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Spin-1 antiferromagnetic Heisenberg chains in an external staggered field

E. Ercolessi,1 G. Morandi,1 P. Pieri,2 and M. Roncaglia1
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We present in this paper a nonlinears-model analysis of a spin-1 antiferromagnetic Heisenberg chain in an
external commensurate staggered magnetic field. After rediscussing briefly and extending previous results for
the staggered magnetization curve, the core of the paper is a calculation at the tree level, of the Green functions
of the model. We obtain precise results for the elementary excitation spectrum and in particular for the spin
gaps in the transverse and longitudinal channels. It is shown that, while the spectral weight in the transverse
channel is exhausted by a single magnon pole, in the longitudinal one, besides a magnon pole a two-magnon
continuum appears as well whose weight is a steadily increasing function of the applied field, while the weight
of the magnon decreases correspondingly. The balance between the two is governed by a sum rule that is
derived and discussed. A detailed comparison with the present experimental and numerical state of the art as
well as with previous analytical approaches is also made.
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I. INTRODUCTION

In recent times there has arisen a great experimenta1–4

and theoretical5–7 interest in a class of magnetic materials
the general compositionR2BaNiO5 , with R being one of the
magnetic rare-earth ions~typically: R5Nd or R5Pr). These
materials are obtained by substitution from the refere
compound Y2BaNiO5 , a highly one-dimensional compoun
with negligible interactions among the spin-1 Ni21 linear
chains. For this reason Y2BaNiO5 is generally considered a
an almost ideal example of anS51 Haldane-gap system
with a spin gap ofD050.410 48(2) in units of the antiferro
magnetic~AFM! intrachain exchange coupling.8,9

As the magneticR31 ions order antiferromagnetically be
low a certain Ne´el temperatureTN , the R2BaNiO5’s have
been modeled, to a first approximation, as a set ofS51
chains with a negligible interchain coupling~as compared
with the intrachain one!, acted upon by an effective com
mensurate staggered field2 roughly proportional to the sub
lattice magnetization of theR31 lattice, and hence increasin
when the temperature is decrease belowTN .

The above experimental scenario has motivated a rene
of theoretical activity on the model, that is nonetheless
ready quite interesting per se, of an integer-spin AF
Heisenberg chain coupled to an external commensurate
gered field, that can be described by the model Hamilton

H5(
i

$JSi•Si 111~21! iHs•Si%, ~1!

whereSi
25S(S11) with S an integer~we set\51 hence-

forth, and takeS51 for theNi21 chains!, J.0 andHs is the
external staggered field in appropriate units~see, e.g., Ref. 6
for details!.

An extensive density matrix renormalization grou
~DMRG! study of the model of Eq.~1! has been performed
in Ref. 6, where very accurate results were reported for
staggered magnetization curve, the spin gaps, the static
relation functions and the correlation lengths in both the l
PRB 620163-1829/2000/62~22!/14860~11!/$15.00
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gitudinal and transverse~with respect to the direction of the
field! channels. The authors of Ref. 5 made instead an a
lytic study of the model beginning with the familia
mapping10,11 of the Hamiltonian~1! onto a nonlinear sigma
model (NLsM). What they discussed very accurately w
actually a related and somewhat more phenomenolog
model in which the strict NLsM constraint is softened, then
replacing the original NLsM with a theory of the Ginzburg-
Landau-type parametrized by an adequate set of adjust
parameters~see Ref. 5 for details!.

One of the purposes of the present paper is to investig
carefully what are the resulting similarities and/or diffe
ences when the NLsM constraint is not softened but en
forced consistently at each level of approximation. We w
report here only results at the tree-level of a lo
expansion,12 i.e., essentially at the the mean-field~MFT!
level, of the partition function of the model, supplementi
them however with a stability analysis, and deferring a s
tematic evaluation of higher loop corrections, that are c
siderably more involved, to a forthcoming paper.13

Our second purpose is to assess the validity in the pre
context of the so-called single-mode approximation~SMA!
that did prove beyond doubt its validity previously but
rather different contexts.14 We will provide here the explicit
proof of the fact that indeed the SMA is not applicable
discuss the elementary excitation spectrum in the longitu
nal channel, a claim that we had already put forward so
time ago,7 without providing however there an explicit proo

The paper is organized as follows. In Sec. II we state
essentials of the general formalism and derive the sad
point approximation in the presence of a general exter
source field. This is needed in order to set up the consis
scheme of calculation of the propagators at the mean-fi
level that is reported in Sec. III. In Sec. IV we study th
analytic structure of the propagators, and notably of the l
gitudinal one, at the physical saddle-point, i.e., when
source field becomes the staggered static field of Eq.~1!.
Section V is devoted to a discussion of our results and t
detailed comparison with previous theoretical approaches
well as to a discussion of some as yet unsolved problems
14 860 ©2000 The American Physical Society



lin
th

ed
-

c

e

is

dle-
ary

The

nt

PRB 62 14 861SPIN-1 ANTIFERROMAGNETIC HEISENBERG CHAINS . . .
are posed by the experimental scenario that has been out
at the beginning. A useful sum rule for the propagators of
NLsM field is derived in the Appendix.

