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Using a renormalized linked-cluster-expansion method, we have extended tgB8tdiee high-temperature
series for the susceptibility and the second-moment correlation lengtbf the spin-1/2 Ising models on the
sc and the bcc lattices. A study of these expansions yields updated direct estimates of universal parameters,
such as exponents and amplitude ratios, which characterize the critical behayiand&. Our best estimates
for the inverse critical temperatures g8&°=0.221 654(1) ang82°°=0.157 375(6). For thesusceptibility
exponent we gey=1.2375(6) and for the correlation length exponernt0.63024). Theratio of the critical
amplitudes ofy above and below the critical temperature is estimated 10 pgC_=4.7648). Theanalogous
ratio for £ is estimated to be , /f _=1.9638). For thecorrection-to-scaling amplitude ratio we obtain
a;/a;=0.876).

[. INTRODUCTION our implementation of the linked cluster expansion proce-
dure is rather different from that described in Ref. 10.

As a part of an ongoing long-term program of computer- Any enrichment of the exact information on the three-
based calculations and analyses of high-temperkiFe se- dimensional (3D) Ising model is still of general interest.
ries for two-dimensional and three-dimensiorfal lattice ~ Here we have used these data to improve the knowledge of
spin models, we have extended by two terms the highthe non-negligible singular correctidrigo the leading criti-
temperature series for the spin-1/2 Ising model on the simpl€@l singularities ofy and¢ and, as a consequence, the accu-

cubic (s9 and the body-centered cubibcd lattices. In the  racy of the direct HT series estimates of all critical param-
first analysis presented here, we shall consider only the HPters. As stressed in Refs. 4 and 5, the corrections to scaling

expansions throughg?® for the susceptibilityy and the first showed up unambiguously when the bcc series were

21 A i
second-moment correlation lengéh mainly in order to up- extended to orders™, the last three coefficients being

date thedirect estimates of the corresponding critical indices.cruc'al' Itis ther_e_fore helptul to produ_ce more coe_:fflments,
v and . in order to stabilize and possibly refine the quality of the

For th lattice. the | ¢ . f th tinformation extracted from the series.
or the sc fatlice, the longest expansions of these quanti- o plan of this note is as follows: after setting our nota-

ties already in the literature reach orgéf". They were ob-  yiona| conventions in Sec. II, we tabulate the series coeffi-
tained and analyzed in Refs. 2 and 3 only a few years ago. Igjants fory and u, through order 23, with respect to the
the case of the bcc lattice, the published séridsr y andé,  syal HT expansion variable=th(4). In Sec. Il we report
also extending throug|s®, were calculated by Nickel two the results of our extrapolations for the critical temperatures,
decades ago. The progress in such computations has begj the critical exponentsy and », for the universal ratio
slow due to the exponential growth of their complexity with C, /C_ of the critical amplitudes of the susceptibility above
the order of the expansion, so that even adding only a fevand below the critical point, for the analogous ratio/ f _ of
terms to the present results is a laborious task. Within thgne correlation-length amplitudes, and for the rajda; of
renormalized linked-clustérexpansion method, used in our the correction-to-scaling amplitud®s.0ur estimates are
work, one must overcome many problems of combinatoriakompared with the latest numerical calculations by series, by
hature concerning graph generation, classification, and pagtochastic methods, and by perturbative renormalization-
tial resummation, and a special effort must be devoted tQroup (RG) techniques, in the fixed-dimensioFD)
keep under strict control the numerous possible sources approacl’f*‘lgand in thee-expansion approacfi-22Less re-
error. In our case, a final severe test is provided by havingen studies have been already reviewed in our Refs. 2 and 3.
the program reproduce, in three dimensions, established data
like the series for the nearest-neighbor spin correlation on the
sc lattice, which is already tabulatethrough 8%’, and, in

two dimensions, the series fgrandw, on the simple square In order to introduce our notation, we shall specify by the
lattice, which are knowt through3%° and beyond:® After ~ Hamiltonian
the completion of this work, a preprifthas been issued

which also reports independently extended expansiong for

and u, on both the the sc and the bcc lattice through orders

B2 and 8%, respectively. Our series coefficients agree with _ _ _ _ _
those of Ref. 10 as far as the expansions overlap. This addge nearest-neighbor three-dimensional spin-1/2 Ising model
further confidence about the correctness of the results sinde zero magnetic field. Herg(x) = =1 is the spin variable at

