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Extension to order b 23 of the high-temperature expansions for the spin-12 Ising model on simple
cubic and body-centered cubic lattices

P. Butera* and M. Comi†

Istituto Nazionale di Fisica Nucleare, Dipartimento di Fisica, Universita` di Milano, Via Celoria 16, 20133 Milano, Italy
~Received 5 June 2000!

Using a renormalized linked-cluster-expansion method, we have extended to orderb23 the high-temperature
series for the susceptibilityx and the second-moment correlation lengthj of the spin-1/2 Ising models on the
sc and the bcc lattices. A study of these expansions yields updated direct estimates of universal parameters,
such as exponents and amplitude ratios, which characterize the critical behavior ofx andj. Our best estimates
for the inverse critical temperatures arebc

sc50.221 654(1) andbc
bcc50.157 3725(6). For thesusceptibility

exponent we getg51.2375(6) and for the correlation length exponentn50.6302(4). Theratio of the critical
amplitudes ofx above and below the critical temperature is estimated to beC1 /C254.762(8). Theanalogous
ratio for j is estimated to bef 1 / f 251.963(8). For thecorrection-to-scaling amplitude ratio we obtain
aj

1/ax
150.87(6).
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I. INTRODUCTION

As a part of an ongoing long-term program of comput
based calculations and analyses of high-temperature~HT! se-
ries for two-dimensional1 and three-dimensional2,3 lattice
spin models, we have extended by two terms the hi
temperature series for the spin-1/2 Ising model on the sim
cubic ~sc! and the body-centered cubic~bcc! lattices. In the
first analysis presented here, we shall consider only the
expansions throughb23 for the susceptibilityx and the
second-moment correlation lengthj, mainly in order to up-
date thedirect estimates of the corresponding critical indic
g andn.

For the sc lattice, the longest expansions of these qua
ties already in the literature reach orderb21. They were ob-
tained and analyzed in Refs. 2 and 3 only a few years ago
the case of the bcc lattice, the published series4,5 for x andj,
also extending throughb21, were calculated by Nickel two
decades ago. The progress in such computations has
slow due to the exponential growth of their complexity wi
the order of the expansion, so that even adding only a
terms to the present results is a laborious task. Within
renormalized linked-cluster6 expansion method, used in ou
work, one must overcome many problems of combinato
nature concerning graph generation, classification, and
tial resummation, and a special effort must be devoted
keep under strict control the numerous possible source
error. In our case, a final severe test is provided by hav
the program reproduce, in three dimensions, established
like the series for the nearest-neighbor spin correlation on
sc lattice, which is already tabulated7 throughb27, and, in
two dimensions, the series forx andm2 on the simple square
lattice, which are known4,5 throughb35 and beyond.8,9 After
the completion of this work, a preprint10 has been issued
which also reports independently extended expansions fx
andm2 on both the the sc and the bcc lattice through ord
b23 andb25, respectively. Our series coefficients agree w
those of Ref. 10 as far as the expansions overlap. This a
further confidence about the correctness of the results s
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our implementation of the linked cluster expansion pro
dure is rather different from that described in Ref. 10.

Any enrichment of the exact information on the thre
dimensional~3D! Ising model is still of general interest
Here we have used these data to improve the knowledg
the non-negligible singular corrections11 to the leading criti-
cal singularities ofx andj and, as a consequence, the acc
racy of the direct HT series estimates of all critical para
eters. As stressed in Refs. 4 and 5, the corrections to sca
first showed up unambiguously when the bcc series w
extended to orderb21, the last three coefficients bein
crucial.5 It is therefore helpful to produce more coefficient
in order to stabilize and possibly refine the quality of t
information extracted from the series.

The plan of this note is as follows: after setting our no
tional conventions in Sec. II, we tabulate the series coe
cients for x and m2 through order 23, with respect to th
usual HT expansion variablev5th(b). In Sec. III we report
the results of our extrapolations for the critical temperatur
for the critical exponentsg and n, for the universal ratio
C1 /C2 of the critical amplitudes of the susceptibility abov
and below the critical point, for the analogous ratiof 1 / f 2 of
the correlation-length amplitudes, and for the ratioaj

