane bosons
with energye(q) =c\q?+ £ 2 with a gapAy=cé&~ L. For
finite fields, instead,

(i) The staggered magnetization cuf. (29) and Fig.

1] turns out to agree well with the DMRG results of Ref. 6.
As can be deduced directly from E(R9) and as was dis-
cussed in more detail in Ref. 7, the low- and high-field be-
haviors of the staggered magnetization are, respectively,

me~x"He+ O(H?) (92)
for Hg~0 and
A
me~S 1— —+O(H 1) (93)
VHs

with A a numerical constar{see Ref. 7 for more detajl$or
large Hg. The value obtained in Ref. 7 of '=23.740 is
somewhat higher than the DMRG re§uit y'=18.50. We
will resume this point shortly below.

Equation (93) shows that the staggered magnetization
saturates only asymptotically in the large-field limit. This is
what had to be expected, of course, and is a direct conse-

The numerical results for the longitudinal gap are reportedjuence of our implementing in a consistent way thesiNL
for S=1 in Fig. 3, where we report also the results for theconstraint. The authors of Ref. 5 found instead a magnetiza-
transverse gap. Here, too, the results are in excellent qualiion curve tha(see Fig. 1 agrees better with the DMRG data
tative agreement with the DMRG results, with some smallthan ours in the initial parti.e., for low fieds, but that dis-
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agrees more and more as the field is increased. Even worsas that of Eq(1), which we believe we have proved to be the
their magnetization saturates at a finite value of the staggerezhse forS= 1. It should then lead definitely to qualitative and
fields and keeps growing indefinitely beyond saturation afsemiquantitative agreement, but it cannot be expected to
terwards. Full saturation implies of course that the fully po-yield also, and it would be actually a totally unexpected bo-
larized Neel state should become the exact ground state ofus if it did, precise quantitative agreement with, e.g., the
the Hamiltonian(1), which is known to be true only asymp- DMRG results. We - believe that, apart from other
totically for Hg—. Moreover, aroversaturated magnetiza- refinements; not_much more than that can be expected from
tion is clearly not an admissible result. the NLoM mapping. _ _ _

It appears therefore that softening the & constraint In view of what has been just said, however, the quanti-
as done in Ref. 5, can be an admissible procedure in thitive agreement should improve for increasing values of the
zero-field limit, that can be also givefsee Ref. 18, and SPin. A test of the NrM, in conjunction with a DMRG
references therejrsome legitimation in the same limit, but analysis, on higher-spin chains can be of some intéPest.
that can become more and more dangerous as the field in- Coming now to the experimental scenario outlined in the
creases, leading eventually to rather unphysical results. Introduction, while essentially all the theoretical models pre-

(i) The transverse channel is saturated by a single welisented so fafincluding ours yield quite reasonable agree-
defined magnon pole with energy(q)=¢(q) and a gap ment between theory and experiment as far as the staggered
A;=A,. The strength of the pole has a rather weak-fieldmagnetization curve and the transverse gap are concerned,
dependence and the pole persists up to the highest fields. TFecent measuremefitsf the longitudinal gap in NgBaNiOs
relation yr=Sgd(Ar)2, which is typical of the SMA, is Point to some discrepancies between theory and experiment.
exactly obeyed in this channel at the mean-field level. BotNamely, the longitudinal gap is found to survive, with
our results and those of Ref. 5 agree quite well with the>Ar, also above the Net temperature, i.e., also whet,
DMRG results. =0, which points to(single-ior) anisotropies that, although

(iv) In the longitudinal channel instead we find also acould be accomodated very easily within the dWl ap-
well-defined magnon pole with energy(q) and a gapA, p_roach, thus leading to an _a_ddmonal spin-gap in the longitu-
>A;, but the magnon propagator acquires als@tvao- dinal channel, are not explicitly accounted for by the models
magnon branch cut for nonzero staggered fields. Theconsidered so far. Moreover, beldly, the longitudinal gap
strength of the pole of the propagatoreatis strongly field ~appears to grow more slowly than the transverse one, and
dependent and as the field increases it is steadily transferrdfis remains a so far unresolved puzzle. _
to the continuum, in agreement with the sum r(8&). Near More measurements on compunds of the clagsaRliO;
saturation, and foB= 1, the strength of the pole is reduced are called for to ascertain whether this is a general fact or it
to less than 30% of its zero-field value, while it vanishesiS specific to NdBaNiGs. If the former were the case, this
completely at saturation in the largedimit. In the same Would imply that a model involving just a single chain in an
limit the longitudinal pole disappears into the continuum ateffective staggered field, interesting in itself and worthy of
saturation, while it remains below the continuutrence a theoretical interest on its own, although it can account for
well-defined excitation, although with a strongly reduced in-most of the experimental observations, is not enough to pro-
tensity for finite S The relation analogous to cag#i),  Vvide a complete description of all the observed low-energy-
namely y, =Sgd(A,)? is badly violated in this casécf. physics features of such compounds, and that more sophisti-
Fig. 3 except in the zero-field limit, and this proves that, duecated models are needed.
to a non-negligible contribution from the two-magnon con-
tinuum, the SMA is not applicable at all in the longitudinal APPENDIX: A SUM RULE FOR THE NL oM
channel in the presence of a nonvanishiggggeregfield, PROPAGATORS
as was done in Ref. &ee the close critical comparison with : . .
the DMRG results trit was made in Ref. 6 :End the SMA To cope W.'th the notation adopted. n Sec.. IV after Eq.
curve that is reported for comparison in Fig. Fhis makes (?;;’s\il(\:/(:llle)arlsrlgr?'(isaer:tg]fgt%; ?o_rri_ 1), in real ime now, a
a great difference with the zero-field case, where there i§ grang
quite convincing evidence that two- and/or multimagnon 1
excitations carry a negligible spectral weight, which turns L(x,t)= §{|¢9tn|2—|¢9xn|2—V(n)} (A1)
out to be actually exactly zero at the mean-field level. In
conclusion, we would like to point to two somewhat unsat-with V(n) an arbitrary interaction term, e.g., one implement-
isfactory aspects of the theoretical scenario that has beeng in some appropriate linfit the NLoM constraint