II. DEFINITIONS AND NOTATIONS
J " -)I
Hist=—> 2 s(x)s(x’) &)
2 %3y
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the lattice sitex, and the sum extends over all nearest- N R *

neighbor pairs of sites. We shall consider expansions in the ma(B)= 2 X¥(S(0)S(X))e= Z b, " 3
usual HT variableB=J/kgT called “inverse temperature” X r

for brevity. However, for convenience, we shall tabulate the )

series coefficients with respect to the expansion variable !N terms ofy andu, the second-moment correlation length

—th(g). is defined by
The susceptibility is expressed in terms of the connected
two-spin correlation functiors(x)s(y)). by wo B)
‘ E(B)= 7o @
w 6x(B)
X(B)= 2 (s(0)s(X))c=1+ 2, arf", 2
: =

For easy reference we report here the complete expan-
and the second moment of the correlation function is definedions ofx and u,, rather than only the lastly computed two
as coefficients. For the susceptibility on the sc lattice we have

X5%(v)=1+6v+ 302+ 150>+ 7260*+ 3510 °+ 16710+ 79494 "+ 375174+ 1769686 °+ 8306862 1°
+38975286 11+ 18226582212+ 852063558 13+ 397378488614+ 18527532316+ 86228667894°
+401225368086' '+ 1864308847838+ 8660961643254'°+ 401909473256 7F°+ 186475398518726*
+8644047764664062+ 4006394107568934°+ - - -.

For the second moment on the sc lattice we have
w3(v)=6v+7202+582% 3+ 4032 *+ 25542 °+ 15300@ °+ 880422 '+ 492057% 8+ 26879670 °+ 144230088 1°
+ 76258791011+ 398352595212+ 20595680694 >+ 1055588457364+ 536926539990 °+ 2713148048256
+13630071574614 "+ 68121779384520'%+ 338895833104996 °+ 1678998083744448°
+82871364767878621+ 40764741656730408%+ 199901334823355526°+ - - -
For the susceptibility on the bcc lattice we have
X°S%(v)=1+8v+56v2+ 3923+ 2648 %+ 17864 °+ 11876@ °+ 789032 7+ 5201048 &+ 34268104 °+ 224679864 1°
+ 14725951441+ 961974064812+ 628231411923+ 409297617672 4+ 2665987056200"°
+17333875251192'%+ 112680746646856 '+ 731466943653464-8+ 4747546469665832°
+3077910667570031:3%+ 199518218638233896'+ 1292141318087690824°
+8367300424426139624%+ - - -
For the second moment on the bcc lattice we have
whe(v)=8v+ 1282+ 1416)3+ 13568 *+ 11924® 5+ 992768 °+ 7948840 ' + 61865216 ° + 470875848°
+35219548161%+ 259656529361+ 189180221184+ 1364489291848+ 9757802417152
+69262083278152°+ 488463065172736°+ 3425131086090312 '+ 23896020585393152°
+165958239005454632%+ 1147904794262960384%+ 7910579661767454248"
+5433255121670993196%+ 372033905161237212382+ - - -.

lll. ANALYSIS OF THE SERIES (B =CE () Y(A+a () 0+ vetie )

