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Properties of the first excited state of nonbipartite Heisenberg spin rings
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Systematic properties of the first excited state are presented for various ring sizes and spin quantum numbers
which are only partly covered by the theorem of Lieb, Schultz, and Mattis. For odd ring sizes the first excited
energy eigenvalue shows unexpected degeneracy and related shift quantum numbers. As a byproduct the
ground state energy as well as the energy of the first excited state of infinite chains are calculated by extrapo-
lating the properties of only a few, finite, antiferromagnetically coupled Heisenberg rings using the powerful
Levin sequence acceleration method.

I. INTRODUCTION AND SUMMARY Having evaluated the spectra of small Heisenberg rings
with isotropic next neighbor interaction one can approximate
Exact diagonalization methoti$ make it possible to in- the infinite chain limit, which for thes=3 ground state is
vestigate small spin rings for various numbbisf spin sites  known as the Bethe-Hultne limit."** Because the se-
and spin quantum numbessfor instance in the Heisenberg guences converge rather slowly and only a limited number of
model. The symmetries of the isotropic Heisenberg Hamiltorenergy eigenvalues can be evaluated, the Leveequence
operator allow to decompose the Hilbert spa¢ento a set  acceleration methdd*®is employed, which leads to impres-
of mutually orthogonal subspacé(S, M, k) according to ~ Sive estimates of the antiferromagnetic ground state energies
the quantum numbers of the total sgBnthe total magnetic as well as of the excitation gap for infinite rings or chains of
quantum numbeM, and the translational quantum numiker larger spin quantum numbers.
of the cyclic shift operator. Since these subspaces are much
smaller, a complete or partial diagonalization of the Hamil- ||, SYSTEMATIC PROPERTIES OF THE SPECTRUM

ton matrix is feasible. ) ) )

The interest in the Heisenberg model, which is known The Hamilton operator of the Heisenberg model with an-
already for a long time, was renewed by the successful syr.pfe_rromagnetlc, |s_0trop|c next nelgh_bor_lnteractlon between
thesis of small magnetic molecules, among them nearly pePins of equal spin quantum numkis given by
fect ring structures of paramagnetic ions like*F8-8 One N
can say that in the majority of these molecules the ions _
couple antiferromagnetically and the spectrum is rather well H= _2‘],(21 09 -s(x+1),
described by the Heisenberg model with isotropic next 1)
neighbor interaction. Vx:s(x)=s, J<0, N+1=1.

Looking at the properties of the calculated spin rings one
realizes that not only the ground states, but also the firdd commutes with the total spi® and its three-component
excited states share systematic properties which are unde®. In additionH is invariant under cyclic shifts generated
stood only for Heisenberg spin rings of an even number oby the cyclic shift operatofl. T is defined by its action on
spin sitegbipartite systemsi.e., they can in part be derived the product basi3)
from the theorem of Lieb, Schultz, and Matti&? Nonbipar-
tite rings which have an odd number of sites, and thus canbe ~ T|my, ... .My_1,My)=[my,mg, ... .My_1), (2
characterized as frustrated, show unexpected properties in - . .
degeneracy and translational quantum number. vv_here the produ%t basis is constructed from single-particle

Knowing systematic rules for quantum numbers also off'genstates of a*(x)
nonbipartite systems would be very useful for comparison of 5 _
theoretical results with measurements in electron spin reso COlmy, ..My, o my=mymy, . my ’mN>('3)
nance (ESR), torque magnetometry, or neutron scattering,
see, e.g., Refs. 1 and 11. One could employ knowledge abohe translational quantum numbke0, ... N—1 modulo
quantum numbers of ground and first excited states in ordex labels the eigenvalues daf which are theNth roots of
to understand the thermal behavior of quantities like theunity
magnetic susceptibility. In addition these exact values may
help to improve low temperature approximations. Usually 2wk
the high temperature behavior of observables is well known, z=exp[ —I W] 4
e.g., from classical spin dynamitsbut at low temperature
such approximations are poor. The knowledge of ground anéxact diagonalization methaotallow to evaluate eigenval-
first excited states could already be sufficient for a considerues and eigenvectors ¢f for small spin rings of various
able improvement. numbersN of spin sites and spin quantum numbersSys-
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TABLE |. Properties of ground and first excited state of AF Heisenberg rings for vafibasd
s ground state energi,, gap AE, degeneracy deg, total sp® and shift quantum numbé¢ (*) O.
Waldmann(private communication () Projection methodRef. 36. Values for higheN are available from