II. SADDLE-POINT APPROXIMATION FOR A GENERAL
SOURCE FIELD

Under the Haldane mapping:11 Si'(21)iSni1 l i , ni
2

51, whereni represents the slowly-varying local stagger
magnetization andl i is the local generator of angular mo
mentum, the Zeeman term of Eq.~1! becomes( i(21)1Hs
•Si'S( ini•Hs1( i(21)1l i•Hs . In the continuum limit the
second term becomes a total derivative that can be negle
if we adopt periodic boundary conditions on the chain.

Going then to the continuum limit, integrating out th
fluctuation field l and implementing the NLsM constraint
n2(x…51 @x5(x,t) with t the Euclidean time# with the aid
of a Lagrange multiplierl5l(x), we obtain the partition
function: Z5Tr$exp@2bH#% of the model in the continuum
limit as the path integral:

Z5E @Dn#FDl

2p Gexp~2Se f f!, ~2!

where the effective actionSe f f is given by

Se f f5E dx$LE~x!2SHs•n~x!2 il~x!@n2~x!21#%, ~3!

where *dx5*dx*0
bdt and the Euclidean Lagrangian

given by

LE~x!5
1

2gc
~c2u]xnu21u]tnu2!, ~4!

and the NLsM mapping predictsg52/S for the coupling
constant andc52JSa ~with a the lattice constant! for the
spin-wave velocity.

Now we promoteZ to a generating functionalZ@J# by
replacingSe f f with

S@J#5E dx$LE~x!2SJ~x!•n~x!2 il~x!@n2~x!21#%,

~5!

and we will setJ5Hs only at the end of the calculations.
Altogether~after an integration by parts!:

S@J#5
1

2E dxdx8n~x!•G0
21~x,x8!n~x8!2SE dxJ~x!•n~x!

1 i E dxl~x!, ~6!

and G0 solves, with the appropriate~Matsubara-Bose!
boundary conditions the equation

2
1

gc
@c2]x

21]t
212igcl~x!#G0~x,x8!5d (2)~x2x8!.

~7!

Performing now the linear shiftn(x)5n8(x)1a(x), with
ed
e

ted

a~x!5SE dx8G0~x,x8!J~x8!, ~8!

we obtain

S@J#5
1

2E dxdx8n8~x!•G0
21~x,x8!n8~x8!

1 i E dxl~x!2
1

2
S2E dxdx8J~x!•G0~x,x8!J~x8!.

~9!

Now we can integrate out the fieldn8, obtaining

Z@J#}E FDl

2p Gexp~2S@l;J# !, ~10!

where

S@l;J#5
3

2
Tr$ ln~G0

21!%1 i E dxl~x!

2
1

2
S2E dxdx8J~x!•G0~x,x8!J~x8!. ~11!

We analyze now what are the general features of a sad
point approximation made in the presence of an arbitr
~space-time dependent! source field J(x). We will also
evaluate here the propagators at the mean-field level.
saddle point will be determined by the equation:

S dS@l;J#

dl~x! D
J

50, ~12!

where (. . . )J means that we~functionally! differentiate
while keepingJ constant. As

dG0~x8,x9!

dl~x!
52iG0~x8,x!G0~x,x9! ~13!

and

i
dS

dl~x!
53G0~x,x!1S2E dydy8G0~y,x!G0~x,y8!

3@J~y!•J~y8!#21, ~14!

we find the saddle-point equation in the form:

3G0~x,x!1S2E dydy8G0~y,x!G0~x,y8!@J~y!•J~y8!#51.

~15!

Equation ~15! will determine then a space-time-depende
saddle point that will be a functional ofJ as well: l
5l* @x;J#.

In mean-field theory~MFT! one approximatesZ@J# as

Z@J#'exp~2S@l* ;J# !, ~16!

and hence the connected two-point propagators:
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Gc
ab~x,x8!5S2$^T~na~x!nb~x8!&2^na~x!&^nb~x8!&%

5
d2 ln Z@J#

dJa~x!dJb~x8!
~17!

will be given by

Gc
ab~x,x8!'2

d2S@l* ;J#

dJa~x!dJb~x8!
, ~18!

where now, when taking functional derivatives, one has
consider not only the explicit dependence ofS on J but also
the implicit one throughl* . We find then

dS

dJa~x!
5E dyS dS

dl~y! D
J

dl~y!

dJa~x!
1S dS

dJa~x!
D

l

. ~19!

But the first term on the right-hand side vanishes identica
at the saddle point, and so

dS

dJa~x!
5S dS

dJa~x!
D

l

52
1

2
S2E dy@G0~x,y!1G0~y,x!#Ja~y…, ~20!

which provides also the mean-field equation for the~stag-
gered! ‘‘magnetization’’ induced by the source fieldJ.

Proceeding one step further we find eventually

Gc
ab~x,x8!5

1

2
S2@G0~x,x8!1~x↔x8!#dab

1S2E dydy8@G0~x,y!G0~y,y8!

1~x↔y8!#Ja~y!S i
dl~y8!

dJb~x8!
D . ~21!

This is the general structure of the mean-field propagators
a general source fieldJ.