5
In terms of the reduced inverse temperaturé=1
- Bl ,Bi‘, the asymptotic critical behavior of the susceptibility as the critical poinBﬁ is approached from belowHere and
is expected to b in what follows, the superscript # stands for either sc or bcc,
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TABLE I. The sequences of approximants f@f and y defined by Eqgs(7) and(9), respectively, and the
sequences of the appropriate extrapolations using alternate pairs, as obtaingddmthe bcc lattice. For
the extrapolations we have assumed t#hat0.504.

n (Be)n from Eq.(7) Extrapol. of (8.)n v, from Eq. (9) Extrapol. ofy,
18 0.1573815 1.244335

19 0.1573806 1.244174

20 0.1573807 0.1573761 1.244049 1.238519
21 0.1573800 0.1573759 1.243889 1.238114
22 0.1573799 0.1573743 1.243760 1.237595
23 0.1573793 0.1573746 1.243620 1.237599
24 0.1573791 0.1573739 1.243501 1.237475
25 0.1573787 0.1573740 1.243374 1.237421

as appropriate, and will be dropped whenever unnecessanhe value ofé as follows. For sufficiently large, the se-
The index+ (-) denotes, as usual, quantities associated Wity ence of estimatess(),, shows very small regular oscilla-
the high(low) temperature side of the critical ponSimi-  {ions due to the loose structure of the lattice. Moreover, the
larly, for the correlation lengtl, we expect odd and even subsequences Bf), have a rerséduaal decreas-
# . L g ing trend which is very nearly linear on ant/ ? plot, as
(B =11(r" (1+a, ()74 te ) 6 sugggested by Ed7). Tr{erefon}a’, simply taking th(i_O highest-
©) order term of the sequenc@(),, as the final estimate would
ast—0", be an inadequate choice. We have preferred to extrapolate
The exponentsy, v, and 6 are universal quantities, separately ton — o the successive odd and even pairs of
whereas the critical amplitude€” , f* | the amplitudes estimates 8.),, assuming that we know the value @fwell
a+#1 a;# of the leading nonanalytic correction-to-scaling enough. The two sequences of extrapolated values need fur-

teers, and the amplitude.rg#, e;# of the leading analytic ther extrapolation which allows also for the small residual

corrections are nonuniversal, as suggested by the superscrigtrvature of the plot and leads to the final estima8gs

#. Experimentally accessible universal combinations can be 0.221654(1) in the case of the sc lattice, apf®
formed out of the critical amplitudé§. Here we shall be =0.157372%5(6) in thecase of the bcc lattice. The errors we
concerned with series estimates of the universal ratioBave reported account generously both for the present uncer-
Cc./C_, f./f_, and a;/ag. Notice that for the critical tainty in @ (whose effects in this analysis are very small
amplitudes we have adopted the notation of Ref. 18 and oknyway and for the uncertainty of the second extrapolation.

other recent studies rather than that of Ref. 12. For the correction-to-scaling exponent we have assumed the
value §=0.5048), obtained by the FD perturbative RG.
A. Estimates of the critical points Also in the rest of this paper the central values of all

0-biased estimates will refer to this value. However, in the

As a first step of the analysis, we shall examine the seriega|cylations of this and Sec. 11l B, we have also considered a
for the susceptibility whose coefficients have the smoothest,,ch larger uncertainty, in order to make sure that our re-

pattern of behavior, so that they are generally used to estls;jis are compatible with somewhat higher central values
mate the critical temperatures. These estimates will also bg ., as#=0.523), proposed in Ref. Gas well as in Ref.
used to bias the determination of the critical exponents an§41 with a smaller error or with §=0.53(1) suggested in
of the universal amplitude ratios; therefore, their accuracy iset 25 An even larger central vale=0.54(3) was indi-
crucial. Let us begin by considering the results obtained by 3.ta4 in Refs. 26 and 27, while an experimental measure
very efficient variant of the ratio method introduced by reported in Ref. 28 yield§=0.579). In thecase of the bcc