1/ax
1 of

the correction-to-scaling amplitudes.12 Our estimates are
compared with the latest numerical calculations by series
stochastic methods, and by perturbative renormalizati
group ~RG! techniques, in the fixed-dimension~FD!
approach13–19and in thee-expansion approach.17–22Less re-
cent studies have been already reviewed in our Refs. 2 an

II. DEFINITIONS AND NOTATIONS

In order to introduce our notation, we shall specify by t
Hamiltonian

H$s%52
J

2 (
^xW ,xW8&

s~xW !s~xW8! ~1!

the nearest-neighbor three-dimensional spin-1/2 Ising mo
in zero magnetic field. Heres(xW )561 is the spin variable a
14 837 ©2000 The American Physical Society
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14 838 PRB 62P. BUTERA AND M. COMI
the lattice sitexW , and the sum extends over all neare
neighbor pairs of sites. We shall consider expansions in
usual HT variableb5J/kBT called ‘‘inverse temperature’
for brevity. However, for convenience, we shall tabulate
series coefficients with respect to the expansion variablv
5th(b).

The susceptibility is expressed in terms of the connec
two-spin correlation function̂s(xW )s(yW )&c by

x~b!5(
xW

^s~0!s~xW !&c511(
r 51

`

arb
r , ~2!

and the second moment of the correlation function is defi
as
ty
-
e

e

d

d

m2~b!5(
xW

xW2^s~0!s~xW !&c5(
r 51

`

brb
r . ~3!

In terms ofx andm2 the second-moment correlation lengthj
is defined by

j2~b!5
m2~b!

6x~b!
. ~4!

For easy reference we report here the complete exp
sions ofx andm2, rather than only the lastly computed tw
coefficients. For the susceptibility on the sc lattice we ha
xsc~v !5116v130v21150v31726v413510v5116710v6179494v71375174v811769686v918306862v10

138975286v111182265822v121852063558v1313973784886v14118527532310v15186228667894v16

1401225368086v1711864308847838v1818660961643254v19140190947325670v201186475398518726v21

1864404776466406v2214006394107568934v231•••.

For the second moment on the sc lattice we have

m2
sc~v !56v172v21582v314032v4125542v51153000v61880422v714920576v8126879670v91144230088v10

1762587910v1113983525952v12120595680694v131105558845736v141536926539990v1512713148048256v16

113630071574614v17168121779384520v181338895833104998v1911678998083744448v20

18287136476787862v21140764741656730408v221199901334823355526v231•••.

For the susceptibility on the bcc lattice we have

xbcc~v !5118v156v21392v312648v4117864v51118760v61789032v715201048v8134268104v91224679864v10

11472595144v1119619740648v12162823141192v131409297617672v1412665987056200v15

117333875251192v161112680746646856v171731466943653464v1814747546469665832v19

130779106675700312v201199518218638233896v2111292141318087690824v22

18367300424426139624v231•••.

For the second moment on the bcc lattice we have

m2
bcc~v !58v1128v211416v3113568v41119240v51992768v617948840v7161865216v81470875848v9

13521954816v10125965652936v111189180221184v1211364489291848v1319757802417152v14

169262083278152v151488463065172736v1613425131086090312v17123896020585393152v18

1165958239005454632v1911147904794262960384v2017910579661767454248v21

154332551216709931904v221372033905161237212392v231•••.
cc,
III. ANALYSIS OF THE SERIES

In terms of the reduced inverse temperaturet#51
2b/bc

# , the asymptotic critical behavior of the susceptibili
is expected to be11
x#~b!.C1
# ~t#!2g~11ax

1#~t#!u1•••1ex
1#t#1 . . . !

~5!

as the critical pointbc
# is approached from below.~Here and

in what follows, the superscript # stands for either sc or b
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TABLE I. The sequences of approximants forbc andg defined by Eqs.~7! and~9!, respectively, and the
sequences of the appropriate extrapolations using alternate pairs, as obtained fromx on the bcc lattice. For
the extrapolations we have assumed thatu50.504.

n (bc)n from Eq. ~7! Extrapol. of (bc)n gn from Eq. ~9! Extrapol. ofgn

18 0.1573815 1.244335
19 0.1573806 1.244174
20 0.1573807 0.1573761 1.244049 1.238519
21 0.1573800 0.1573759 1.243889 1.238114
22 0.1573799 0.1573743 1.243760 1.237595
23 0.1573793 0.1573746 1.243620 1.237599
24 0.1573791 0.1573739 1.243501 1.237475
25 0.1573787 0.1573740 1.243374 1.237421
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as appropriate, and will be dropped whenever unnecess
The index1 ~-! denotes, as usual, quantities associated w
the high~low! temperature side of the critical point.! Simi-
larly, for the correlation lengthj, we expect

j#~b!. f 1
# ~t#!2n~11aj

1#~t#!u1•••1ej
1#t#1 . . . !