the author.
N
s 2 3 4 5 6 7 8 9 10
15 05 1 0.747 0.934 0.816 0.913 0.844  0.90F,/(NJ)
% 1 4 1 4 1 4 1 4 1 deg
0 1/2 0 1/2 0 1/2 0 1/2 0 S
1 1, 2 0 1.4 3 25 0 2,7 5 K
4.0 3.0 20 2236 1.369 2.098 1.045 1.722  0.846AE/|J|
% 3 4 3 2 3 8 3 8 3 deg
1 3/2 1 1/2 1 3/2 1 3/2 1 S
0 0 2 0 0 1,6 4 3,6 0 K
4 2 3 2612 2.872 2735 2.834 2773  2.819E,/(NJ)
1 1 1 1 1 1 1 1 1 1 deg
0 0 0 0 0 0 0 0 0 S
0 0 0 0 0 0 0 0 0 k
4.0 20 20 1.929 1.441 1.714  1.187 1.540  1.050AE/|J]
1 3 9 3 6 3 6 3 6 3 deg
1 1 1 1 1 1 1 1 1 S
1 0,1,2 2 2,3 3 3,4 4 4,5 5 K
75 35 6 4.973 5.798 5338 5.732 5.477  570&,/(NJ)
g 1 4 1 4 1 4 1 4 1 deg
0 1/2 0 1/2 0 1/2 0 1/2 0 S
1 1,2 0 1.4 3 2,5 0 2,7 5 K
4.0 3.0 20 2.629 1.411 2171 1117 1.838  0/938AE/|J|
g 3 16 3 8 3 8 3 8 3 deg
1 312 1 32 1 3/2 1 312 1 S
0,1,2 2 2,3 0 1,6 4 3,6 0 K
12 6 10 8.456  9.722 9.045 9.630 9.363 9.500 E,/(NJ)
2 1 1 1 1 1 1 1 1 1 deg
0 0 0 0 0 0 0 0 0 S
0 0 0 0 0 0 0 0 0 K
4.0 20 20 1.922 1.394 1.652  1.091 1.431 0.906  AE/|J]
2 3 9 3 6 3 6 3 6 3 deg
1 1 1 1 1 1 1 1 1 S
1 0,1,2 2 2,3 3 3,4 4 4,5 5 K
17.5 85 15 12.434 14.645  13.451 1452813.848 14.475 E,/(NJ)
g 1 4 1 4 1 4 1 4 1 deg
1/2 0 1/2 0 1/2 0 1/2 0 S
1 1,2 0 1,4 3 25 0 2,7 5 k

tematic investigationt$~2! revealed interesting properties of number and the degeneracy, for example, depend solely on
ground state quantum numbers—compare Table |, which onlis. If Nsis integer, then the ground state H&s 0 and is

for bipartite rings can be explained by the theorem of Lieb,nondegenerate; Nsis half integer, then the ground state has
Schultz, and Matti$:!® The ground state spin quantum S=1/2 and is fourfold degeneraté.
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FIG. 1. Left-hand side: Ground state energigsgmbolg for 5=2 . s=5/2
antiferromag.ne.tic coupled Heisenbe[g ring:.asef.llz compared to S nfgsew \+\+ N =] L] I P ——
the largeN limit of Bethe and Hulthe (solid line). Right-hand < X,_x—--x < )<" T
side: Relative deviation of the Levimestimate from the limit of W st w /
Bethe and Hulthe. Plus symbols are used for evbin crosses for 0r ,
oddN. The circled symbols show how much the ground state ener- 8L X . m . . X . m
gies themselves deviate from the limit. N N

. . . FIG. 2. Left-hand side: Ground state energisgmbols for
It appears that for the properties of the first excited Stat(':émtiferromagnetic coupled Heisenberg rings compared to the Levin

such rules do not hold in general, but only for “high  estimate(hatched area, sometimes shrunk to a)lifus symbols
enough”N (N>5). Then, as can be anticipated from Table 5re ysed for eveNl, crosses for odd.

[, we can conjecture that il is even, then the first excited
state hasS=1 and is threefold degenerate, and\ifis odd E
and the single particle spin is half-integer, then the first ex- _Owem_
cited state haS=3/2 and is eightfold degenerate, whereas if N
N is odd and the single particle spin is integer, then the firs
excited state haS=1 and is sixfold degenerate.

Except for small oddN also the cyclic shift quantum

o

N2 )

Let us denote the elements of our seriedlgyU,,Us, ... .

In order to construct monotonic sequences the alternating

numbersk of the first excited state show an interesting Series for a certain slpm are divided into two monotonic sub-
series, e.g., fors=3: U;=Ey(N=2), U,=Ey(N=4),

regularity. = e . .
For oddN=7, k assumes a certain value for all integer U3=Ey(N=6), ... . The differences between successive
sequence elements are labeleg=U,, u,=U,—U{, uj

spins and another value for all half-integer spins. We con- . . - :
jecture that thek quantum numbers for half-integer spins =U3—U,, ... . Then the Levinrestimate using series
are k=3|(N+1)/4] and k=N—3[(N+1)/4. [(N+1)/4 elements reads

symbolizes the greatest integer less or equalNa-()/4.