Zinn-Justirt® (see also Ref.)8 lattice, as an example of our extrapolation procedure, we
We evaluates, from the sequence have reported in Table | the last eight terms of the sequence

o o 1a o ts (Bon an_d the results of the initial extrapolati_on of the last six
n-2 n—3) F{ n'>on-2 = successive alternate pairs of terms. Our final result for the
anan_1 28,(Sh—Sn-2) nl“’) critical inverse temperature of the Ising model on the sc lat-
7) tice is completely compatible, although much less precise

than the valugg:®=0.22165459(10) obtained from an ex-

tensive Monte Carlo(MC) study by a dedicated cluster
1}/ processd? and generally considered as the best available

2 (8)

(Bn=

:|=BC+O

where

-1 2
an—3

an-18n-5

estimate. Our central value ¢8°, obtained similarly, is

only slightly smaller, but more precise than the vaﬁiﬁe“
This is anunbiasedmethod, in the sense that no additional =0.157 373(2) suggested in the Nickel and Rehr
accurate information must be used together with the series ianalysis>?*2° We should finally mention that Professor D.
order to get the estimates of the critical parameters, but w&tauffef® kindly informed us that he still tends to favor the
found it useful to improve the procedure by biasing it with somewhat larger central estimgsé®=0.221 659, basing on

Sy=

2
an—2
In

n“n—4
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the HT analysis in Ref. 31, as well as on his own recent+-0.016(¢—0.504)*0.0010 andv=0.629+0.02(f— 0.504)
simulatiort® of the critical dynamics and on analogous work +0.0020 in the case of the sc lattice=1.2373+0.012(0

in Ref. 32. We also recall that a similar valugZ® —0.504)+0.0006 andv=0.629%0.016(¢—0.504)*=0.0010
=0.2216595(26) was indicated a decade ago in the Montg the case of the bcc lattice.

Carlo simulation of Ref. 33. In the context of our analysis, In order to confirm these estimates for the exponents, we
these values lie approximately halfway between the higheskhall resort also tgunbiased and biasg@nalyses by inho-
order approximant8;°) ,3~0.221 667 and our final estimate mogeneous differential approximant®A’s).®3 By unbi-
obtained from extrapolation. To close this section, three reased DA’s, we obtain somewhat larger estimates both for the
marks are in order. First: the reliability of our analysis pro- critical inverse temperatures and for the exponents, which,
cedure has been corroborated by repeating it with the renowever, show a clear decreasing trend. Therefore these data
cently computedO(5%) series for the self-avoiding-walk should also be further extrapolated, but, unfortunately, this is
(saw) model on the sc Iattlc?_iThls |sare_levant test becguse not as straightforward as in the case of the Zinn-Justin
the structure of the corrections to scalifitamely the sign  athod. Thus we did not insist on this route and preferred to
and size of the correction amplitude and the value of theperform biasedseries analyses, eithén by the first-order

confluent exponedt is expected to be quite similar to the simplified differential approximantgSDA) introduced and
Ising sc case. For the saw model we have observed that th . . . )
iscussed in Ref. 3, in which boiB. and the correction-to-

ntral value f indi r pr rei ntiall . ) o
central value fo3 indicated by our procedure is essentially scaling exponent are fixed, or alternativelyii) by conven-

stabilized after reaching the ordg®® and agrees closely > . e ,
with that indicated in Ref. 34, while the error decreases agonal s_eco_nd-order mho_mogeneous DA S n whichnd 5,
re varied in a small neighborhood of their expected values,

higher-order coefficients are included in the analysis. Ouf* i i
procedure has also been tested and confirmed by other argi@lowing the method of Ref. 5. Let us also add that in all
ments in Ref. 34. Second, due to the higher coordinatioff@S€S in which we have relied on SDA's, we have also re-

number of the bcc lattice, the corresponding series have aeated the same calculation, first subjecting the series to the

greater “effective length” than the sc series, and thereford’/@sed variable change introduced by Roskiés order to
regularize the leading correction to scaling and then comput-

all estimates obtained for the bcc lattice will be systemati- ; , X ;
cally more accurate. Third, as expected, the inclusion in ould Simple Pad@pproximants. In this way we have always

analysis of the two additional coefficients for the expansiorPPt@ined completely consistent results, although they are

of x on the bcc lattice, computed in Ref. 10, does not essersPMetimes affected by larger uncertainties.
tially modify our central estimate Q@Ecc’ but only reduces We have used the procedui¢to study the residue of the