The functional derivative ofl on the rhs of Eq.~21! is
determined by

05
d

dJa S dS

dl D
J

5S d2S

dldl8
D

J

dl8

dJa
1F d

dJa S dS@l;J#

dl D
J
G

l

,

~22!

where the second term represents the variation of (dS/dl)J
with respect its explicit dependence onJ. As all the quanti-
ties in brackets have to be evaluated at the saddle point,
equation becomes an inhomogeneous linear integral equ
for dl/dJa whose kernel is
o

y

or

is
ion

H~x,x8!5S d2S

dl~x!dl~x8!
D

J

ul5l*

56G~x,x8!14S2G0~x8,x!E dydy8G0~y,x8!

3G0~x,y8!@J~y!•J~y8!#, ~23!

whereG is the ‘‘polarization bubble:’’

G~x,x8!5G0~x,x8!G0~x8,x!. ~24!

The integral equation fordl/dJa(x) reads then

E dyH~x,y!S i
dl~y!

dJa~x8!
D

522S2G0~x,x8!E dyG0~x,y!Ja~y!. ~25!

In the next section we will specialize the results obtain
here to the physical caseJ5const5Hs , which will deter-
mine the physically relevant saddle point.

III. RESULTS AT THE PHYSICAL SADDLE POINT

WhenJ5const5Hs , the associated saddle point will co
respond also tol5const. Setting then22igcl5const
5c2j22, translational invariance will be restored and t
following results can be easily derived:7

~1! The saddle-point condition is

3G0~0!1S2Hs
2@G̃0~0!#251, ~26!

whereG̃0(0)5G̃0(q50)@q5(q,Vn52pn/b)# and G̃0(q),
the Fourier transform ofG0(x), is given by

G̃0~q!5
gc

Vn
21c2~q21j22!

, ~27!

whenG̃0(0)5gj2/c. Explicitly, at T50:7

3g

2p
ln$Lj1A11~Lj!2%512S Sg

c D 2

Hs
2j4 ~28!

and the cutoff can be disposed of by fitting it to the zero-fie
gapD05cj21 that is know from the DMRG studies. Equa
tion ~28! will determine then the field dependence of t
correlation lengthj, and it is clear thatj will depend qua-
dratically on the field.

~2! The magnetization is given by

ms5S^ns&5S2D̃~0!Hs5
gS2j2

c
Hs . ~29!

Comparison with the DMRG data of Ref. 6 shows a slig
overestimate of the values of the magnetization for sm
fields, but the agreement becomes better and better as
field increases~see Fig. 1!. Note that, in view of this equa
tion, the saddle-point condition can be written also as
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3G0~0!1S ms

S D 2

51. ~30!

~3! While the transverse susceptibility is given by:xT

5ms /Hs5gS2j2/c, the longitudinal one is given by the fu
derivative:xL5dms /dHs , i.e., by

xL5xTH 11~2Hs /j!
dj

dHs
J 5xTH 11

d@ ln~j2!#

d~ ln Hs!
J . ~31!

The derivative on the right-hand side can be obtained
differentiating the saddle-point equation with respect toHs ,
and the explicit expression forxL is

xL5xTH 11
2p

3g S 2gSj2Hs

c D 2 A11~Lj!2

Lj J 21

~32!

~clearly exhibiting:xL,xT always, the two coinciding only
whenHs50). In the limit Lj@1, Eq. ~32! reduces then to

xL5xT
1

11
2p

3g
~2gSj2Hs /c!2

. ~33!

~4! In the translationally invariant case, Eq.~25! for
dl/dJa can be rewritten, using the equation for the mag
tization, as

E dyH~x2y!S i
dl~y!

dJa~x8!
D 522ms

aG0~x2x8!. ~34!

Making then the Ansatz:

i
dl~x!

dJa~x8!
5ms

aX~x2x8!, ~35!

~Hence:dl/dJa50 in the directions orthogonal to the field!
Eq. ~34! reduces to the following equation forX:

E dyH~x2y!X~y2x8!522G0~x2x8! ~36!

FIG. 1. Staggered magnetization forS51 as a function of the
staggered field: Dots: DMRG results of Ref. 6. Full line: our resu
Dashed line: results of Ref. 5.
y

-

that can be solved by Fourier transforming it, thus yieldin

X̃~q!522
G̃0~q!

H̃~q!
, ~37!

where, now

H̃~q!56G̃~q!14S ms

S D 2

G̃0~q!. ~38!

~5! The longitudinal connected propagator is given by

Gc
L~x2x8!5S2G0~x2x8!22ms

2E dyG0~x2y!X~y2x8!.

~39!

~6! The transverse propagator~that has no nonconnecte
parts! is simply given by

Gc
T~x2x8!5S2G0~x2x8!. ~40!

Going to the Fourier space,

G̃c
T~q!5S2G̃0~q!, ~41!

which is @see Eq.~27!# a free boson propagator that, whe
analytically continued to the real axis, has simple poles
v56«(q) with

«~q!5Ac2q21D0
2, D05cj21. ~42!

Notice also that

xT5G̃c
T~0!. ~43!

Explicitly, in Fourier space, one findsG̃c
L(q)5S2G̃0(q)

22ms
2G̃0(q)X̃(q) and, with some algebra:

G̃c
L~q!5S2G̃0~q!

3G̃~q!

3G̃~q!12~ms /S!2G̃0~q!

[G̃c
T~q!

3G̃~q!

3G̃~q!12~ms /S!2G̃0~q!
. ~44!

G̃(q) is the convolution of twoG̃0’s that can be evaluated
explicitly as

G̃~q!5
1

2
~gc!2E dk

2p
coth~b«~k!/2!