~6!

ast→01.
The exponentsg, n, and u are universal quantities

whereas the critical amplitudesC1
# , f 1

# , the amplitudes
ax

1# , aj
1# of the leading nonanalytic correction-to-scalin

terms, and the amplitudesex
1# , ej

1# of the leading analytic
corrections are nonuniversal, as suggested by the supers
#. Experimentally accessible universal combinations can
formed out of the critical amplitudes.12 Here we shall be
concerned with series estimates of the universal ra
C1 /C2 , f 1 / f 2 , and ax

1/aj
1 . Notice that for the critical

amplitudes we have adopted the notation of Ref. 18 and
other recent studies rather than that of Ref. 12.

A. Estimates of the critical points

As a first step of the analysis, we shall examine the se
for the susceptibility whose coefficients have the smooth
pattern of behavior, so that they are generally used to e
mate the critical temperatures. These estimates will also
used to bias the determination of the critical exponents
of the universal amplitude ratios; therefore, their accurac
crucial. Let us begin by considering the results obtained b
very efficient variant of the ratio method introduced
Zinn-Justin23 ~see also Ref. 8!.

We evaluatebc from the sequence

~bc!n5S an22an23

anan21
D 1/4

expF sn1sn22

2sn~sn2sn22!G5bc1OS 1

n11uD
~7!

where

sn5F lnS an22
2

anan24
D 21

1 lnS an23
2

an21an25
D 21G Y 2. ~8!

This is anunbiasedmethod, in the sense that no addition
accurate information must be used together with the serie
order to get the estimates of the critical parameters, but
found it useful to improve the procedure by biasing it w
ry.
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the value ofu as follows. For sufficiently largen, the se-
quence of estimates (bc)n shows very small regular oscilla
tions due to the loose structure of the lattice. Moreover,
odd and even subsequences of (bc)n have a residual decreas
ing trend which is very nearly linear on a 1/n11u plot, as
suggested by Eq.~7!. Therefore, simply taking the highes
order term of the sequence (bc)n as the final estimate would
be an inadequate choice. We have preferred to extrapo
separately ton → ` the successive odd and even pairs
estimates (bc)n , assuming that we know the value ofu well
enough. The two sequences of extrapolated values need
ther extrapolation which allows also for the small residu
curvature of the plot and leads to the final estimatesbc

sc

50.221 654(1) in the case of the sc lattice, andbc
bcc

50.157 3725(6) in thecase of the bcc lattice. The errors w
have reported account generously both for the present un
tainty in u ~whose effects in this analysis are very sm
anyway! and for the uncertainty of the second extrapolatio
For the correction-to-scaling exponent we have assumed
value u50.504(8), obtained by the FD perturbative RG.17

Also in the rest of this paper the central values of
u-biased estimates will refer to this value. However, in t
calculations of this and Sec. III B, we have also considere
much larger uncertainty, in order to make sure that our
sults are compatible with somewhat higher central val
such asu50.52(3), proposed in Ref. 5~as well as in Ref.
24, with a smaller error!, or with u50.53(1) suggested in
Ref. 25. An even larger central valueu50.54(3) was indi-
cated in Refs. 26 and 27, while an experimental meas
reported in Ref. 28 yieldsu50.57(9). In thecase of the bcc
lattice, as an example of our extrapolation procedure,
have reported in Table I the last eight terms of the seque
(bc)n and the results of the initial extrapolation of the last s
successive alternate pairs of terms. Our final result for
critical inverse temperature of the Ising model on the sc
tice is completely compatible, although much less prec
than the valuebc

sc50.221 654 59(10) obtained from an ex
tensive Monte Carlo~MC! study by a dedicated cluste
processor24 and generally considered as the best availa
estimate. Our central value ofbc

bcc , obtained similarly, is
only slightly smaller, but more precise than the valuebc

bcc

50.157 373(2) suggested in the Nickel and Re
analysis.5,23,29 We should finally mention that Professor D
Stauffer30 kindly informed us that he still tends to favor th
somewhat larger central estimatebc