. . - . 2 .. . -
its uncertainty to the value reported here. logarithmic derivative ob(_or ofg_ at the critical singularity. _
In the case of the sc lattice series, rather than our own esti-

_ . mate of 3., we have used the more accuréveit otherwise
B. Estimates of the critical exponents completely consisteptvalue B3°=0.221 654 59(10) of Ref.
By using a related variaht® of the ratio method and by 24. Thus we estimatg=1.2378(10) and,=0.630§8).
analogous arguments, fairly good estimates can be obtained In the analysis of the bcc lattice series, we have taken as
also for the exponentg andv. We construct the approxima- a bias the value suggested by our extended ratio-method

tion sequence analysisB2°°=0.157 375(6). Inthis case we get the values
v=1.2375(6) andv=0.63044). By using the Fisher scal-
2(Sp+Sn_2) 1 ing law®” we get »=0.037(3) from the sc series ang
Yn= +m:?’+o by (9 =0.036(2) from the bce series. For both lattices we have
n n—

used the same valu@nd uncertainty of 6 as previously
with the same definition as above fgy. Also in this case, discussed and we have easily allowed for the residual de-
for sufficiently largen, the successive estimatgg (as well ~ creasing trend of the exponent estimates, because SDA’s val-
as the analogous ones, obtained from the series coeffi- ues show a smaller spread than DA’s. We can also mention
cients of¢?), appear to be nearly linear on anf/plot, and  that in the bcc lattice case, the linearized dependence of the
therefore we can follow an extrapolation procedure com£exponent central estimates on the bias valuegoand 6
pletely analogous to the one previously described. Howevegan be described as followsy=1.2375+0.01(f—0.504)

in the exponent calculation, the corrections arepriori ~ +90(8,—0.1573725) and »=0.6302+0.015(9—0.504)
larger and therefore the procedure involves relative errors-40(8.—0.1573725). We shall take as our final estimates
larger than in the case @.. In order to illustrate this nu- for the exponents those obtained by SDA's from the bcc
merical procedure in the case of the bcc lattice, we havéattice, which are best converged.

reported in Table | the last eight terms of the sequepge The so-called M2 method of Ref. 38 is a very useful
and the results of the extrapolation of the last six successivextension of the above-mentioned Roskies’ proceduta.
alternate pairs of terms. The estimates inferred from théhe case of the bcc lattice it sugged®*°=0.157 372 (4)
analysis of these data age=1.2378(10) and'=0.629(2) in  with y=1.2374(4) and#=0.5§3), in good consistency
the case of the sc series and=1.23736), »=0.629(1) with the other approaches. On the other hand, in the case
from the bcc series. As expected, the relative uncertaintiesf the sc lattice, the results of the M2 method at order
for the exponent are larger because of the slower approach3?®, namely, 83°=0.2216592), y=1.2395(5) with ¢

of the second moment series to its asymptotic behavior. The-0.50(2) are not essentially changed with respect to those
dependence of these estimates on the valug wed in the obtained in Ref. 31 from the analysis of our previdig3??)
extrapolation can be expressed as followg=1.2378 series.
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TABLE Il. A comparison among recent estimates of the critical expongrdad v.