1

«~k!«~k1q!

3H «~k1q!1«~k!

Vn
21@«~k1q!1«~k!#2

1
«~k1q!2«~k!

Vn
21@«~k1q!2«~k!#2J . ~45!

The analytic continuation in frequency (Vn° iz) has a
branch cut along the entire real axis for allb,1`. The
discontinuity across the branch-cut vanishes however ex
nentially with temperature in the range22D0(q),Re(z),
12D0(q), where D0(q)5cA(q/2)21j225«(q/2) and,

.
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right at T50, the branch cut extends only from2` to
22D0(q) and from12D0(q) to 1`. The reason for this is
that the second term in curly brackets vanishes exponent
for b°`. The same term vanishes also, irrespective of te

perature, forq50. For this reason we expect alsoG̃(q) to be
an essentially positive quantity at all temperatures. Acco
ing also to Eq.~27!, this implies thatH̃(q) is a positive-
definite quantity, and hence thatH(x2x8) is a positive-
definite kernel.

Now, the kernelH determines actually also the stability o
the saddle point. Indeed, by expanding the action~11! qua-
dratically around the~physical! saddle point in terms o
dl(x)5l(x)2l* , we obtain

S@l#5S@l* #1
1

2E dxdx8dl~x!H~x2x8!dl~x8!

~46!

and the positivity ofH will then guarantee that the physic
saddle point is indeed differentially stable, i.e., a local mi
mum.

We analyze now the asymptotic behavior of the longi
dinal propagator for both large and small values ofuqu.
While one sees immediately thatD̃(q)'uqu22 for large uqu,
in the same limit:15 G̃(q)' ln(uqu2)/uqu2, instead. Therefore

G̃c
L(q)'G̃c

T(q) for large uqu, and the~very! short-distance
behavior of the two propagators is the same. This implie

lim
x°0

Gc
L~x!5 lim

x°0
Gc

T~x!5S2G0~0!. ~47!

Recalling that, in the translationally invariant case, the f
longitudinal propagatorGL is related to the connected one b
GL5Gc

L1ms
2 , we see that, as a consequence 3G0(0)

1(ms /S)2[S22$2GT(0)1GL(0)%, and that therefore the
saddle-point condition can be again read simply as
implementing the constraint on the average, i.e., as,

^n2&51. ~48!

At the opposite end, whenq°0:

G̃c
L~0!5

3S2G̃~0!G̃0~0!

3G̃~0!12~ms /S!2G̃0~0!
, ~49!

which is markedly different fromG̃c
T(0), coinciding with the

latter only for Hs°0. The same will be true for the smal
momentum behavior ofG̃c

L(q). The long-distance behavior
of the two propagators will be then definitely different f
HsÞ0, and so we expect quite different asymptotic beh
iors at infinity, i.e., quite different correlation lengths.6

On top of that, the equation@cf., Eq. ~43!# xL5G̃c
L(0)

provides us also with an independent expression for the
gitudinal susceptibility, explicitly showing how it result
from both one- and two-magnon contributions@the latter

coming from the ‘‘polarization bubble’’G̃(q…#.
In explicit terms, we have, atT50
lly
-

-

-

-

l

e

-

n-

G̃~0!5
~gc!2

8p E dk
1

«~k!3
5

g2

4pcE0

`

dk~k21j22!23/2

5
~gj!2

4pc
. ~50!

Inserting this expression@together with the known value o
G̃0(0)# into the equation forG̃c

L(0) yields back precisely Eq
~33! that had been obtained by lettingL°` in the previous
equation for the longitudinal susceptibility wherever this d
not lead to divergent results, which is precisely the attitu
that has been taken in the present calculation. All this sho
that ~at least! there are no inconsistencies in the MFT a
proach that has been adopted here.

In the next section we will discuss in detail the structu
of the analytic continuation of the propagators to the co
plex frequency plane and to the real axis.

IV. THE ANALYTIC STRUCTURE
OF THE PROPAGATORS

At the present level of approximation the transver
propagator is just a free-boson propagator. Analytic conti
ation is straightforward, leading to

G̃c
T~q,z!5

gcS2

«2~q!2z2
~51!

@«(q)5cAq21j22#. Going to the real axis from abovez
5v1 ih,h°01,

Im G̃c
T~q,v!5

pgcS2

2«~q!
$d„v2«~q!…2d„v1«~q!…%.

~52!

The spectral weight function is then fully exhausted
single poles atv56«(q) which is the structure required5,14

for the applicability of the SMA. The relation, which is
direct consequence5 of the SMA: xT5Sgc/(DT)2, with DT
5D05cj21, is obeyed exactly, at this level of approxim
tion, in the transverse channel.

Let us turn now to the longitudinal propagator, and let

begin by looking at the polarization bubbleG̃(q)

5G̃(q,Vn). We consider for simplicity only theT50 limit
in which the second term on the rhs of Eq.~45! can be
neglected. Then

G̃~q!5
1

2
~gc!2E dk

2p

3
1

«~k!«~k1q!

«~k1q!1«~k!

Vn
21@«~k1q!1«~k!#2

, ~53!

which we write for short as

G̃~q!5
1

2
~gc!2E dk

2p

A~k,q!