For integer spins numerical data are poor but it seemskthat 2”: )k Lmn-2y.

is as close as possible /2, i.e., k=|N/2] and k=N k=1( ) k! Uk

—|N/2). Uln]=—5 6
For evenN the shift quantum numbek is N/2, if N/2 2 (— 1)< YMk21py,

is also even; ifN/2 is odd,k=0 for half-integer spin and k=1

k=N/2 for integer spin.

For spin rings these properties may be also derived us- f+ " " ] T
ing the Bethe ansafz:'* = |y s=vz| S| s=1
Y P X \
Ej_ 2 -\kixx*x ::E_ 2 X% P xex
= Ty % = Losost T4 L L L
Il INFINITE CHAIN LIMITS 2000 -I—-.,_++++ =
Besides the importance of the above presented results fo o 0 o5 o 2
magnetic molecule$?>7231124%he obtained energy eigen- N N
values enable us to estimate the antiferromagnetic grount y T] T
state energ¥Ey(N) in the largeN limit for a variety of spin Y s=3/2 = s=2
quantum numbers. Of course this calculation cannot competcs ™ X s
: I >t % >2 *¥exe
with nowadays DMRG results, but reaches astonishingly+ . Y S ex
close. il T Tt < 0,09 T
As one can see in Table | or Fig. (left-hand sidg the or 1 o=
convergence of energy eigenvalues withis rather slow. 0 5 10 1 0 5 1 15
Therefore, an improved estimate is calculated using the N N
Levin u-sequence acceleration methiddyhich is appropri- FIG. 3. Excitation energy of the first excited state for anti-

ate if the series elements form an approximately linear fuanerromagnetic coupled Heisenberg rings and the Lewiresti-
tion in 14* with a certain positivek, which to first approxi-  mate (hatched area Plus symbols are used for evéd) crosses
mation is the case for the sequences of Table I. Thisor odd N. To generate these figures also previously obtained
observation is in accordance with the Wess-Zumino-Witterexact diagonalization results of other authors have been (&fd.
model, see, e.g., Ref. 25, which yields 30-33, 27.
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The following example for the sequence built of the energieRRef. 29 and 5.658 of Ref. 28. For these sequences previously
for even numbers of spis=1/2 demonstrates how fast the obtained exact diagonalization results have been used,
Levin u estimate approaches the correct limit too30-33.27

The excitation energies of the first excited state, see Table
{U[n]}={1.5, 1.2, 0.8735510038, 0.8885066176, I, enable us to approach the gap for infinite chains or rings. It

0.8858640679 0.8863719562. 0.8862817068 vanishes for half integer spins and remains finite for integer
' T T ’ spins, Haldane conjectufé2®The following example shows

0.8862961998, 0.8862941347, ... the Levinu sequence fos=1/2 and everN:
—0.886294361%2 In2—1/2. (7) {U[n]}={4, 3, —2.464274955, 0.26749212,
Roughly one can say that, if the deviations from a power- 0.052311106824 —0.04294415611,
law behavior are smalh sequence elements lead to an ac-
curacy of aboun—4 digits, see Fig. 1right-hand sidg Of 0.01234278872,—-0.003416797715,
course the limit can only be as accurate as the individual
sequence elements. 0.0001536344576363, .}—0. (8)

The procedure is also applied to spin valuss |n Fig. 3 one can see that the behavior of the sequence is
=1,3/2,2,5/2 and the results are depicted in Fig. 2. Thenuch smoother for eveN, whereas the somewhat strange
hatched areas indicate the interval according to the gaiﬂeﬂeha\/ior for small odd\ destroys a fast convergence. The
accuracy of the sequence acceleration method, the attachggnvergence of the gap sequences is slowed down by much
number denotes the mean value of the interval. Since thetronger logarithmic corrections to the power-law behavior
sequences built from values for eveé converge much than present in the ground state energy sequences. Thus the
faster, they determine the results. gained accuracy for higher spin quantum numbers is rather

In the upper left of Fig. 2 the estimate for the infinite |imited and larger rings together with methods like DMRG
chain limit for spins=1 is shown. The estimated ground have to be used, see, e.g., Refs. 27,37,38.

state energy oE,/(NJ)=2.802967 0.0000005 agrees very
well with the result 2.8029680779¢4 found in Ref. 26 and
also with other DMRG and TMRG calculations, see, e.g.,
Refs. 27 and 28. Also fos=3/2 the limit is rather well The author would like to thank M. Luban for introducing
approximated, the value oE,/(NJ)=5.65681-0.00001 the Levin methods to him and K. Bainkel, E. Kotomin, D.
suggests new discussion of the results 5.6536860002 of Mentrup, and H.-J. Schmidt for helpful discussions.
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