This work  Serie Serie$ MC® mc® mce FDexp'  eexpf

y 1.237%6) 1.2372)  1.23714)
v 0.63024) 0.630q15 0.6300223)

1.237217) 1.236720) 1.235325 1.239613) 1.238@50)
0.63036) 0.62987) 0.629410) 0.630413) 0.630%25)

dReference 25.
®Reference 40.
Reference 17.

8Reference 5.
bReference 39.
‘Reference 24.

In conclusion, provided that the sequences of estimatefhereu=exp(—4p)], and of the older series for the bcc lat-
are carefully extrapolated using the independently computegice computed to orden?® in Ref. 41, we can give a new
value of ¢, the determination of the exponents by the im-direct estimate of the universal ratié, /C_. Using the
proved ratio method and by biased DA’s or SDA'’s are com-jow-temperature series f@?, computed for the sc lattice in
pletely consistent, though the latter method gives slightlyref. 42 throughu?® we can also compute the ratf§%sC.
more accurate results. At this order of expansion, asymptoti¢hese quantities have been repeatedly evaluated in recent

the HT series estimates are significantly reduced. A sample \ye have used first-order SDA’s to comput@’i

of recent estimates of the critical exponents is reported in_;
Table Il and briefly commented on in the rest of this section.
The agreement of our results with the valueg
=1.2396(13) andv=0.6304(13), indicated by the FD per-

m,_o=|7|”x*. In the sc lattice case, by choosing®
=0.22165459,y=1.2375, andd= 0.5, we obtainC5%C*°
=4.7648). Here the uncertainty refers to the sharp bias val-
ues indicated above. In order to compare this result with

turbative RGY or the values y=1.2380(50) and v . ) ; ,
= ' T R others obtained by slightly different assumptions, the depen-
=0.6305(25), suggested by teeexpansiort’is still good. dence of our estimate on the bias valugsand 6,, for the

Eﬁwﬁvgf ,tr\:é eH‘ngIr?egazzr\i/rfc;[gztségrﬂﬁghe;h%X:rii’s?;;?gersitical and the correction exponents can be linearly approxi-
g ! P by CSYCS°=4.762+6.06(1.2375 ) +0.7(0,

have been moving towards the slightly lower central value ated Lo e .
y~ 1.237 andv ~ 0.630. Indeed, very similar values had —0.5)+0.008. The ratio is insensitive to the choice @i

already been suggested some time ago by Chen, Fisher, althin its quoted uncertair_ny. In the case of the bcc Igttice,
Nickel’® who studied soft spin models of the Ising universal-""t?cg‘ave used the same bias Vlc;iJ(L:JeSb’}(f:ande together with

ity class, chosen so to have negligible amplitudes for théBc —0.1573725, obtainingCL"/C=""=4.73). In this
leading corrections to scaling. Within this approach, thecase the errofmainly coming from the uncertainty @°°°)
analysisS of HT series through ordeg?! for the bcc lattice IS larger, but the result is completely consistent with the sc
gave y=1.237(2) andv=0.6300(15). A stud{ of the HT lattice estimate.

series througl®(B8%) for the sc lattice, along the same lines ~ The experimental measurements of this ratio range be-
as in Refs. 5 26, indicatesy=1.2371(4) and »  tween 4.3 and 5.2Refs. 12,17, and 18and are perfectly
=0.63002(23). Recently, this method was adapted also tgo_mpatible with our_estim_ates. Other recent numerical evalu-
MC simulations in Ref. 24, which reportg=1.2372(17) ations are summarized in Table_ [ll. However, some com-
and v=0.63036). Analogously in Ref. 25, the estimates Ments are h.elpful for ynderstandlng these gesults. The previ-
—0.6296(7) and»=0.0358(9) are obtained, implying  OUS evaluations by Fisher and co-work&ré® used shorter
—1.2367(20). Even lower central estimates of the expoSeries and bias values=1.2395 and3;°=0.221 630 some-
nents, namelyy = 1.2353(25) and = 0.6294(10), have been what different from ours, thus yielding the slightly larger
obtained in a MC simulation of the Ising model by a finite- value 4.9%515). The ratioC. /C_ can also be obtained from

size scaling analysi which allows for the corrections to @pproximate parametric representations of the scaling equa-
scaling. tion of staté’”***4 here we quote only the most rec&guch

estimate: 4.7@).