Vn
21E~k,q!2

, ~54!

where

E~k,q!5«~k1q!1«~k! ~55!
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and

A~k,q!5
E~k,q!

«~k!«~k1q!
. ~56!

Note that

E~k,q!5E~2k2q,q! ~57!

and the same will hold true forA(k,q).
Performing now the analytic continuation and going to t

real axis from above:

G̃~q,v!5G1~q,v!1 iG2~q,v!, ~58!

where

G1~q,v!5
1

2
~gc!2E dk

2p
PH A~k,q!

E2~k,q!2v2J ~59!

~‘‘ P’’ standing for Cauchy principal part! and

G2~q,v!5
1

4
~gc!2E dk

1

e~k!e~k1q!
@d„v2E~k,q!…

2d„v1E~k,q!…# ~60!

which is odd inv ~which implies thatG1(q,v) will be an
even function ofv) and positive for positivev.

To evaluateG2 explicitly it will be enough to consider the
positive frequency part. Notice that, for any fixedq
min$E(k,q)%52D0(q) @D0(q)5«(q/2),D0(0)5D0#, and
therefore:G2(q,v)50 for uvu,2D0(q), as we know al-
ready. Otherwise, it is easy to see graphically that the eq
tion v5E(k,q) has two solutions atk5k* (q,v)5k02q/2
and at k52k* 2q5k02q/2, where k0

5(v/2c)A@v224D0
2(q)#/(v22c2q2).

Then we obtain easily, as«(k)«(k1q)@]E(k,q)/]k#
5c2@k«(k1q)1(k1q)«(k)#:

G2~q,v!5
g2

4C~q!
u„v224D0

2~q!…sgn~v!, ~61!

where C(q)5uk* «(k* 1q)1(k* 1q)«(k* )u and k*
5k* (q,uvu). An explicit analytic expression forG2 can then
be written down in general, but it is not especially illumina
ing, although it can be very useful for numerical calculatio
It simplifies greatly forq°0, where we get simplyC(q
50)5(uvu/2c)Av224D0

2.
The ~integrable! square-root singularity at the edges

the branch cuts is present at finiteq as well, and
indeed, for v2*2D0

2(q), we obtain, to leading orde
C(q)'a(q)Av224D0

2(q)1O„v224D0
2(q)… with a(q)

5@D0(q)/2cD0#$uvu2q2c2/2D0(q)%.
By exploiting the parity ofG2 ,G1 will be given then, via

dispersion relations, by

G1~q,v!52E
2D0(q)

` dv8

p
v8G2~q,v8!PS 1

v822v2
D ,

~62!

which shows thatG1(q,v) will be strictly positive for uvu
,2D0(q), a result that will prove to be useful shortly.
a-

.

Let us consider now the full longitudinal propagator:

G̃c
L~q,Vn!5gcS2

3
~3G̃~q,Vn!/2gc!

@3G̃~q,Vn!/2gc#@Vn
21«2~q!#1~ms /S!2

.

~63!

Performing the analytic continuation, omitting specific
tion of the labelq and defining:

G~z!5G̃c
L~q,Vn!/gcS2, G~z!53G̃~q,Vn!/2gc,

d5~ms /S!2, e5«~q!, ~64!

we are led to study the analytic structure of a function of
form:

G~z!5
G~z!

G~z!~e22z2!1d
~65!

(0<d,1,e,2D0). G(z) will be given by

G~z!5E dv8

p

G2~v8!

v82z
~66!

with G2(v) having all the properties that have been list
above~odd in v, positive for positivev and vanishing for
uvu<2D0 @cf. Eq. ~61!#, thus producing a branch cut inG(z)
for real z5v and 2D0<uvu,1`). We will write G(v
1 i01)5G1(v)1G2(v) on the real axis. The analytic prop
erties of G(z) will be determined in turn by its spectra
weight function.

Going to the real axis we find, forz5v1 ih,h.0

G~v1 ih!5G1~v!1 iG2~v!, ~67!

where, defining

A~v!5~e22v21h2!G1~v!12hvG2~v!1d, ~68!

B~v!52hvG1~v!2~e22v21h2!G2~v!, ~69!

G1andG2 are given by

G1~v!5
A~v!G1~v!2B~v!G2~v!

A2~v!1B2~v!
~70!

and

G2~v!5
A~v!G2~v!1B~v!G1~v!

A2~v!1B2~v!
. ~71!

Even for h°0, G2 need not vanish whenG2 does. In
particular, we inspect its structure foruvu,2D0 . Sending
h to 0 inside the G ’s ~and only there! we have,
for uvu,2D0 :A(v)5(e22v21h2)G1(v)1d, B(v)
52hvG1(v), leading to

G1~v!5
e22v21h21d/G1~v!

@e22v21h21d/G1~v!#214h2v2
~72!
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and

G2~v!5
2hv

@e22v21h21d/G1~v!#214h2v2
. ~73!

From the structure ofG2(v) it is clear that

lim
h°0

G2~v!5p sgn~v!d„f ~v!…; f ~v!5v22e22
d

G1~v!
.

~74!

Remembering thatG1 is an even function ofv, we can
write G15G1(v2), and f (v)50 will have solutions atv5
6eL with

eL
25e21

d

G1~eL
2!

, ~75!

which reduces~as it should! to e25«2(q) whend°0. More-
over,

d f

dv
52v

d f

dv2
52vF11

d

G1
2~v2!

dG1~v2!

dv2 G . ~76!

