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Properties of the first excited state of nonbipartite Heisenberg spin rings

J. Schnack*
Universität Osnabrück, Fachbereich Physik, Barbarastrasse 7, D-49069 Osnabru¨ck, Germany

~Received 21 June 2000!

Systematic properties of the first excited state are presented for various ring sizes and spin quantum numbers
which are only partly covered by the theorem of Lieb, Schultz, and Mattis. For odd ring sizes the first excited
energy eigenvalue shows unexpected degeneracy and related shift quantum numbers. As a byproduct the
ground state energy as well as the energy of the first excited state of infinite chains are calculated by extrapo-
lating the properties of only a few, finite, antiferromagnetically coupled Heisenberg rings using the powerful
Levin sequence acceleration method.
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I. INTRODUCTION AND SUMMARY

Exact diagonalization methods1–5 make it possible to in-
vestigate small spin rings for various numbersN of spin sites
and spin quantum numberss, for instance in the Heisenber
model. The symmetries of the isotropic Heisenberg Hamil
operator allow to decompose the Hilbert spaceH into a set
of mutually orthogonal subspacesH(S, M , k) according to
the quantum numbers of the total spinS, the total magnetic
quantum numberM, and the translational quantum numbek
of the cyclic shift operator. Since these subspaces are m
smaller, a complete or partial diagonalization of the Ham
ton matrix is feasible.

The interest in the Heisenberg model, which is kno
already for a long time, was renewed by the successful s
thesis of small magnetic molecules, among them nearly
fect ring structures of paramagnetic ions like Fe31.6–8 One
can say that in the majority of these molecules the io
couple antiferromagnetically and the spectrum is rather w
described by the Heisenberg model with isotropic n
neighbor interaction.

Looking at the properties of the calculated spin rings o
realizes that not only the ground states, but also the
excited states share systematic properties which are un
stood only for Heisenberg spin rings of an even number
spin sites~bipartite systems!, i.e., they can in part be derive
from the theorem of Lieb, Schultz, and Mattis.9,10 Nonbipar-
tite rings which have an odd number of sites, and thus ca
characterized as frustrated, show unexpected propertie
degeneracy and translational quantum number.

Knowing systematic rules for quantum numbers also
nonbipartite systems would be very useful for comparison
theoretical results with measurements in electron spin re
nance~ESR!, torque magnetometry, or neutron scatterin
see, e.g., Refs. 1 and 11. One could employ knowledge a
quantum numbers of ground and first excited states in o
to understand the thermal behavior of quantities like
magnetic susceptibility. In addition these exact values m
help to improve low temperature approximations. Usua
the high temperature behavior of observables is well kno
e.g., from classical spin dynamics,12 but at low temperature
such approximations are poor. The knowledge of ground
first excited states could already be sufficient for a consid
able improvement.
PRB 620163-1829/2000/62~22!/14855~5!/$15.00
n

ch
-

n-
r-

s
ll
t

e
st
er-
f

be
in

f
f
o-
,
ut

er
e
y

y
n,

d
r-

Having evaluated the spectra of small Heisenberg ri
with isotropic next neighbor interaction one can approxim
the infinite chain limit, which for thes5 1

2 ground state is
known as the Bethe-Hulthe´n limit.13,14 Because the se
quences converge rather slowly and only a limited numbe
energy eigenvalues can be evaluated, the Levinu-sequence
acceleration method15,16 is employed, which leads to impres
sive estimates of the antiferromagnetic ground state ener
as well as of the excitation gap for infinite rings or chains
larger spin quantum numbers.

II. SYSTEMATIC PROPERTIES OF THE SPECTRUM

The Hamilton operator of the Heisenberg model with a
tiferromagnetic, isotropic next neighbor interaction betwe
spins of equal spin quantum numbers is given by

H> 522J(
x51

N

s>~x!•s>~x11!,

~1!
;x:s~x!5s, J,0, N11[1.

H> commutes with the total spinS> and its three-componen
S> 3. In additionH> is invariant under cyclic shifts generate
by the cyclic shift operatorT> . T> is defined by its action on
the product basis~3!

T> um1 , . . . ,mN21 ,mN&5umN ,m1 , . . . ,mN21&, ~2!

where the product basis is constructed from single-part
eigenstates of alls>3(x)

s>3~x!um1 , . . . ,mx , . . . ,mN&5mxum1 , . . . ,mx , . . . ,mN&.
~3!

The translational quantum numberk50, . . . ,N21 modulo
N labels the eigenvalues ofT> which are theNth roots of
unity

z5expH 2 i
2pk

N J . ~4!