outlined here and elsewhete’ n?(x,t)=1. The canonical momentum density is defined by
First of all, and as we have already remarked, there is
excellent qualitative and even semiquantitative agreement L
g g g a(X,t) = —an, (A2)

between our NirM analysis and the DMRG results over the
whole range of fields. There remain however some quantita- o , i )
tive discrepancies. As to these, we can only stress the fa@"d the Hamiltonian density will be given, as usual, by
that the NLoM mapping is basically a semiclassical expan—H(X't):W"?,t”_ﬁ' with  canonical (equal-timg Poisson
sion starting from the larg&-limit that is then continued to Prackets(PB's):

lower values of the spin. Being so, and if it has to have an @ _

validity at all, it shouIF:j definitgly be able to capture all they {0, 7y, O} = 8"6(x—y) (A3)
essential features of the low-energy physics of models sucith all the other PB’s vanishing.

a(an)
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Canonical quantizatiothere too we set =1 and use for d[s(k): JkZ+m?], and
simplicity the same notation for the classical variables an

the corresponding quantum operajois accomplished by [n“(x,t),wﬁ(y,t)]zi5“58(x—y)<:>[a‘k*,agf]
replacing the nonvanishing PB’s with the commutators

=475%¢(k)6(k—q). (A9)
@ B —i sap _
[n*(x,0), 75(y, D] =167 8(x—y). (A4) " One finds then easily
Then, we obtain immediately, taking expectation values dk 1
. a B = 5B _ i
in the ground state, ([n%(x,1),n"(0,0)])= & fzwexpmkx) 25 (K
—i @ B = —j @ B
|(9t<[n (x,t),n (010)]>|t=0 |<[7T (X,O),n (010)]> ><[exp(—is(k)t)—exp(is(k)t)],
As the rhs involves only equal-time commutators, this rela\hen
tion will be true irrespective of the form of the interaction
term as long as the latter depends onlyroand not on its B _ap T
time derivative. A (kw)=o 8(k){5(“’_8(k))_ S(+e(K)}
Introducing the Fourier transfori®?(k,») defined via (A11)
dk [ de and the sum rule can be checked at once.
([n*(x,t),n?(0,0]) = f 2—f Py To compare with Eq(81), recall first of all that our defi-
m]oem nition [Eq. (17)] of the Euclidean propagators differs by a
X expli[ kx— ot} A*A(K, ), sign from that that is usually adoptétAccordingly, we will

define the retarded Green functions of the components of the

(A6) n field as
Eqg. (A5) will imply the sum rule Ggﬁ(x,t)zi 0(t)([n“(x,t),nﬁ(0,0)]) (A12)

j d_wwAa,B(k w)= 05 (A7) and their Fourier transform are then given by
2 ' '

Then, we test it in the cas®¥(n)=m?n?, with mfixed, e.g., GeB(K,w) = — do’ M
by the condition: (n?(x,t))=1. Then the field can be 27 w—w'+id
quantized® as[Note that, in order to reproduce correctly the

commutation relation$97) between the fields and the con- Hence
jugate momenta, the signs of the arguments of the exponen- _ 1

tials had to be taken here as the opposites of those of Ref. Im Ggﬁ(k,w): EA“ﬁ(k,w’). (A14)
18]

(A13)
507"

In view of the standard relationsKi?? between retardetin
na(x t):J' k {a exifi (kx—e(K))] real time and causalin Euclidean time¢ Green functions,
' Ame(k) 7K e the sum rule that we have just derived extends to the Euclid-

" ) ean propagators introduced in the text and becomes then the
+a.k exq_|(kx_8(k)t)]} (AS) sum ru|e(81).
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