According to known formulas, then

lim
h°0

G2~v!5g
p

2eL
$d~v2eL!2d~v1eL!%, ~77!

where

g5H F11
d

G1
2~v2!

dG1~v2!

dv2 G
v5eL

J 21

. ~78!

This proves of course that the longitudinal propagator has~in
the range we are examining! simple poles on the real axis a
v56eL , and the prefactorg will give the reduction of the
quasiparticle weight with respect to the pure bosonic cas

As for small fields,d}Hs
2 , g will approach 1 quadrati-

cally in the field whenHs°0. A numerical plot of the rela-
tive quasiparticle weightg at q50 is presented in Fig. 2. I

FIG. 2. The relative quasiparticle weight of the pole of the lo
gitudinal propagator as a function of the staggered field and aq
50.
.

is a steadily decreasing function of the field, and the q
dratic regime nearHs50 is confined to a very narrow regio
of fields. For higher fields there is an intermediate region
which g is almost linear in the field, and we find numerical
that for S51 it saturates in the high-field limit to

lim
Hs°`

g5 lim
d°1

g.0.279. ~79!

More than 70% of the quasiparticle weight is then lo
when the system evolves towards saturation. No signific
changes are expected forqÞ0.

To complete the analysis we have to investigate the ra
uvu.2D0 of G2(v) where G2(v) does not vanish. With
some long but straightforward algebra we find

G2~v!5
dG2~v!

~e22v2!2
„G2~v!…21„d1~e22v2!G1~v!…2

~80!

for uvu.2D0 . Therefore, in this range of frequenciesG2
will vanish asHs°0 and we will recover the simple pol
structure with the longitudinal and transverse propagators
coming equal. The longitudinal pole will survive also up
saturation, but with a strongly field-dependent strength.

That as the field increases the spectral weight that is
from the pole gets transferred to the two-magnon continu
~80! ~and vice versa when the field decreases! is dictated,
e.g., by the sum rule

E
2`

1`dv

p
v Im G2~v!51. ~81!

The sum rule~81! is just one of the general sum rules co
nected with the moment expansions of the spectral we
functions that are related to equal-time expectation value
multiple commutators and that have been known for a lo
time in many-body theory.16,17 A proof of the sum rule
adapted to the specific context of the NLsM will be given in
the Appendix.~Note, however, that while@cf. Eq. ~52!# all
moments exist for the transverse propagator, whenG2 is
given by Eqs.~77! and ~80! only the first moment will exist
and all the others will turn out to be divergent. This is just
artifact of the mean-field approximation~see, e.g., the dis
cussion of a similar problem in Ref. 17!.!

The pole ateL represents the longitudinal magnon. It w
be a well-defined excitation as long aseL

2(q),4D0
2(q),

which we will prove to be the case. It will be higher i
energy@as we have proved previously thatG1(q,v).0 for
uvu,2D0(q)# than the two~degenerate! transverse magnon
that both have energye, and will become degenerate wit
the latter whend°0 @the limit in which the full SO~3! in-
variance is restored#.

Just as in the transverse case@e5«(q)5Ac2q21DT
2,DT

5cj215D0#, we can define a longitudinal gapDL via DL
5eL(q50), i.e.,

DL
25DT

21
d

G1~0,DL!
. ~82!

In general,

-
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G1~0,v!5
g2c

2
lim
h°0

E
2D0(q)

1` dv8

p

3
1

A~v8224D0
2!

v82 2v2

~v82 1v21h2!224v2v82
.

~83!

As we are assuming hereDL,2DT , the limiting procedure
becomes trivial and we obtain,

G1~0,DL!5
3

4
gE

2DT

1`dv

p

1

A~v224DT
2!

1

v22DL
2

. ~84!

Equation~82! can be rewritten in dimensionless form as

S DL

DT
D 2

511
4d

3gF~DL /DT!
, ~85!

where

F~y!5E
2

1`dx

p

1

Ax224

1

x22y2
; uyu,2. ~86!

Explicitly,

F~y!5
1

2pyA12y2/4
H p

2
2tan21F2

y
A12y2/4G J ~87!

and, definingy5DL /DT we obtain, withg52/S,

y2511
8ms

2ySA12y2/4

3H 12
2

p
tan21F2

y
A12y2/4G J . ~88!

The numerical results for the longitudinal gap are repor
for S51 in Fig. 3, where we report also the results for t
transverse gap. Here, too, the results are in excellent q
tative agreement with the DMRG results, with some sm

FIG. 3. Results for the spin gaps in the longitudinal and tra
verse channels. Dots and full line: DMRG results of Ref. 6 and
mean-field results for the transverse gap. Triangles and dot-da
line: DMRG results of Ref. 6 and our mean-field results for t
longitudinal gap. Dashed line: SMA predictions for the longitudin
gap ~Refs. 5 and 7!.
d

li-
ll

quantitative discrepancies in the low-field regime. We a
find that nearHs50 the longitudinal gap increases rough
as three times the transverse one@actually, limHs°0(DL

2D0)/(DT2D0).3.58#. For Hs°` instead,

y2511
8ySA12y2/4

3H 12
2

p
tan21F2

y
A12y2/4G J , ~89!

and, forS51

lim
Hs°`

DL

DT
.1.855, ~90!

i.e., for high fieldsDL tends to increase slightly less tha
twice DT . This is in agreement with the DMRG results o
Ref. 6. Notice that, however, the limiting form of Eq.~89!
tells us immediately that the ratio of the saturation values
the gaps will tend exactly to two in the large-S limit, and
indeed it is not difficult to see that

lim
Hs°`

DL

DT
'22

a2

S2
~91!

for S@1, with a a numerical constant of order 0.5. The rel
tive quasiparticle weightg can also be shown to be of orde
S22 in the same limit, i.e., it will vanish when the magno
poles reach the edge of the continuum.