sc50.221 659, basing on
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14 840 PRB 62P. BUTERA AND M. COMI
the HT analysis in Ref. 31, as well as on his own rec
simulation30 of the critical dynamics and on analogous wo
in Ref. 32. We also recall that a similar valuebc

sc

50.221 659 5(26) was indicated a decade ago in the Mo
Carlo simulation of Ref. 33. In the context of our analys
these values lie approximately halfway between the high
order approximant (bc

sc)23'0.221 667 and our final estimat
obtained from extrapolation. To close this section, three
marks are in order. First: the reliability of our analysis pr
cedure has been corroborated by repeating it with the
cently computedO(b26) series for the self-avoiding-walk
~saw! model on the sc lattice.34 This is a relevant test becaus
the structure of the corrections to scaling~namely the sign
and size of the correction amplitude and the value of
confluent exponent3! is expected to be quite similar to th
Ising sc case. For the saw model we have observed tha
central value forbc indicated by our procedure is essentia
stabilized after reaching the orderb23 and agrees closely
with that indicated in Ref. 34, while the error decreases
higher-order coefficients are included in the analysis. O
procedure has also been tested and confirmed by other a
ments in Ref. 34. Second, due to the higher coordina
number of the bcc lattice, the corresponding series hav
greater ‘‘effective length’’ than the sc series, and theref
all estimates obtained for the bcc lattice will be system
cally more accurate. Third, as expected, the inclusion in
analysis of the two additional coefficients for the expans
of x on the bcc lattice, computed in Ref. 10, does not ess
tially modify our central estimate ofbc

bcc , but only reduces
its uncertainty to the value reported here.

B. Estimates of the critical exponents

By using a related variant8,23 of the ratio method and by
analogous arguments, fairly good estimates can be obta
also for the exponentsg andn. We construct the approxima
tion sequence

gn511
2~sn1sn22!

~sn2sn22!2
5g1OS 1

nuD ~9!

with the same definition as above forsn . Also in this case,
for sufficiently largen, the successive estimatesgn ~as well
as the analogous onesnn obtained from the series coeffi
cients ofj2), appear to be nearly linear on a 1/nu plot, and
therefore we can follow an extrapolation procedure co
pletely analogous to the one previously described. Howe
in the exponent calculation, the corrections area priori
larger and therefore the procedure involves relative er
larger than in the case ofbc . In order to illustrate this nu-
merical procedure in the case of the bcc lattice, we h
reported in Table I the last eight terms of the sequencegn
and the results of the extrapolation of the last six succes
alternate pairs of terms. The estimates inferred from
analysis of these data areg51.2378(10) andn50.629(2) in
the case of the sc series andg51.2373(6), n50.629(1)
from the bcc series. As expected, the relative uncertain
for the exponentn are larger because of the slower approa
of the second moment series to its asymptotic behavior.
dependence of these estimates on the value ofu used in the
extrapolation can be expressed as follows:g51.2378
t
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10.016(u20.504)60.0010 andn50.62910.02(u20.504)
60.0020 in the case of the sc lattice;g51.237310.012(u
20.504)60.0006 andn50.62910.016(u20.504)60.0010
in the case of the bcc lattice.

In order to confirm these estimates for the exponents,
shall resort also to~unbiased and biased! analyses by inho-
mogeneous differential approximants~DA’s!.8,35 By unbi-
ased DA’s, we obtain somewhat larger estimates both for
critical inverse temperatures and for the exponents, wh
however, show a clear decreasing trend. Therefore these
should also be further extrapolated, but, unfortunately, thi
not as straightforward as in the case of the Zinn-Jus
method. Thus we did not insist on this route and preferred
perform biasedseries analyses, either~i! by the first-order
simplified differential approximants~SDA! introduced and
discussed in Ref. 3, in which bothbc and the correction-to-
scaling exponentu are fixed, or alternatively~ii ! by conven-
tional second-order inhomogeneous DA’s, in whichu andbc

are varied in a small neighborhood of their expected valu
following the method of Ref. 5. Let us also add that in
cases in which we have relied on SDA’s, we have also
peated the same calculation, first subjecting the series to
biased variable change introduced by Roskies36 in order to
regularize the leading correction to scaling and then comp
ing simple Pade´ approximants. In this way we have alway
obtained completely consistent results, although they
sometimes affected by larger uncertainties.