Exact diagonalization methods5,4 allow to evaluate eigenval
ues and eigenvectors ofH> for small spin rings of various
numbersN of spin sites and spin quantum numberss. Sys-
14 855 ©2000 The American Physical Society
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TABLE I. Properties of ground and first excited state of AF Heisenberg rings for variousN and
s: ground state energyE0 , gap DE, degeneracy deg, total spinS, and shift quantum numberk. ~* ! O.
Waldmann~private communication!. ~†! Projection method~Ref. 36!. Values for higherN are available from
the author.

s
N

2 3 4 5 6 7 8 9 10

1.5 0.5 1 0.747 0.934 0.816 0.913 0.844 0.903E0 /(NJ)

1

2
1 4 1 4 1 4 1 4 1 deg

0 1/2 0 1/2 0 1/2 0 1/2 0 S
1 1, 2 0 1,4 3 2,5 0 2,7 5 k

4.0 3.0 2.0 2.236 1.369 2.098 1.045 1.722 0.846DE/uJu
1

2
3 4 3 2 3 8 3 8 3 deg

1 3/2 1 1/2 1 3/2 1 3/2 1 S
0 0 2 0 0 1,6 4 3,6 0 k

4 2 3 2.612 2.872 2.735 2.834 2.773 2.819E0 /(NJ)
1 1 1 1 1 1 1 1 1 1 deg

0 0 0 0 0 0 0 0 0 S
0 0 0 0 0 0 0 0 0 k

4.0 2.0 2.0 1.929 1.441 1.714 1.187 1.540 1.050DE/uJu
1 3 9 3 6 3 6 3 6 3 deg

1 1 1 1 1 1 1 1 1 S
1 0,1,2 2 2,3 3 3,4 4 4,5 5 k

7.5 3.5 6 4.973 5.798 5.338 5.732 5.477 5.704† E0 /(NJ)

3

2
1 4 1 4 1 4 1 4 1 deg

0 1/2 0 1/2 0 1/2 0 1/2 0 S
1 1,2 0 1,4 3 2,5 0 2,7 5 k

4.0 3.0 2.0 2.629 1.411 2.171 1.117 1.838 0.938† DE/uJu
3

2
3 16 3 8 3 8 3 8 3 deg

1 3/2 1 3/2 1 3/2 1 3/2 1 S
0 0,1,2 2 2,3 0 1,6 4 3,6 0 k

12 6 10 8.456 9.722 9.045 9.630 9.263† 9.590† E0 /(NJ)
2 1 1 1 1 1 1 1 1 1 deg

0 0 0 0 0 0 0 0 0 S
0 0 0 0 0 0 0 0 0 k

4.0 2.0 2.0 1.922 1.394 1.652 1.091 1.431† 0.906† DE/uJu
2 3 9 3 6 3 6 3 6 3 deg

1 1 1 1 1 1 1 1 1 S
1 0,1,2 2 2,3 3 3,4 4 4,5 5 k

17.5 8.5 15 12.434 14.645 13.451 14.528* 13.848† 14.475† E0 /(NJ)

5

2
1 4 1 4 1 4 1 4 1 deg

0 1/2 0 1/2 0 1/2 0 1/2 0 S
1 1,2 0 1,4 3 2,5 0 2,7 5 k
f
n
b

m

y on

as
tematic investigations17–21 revealed interesting properties o
ground state quantum numbers–compare Table I, which o
for bipartite rings can be explained by the theorem of Lie
Schultz, and Mattis.9,10 The ground state spin quantu
ly
,

number and the degeneracy, for example, depend solel
Ns. If Ns is integer, then the ground state hasS50 and is
nondegenerate; ifNs is half integer, then the ground state h
S51/2 and is fourfold degenerate.21
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It appears that for the properties of the first excited st
such rules do not hold in general, but only for ‘‘hig
enough’’N (N.5). Then, as can be anticipated from Tab
I, we can conjecture that ifN is even, then the first excite
state hasS51 and is threefold degenerate, and ifN is odd
and the single particle spin is half-integer, then the first
cited state hasS53/2 and is eightfold degenerate, whereas
N is odd and the single particle spin is integer, then the fi
excited state hasS51 and is sixfold degenerate.

Except for small oddN also the cyclic shift quantum
numbersk of the first excited state show an interesti
regularity.

For oddN>7, k assumes a certain value for all integ
spins and another value for all half-integer spins. We c
jecture that thek quantum numbers for half-integer spin
are k53b(N11)/4c and k5N23b(N11)/4c. b(N11)/4c
symbolizes the greatest integer less or equal to (N11)/4.
For integer spins numerical data are poor but it seems thk
is as close as possible toN/2, i.e., k5 bN/2c and k5N
2 bN/2c.

For evenN the shift quantum numberk is N/2, if N/2
is also even; ifN/2 is odd,k50 for half-integer spin and
k5N/2 for integer spin.

For spin-12 rings these properties may be also derived
ing the Bethe ansatz.13,14

III. INFINITE CHAIN LIMITS

Besides the importance of the above presented result
magnetic molecules,1,22,7,23,11,24the obtained energy eigen
values enable us to estimate the antiferromagnetic gro
state energyE0(N) in the largeN limit for a variety of spin
quantum numbers. Of course this calculation cannot com
with nowadays DMRG results, but reaches astonishin
close.