V. DISCUSSION AND CONCLUSIONS

We summarize here our results, comparing them at
same time with those obtained within other approaches.
will list and discuss only a few relevant points:

~i! In zero field the excitation spectrum consists of t
well-known degenerate triplet of massive Haldane bos
with energy«(q)5cAq21j22 with a gapD05cj21. For
finite fields, instead,

~ii ! The staggered magnetization curve@Eq. ~29! and Fig.
1# turns out to agree well with the DMRG results of Ref.
As can be deduced directly from Eq.~29! and as was dis-
cussed in more detail in Ref. 7, the low- and high-field b
haviors of the staggered magnetization are, respectively,

ms'xTHs1O~Hs
3! ~92!

for Hs'0 and

ms'SF12
A

AHs

1O~Hs
21!G ~93!

with A a numerical constant~see Ref. 7 for more details! for
large Hs . The value obtained in Ref. 7 ofxT523.74/J is
somewhat higher than the DMRG result6 of xT518.5/J. We
will resume this point shortly below.

Equation ~93! shows that the staggered magnetizati
saturates only asymptotically in the large-field limit. This
what had to be expected, of course, and is a direct co
quence of our implementing in a consistent way the NLsM
constraint. The authors of Ref. 5 found instead a magnet
tion curve that~see Fig. 1! agrees better with the DMRG dat
than ours in the initial part~i.e., for low fieds!, but that dis-
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agrees more and more as the field is increased. Even w
their magnetization saturates at a finite value of the stagg
fields and keeps growing indefinitely beyond saturation
terwards. Full saturation implies of course that the fully p
larized Néel state should become the exact ground state
the Hamiltonian~1!, which is known to be true only asymp
totically for Hs°`. Moreover, anoversaturated magnetiza
tion is clearly not an admissible result.

It appears therefore that softening the NLsM constraint
as done in Ref. 5, can be an admissible procedure in
zero-field limit, that can be also given~see Ref. 18, and
references therein! some legitimation in the same limit, bu
that can become more and more dangerous as the fiel
creases, leading eventually to rather unphysical results.

~iii ! The transverse channel is saturated by a single w
defined magnon pole with energyeT(q)5«(q) and a gap
DT5D0 . The strength of the pole has a rather weak-fi
dependence and the pole persists up to the highest fields
relation xT5Sgc/(DT)2, which is typical of the SMA, is
exactly obeyed in this channel at the mean-field level. B
our results and those of Ref. 5 agree quite well with
DMRG results.

~iv! In the longitudinal channel instead we find also
well-defined magnon pole with energyeL(q) and a gapDL
.DT , but the magnon propagator acquires also a~two-
magnon! branch cut for nonzero staggered fields. T
strength of the pole of the propagator ateL is strongly field
dependent and as the field increases it is steadily transfe
to the continuum, in agreement with the sum rule~81!. Near
saturation, and forS51, the strength of the pole is reduce
to less than 30% of its zero-field value, while it vanish
completely at saturation in the large-S limit. In the same
limit the longitudinal pole disappears into the continuum
saturation, while it remains below the continuum~hence a
well-defined excitation, although with a strongly reduced
tensity! for finite S. The relation analogous to case~iii !,
namely xL5Sgc/(DL)2 is badly violated in this case~cf.
Fig. 3! except in the zero-field limit, and this proves that, d
to a non-negligible contribution from the two-magnon co
tinuum, the SMA is not applicable at all in the longitudin
channel in the presence of a nonvanishing~staggered! field,
as was done in Ref. 5~see the close critical comparison wi
the DMRG results that was made in Ref. 6, and the SM
curve that is reported for comparison in Fig. 3!. This makes
a great difference with the zero-field case, where there
quite convincing evidence19 that two- and/or multimagnon
excitations carry a negligible spectral weight, which tur
out to be actually exactly zero at the mean-field level.
conclusion, we would like to point to two somewhat uns
isfactory aspects of the theoretical scenario that has b
outlined here and elsewhere.5–7

First of all, and as we have already remarked, there
excellent qualitative and even semiquantitative agreem
between our NLsM analysis and the DMRG results over th
whole range of fields. There remain however some quan
tive discrepancies. As to these, we can only stress the
that the NLsM mapping is basically a semiclassical expa
sion starting from the large-S limit that is then continued to
lower values of the spin. Being so, and if it has to have a
validity at all, it should definitely be able to capture all th
essential features of the low-energy physics of models s
se,
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as that of Eq.~1!, which we believe we have proved to be th
case forS51. It should then lead definitely to qualitative an
semiquantitative agreement, but it cannot be expected
yield also, and it would be actually a totally unexpected b
nus if it did, precise quantitative agreement with, e.g.,
DMRG results. We believe that, apart from oth
refinements,13 not much more than that can be expected fro
the NLsM mapping.