We have used the procedure~i! to study the residue of the
logarithmic derivative ofx or of j2 at the critical singularity.
In the case of the sc lattice series, rather than our own e
mate ofbc , we have used the more accurate~but otherwise
completely consistent! value bc

sc50.221 654 59(10) of Ref.
24. Thus we estimateg51.2378(10) andn50.6306(8).

In the analysis of the bcc lattice series, we have taken
a bias the value suggested by our extended ratio-me
analysisbc

bcc50.157 3725(6). In this case we get the value
g51.2375(6) andn50.6302(4). By using the Fisher scal
ing law,37 we get h50.037(3) from the sc series andh
50.036(2) from the bcc series. For both lattices we ha
used the same value~and uncertainty! of u as previously
discussed and we have easily allowed for the residual
creasing trend of the exponent estimates, because SDA’s
ues show a smaller spread than DA’s. We can also men
that in the bcc lattice case, the linearized dependence of
exponent central estimates on the bias values ofbc and u
can be described as follows:g51.237510.01(u20.504)
190(bc20.1573725) and n50.630210.015(u20.504)
140(bc20.1573725). We shall take as our final estima
for the exponents those obtained by SDA’s from the b
lattice, which are best converged.

The so-called M2 method of Ref. 38 is a very use
extension of the above-mentioned Roskies’ procedure.36 In
the case of the bcc lattice it suggestsbc

bcc50.157 3720(4)
with g51.2374(4) andu50.56(3), in good consistency
with the other approaches. On the other hand, in the c
of the sc lattice, the results of the M2 method at ord
b23, namely, bc

sc50.221 659(2), g51.2395(5) with u
50.50(2) are not essentially changed with respect to th
obtained in Ref. 31 from the analysis of our previousO(b21)
series.
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TABLE II. A comparison among recent estimates of the critical exponentsg andn.

This work Seriesa Seriesb MCc MCd MCe FD exp.f e exp.f

g 1.2375~6! 1.237~2! 1.2371~4! 1.2372~17! 1.2367~20! 1.2353~25! 1.2396~13! 1.2380~50!

n 0.6302~4! 0.6300~15! 0.63002~23! 0.6303~6! 0.6296~7! 0.6294~10! 0.6304~13! 0.6305~25!

aReference 5. dReference 25.
bReference 39. eReference 40.
cReference 24. fReference 17.
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In conclusion, provided that the sequences of estima
are carefully extrapolated using the independently compu
value of u, the determination of the exponents by the im
proved ratio method and by biased DA’s or SDA’s are co
pletely consistent, though the latter method gives sligh
more accurate results. At this order of expansion, asympt
trends seem to be already stabilized and the uncertaintie
the HT series estimates are significantly reduced. A sam
of recent estimates of the critical exponents is reported
Table II and briefly commented on in the rest of this secti
The agreement of our results with the valuesg
51.2396(13) andn50.6304(13), indicated by the FD pe
turbative RG,17 or the values g51.2380(50) and n
50.6305(25), suggested by thee expansion,17 is still good.
However, we should observe that through the years, as
length of the HT series has increased, the exponent estim
have been moving towards the slightly lower central valu
g ' 1.237 andn ' 0.630. Indeed, very similar values ha
already been suggested some time ago by Chen, Fisher
Nickel26 who studied soft spin models of the Ising univers
ity class, chosen so to have negligible amplitudes for
leading corrections to scaling. Within this approach,
analysis5 of HT series through orderb21 for the bcc lattice
gaveg51.237(2) andn50.6300(15). A study39 of the HT
series throughO(b20) for the sc lattice, along the same line
as in Refs. 5, 26, indicatesg51.2371(4) and n
50.63002(23). Recently, this method was adapted also
MC simulations in Ref. 24, which reportsg51.2372(17)
andn50.6303(6). Analogously in Ref. 25, the estimatesn
50.6296(7) andh50.0358(9) are obtained, implyingg
51.2367(20). Even lower central estimates of the ex
nents, namelyg51.2353(25) andn50.6294(10), have bee
obtained in a MC simulation of the Ising model by a finit
size scaling analysis40 which allows for the corrections to
scaling.