As one can see in Table I or Fig. 1~left-hand side!, the
convergence of energy eigenvalues withN is rather slow.
Therefore, an improved estimate is calculated using
Levin u-sequence acceleration method,15 which is appropri-
ate if the series elements form an approximately linear fu
tion in 1/i k with a certain positivek, which to first approxi-
mation is the case for the sequences of Table I. T
observation is in accordance with the Wess-Zumino-Wit
model, see, e.g., Ref. 25, which yields

FIG. 1. Left-hand side: Ground state energies~symbols! for
antiferromagnetic coupled Heisenberg rings ofs51/2 compared to
the largeN limit of Bethe and Hulthe´n ~solid line!. Right-hand
side: Relative deviation of the Levinu estimate from the limit of
Bethe and Hulthe´n. Plus symbols are used for evenN, crosses for
oddN. The circled symbols show how much the ground state en
gies themselves deviate from the limit.
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N2 . ~5!

Let us denote the elements of our series byU1 ,U2 ,U3 , . . . .
In order to construct monotonic sequences the alterna
series for a certain spin are divided into two monotonic s
series, e.g., fors5 1

2 : U15E0(N52), U25E0(N54),
U35E0(N56), . . . . The differences between success
sequence elements are labeledu15U1 , u25U22U1 , u3
5U32U2 , . . . . Then the Levinu-estimate usingn series
elements reads

U@n#5

(
k51

n

~21!k21~k
n!kn22Uk /uk

(
k51

n

~21!k21~k
n!k221/uk

. ~6!

r-

FIG. 2. Left-hand side: Ground state energies~symbols! for
antiferromagnetic coupled Heisenberg rings compared to the L
u estimate~hatched area, sometimes shrunk to a line!. Plus symbols
are used for evenN, crosses for oddN.

FIG. 3. Excitation energy of the first excited state for an
ferromagnetic coupled Heisenberg rings and the Levinu esti-
mate ~hatched area!. Plus symbols are used for evenN, crosses
for odd N. To generate these figures also previously obtain
exact diagonalization results of other authors have been used~Refs.
30–33, 27!.
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The following example for the sequence built of the energ
for even numbers of spins51/2 demonstrates how fast th
Levin u estimate approaches the correct limit

$U@n#%5$1.5, 1.2, 0.8735510038, 0.8885066176,

0.8858640679, 0.8863719562, 0.8862817068

0.8862961998, 0.8862941347, . . .%

→0.886294361152 ln 221/2. ~7!

Roughly one can say that, if the deviations from a pow
law behavior are small,n sequence elements lead to an a
curacy of aboutn24 digits, see Fig. 1~right-hand side!. Of
course the limit can only be as accurate as the individ
sequence elements.

The procedure is also applied to spin valuess
51,3/2,2,5/2 and the results are depicted in Fig. 2. T
hatched areas indicate the interval according to the ga
accuracy of the sequence acceleration method, the atta
number denotes the mean value of the interval. Since
sequences built from values for evenN converge much
faster, they determine the results.

In the upper left of Fig. 2 the estimate for the infini
chain limit for spin s51 is shown. The estimated groun
state energy ofE0 /(NJ)52.80296760.0000005 agrees ver
well with the result 2.802968077942~4! found in Ref. 26 and
also with other DMRG and TMRG calculations, see, e.
Refs. 27 and 28. Also fors53/2 the limit is rather well
approximated, the value ofE0 /(NJ)55.6568160.00001
suggests new discussion of the results 5.6566660.00002 of

*Email address: jschnack@uos.de. URL: http://www.physik.u
osnabrueck.de/makrosysteme/
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Ref. 29 and 5.658 of Ref. 28. For these sequences previo
obtained exact diagonalization results have been u
too.30–33,27

The excitation energies of the first excited state, see Ta
I, enable us to approach the gap for infinite chains or rings
vanishes for half integer spins and remains finite for inte
spins, Haldane conjecture.34,35The following example shows
the Levinu sequence fors51/2 and evenN:

$U@n#%5$4, 3, 22.464274955, 0.26749212,

0.052311106824,20.04294415611,

0.01234278872,20.003416797715,

0.0001536344576363, . . .%→0. ~8!

In Fig. 3 one can see that the behavior of the sequenc
much smoother for evenN, whereas the somewhat strang
behavior for small oddN destroys a fast convergence. Th
convergence of the gap sequences is slowed down by m
stronger logarithmic corrections to the power-law behav
than present in the ground state energy sequences. Thu
gained accuracy for higher spin quantum numbers is ra
limited and larger rings together with methods like DMR
have to be used, see, e.g., Refs. 27,37,38.
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