In view of what has been just said, however, the qua
tative agreement should improve for increasing values of
spin. A test of the NLsM, in conjunction with a DMRG
analysis, on higher-spin chains can be of some interest.20

Coming now to the experimental scenario outlined in t
Introduction, while essentially all the theoretical models p
sented so far~including ours! yield quite reasonable agree
ment between theory and experiment as far as the stagg
magnetization curve and the transverse gap are concer
recent measurements4 of the longitudinal gap in Nd2BaNiO5
point to some discrepancies between theory and experim
Namely, the longitudinal gap is found to survive, withDL
.DT , also above the Ne´el temperature, i.e., also whenHs
50, which points to~single-ion! anisotropies that, although
could be accomodated very easily within the NLsM ap-
proach, thus leading to an additional spin-gap in the long
dinal channel, are not explicitly accounted for by the mod
considered so far. Moreover, belowTN , the longitudinal gap
appears to grow more slowly than the transverse one,
this remains a so far unresolved puzzle.

More measurements on compunds of the class R2BaNiO5
are called for to ascertain whether this is a general fact o
is specific to Nd2BaNiO5 . If the former were the case, thi
would imply that a model involving just a single chain in a
effective staggered field, interesting in itself and worthy
theoretical interest on its own, although it can account
most of the experimental observations, is not enough to p
vide a complete description of all the observed low-ener
physics features of such compounds, and that more soph
cated models are needed.

APPENDIX: A SUM RULE FOR THE NL sM
PROPAGATORS

To cope with the notation adopted in Sec. IV after E
~64!, we consider~settingg5c5S51), in real time now, a
classical Lagrangian of the form

L~x,t !5
1

2
$u] tnu22u]xnu22V~n!% ~A1!

with V(n) an arbitrary interaction term, e.g., one impleme
ing in some appropriate limit15 the NLsM constraint
n2(x,t)51. The canonical momentum density is defined

p~x,t !5
]L

]~] tn!
5] tn, ~A2!

and the Hamiltonian density will be given, as usual,
H(x,t)5p•] tn2L, with canonical ~equal-time! Poisson
brackets~PB’s!:

$na~x,t !,pb~y,t !%5dabd~x2y! ~A3!

with all the other PB’s vanishing.
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Canonical quantization~here too we set\51 and use for
simplicity the same notation for the classical variables a
the corresponding quantum operators! is accomplished by
replacing the nonvanishing PB’s with the commutators

@na~x,t !,pb~y,t !#5 idabd~x2y!. ~A4!

Then, we obtain immediately, taking expectation valu
in the ground state,

2 i ] t^@na~x,t !,nb~0,0!#&u t5052 i ^@pa~x,0!,nb~0,0!#&

52d~x!. ~A5!

As the rhs involves only equal-time commutators, this re
tion will be true irrespective of the form of the interactio
term as long as the latter depends only onn and not on its
time derivative.

Introducing the Fourier transformAab(k,v) defined via

^@na~x,t !,nb~0,0!#&5E dk

2pE dv

2p

3exp$ i @kx2vt#%Aab~k,v!,

~A6!

Eq. ~A5! will imply the sum rule

E dv

2p
vAab~k,v!5dab. ~A7!

Then, we test it in the case:V(n)5m2n2, with m fixed, e.g.,
by the condition: ^n2(x,t)&51. Then the field can be
quantized18 as@Note that, in order to reproduce correctly th
commutation relations~97! between the fields and the con
jugate momenta, the signs of the arguments of the expo
tials had to be taken here as the opposites of those of
18#:

na~x,t !5E dk

4p«~k!
$ak exp@ i „kx2«~k!t…#

1ak
† exp@2 i „kx2«~k!t…#% ~A8!
nd

,
v

nd

ia,
d

s

-

n-
ef.

@«(k)5Ak21m2#, and

@na~x,t !,pb~y,t !#5 idabd~x2y!⇔@ak
a ,aq

b†#

54pdab«~k!d~k2q!. ~A9!

One finds then easily

^@na~x,t !,nb~0,0!#&5dabE dk

2p
exp~ ikx!

1

2«~k!

3@exp„2 i«~k!t…2exp„i«~k!t…#,

~A10!

when

Aab~k,v!5dab
p

«~k!
$d„v2«~k!…2d„v1«~k!…%

~A11!

and the sum rule can be checked at once.
To compare with Eq.~81!, recall first of all that our defi-

nition @Eq. ~17!# of the Euclidean propagators differs by
sign from that that is usually adopted.21 Accordingly, we will
define the retarded Green functions of the components of
n field as

GR
ab~x,t !5 iu~ t !^@na~x,t !,nb~0,0!#& ~A12!

and their Fourier transform are then given by

G̃R
ab~k,v!52E dv8

2p

Aab~k,v8!

v2v81 id
U

d°01

. ~A13!

Hence

Im G̃R
ab~k,v!5

1

2
Aab~k,v8!. ~A14!

In view of the standard relationship21,22 between retarded~in
real time! and causal~in Euclidean time! Green functions,
the sum rule that we have just derived extends to the Euc
ean propagators introduced in the text and becomes then
sum rule~81!.
m
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