C. Estimates of universal amplitude ratios

By taking advantage also of the low-temperature exp
sion of x on the sc lattice, extended in Ref. 7 to orderu26
es
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le
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@hereu5exp(24b)#, and of the older series for the bcc la
tice computed to orderu23 in Ref. 41, we can give a new
direct estimate of the universal ratioC1 /C2 . Using the
low-temperature series forj2, computed for the sc lattice in
Ref. 42 throughu23, we can also compute the ratiof 1

sc/ f 2
sc .

These quantities have been repeatedly evaluated in re
years by various techniques with increasing accuracy.

We have used first-order SDA’s to computeC6
#

5 limt→06utugx#. In the sc lattice case, by choosingbc
sc

50.221 654 59,g51.2375, andu50.5, we obtainC1
sc/C2

sc

54.762(8). Here the uncertainty refers to the sharp bias v
ues indicated above. In order to compare this result w
others obtained by slightly different assumptions, the dep
dence of our estimate on the bias valuesgb and ub for the
critical and the correction exponents can be linearly appro
mated by C1

sc/C2
sc54.76216.06(1.23752gb)10.7(ub

20.5)60.008. The ratio is insensitive to the choice ofbc
sc

within its quoted uncertainty. In the case of the bcc latti
we have used the same bias values forg andu together with
bc

bcc50.157 372 5, obtainingC1
bcc/C2

bcc54.76(3). In this
case the error~mainly coming from the uncertainty ofC2

bcc)
is larger, but the result is completely consistent with the
lattice estimate.

The experimental measurements of this ratio range
tween 4.3 and 5.2~Refs. 12,17, and 18! and are perfectly
compatible with our estimates. Other recent numerical eva
ations are summarized in Table III. However, some co
ments are helpful for understanding these results. The pr
ous evaluations by Fisher and co-workers,27,43 used shorter
series and bias valuesg51.2395 andbc

sc50.221 630 some-
what different from ours, thus yielding the slightly large
value 4.95~15!. The ratioC1 /C2 can also be obtained from
approximate parametric representations of the scaling e
tion of state17,39,44: here we quote only the most recent39 such
estimate: 4.77~2!.

The MC simulation of Ref. 45 gave the somewhat larg
value 5.18~35!, while the more recent and higher precisio
study of Ref. 46 yields 4.75~3! and the work of Ref. 47
reports 4.72~11!.
ratio
TABLE III. A comparison among recent estimates of the susceptibility universal amplitude
C1 /C2 .

This work Seriesa,b Eq.Statec MCd MCe MCf FD exp.g e exp.g

4.762~8! 4.95~15! 4.77~2! 5.18~35! 4.75~3! 4.72~11! 4.79~10! 4.73~16!

aReference 27. eReference 46.
bReference 43. fReference 47.
cReference 39. gReference 17.
dReference 45.
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TABLE IV. A comparison among recent estimates of the correlation-length universal amplitude
f 1 / f 2 .

This work Seriesa,b Eq. Statec MC d MC e FD exp.f e exp.g

1.963~8! 1.96~1! 1.961~7! 2.06~1! 1.95~2! 2.013~28! 1.91

aReference 27. eReference 46.
bReference 43. fReference 48.
cReference 39. gReference 18.
dReference 45.
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Within the e-expansion approach to the RG, the estim
4.73~16! is obtained, while the FD expansion gives the res
4.79~10!.17 The value 4.72~17! was obtained in Ref. 48.

In a similar way, we have computedf 1
sc/ f 2

sc51.963(8),
assumingn50.6302. The quoted uncertainty allows also f
the uncertainties in the estimates ofn andu. Other estimates
appearing in the recent literature are summarized in Ta
IV. Our result compares well with the estimate 1.96(1) o
tained in Refs. 27 and 43 by shorter series as well as with
recent estimate 1.961~7! of Ref. 39. The MC estimate of Ref
45 was 2.06(1), whereas in Ref. 46 the value 1.95(2)
reported. The lateste-expansion estimate18 is 1.91 ~with no
indication of error bars! and the FD estimate48 is 2.013(28).
The recent experimental estimates of this ratio range betw
1.9~2! and 2.0~4!.

We believe that the close agreement between our se
estimates and the latest determinations of these universa
tios is due to the careful allowance of the confluent corr
tions to scaling by SDA’s. Indeed, even using the long
series presently available, simple Pade´ approximants, notori-
ously inadequate to describe the singular corrections to s
ing, suggest estimates sizably larger, while the conventio
DA’s lead to a wider spread in the estimates. Further
provements of the direct series determination of these ra
should probably await for an extension of the low
temperature series.