The MC simulation of Ref. 45 gave the somewhat larger
value 5.1835), while the more recent and higher precision
By taking advantage also of the low-temperature expanstudy of Ref. 46 yields 4.18) and the work of Ref. 47

sion of y on the sc lattice, extended in Ref. 7 to ordéf  reports 4.7211).

C. Estimates of universal amplitude ratios

TABLE Ill. A comparison among recent estimates of the susceptibility universal amplitude ratio
C,/C_.
This work Serie¥3”  Eq.Staté mcH Mce MmC' FD exp? € exp?
4.7628) 4,9515) 4.772) 5.1835) 4.753) 4.7211) 4.7910) 4.7316)

%Reference 27.
bReference 43.
‘Reference 39.
dreference 45.

®Reference 46.
'Reference 47.
9Reference 17.
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TABLE IV. A comparison among recent estimates of the correlation-length universal amplitude ratio

FLIf
This work Seried®? Eq. Staté MC ¢ MC © FD exp! € exp?
1.9638) 1.961) 1.9617) 2.061) 1.952) 2.01329) 1.91

%Reference 27.
bReference 43.
‘Reference 39.
dreference 45.

®Reference 46.
'Reference 48.
9Reference 18.

Within the e-expansion approach to the RG, the estimatescaling terms have a negative sign, both for the susceptibility
4.7316) is obtained, while the FD expansion gives the resultand the correlation length. The values of these amplitudes
4.7910).17 The value 4.7¢17) was obtained in Ref. 48. can be most simply determined, also in this case, by using

In a similar way, we have computefd”f*°=1.9638), the SDA’s mentioned above. Our estimate for the universal
assumingy=0.6302. The quoted uncertainty allows also forratio between these amplitudes; °%a, °=0.95(15) from
the uncertainties in the estimates:ofind §. Other estimates the sc lattice series, amgbc‘:/a;b°°=0.87(6) from the bcc
appearing in the recent literature are summarized in Tabléattice series, improves the accuracy of our previous results
IV. Our result compares well with the estimate 1.96(1) ob-obtained from the analysis of shorter series. These results
tained in Refs. 27 and 43 by shorter series as well as with theRave to be compared with the FD resa@/a; =0.65(5)
recent estimate 1.962) of Ref. 39. The MC estimate of Ref. gptained in Ref. 50 and with the HT resu;%*bcc/a;bcc
45 was 2.061), whereas in Ref. 46 the value 1.95(2) is ~(.85 of Refs. 5 and 29.
reported. The latest-expansion estimat®is 1.91 (with no
indication of error barsand the FD estimaf@is 2.013(28).

The recent experimental estimates of this ratio range between 3 )
1.92) and 2.44). We have ex_te_r?ded through ord@f® the HT expansions

We believe that the close agreement between our seri¢d the susceptibility and of the second correlation moment
estimates and the latest determinations of these universal ri2" the spin-1/2 Ising model, on the sc and the bcc lattices.
tios is due to the careful allowance of the confluent correcAS @ first application of our calculation, we have updated the
tions to scaling by SDA's. Indeed, even using the longe irect HT estimates of.un|versal critical parameters of the
series presently available, simple Pagroximants, notori- SiNg model with some improvement over previous analyses
ously inadequate to describe the singular corrections to scal the accuracy and in the agreement with the latest calcula-
ing, suggest estimates sizably larger, while the conventiond/ONS Py approximate RG methods and by various numerical
DA’s lead to a wider spread in the estimates. Further im.methods.
provements of the direct series determination of these ratios
should probably await for an extension of the low-
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