By using only the HT extended series presented here
can also reevaluate the universal ratioaj

1/ax
1 . Let us recall

that, as observed in Refs. 3,5,26,29 and argued in ea
studies49 for the spin-1/2 Ising model on the sc, the bcc, a
the fcc lattices, the amplitudes of the leading correction-
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scaling terms have a negative sign, both for the susceptib
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can be most simply determined, also in this case, by us
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H.W.J. Blöte, L.N. Shchur, and A.L. Talapov, Int. J. Mod. Phy
C 10, 137 ~1999!.

25M. Hasenbusch, J. Phys. A32, 4851~1999!.
26J.H. Chen, M.E. Fisher, and B.G. Nickel, Phys. Rev. Lett.48, 630
.

~1982!; M.E. Fisher and J.H. Chen, J. Phys.~France! 46, 1645
~1985!.

27S.Y. Zinn and M.E. Fisher, Physica A226, 168 ~1996!.
28M. Henkel, S. Andrieu, P. Bauer, and M. Piecuch, Phys. R

Lett. 80, 4783~1998!.
29M.J. George and J.J. Rehr, Phys. Rev. Lett.53, 2063~1984!; M.J.

George, Ph. D. thesis, Washington University, 1985.
30D. Stauffer~private communication!.
31Z. Salman and J. Adler, Int. J. Mod. Phys. C9, 195 ~1998!.
32N. Ito, K. Hukushima, K. Ogawa, and Y. Ozeki, J. Phys. Soc. J

69, 1931~2000!.
33A. M Ferrenberg and D.P. Landau, Phys. Rev. B44, 5081~1991!.
34D. MacDonald, S. Joseph, D.L. Hunter, L.L. Moseley, N. Jan, a

A.J. Guttmann, J. Phys. A33, 5937~2000!.
35D.L. Hunter and G.A. Baker, Phys. Rev. B7, 3346 ~1973!; 7,

3377 ~1973!; 19, 3808~1979!; M.E. Fisher and H. Au-Yang, J
Phys. A12, 1677 ~1979!; 13, 1517 ~1980!; A.J. Guttmann and
G.S. Joyce,ibid. 5, L81 ~1972!; J.J. Rehr, A.J. Guttmann, an
G.S. Joyce,ibid. 13, 1587~1980!.

36R.Z. Roskies, Phys. Rev. B24, 5305~1981!.
37M.E. Fisher, Phys. Rev.180, 594 ~1979!.
38J. Adler, M. Moshe, and V. Privman, Phys. Rev. B26, 1411

~1983!.
39M. Campostrini, A. Pelissetto, P. Rossi, and E. Vicari, Phys. R

E 60, 3526~1999!.
40H.G. Ballesteros, L.A. Fernandez, V. Martin-Mayor, G. Pari

and J.J. Ruiz-Lorenzo, J. Phys. A32, 1 ~1999!.
41M.F. Sykes, D.S. Gaunt, J.W. Essam, and C.J. Elliot, J. Phys

6, 1507~1973!.
42H. Arisue and K. Tabata, Nucl. Phys. B435, 555 ~1995!.
43A.E. Liu and M.E. Fisher, Physica A156, 35 ~1989!.
44M.E. Fisher and S.Y. Zinn, J. Phys. A31, L629 ~1998!; M.E.

Fisher, S.Y. Zinn and P.J. Upton, Phys. Rev. B59, 14 533
~1999!.

45C. Ruge, P. Zhu, and F. Wagner, Physica A209, 431 ~1994!.
46M. Caselle and M. Hasenbusch, J. Phys. A30, 4963~1997!.
47J. Engels, and T. Scheideler, Nucl. Phys. B539, 557 ~1999!.
48J. Heitger and G. Mu¨nster, Nucl. Phys. B424, 582 ~1994!; C.

Gutsfeld, J. Ku¨ster, and G. Mu¨nster,ibid. 479, 654 ~1996!.
49A.E. Liu and M.E. Fisher, J. Stat. Phys.58, 431 ~1990!.
50C. Bagnuls and C. Bervillier, Phys. Rev. B24, 1226~1981!.


